Semicentral Idempotents in the Multiplication Ring of a Centrally Closed Prime Ring

J.C. Cabello, M. Cabrera, E. Nieto
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
jcabello@ugr.es, cabrera@ugr.es, enieto@ugr.es

Presented by Consuelo Martínez
Received July 9, 2012

Abstract: Let R be a ring and let $M(R)$ stand for the multiplication ring of R. An idempotent E in $M(R)$ is called left semicentral if its range $E(R)$ is a right ideal of R. In the case that R is prime and centrally closed we give a description of the left semicentral idempotents in $M(R)$. As an application we prove that, if, in addition, $M(R)$ is Baer (respectively, regular or Rickart), then R is Baer (respectively, regular or Rickart). Similar results for $*$-rings are also proved.

Key words: Prime ring, extended centroid, multiplication ring, semicentral idempotent, Baer ring.
AMS Subject Class. (2010): 16N60, 16E50.

Introduction

Let R be a (unital associative) ring and let $\operatorname{End}_{\mathbb{Z}}(R)$ stand for the ring of all endomorphisms of the additive group of R. For each a in R, let L_{a} and R_{a} denote the left and right multiplications by a, respectively. The multiplication ring of R is defined as the subring $M(R)$ of $\operatorname{End}_{\mathbb{Z}}(R)$ generated by the set $\left\{L_{a}, R_{a}: a \in R\right\}$. If for any $a, b \in R$ we define the two-sided multiplication $M_{a, b} \in \operatorname{End}_{\mathbb{Z}}(R)$ by $M_{a, b}(x)=a x b$, it is clear that $L_{a}=M_{a, 1}, R_{a}=M_{1, a}$, $\operatorname{Id}_{R}=M_{1,1}$, and

$$
M(R)=\left\{\sum_{i=1}^{n} M_{a_{i}, b_{i}}: n \in \mathbb{N}, a_{i}, b_{i} \in R(1 \leq i \leq n)\right\} .
$$

We say that an idempotent E in $M(R)$ is left (respectively, right, or two-sided) semicentral if its range $E(R)$ is a right (respectively, left, or two-sided) ideal of R.

[^0]Our aim is to provide a description of the semicentral idempotents in the multiplication ring of a centrally closed prime ring. While the general theory of rings of quotients is developed in many books, we shall mostly follow [1]. Recall that a ring R is called prime if the product of two nonzero ideals of R is always nonzero (equivalently, the condition $a R b=0$, where $a, b \in R$, implies $a=0$ or $b=0$), and R is called semiprime if it contains no nonzero nilpotent ideals (equivalently, the condition $a R a=0$, where $a \in R$, implies $a=0$). The extended centroid C of a semiprime ring R can be defined as the center of its two-sided symmetric ring of quotients $Q_{s}(R)$, and R is said to be centrally closed whenever C coincides with the center of R. Moreover, R is prime if and only if C is a field. We prove that the left semicentral idempotents in $M(R)$, for R centrally closed prime ring, are just of the form

$$
E=L_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}
$$

for suitable e idempotent in $R, n \geq 0, x_{i}, y_{i} \in R$ satisfying $e x_{i}=x_{i}, x_{i} e=0$, and $x_{i} x_{j}=0$ for all $i, j \in\{1, \ldots, n\}$, and such that both sets $\left\{e, x_{1}, \ldots, x_{n}\right\}$ and $\left\{1, y_{1}, \ldots, y_{n}\right\}$ are linearly C-independent.

As usual, for a subset S of a ring R, the left respectively right annihilator of S will be defined by

$$
\operatorname{Ann}_{\ell}(S):=\{a \in R: a S=0\} \text { and } \operatorname{Ann}_{r}(S):=\{a \in R: S a=0\}
$$

Clearly $\operatorname{Ann}_{\ell}(S)$ is a left ideal of R and $\operatorname{Ann}_{r}(S)$ is a right ideal of R. Recall that a ring R is a Rickart ring if for each x in R there are idempotents e and f in R such that $\operatorname{Ann}_{r}(x)=e R$ and $\operatorname{Ann}_{\ell}(x)=R f$. A ring R is a regular ring if for each x in R there exists an element y in R such that $x=x y x$ (equivalently, $x R=e R$ for suitable idempotent e in R). A ring R is a Baer ring if for each subset S of R there is an idempotent e in R such that $\operatorname{Ann}_{r}(S)=e R$. As an application of the description of the semicentral idempotents in $M(R)$, for R centrally closed prime ring, we derive that if $M(R)$ is a Rickart, regular, or Baer ring, then R so is. Similar results for centrally closed $*$-prime $*$-rings are also obtained. The classical books here are $[2,3,6,7]$.

