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Escuela de Matemática, Fac. Ciencias, Universidad Central de Venezuela,
Apartado Postal 47686, Caracas 1041-A, Venezuela

ramonbruzual.ucv@gmail.com , ramon.bruzual@ciens.ucv.ve
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Abstract : We give a representation result for regular positive definite Toeplitz kernels and,
as a corollary, we obtain a representation result for equivalent kernels. We obtain a stability
result which is used to show that, under certain conditions, a special perturbation of a
positive definite Toeplitz kernel is equivalent to the perturbed kernel. Some applications to
stochastic processes are given.
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1. Introduction

Positive definite kernels play a prominent role in many results of analysis
and probability where they appear naturally. It is important to highlight that
this notion allows to consider, in a unified way, problems of both areas. In this
paper we will consider kernels that are equivalent to positive definite Toeplitz
kernels.

The Wold decomposition appeared for the first time on [7] (see also [8])
and its harmonic analysis version for operators on Hilbert spaces was given on
[6]. In this paper we will use the Wold decomposition of a translation operator
to obtain a representation result for regular positive definite Toeplitz kernels
(see Theorem 5). This theorem is analogous to a result for stochastic process
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given in [2]. Considering Riesz basis we give a similar representation result
for kernels equivalent to positive definite Toeplitz kernels (see Theorem 7).

We prove a stability result for positive definite kernels related with the
Paley-Wiener theorem about stability of bases given in [4] (see Theorem 8).
This stability result is used to show that, under certain conditions, a spe-
cial perturbation of a positive definite Toeplitz kernel is equivalent to the
perturbed kernel (see Theorem 13).

Some applications to stochastic process are given. Recall that a discrete
stochastic process is a sequence of random variables on a probability space. A
stochastic process is said to be stationary if its finite dimensional distributions
are invariant under translations of time. A wider class of stochastic processes
is given by the weakly stationary process in the definition of which one only
imposed those conditions that are absolutely necessary for using Hilbert space
methods and Fourier analysis methods. In this case the covariance kernel is a
positive definite Toeplitz kernel.

Using our representation results for regular positive definite Toeplitz ker-
nels we obtain a theorem of Gihman and Skorokhod for stochastic processes
proved in [2] (see Theorem 15).

We consider a special class of stochastic processes, called approximately
weakly stationary, that were introduced by Strandell. For this type of pro-
cesses we prove a representation result already given in [5] (see Theorem 17)
and a perturbation result similar to a theorem given in [5] (see Theorem 18).

2. Some properties of positive definite kernels

Let K : Z× Z → C be a kernel. It is said that K is positive definite if∑
m,n∈Z

K(n,m) am an ≥ 0

for every sequence {an}n∈Z ⊂ C with finite support.
Let Eo de the space of the sequences {an}n∈Z ⊂ C with finite support.
Let K : Z × Z → C a positive definite kernel. For a = {an}n∈Z and

b = {bn}n∈Z in Eo define

⟨a, b⟩ =
∑

m,n∈Z
K(n,m) am bn .

It holds that ⟨ · , · ⟩ is a, possibly degenerated, positive definite sesquilinear
form on Eo.



on positive definite kernels 99

Let Eo,K be the pre-Hilbert space obtained after the natural quotient on
Eo and let HK be the completion of Eo,K .

The product and the norm on HK will be denoted by ⟨ , ⟩HK
and ∥ ∥HK

respectively. This norm will be called the norm induced by K.
For n ∈ Z let δ(n) be the element of Eo defined by

δ(n)m =

{
1 if m = n ,

0 if m ̸= n .

Let {an}n∈Z ⊂ C be a finite support sequence.
The equivalence class of the element

∑
n∈Z

anδ
(n) will be denoted by[∑

n∈Z
anδ

(n)

]
K

.

Observe that∥∥∥∥∥
[∑
n∈Z

anδ
(n)

]
K

∥∥∥∥∥
2

HK

=
∑

m,n∈Z
K(n,m) am an .

Definition 1. Let K1,K2 : Z× Z → C be two positive definite kernels.
It is said that K1 and K2 are equivalent if the corresponding induced

pre-Hilbert norms, ∥ ∥HK1
and ∥ ∥HK2

, on the space Eo are equivalent.

Proposition 2. Let K1,K2 : Z×Z → C be two positive definite kernels.
Then the following conditions are equivalent:

(i) The kernels K1 and K2 are equivalent.

(ii) There exists a bounded bijective linear map, with bounded inverse,

Φ : HK1 → HK2

such that
Φ
[
δ(n)

]
K1

=
[
δ(n)

]
K2

.

(iii) There exist two constants A,B with 0 < A ≤ B such that

A
∑

m,n∈Z
K1(n,m) am an ≤

∑
m,n∈Z

K2(n,m) am an

≤ B
∑

m,n∈Z
K1(n,m) am an

for every finite support sequence {an}n∈Z ⊂ C.
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Proof. Note that condition (iii) means that

A
∥∥[h]K1

∥∥2
HK1

≤
∥∥[h]K2

∥∥2
HK2

≤ B
∥∥[h]K1

∥∥2
HK1

for h ∈ Eo.
Thus condition (ii) implies condition (iii).

By definition conditions (i) and (iii) are equivalent. So it is enough to
show that condition (iii) implies condition (ii).

Suppose that condition (iii) holds. Then the map

Φo : Eo,K1 → Eo,K2

defined by

Φo

[∑
n∈Z

anδ
(n)

]
K1

 =

[∑
n∈Z

anδ
(n)

]
K2

is well defined and it is linear and continuous.

Let Φ : HK1 → HK2 be the continuous linear extension of Φo.

We have that {[hm]K2} is a Cauchy sequence in Eo,K2 if and only if {[hm]K1}
is a Cauchy sequence in Eo,K1 . From this fact it follows that Φ is onto with
continuous inverse.

Recall that K : Z× Z → C is a Toeplitz kernel if there exists a sequence
τ : Z → C such that

K(n,m) = τ(n−m) for all n,m ∈ Z .

The sequence τ is positive definite if the corresponding Toeplitz kernel is
positive definite.

IfK is a positive definite Toeplitz kernel then the operator T : Eo,K → Eo,K
defined by

T

([∑
n∈Z

anδ
(n)

]
K

)
=

[∑
n∈Z

anδ
(n−1)

]
K

gives raise to a unitary operator on HK , that will be denoted by T also. As
usual it will called the translation operator.
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3. Regular positive definite Toeplitz kernels

If K : Z × Z → C is a positive definite kernel, for j ∈ Z let Hj
K be the

closed subspace of HK generated by the elements of the form
[
δ(n)

]
K

with
n ≤ j, that is

Hj
K = span

{[
δ(n)

]
K

: n ≤ j
}
.

Note that if K is a Toeplitz kernel, then Hj
K is invariant by the translation

operator T .

Definition 3. Let K be a positive definite kernel, K is said to be that
regular if ∩

j∈Z
Hj

K = {0} .

We will avoid the trivial case K ≡ 0.

Proposition 4. Let K be a positive definite Toeplitz kernel with trans-
lation operator T . If K is regular then dim

(
H0

K ⊖ TH0
K

)
= 1.

Proof. It holds that TH0
K + span

{[
δ(0)
]
K

}
= H0

K, then dim
(
H0

K ⊖TH0
K

)
is 0 or 1.

If this dimension is equal to 0, then Hj
K = T jH0

K = H0
K , thus∩

j∈Z
Hj

K = H0
K ̸= {0} .

As usual ℓ2(N) will denote the space of square summable sequences

a = {an}n∈N with norm ∥a∥2 =
(∑

n∈N |an|2
)1/2

, analogously for ℓ2(Z).

Theorem 5. Let K be a positive definite kernel. Then the following con-
ditions are equivalent

(i) K is a regular and Toeplitz.

(ii) There exists a sequence {an}+∞
n=0 ∈ ℓ2(N) and an orthonormal basis

{en}n∈Z of HK such that

Hj
K = span {en : n ≤ j} for all j ∈ Z

and [
δ(n)

]
K

=
+∞∑
j=0

ajen−j .
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Proof. Suppose (i) holds.

We will use the Wold decomposition of the translation operator T : HK →
HK (for details about the Wold decomposition see [6, Theorem 1.1, p. 3]).