1. The main results

We begin by stating some immediate characterizations of semicentral idempotents in the multiplication ring.

Proposition 1.1. Let R be a ring and let E be an idempotent in $M(R)$. Then the following conditions are equivalent:
(i) E is a left (respectively, right) semicentral idempotent in $M(R)$.
(ii) $E(E(a) b)=E(a) b($ respectively, $E(b E(a))=b E(a))$ for all $a, b \in R$.
(iii) $E R_{a} E=R_{a} E$ (respectively, $E L_{a} E=L_{a} E$) for every $a \in R$.

Corollary 1.2. Let R be a ring and let E be an idempotent in $M(R)$. Then the following conditions are equivalent:
(i) E is a two-sided semicentral idempotent in $M(R)$.
(ii) $E(E(a) b)=E(a) b$ and $E(b E(a))=b E(a)$ for all $a, b \in R$.
(iii) $E T E=T E$ for every $T \in M(R)$.

Note that the two-sided semicentral idempotents in $M(R)$ in our sense are just the left semicentral idempotents in the $\operatorname{ring} M(R)$ in the sense of [4]. Clearly every central idempotent in $M(R)$ is two-sided semicentral. The converse is true whenever R is prime.

Proposition 1.3. Let R be a prime ring. For $E \in M(R)$, the following conditions are equivalent:
(i) E is a central idempotent.
(ii) E is a two-sided semicentral idempotent.
(iii) $E=0$ or Id_{R}.

Proof. The implications (iii) \Rightarrow (i) \Rightarrow (ii) are true in a general context. (ii) \Rightarrow (iii). If E is a two-sided semicentral idempotent in $M(R)$, then

$$
\left(\operatorname{Id}_{R}-E\right) M(R) E=0 .
$$

Since $M(R)$ is a prime ring [5, Proposition 4], it follows that $E=0$ or Id_{R}.

In order to obtain a description of the one-sided semicentral idempotents in the multiplication ring of a centrally closed prime ring, we will make heavy use of the following well-known fact [1, Corollary 6.1.3]:

Let R be a centrally closed prime ring, and let $a_{i}, b_{i} \in R(1 \leq i \leq n)$ be such that $\sum_{i=1}^{n} a_{i} x b_{i}=0$ for every $x \in R$. If a_{1}, \ldots, a_{n} are linearly C independent, then $b_{1}=\cdots=b_{n}=0$.

Given $T \in M(R) \backslash\{0\}$, we will say that the length of T is $n \in \mathbb{N}$ if $T=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in R$ and T cannot be written also as $\sum_{i=1}^{m} M_{c_{i}, d_{i}}$ for some $m<n, c_{i}, d_{i} \in R$.

Lemma 1.4. Let R be a centrally closed prime ring and let T be a nonzero element in $M(R)$. Then T has length n if and only if $T=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in R$ with a_{1}, \ldots, a_{n} linearly C-independent and b_{1}, \ldots, b_{n} linearly C-independent.

Proof. Assume that T has length n. If $T=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$, then it is clear that any linear C-dependence of the a_{i} 's or the b_{i} 's allows us to write T as a sum of two-sided multiplications with less than n summands. Therefore, both $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ are linearly C-independent sets.

Conversely, assume that $T=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ and that both $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ are linearly C-independent sets. To obtain a contradiction, we suppose that $T=\sum_{j=1}^{m} M_{c_{j}, d_{j}}$ for some $m<n, c_{1}, \ldots, c_{m}$ linearly C-independent and d_{1}, \ldots, d_{m} linearly C-independent. Then, there exists $k, \ell \in\{1, \ldots, n\}$ such that a_{k} is linearly C-independent of the c_{j} 's and a_{ℓ} is linearly C-dependent of the c_{j} 's. By the incomplete basis theorem, there exists a subset of $\left\{a_{1}, \ldots, a_{n}\right\}$, which we will assume $\left\{a_{1}, \ldots, a_{p}\right\}$, such that $\left\{a_{1}, \ldots, a_{p}, c_{1}, \ldots, c_{m}\right\}$ is a basis of the C-vector subspace generated by $\left\{a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{m}\right\}$. So for each $k \in\{p+1, \ldots, n\}$ we can write

$$
a_{k}=\sum_{i=1}^{p} \alpha_{k}^{i} a_{i}+\sum_{j=1}^{m} \beta_{k}^{j} c_{j} \quad\left(\alpha_{k}^{i}, \beta_{k}^{j} \in C\right)
$$