Since T pHq
K = Hq−p

K , if p ≥ 0 it holds that

+∞∩
j=0

T jH0
K =

+∞∩
j=0

H−j
K =

0∩
j=−∞

Hj
K .

Since H0
K ⊂

∩+∞
j=1 H

j
K , we have that

+∞∩
j=0

T jH0
K ⊂

+∞∩
j=−∞

Hj
K = {0} ,

so the operator T is a unilateral shift.

From Proposition 4 it follows that dim
(
H0

K ⊖ TH0
K

)
= 1, thus the multi-

plicity of T is 1.

Let e0 be a unitary vector in H0
K ⊖ TH0

K .

From the Wold decomposition it follows that {T pe0}p∈Z is an orthonormal
basis of HK and {T pe0}+∞

p=po is an orthonormal basis of H−po
K .

For p ∈ Z let

ep = T−pe0 .

Since
[
δ(0)
]
K

∈ H0
K there exists a sequence {an}+∞

n=0 ∈ ℓ2(N) such that

[
δ(0)
]
K

=
+∞∑
j=0

aje−j .

Thus [
δ(n)

]
K

= T−n
[
δ(0)
]
K

=

+∞∑
j=0

ajen−j .

Suppose (ii) holds.

Then, for n,m ∈ Z it holds that

K(n,m) =
⟨[

δ(m)
]
K
,
[
δ(n)

]
K

⟩
HK

=

+∞∑
j=0

ajan−m+j .

So K is a Toeplitz kernel.
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Since {en}n∈Z is an orthonormal basis of HK and Hj
K = span {en : n ≤ j}

for all j ∈ Z it holds that ∩
j∈Z

Hj
K = {0} ,

so K is regular.

Proposition 6. Let K1 and K2 be two equivalent positive definite ker-
nels. Then K1 is regular if and only if K2 is regular.

Proof. With the same notation of Proposition 2 we have that Φ(Hj
K1

) =

Hj
K2

for j ∈ Z. So the result follows.

Recall that if H is a separable Hilbert space a sequence {vn}n∈Z is called
a Riesz basis if there exist a bounded linear operator with bounded inverse
V : H → H and an orthonormal basis {en}n∈Z of H such that vn = V en
for n ∈ Z.

For more details about bases in Banach spaces see [1, 3].

Theorem 7. Let K be a positive definite kernel. Then the following con-
ditions are equivalent:

(i) K is regular and equivalent to a positive definite Toeplitz kernel.

(ii) There exists a sequence {an}+∞
n=0 ∈ ℓ2(N) and a Riesz basis {vn}n∈Z of

HK such that [
δ(n)

]
K

=
+∞∑
j=0

ajvn−j

and
Hj

K = span {vn : n ≤ j} for all j ∈ Z .

Proof. Suppose that (i) holds. Let K1 be a positive definite Toeplitz kernel
equivalent to K. From Proposition 6 it follows that K1 is regular, so from
Theorem 5 it follows that there exist a sequence {an}+∞

n=0 ∈ ℓ2(N) and a
orthonormal base {en}n∈Z of HK1 such that

[
δ(n)

]
K1

=

+∞∑
j=0

ajen−j

and
Hj

K1
= span {en : n ≤ j} for every j ∈ Z .
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Since K1 and K are equivalent, the function Φ : HK1 → HK defined by

Φ
[
δ(n)

]
K1

=
[
δ(n)

]
K

is well defined and it is bounded with bounded inverse.

Defining vn by

vn = Φen

the first part of the result is obtained.

For the last equality it is enough to observe that

Φ(Hj
K1

) = Hj
K .

Suppose that (ii) holds. Then there exists an orthonormal basis {en}n∈Z ⊂
HK and a bounded linear operator with bounded inverse V : HK → HK such
that vn = V en for n ∈ Z.

We have that

V −1
[
δ(n)

]
K

=

+∞∑
j=0

ajen−j .

Let K1 : Z× Z → C be the kernel defined by

K1(n,m) =
⟨
V −1

[
δ(m)

]
K
, V −1

[
δ(n)

]
K

⟩
HK

.

It holds that K1(n,m) =
∑+∞

j=0 ajan−m+j , so K1 is a Toeplitz kernel.