Therefore, the equality $\sum_{i=1}^{n} M_{a_{i}, b_{i}}=\sum_{j=1}^{m} M_{c_{j}, d_{j}}$ yields to

$$
\sum_{i=1}^{p} a_{i} x\left(b_{i}+\sum_{k=p+1}^{n} \alpha_{k}^{i} b_{k}\right)=\sum_{j=1}^{m} c_{j} x\left(d_{j}-\sum_{k=p+1}^{n} \beta_{k}^{j} b_{k}\right)
$$

for every $x \in R$. Hence $b_{1}+\sum_{k=p+1}^{n} \alpha_{k}^{i} b_{k}=0$-a contradiction. Thus T has length n.

Our main result is the following.

ThEOREM 1.5. Let R be a centrally closed prime ring, let E be in $M(R) \backslash\{0\}$ and let $n \geq 0$. Then E is a left semicentral idempotent in $M(R)$ of length $n+1$ if and only if

$$
E=L_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}
$$

for suitable e idempotent in $R, x_{i}, y_{i} \in R$ satisfying $e x_{i}=x_{i}, x_{i} e=0$, and $x_{i} x_{j}=0$ for all $i, j \in\{1, \ldots, n\}$, and such that both sets $\left\{e, x_{1}, \ldots, x_{n}\right\}$ and $\left\{1, y_{1}, \ldots, y_{n}\right\}$ are linearly C-independent.

Proof. It is easy to see that, if E is of the form just described in the statement, then E is a left semicentral idempotent in $M(R)$. Moreover, by Lemma 1.4, E has length $n+1$.

In order to prove the converse, assume that E is a left semicentral idempotent in $M(R)$ of length $n+1$. Write $E=\sum_{i=0}^{n} M_{a_{i}, b_{i}}$ for suitable $a_{i}, b_{i} \in R$, and take into account that, by Lemma $1.4,\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ are each linearly C-independent sets. Set $a_{i, j}=a_{i} a_{j}$. Then the equality $E(E(x) y)=E(x) y$ can be rewritten as follows

$$
\begin{equation*}
\sum_{i, j=0}^{n} a_{i, j} x b_{j} y b_{i}=\sum_{k=0}^{n} a_{k} x b_{k} y \tag{1.1}
\end{equation*}
$$

First assume that $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is a C-basis of the vector subspace generated by the set $S:=\left\{a_{i, j}, a_{k}: 0 \leq i, j, k \leq n\right\}$ and that for each i, j

$$
a_{i, j}=\sum_{k=0}^{n} \alpha_{k}^{i, j} a_{k} \quad\left(\alpha_{k}^{i, j} \in C\right)
$$

Then (1.1) gives that

$$
\sum_{k=0}^{n} a_{k} x\left(b_{k} y-\sum_{i, j=0}^{n} \alpha_{k}^{i, j} b_{j} y b_{i}\right)=0
$$

and consequently, for each k we have

$$
b_{k} y-\sum_{i, j=0}^{n} \alpha_{k}^{i, j} b_{j} y b_{i}=0
$$

Writing this equality in the form

$$
b_{k} y\left(1-\sum_{i=0}^{n} \alpha_{k}^{i, k} b_{i}\right)-\sum_{\substack{j=0 \\ j \neq k}}^{n} b_{j} y\left(\sum_{i=0}^{n} \alpha_{k}^{i, j} b_{i}\right)=0,
$$

we see that

$$
1-\sum_{i=0}^{n} \alpha_{k}^{i, k} b_{i}=0 \quad \text { and } \quad \sum_{i=0}^{n} \alpha_{k}^{i, j} b_{i}=0 \quad(j \neq k) .
$$

These equalities together with the linear C-independence of $b_{0}, b_{1}, \ldots, b_{n}$ give that $\alpha_{k}^{i, k}=\alpha_{k^{\prime}}^{i, k^{\prime}}$ for all i, k, k^{\prime} and $\alpha_{k}^{i, j}=0$ for all i, j, k with $j \neq k$. Set $\alpha_{i}=\alpha_{k}^{i, k}$. Then, we have

$$
\sum_{i=0}^{n} \alpha_{i} b_{i}=1 \quad \text { and } \quad a_{i, j}=\alpha_{i} a_{j}
$$

By suitable reordering of the summands appearing in E we can assume the existence of m with $0 \leq m \leq n$ such that $\alpha_{i} \neq 0$ for $i \leq m$ and $\alpha_{i}=0$ otherwise. Now consider $e=\alpha_{0}^{-1} a_{0}, x_{i}=\alpha_{i}^{-1} a_{i}-\alpha_{0}^{-1} a_{0}, y_{i}=\alpha_{i} b_{i}$ if $1 \leq i \leq m$ and $x_{i}=a_{i}, y_{i}=b_{i}$ otherwise. It is easy to check that $E=L_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}$, e is an idempotent in R, and $x_{i}, y_{i} \in R$ satisfy $e x_{i}=x_{i}, x_{i} e=0$, and $x_{i} x_{j}=0$ for all i, j, and both sets $\left\{e, x_{1}, \ldots, x_{n}\right\}$ and $\left\{1, y_{1}, \ldots, y_{n}\right\}$ are linearly C independent.

Finally suppose, towards a contradiction, that $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is not a C basis of the vector subspace generated by S. If S is a linearly C-independent set, then it follows from (1.1) that $b_{0} y=0$ for every $y \in R$, hence $b_{0}=0$ -a contradiction. Therefore there exists a nonempty proper subset Γ of $\{0,1, \ldots, n\} \times\{0,1, \ldots, n\}$ such that

$$
\left\{a_{i, j}, a_{k}:(i, j) \in \Gamma, 0 \leq k \leq n\right\}
$$

is a C-basis of the vector subspace generated by S. Accordingly, for each $(p, q) \notin \Gamma$, we may write

$$
a_{p, q}=\sum_{(i, j) \in \Gamma} \alpha_{i, j}^{p, q} a_{i, j}+\sum_{k=0}^{n} \beta_{k}^{p, q} a_{k} \quad\left(\alpha_{i, j}^{p, q}, \beta_{k}^{p, q} \in C\right) .
$$

Now, from (1.1) we see that

$$
\sum_{(i, j) \in \Gamma} a_{i, j} x\left(b_{j} y b_{i}+\sum_{(p, q) \notin \Gamma} \alpha_{i, j}^{p, q} b_{q} y b_{p}\right)=\sum_{k=0}^{n} a_{k} x\left(b_{k} y-\sum_{(p, q) \notin \Gamma} \beta_{k}^{p, q} b_{q} y b_{p}\right) .
$$

As a consequence, for a fixed $\left(i_{0}, j_{0}\right) \in \Gamma$, we have

$$
b_{j_{0}} y b_{i_{0}}+\sum_{(p, q) \notin \Gamma} \alpha_{i_{0}, j_{0}}^{p, q} b_{q} y b_{p}=0,
$$

hence

$$
b_{j_{0}} y\left(b_{i_{0}}+\sum_{\left(p, j_{0}\right) \notin \Gamma} \alpha_{i_{0}, j_{0}}^{p, j_{0}} b_{p}\right)+\sum_{j \neq j_{0}} b_{j} y\left(\sum_{(p, j) \notin \Gamma} \alpha_{i_{0}, j_{0}}^{p, j} b_{p}\right)=0,
$$

and so

$$
b_{i_{0}}+\sum_{\left(p, j_{0}\right) \notin \Gamma} \alpha_{i_{0}, j_{0}}^{p, j_{0}} b_{p}=0,
$$

which is a contradiction.
Let R be a ring, and let $R^{o p}$ stand for the opposite ring of R. Since the additive groups of R and $R^{o p}$ agree, we can identify their endomorphism rings $\operatorname{End}_{\mathbb{Z}}(R) \equiv \operatorname{End}_{\mathbb{Z}}\left(R^{o p}\right)$, as well as their multiplication rings $M(R) \equiv M\left(R^{o p}\right)$. More precisely, if $M_{a, b}^{o p}$ denote the two-sided multiplication determined by the elements a and b in the opposite ring $R^{o p}$, then note that $M_{a, b}^{o p}=M_{b, a}$.