Note that, for a finite support sequence {an}n∈Z ⊂ C

∑
m,n∈Z

K1(n,m) am an =

∥∥∥∥∥V −1

(∑
n∈Z

an
[
δ(n)

]
K

)∥∥∥∥∥
2

HK

.

Since V is bounded with bounded inverse, by Proposition 2 it holds that K
and K1 are equivalent.

Finally the regularity of K follows as in Theorem 5.

4. Perturbations of Toeplitz kernels

The following result is related with a Paley-Wiener theorem about stability
of bases [4] (see also [9, Theorem 10, p. 38]). A similar result for stochastic
process was given in [5, Theorem 2].
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Theorem 8. Let K be a positive definite kernel.
If {gn}∞n=−∞ ⊂ HK satisfies∥∥∥∥∥∑

n∈Z
an

([
δ(n)

]
K
− gn

)∥∥∥∥∥
HK

≤ λ

∥∥∥∥∥∑
n∈Z

an
[
δ(n)

]
K

∥∥∥∥∥
HK

for every finite support sequence {an}n∈Z ⊂ C, where λ ∈ (0, 1), then the
kernel K1 defined by

K1(n,m) = ⟨gn, gm⟩HK

is equivalent to K.

Proof. From the hypothesis it follows that there exists a bounded linear
operator J : HK → HK such that ∥J∥ ≤ λ and

J

([∑
n∈Z

anδ
(n)

]
K

)
=
∑
n∈Z

an

([
δ(n)

]
K
− gn

)
for each finite support sequence {an}n∈Z ⊂ C.

Let f ∈ HK be given by

f =
∑
n∈Z

an
[
δ(n)

]
K
,

where {an}n∈Z ⊂ C is a finite support sequence.
We have that

(I − J) (f) =
∑
n∈Z

an gn

and
(1− λ)∥f∥HK

≤ ∥(I − J)f∥HK
≤ 2∥f∥HK

.

Then

(1− λ)2
∑

m,n∈Z
K(n,m) am an ≤

∑
m,n∈Z

K1(n,m) am an

≤ 4
∑

m,n∈Z
K(n,m) am an .

The following result follows from the Riesz representation theorem, for
more details see [9, Theorem 2, p. 151].
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Lemma 9. Let {fn}n∈Z be a sequence in a Hilbert space H, let {cn}n∈Z
be a sequence of scalars and let M > 0. Then the following conditions are
equivalent:

(i) There exists f ∈ H such that ∥f∥2H ≤ M and ⟨f, fn⟩H = cn for n ∈ Z.
(ii) For every finite support sequence of scalars {an}n∈Z it holds that∣∣∣∣∣∑

n∈Z
ancn

∣∣∣∣∣
2

≤ M

∥∥∥∥∥∑
n∈Z

anfn

∥∥∥∥∥
2

H

.

The following result can be obtained from a proof of [9, Proposition 2, p.
154]. Since in [9] the proof is left as an exercise, we include a proof of our
lemma here.

Lemma 10. Let {fn}n∈Z be a sequence in a Hilbert space H, let M =
span{fn}n∈Z and let L be a closed subspace of ℓ2(Z). Suppose that for each
sequence x = {xn}n∈Z ∈ L the problem

⟨f, fn⟩H = xn , n ∈ Z

has a solution f ∈ H.
Then, for each sequence x = {xn}n∈Z ∈ L, this problem has a unique

solution Tx ∈ M and the function x 7→ Tx, from L to M, is linear and
bounded.

Proof. Let PH
M : H → M be the orthogonal projection of H onto M.

Suppose that x = {xn}n∈Z ∈ L. If f ∈ H is a solution of ⟨f, fn⟩H = xn,
n ∈ Z, then PH

Mf is the only solution of this problem in M, so it is enough
to take Tx = PH

Mf .
Clearly T is linear, so it is enough to show that T is closed.
Let {x(j)}+∞

j=1 ⊂ L be a sequence such that

x(j) → x ∈ L and Tx(j) → y ∈ M as j → +∞ ,

then, for n ∈ Z,
x(j)n → xn as j → +∞ .

Since
⟨
Tx(j), fn

⟩
H = x

(j)
n for all j, taking limit we obtain

⟨y, fn⟩H = lim
j→+∞

⟨Tx(j), fn⟩H = xn ,
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therefore

y = Tx .

Remark 11. There exists a constant A > 0 such that, under the same
hypothesis of this last lemma, for each sequence x = {xn}n∈Z ∈ L, the problem

⟨f, fn⟩H = xn , n ∈ Z

has a solution f ∈ H such that

∥f∥2H ≤ A
∑
n∈Z

|xn|2 .

The following result is related with [5, Lemma 3.3].

Lemma 12. Let {fn}n∈Z be a sequence in a Hilbert space H and let
{bn}n∈Z be a sequence of numbers such that bn = 1 or bn = 0.

Suppose that for each sequence c = {cn}n∈Z ∈ ℓ2(Z) the problem

⟨f, fn⟩H = bncn , n ∈ Z

has a solution f ∈ H.

Then there exists a constant A > 0 such that

∑
n∈Z

|anbn|2 ≤ A

∥∥∥∥∥∑
n∈Z

anfn

∥∥∥∥∥
2

H

for every finite support sequence of scalars {an}n∈Z.

Proof. Let L =
{
{bnzn}n∈Z : {zn}n∈Z ∈ ℓ2(Z)

}
, then L is a closed sub-

space of ℓ2(Z) and it holds that, for each sequence w = {wn}n∈Z ∈ L, the
problem

⟨f, fn⟩H = wn for n ∈ Z

has a solution f ∈ H.

From Lemma 10 (see also Remark 11) it follows that there exists A > 0,
not depending on w, such that this problem has a solution f ∈ H which
satisfies

∥f∥2H ≤ A
∑
n∈Z

|wn|2 .
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In particular, if z = {zn}n∈Z ∈ ℓ2(Z) and ∥z∥2 ≤ 1, then the problem

⟨f, fn⟩H = bnzn for n ∈ Z

has a solution f ∈ H such that

∥f∥2H ≤ A .

So, from Lemma 9 it follows that∣∣∣∣∣∑
n∈Z

anbnzn

∣∣∣∣∣
2

≤ A

∥∥∥∥∥∑
n∈Z

anfn

∥∥∥∥∥
2

H

,

for each finite support sequence of scalars {an}n∈Z and each scalar sequence
z = {zn}n∈Z such that ∥z∥2 ≤ 1.

Finally, if for a finite support sequence {an}n∈Z we take

zn =


0 if ∥{anbn}∥2 = 0 ,

anbn
∥{anbn}∥2

in other case ,

we obtain ∑
n∈Z

|anbn|2 ≤ A

∥∥∥∥∥∑
n∈Z

anfn

∥∥∥∥∥
2

H

.

Recall that a sequence {xn}n∈Z on a Hilbert space is called minimal if, for
each p ∈ Z,

xp /∈ span {xn : n ∈ Z , n ̸= p} .

If {xn}n∈Z is a minimal sequence on the Hilbert space H, then there exists
a sequence {hn}n∈Z ⊂ H which is biorthogonal to {xn}n∈Z, that is

⟨xn, hm⟩H = δnm

(more details can be found in [9, p. 28]).

Theorem 13. Let K : Z × Z → C be a positive definite Toeplitz kernel
such that the sequence

{[
δ(n)

]
K

}
n∈Z ⊂ HK is minimal.

Let I ⊂ Z be a finite subset and let {en}n∈I ⊂ HK be an orthonormal
system.
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Then there exists a constant B > 0 such that for any sequence of numbers
{cn}n∈I that satisfies 0 ≤ cn < B the kernel K+K1 is equivalent to the kernel
K, where

K1(n,m) =



ρ(n,m) + ρ(m,n) + cnδnm if m,n ∈ I ,

ρ(n,m) if m ∈ I, n /∈ I ,

ρ(m,n) if m /∈ I, n ∈ I ,

0 if m /∈ I, n /∈ I

and

ρ(n,m) =
√
cm

⟨
em,

[
δ(n)

]
K

⟩
HK

.

Proof. Let {hn}n∈Z ⊂ HK be a sequence biorthogonal to
{[

δ(n)
]
K

}
n∈Z.

Let {bn}n∈Z be the sequence defined by bn = 1 if n ∈ I and bn = 0 in other
case.