Corollary 1.6. Let R be a centrally closed prime ring, let E be in $M(R) \backslash\{0\}$ and let $n \geq 0$. Then E is a right semicentral idempotent in $M(R)$ of length $n+1$ if and only if

$$
E=R_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}
$$

for suitable e idempotent in $R, x_{i}, y_{i} \in R$ satisfying $y_{i} e=y_{i}, e y_{i}=0$, and $y_{i} y_{j}=0$ for all $i, j \in\{1, \ldots, n\}$, and such that both sets $\left\{1, x_{1}, \ldots, x_{n}\right\}$ and $\left\{e, y_{1}, \ldots, y_{n}\right\}$ are linearly C-independent.

Proof. Note that $R^{o p}$ is a centrally closed prime ring. It is clear that $E \in M(R)$ is a right semicentral idempotent in $M(R)$ of length $n+1$ if and only if $E \in M\left(R^{o p}\right)$ is a left semicentral idempotent in $M\left(R^{o p}\right)$ of length $n+1$. Now, the result follows straightforwardly from Theorem 1.5 applied to $R^{o p}$.

Corollary 1.7. Let R be a centrally closed prime ring. We have:
(1) If E is a left semicentral idempotent in $M(R)$, then there exists an idempotent e in R such that $E L_{e}=L_{e}$ and $L_{e} E=E$. In particular, $E(R)=e R$.
(2) If E is a right semicentral idempotent in $M(R)$, then there exists an idempotent e in R such that $E R_{e}=R_{e}$ and $R_{e} E=E$. In particular, $E(R)=R e$.

Proof. (1) We may assume that $E \neq 0$. By Theorem 1.5, we have

$$
E=L_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}
$$

for suitable e idempotent in $R, n \geq 0, x_{i}, y_{i} \in R$ such that $e x_{i}=x_{i}, x_{i} e=0$, and $x_{i} x_{j}=0$ for all $i, j \in\{1, \ldots, n\}$. Note that these conditions imply that $E L_{e}=L_{e}$ and $L_{e} E=E$, and therefore $E(R)=e R$.
(2) This assertion can be proved similarly, taking into account Corollary 1.6.

A *-ring is a ring R endowed with an involution, that is a map $*: R \rightarrow R$ satisfying

$$
(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad \text { and }\left(a^{*}\right)^{*}=a
$$

Lemma 1.8. Let R be a centrally closed prime ring. Then $M(R)$ is a *-ring for the involution \circ defined by

$$
T=\sum_{i=1}^{n} M_{a_{i}, b_{i}} \mapsto T^{\circ}:=\sum_{i=1}^{n} M_{b_{i}, a_{i}} .
$$

Proof. In order to prove the map $T \mapsto T^{\circ}$ is well-defined, we show that $\sum_{i=1}^{n} M_{b_{i}, a_{i}}=0$ whenever $\sum_{i=1}^{n} M_{a_{i}, b_{i}}=0$. This is clear whenever $a_{1}=\cdots=a_{n}=0$. Assume that some a_{i} is nonzero. By suitable reordering of the summands we may assume the existence of m with $1<m \leq n$ such that $\left\{a_{1}, \ldots, a_{m}\right\}$ is a C-basis of the vector subspace generated by the set $\left\{a_{1}, \ldots, a_{n}\right\}$. For each j with $m<j \leq n$, write $a_{j}=\sum_{i=1}^{m} \lambda_{i}^{j} a_{i}\left(\lambda_{i}^{j} \in C\right)$. Then, we have

$$
0=\sum_{i=1}^{n} M_{a_{i}, b_{i}}=\sum_{i=1}^{m} M_{a_{i}, b_{i}+\sum_{j=m+1}^{n} \lambda_{i}^{j} b_{j}},
$$

hence, for every i with $1 \leq i \leq m$, we obtain that $b_{i}+\sum_{j=m+1}^{n} \lambda_{i}^{j} b_{j}=0$, and so

$$
0=\sum_{i=1}^{m} M_{b_{i}+\sum_{j=m+1}^{n} \lambda_{i}^{j} b_{j}, a_{i}}=\sum_{i=1}^{n} M_{b_{i}, a_{i}},
$$

as required. The proofs of the remaining assertions are straightforward.
Note that the involution \circ on $M(R)$ given by Lemma 1.8 is not linked to any involution on R. Therefore, when R is actually a $*$-ring, the involution $*$ on $M(R)$ given by Proposition 1.9 below becomes more useful in order to relate R and $M(R)$ as *-rings.

Let R be a $*$-ring with involution $*$. For each $T \in \operatorname{End}_{\mathbb{Z}}(R)$, let T^{\prime} stand for the endomorphism of the additive group of R defined by $T^{\prime}(x):=T\left(x^{*}\right)^{*}$ for every $x \in R$. It is clear that the map $T \mapsto T^{\prime}$ becomes an involutive automorphism of the ring $\operatorname{End}_{\mathbb{Z}}(R)$.

Proposition 1.9. Let R be a centrally closed prime $*$-ring. Then $M(R)$ is a $*$-ring for the involution defined by

$$
T=\sum_{i=1}^{n} M_{a_{i}, b_{i}} \mapsto T^{*}=\sum_{i=1}^{n} M_{a_{i}^{*}, b_{i}^{*}} .
$$

Proof. Note that if $T \in M(R)$ and $T=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$, then $T^{\prime}=\sum_{i=1}^{n} M_{b_{i}^{*}, a_{i}^{*}}$ belongs also to $M(R)$. Therefore, we can regard the map $T \mapsto T^{\prime}$ as an involutive automorphism of $M(R)$. By considering the involution \circ on $M(R)$ provided by Lemma 1.8, and noticing that ' and \circ commute, we find that the map $T \mapsto T^{*}:=\left(T^{\circ}\right)^{\prime}$ becomes an involution on $M(R)$, and the proof is complete.

If R is a centrally closed prime $*$-ring, then the involution $*$ on $M(R)$ given by the above proposition will hereafter be referred to as the involution associated to the involution $*$ on R.

The self-adjoint idempotents in a *-ring are called projections.
Corollary 1.10. Let R be a centrally closed prime $*$-ring and let E be in $M(R)$. Consider $M(R)$ as a $*$-ring for the involution associated to the involution $*$ on R. Then:
(1) E is a left semicentral projection of $M(R)$ if and only if $E=L_{e}$ for some projection e of R.
(2) E is a right semicentral projection of $M(R)$ if and only if $E=R_{e}$ for some projection e of R.

Proof. (1) For a projection e of R, it is clear that L_{e} is a left semicentral projection of $M(R)$. Let E be a left semicentral projection in $M(R)$. We may assume that $E \neq 0$. If E has length 1 , then, by Theorem 1.5, $E=L_{e}$ for suitable idempotent e in R. Therefore

$$
e=L_{e}(1)=E(1)=E^{*}(1)=L_{e^{*}}(1)=e^{*},
$$

hence e is a projection in R, and so the proof is concluded in this case. Suppose, to derive a contradiction, that E has length $n+1$ for $n \in \mathbb{N}$. Then, by Theorem 1.5, $E=L_{e}+\sum_{i=1}^{n} M_{x_{i}, y_{i}}$ for suitable e idempotent in R, $x_{i}, y_{i} \in R$ satisfying $e x_{i}=x_{i}, x_{i} e=0$, and $x_{i} x_{j}=0$ for all $i, j \in\{1, \ldots, n\}$, and such that the sets $\left\{e, x_{1}, \ldots, x_{n}\right\}$ and $\left\{1, y_{1}, \ldots, y_{n}\right\}$ are both linearly C-independent. Therefore

$$
L_{e^{*} e}+\sum_{i=1}^{n} M_{e^{*} x_{i}, y_{i}}=L_{e^{*}} E=L_{e}^{*} E=\left(E L_{e}\right)^{*}=L_{e}^{*}=L_{e^{*}}
$$

and hence

$$
L_{e^{*}(e-1)}+\sum_{i=1}^{n} M_{e^{*} x_{i}, y_{i}}=0
$$

Since $1, y_{1}, \ldots, y_{n}$ are linearly C-independent, we see that $e^{*}=e^{*} e$ and $e^{*} x_{i}=0$ for all i. Thus $e^{*}=e$ and $x_{i}=e x_{i}=0$ for all i, which is a contradiction.
(2) This assertion can be deduced from (1) in the standard way.

2. Prime rings with Baer multiplication ring.

Let R be a ring. Note that, for each left ideal I of R,

$$
M_{I, R}:=\left\{\sum_{i=1}^{n} M_{x_{i}, a_{i}}: n \in \mathbb{N}, x_{i} \in I, a_{i} \in R\right\}
$$

is the left ideal of $M(R)$ generated by the set $\left\{L_{x}: x \in I\right\}$. Analogously, for each right ideal I of R,

$$
M_{R, I}:=\left\{\sum_{i=1}^{n} M_{a_{i}, x_{i}}: n \in \mathbb{N}, a_{i} \in R, x_{i} \in I\right\}
$$

is the left ideal of $M(R)$ generated by the set $\left\{R_{x}: x \in I\right\}$.