If {cn}n∈Z ∈ ℓ2(Z), then the problem⟨
f,
[
δ(n)

]
K

⟩
HK

= bncn for n ∈ Z

has the solution

f =
∑
n∈I

cnhn .

Let {an}n∈Z be a finite support sequence of scalars.

From Lemma 12 it follows that there exists a constant A > 0 such that

∑
n∈Z

|anbn|2 ≤ A

∥∥∥∥∥∑
n∈Z

an
[
δ(n)

]
K

∥∥∥∥∥
2

HK

.

Let B > 0 such that AB < 1. Suppose that {cn}n∈Z also satisfies 0 ≤
cn < B.

If {gn}n∈Z ⊂ HK is defined by

gn =


[
δ(n)

]
K
+

√
cnen if n ∈ I ,[

δ(n)
]
K

other case ,
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then ∥∥∥∥∥∑
n∈Z

an

([
δ(n)

]
K
− gn

)∥∥∥∥∥
2

HK

=

∥∥∥∥∥∑
n∈I

an
√
cn en

∥∥∥∥∥
2

HK

≤ B

∥∥∥∥∥∑
n∈I

an en

∥∥∥∥∥
2

HK

= B
∑
n∈Z

|anbn|2

≤ AB

∥∥∥∥∥∑
n∈Z

an
[
δ(n)

]
K

∥∥∥∥∥
2

HK

.

Since

K(n,m) +K1(n,m) = ⟨gn, gm⟩HK

the result follows from Theorem 8.

5. Applications to stochastic processes

Let (Ω,F , P ) be a probability space. The well known Hilbert space
L2(Ω,F , P ) will be denoted by L2(P ).

Let X = {Xn}n∈Z be a stochastic process. We will always suppose that
Xn ∈ L2(P ) and E(Xn) = 0 for every n ∈ Z. Let

H(X) = span {Xn : n ∈ Z} ⊂ L2(P )

and

Hj(X) = span {Xn : n ≤ j} ⊂ L2(P ) for all j ∈ Z .

The process is said to be regular if∩
j∈Z

Hj(X) = {0} .

The kernel associated to the process is the covariance kernel K defined by

K(n,m) = cov (Xm, Xn) = E(XmXn) = ⟨Xm, Xn⟩L2(P ) .

We have that K is a positive definite kernel.
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Remark 14. Define Ψ : HK → H(X) by

Ψ
([

δ(n)
]
K

)
= Xn .

Then ⟨[
δ(m)

]
K
,
[
δ(n)

]
K

⟩
HK

= K(n,m) = ⟨Xm, Xn⟩L2(P )

=
⟨
Ψ(
[
δ(m)

]
K
),Ψ(

[
δ(n)

]
K
)
⟩
L2(P )

,

therefore Ψ is a unitary operator such that Ψ(Hj
K) = Hj(X) for all j ∈ Z.

Note that the kernel K is regular if and only if the process X is regular.

The process {Xn}n∈Z is said to be weakly stationary if

E(XmXn) = τ(m− n) for all n,m ∈ Z

for a sequence τ : Z → C, that is, the kernel associated to the process is
Toeplitz.

As applications we give proofs of [2, Theorem 2, p. 292] and [5, Theorem
6]. We also obtain a result similar to [5, Theorem 3].

Theorem 15. ([2, Theorem 2, p. 292]) Let X = {Xn}n∈Z be a sto-
chastic process. Then the following conditions are equivalent:

(i) X = {Xn}n∈Z is regular and weakly stationary.

(ii) There exists a sequence {an}+∞
n=0 ∈ ℓ2(N) and a orthonormal basis

{ξn}n∈Z of H(X) such that

Xn =

+∞∑
j=0

aj ξn−j

and
Hj(X) = span {ξn : n ≤ j} for all j ∈ Z .

Proof. Let K be the covariance kernel of the process X.
Suppose (i) holds. Then K is regular and Toeplitz.
By Theorem 5 there exists a sequence {an}+∞

n=0 ∈ ℓ2(N) and a orthonormal
basis {en}n∈Z of HK such that

[
δ(n)

]
K

=
+∞∑
j=0

aj en−j
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and

Hj
K = span {en : n ≤ j} for j ∈ Z .

Consider the unitary operator Ψ : HK → H(X) defined by

Ψ
([

δ(n)
]
K

)
= Xn for n ∈ Z .

Then

Xn = Ψ
([

δ(n)
]
K

)
=

+∞∑
j=0

aj Ψ(en−j) .

For n ∈ Z, take
ξn = Ψ(en) .

Then {ξn}n∈Z is a orthonormal basis of H(X).

And for j ∈ Z we have that

Hj(X) = Ψ(Hj
K) = span {Ψ(en) : n ≤ j} = span {ξn : n ≤ j} .

The converse follows using again Theorem 5.

According to the definition given in [5, p. 17] a stochastic process {Xn}n∈Z
on L2(P ) is approximately weakly stationary if there exists a positive definite
sequence τ : Z → C such that

A
∑

m,n∈Z
τ(n−m) am an ≤

∥∥∥∥∥∑
n∈Z

anXn

∥∥∥∥∥
2

L2(P )

≤ B
∑

m,n∈Z
τ(n−m) am an

for every finite support sequence {an}n∈Z ⊂ C.

Lemma 16. Let X = {Xn}n∈Z be a stochastic process on L2(P ). Then
the following conditions are equivalent:

(i) The process is approximately weakly stationary.

(ii) The covariance kernel, K, of the process X is equivalent to a positive
definite Toeplitz kernel.
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Proof. The result follows from the definitions and from the following equal-
ity ∥∥∥∥∥∑

n∈Z
anXn

∥∥∥∥∥
2

L2(P )

=
∑

m,n∈Z
K(n,m) am an .

Theorem 17. ([5, Theorem 6]) Let X = {Xn}n∈Z be a stochastic pro-
cess on L2(P ). Then the following conditions are equivalent:

(i) X = {Xn}n∈Z is regular and approximately weakly stationary.

(ii) There exists a sequence {an}+∞
n=0 ∈ ℓ2(N) and a Riesz basis {ξn}n∈Z of

H(X) such that

Xn =

+∞∑
j=0

aj ξn−j

and

Hj(X) = span {ξn : n ≤ j} for j ∈ Z .

Proof. Let K be the covariance kernel of the process X. Suppose X =
{Xn}n∈Z is regular and approximately weakly stationary. By Lemma 16 the
kernel K is equivalent to a positive definite Toeplitz kernel K1.

Using Theorem 7 the proof follows in a similar way to the proof of Theorem
15.

The following result is similar to [5, Theorem 3].

Theorem 18. Let S = {Sn}n∈Z be a weakly stationary process such
that the sequence {Sn}n∈Z is minimal. Then for any orthonormal process
{en}n∈I ⊂ H(S), where I is a finite subset of Z, there exists a constant
B > 0, such that for any sequence of numbers {cn}n∈I such that 0 ≤ cn < B,
the stochastic process X defined by

Xn =

{
Sn +

√
cnen if n ∈ I ,

Sn other case ,

is approximately weakly stationary.

Proof. Let K be the kernel given by K(n,m) = cov (Sm, Sn). Then K is
a Toeplitz kernel.
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Let Ψ : HK → H(S) defined by

Ψ
([

δ(n)
]
K

)
= Sn

(see Remark 14).
Since {Sn}n∈Z is minimal we have that {

[
δ(n)

]
K
}n∈Z is minimal.

By Theorem 13 there exists a constant B > 0 such that for any sequence
of numbers {cn}n∈I that satisfies 0 ≤ cn < B the kernel K +K1 is equivalent
to the kernel K, where

K1(n,m) =



ρ(n,m) + ρ(m,n) + cnδnm if m,n ∈ I ,

ρ(n,m) if m ∈ I, n /∈ I ,

ρ(m,n) if m /∈ I, n ∈ I ,

0 if m /∈ I, n /∈ I

and
ρ(n,m) =

√
cm

⟨
em,

[
δ(n)

]
K

⟩
HK

.

Since
cov (Xm, Xn) = K(n,m) +K1(n,m) ,

it follows that the covariance kernel of X = {Xn}n∈Z is equivalent to the
Toeplitz kernel K.

So from Lemma 16 it follows that the process S = {Sn}n∈Z is approxi-
mately weakly stationary.
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