Lemma 2.1. Let R be a ring. We have:
(1) If I is a left ideal of R such that $\operatorname{Ann}_{r}\left(M_{I, R}\right)=E M(R)$ for suitable idempotent E of $M(R)$, then $\operatorname{Ann}_{r}(I)=E(R)$.
(2) If I is a right ideal of R such that $\operatorname{Ann}_{r}\left(M_{R, I}\right)=E M(R)$ for suitable idempotent E of $M(R)$, then $\operatorname{Ann}_{\ell}(I)=E(R)$.

Proof. Assume that I is a left ideal of R such that $\operatorname{Ann}_{r}\left(M_{I, R}\right)=E M(R)$ for suitable idempotent E in $M(R)$. If $a \in \operatorname{Ann}_{r}(I)$, then $L_{a} \in \operatorname{Ann}_{r}\left(M_{I, R}\right)$, hence $L_{a}=E T$ for suitable $T \in M(R)$, and so

$$
a=L_{a}(1)=E(T(1)) \in E(R) .
$$

Therefore $\operatorname{Ann}_{r}(I) \subseteq E(R)$. Conversely, since $L_{x} E=0$ for every $x \in I$, it follows that $I E(R)=0$, and so $E(R) \subseteq \operatorname{Ann}_{r}(I)$. Thus $\operatorname{Ann}_{r}(I)=E(R)$, and the proof of assertion (1) is complete. The proof of assertion (2) is similar.

Theorem 2.2. Let R be a centrally closed prime ring. We have:
(1) If $M(R)$ is Rickart, then R is Rickart.
(2) If $M(R)$ is regular, then R is regular.
(3) If $M(R)$ is Baer, then R is Baer.

Proof. (1) Assume that $M(R)$ is Rickart. For a given $x \in R$, there exist idempotents E and F in $M(R)$ such that $\operatorname{Ann}_{r}\left(L_{x}\right)=E M(R)$ and $\operatorname{Ann}_{r}\left(R_{x}\right)=F M(R)$. Since $M(R) L_{x}=M_{R x, R}$ and $M(R) R_{x}=M_{R, x R}$, and hence $\operatorname{Ann}_{r}\left(L_{x}\right)=\operatorname{Ann}_{r}\left(M_{R x, R}\right)$ and $\operatorname{Ann}_{r}\left(R_{x}\right)=\operatorname{Ann}_{r}\left(M_{R, x R}\right)$, it follows from Lemma 2.1 that $\operatorname{Ann}_{r}(R x)=E(R)$ and $\mathrm{Ann}_{\ell}(x R)=F(R)$. Therefore E and F are left (resp. right) semicentral idempotents in $M(R)$. Now, by Corollary 1.7, we can confirm the existence of idempotents e and f in R such that $\operatorname{Ann}_{r}(R x)=e R$ and $\operatorname{Ann}_{\ell}(x R)=R f$. Thus R is Rickart.
(2) Assume that $M(R)$ is regular. For a given $x \in R$, there exists an idempotent E in $M(R)$ such that $L_{x} M(R)=E M(R)$, hence $x R=E(R)$, and so E is left semicentral. Now, by Corollary 1.7.(1), we conclude that $x R=e R$ for suitable idempotent e in R. Thus R is regular.
(3) Assume that $M(R)$ is Baer. Let I be a left ideal of R. Then, there exists an idempotent E of $M(R)$ such that $\operatorname{Ann}_{r}\left(M_{I, R}\right)=E M(R)$. Arguing as in the proof of assertion (1) we can assert that $\operatorname{Ann}_{r}(I)=e R$ for suitable idempotent e in R. Thus R is a Baer ring.

We recall that a $*$-ring R is said to be $*$-prime if $U V \neq 0$ whenever U and V are nonzero $*$-ideals of R. Every $*$-prime $*$-ring R is semiprime, and hence its involution can be extended uniquely to an involution on $Q_{s}(R)[1$, Proposition 2.5.4]. Clearly every prime $*$-ring is $*$-prime. However, there exist nonprime $*$-prime $*$-rings. Indeed, if R is a prime ring, then $R \oplus R^{o p}$ endowed with the exchange involution is a nonprime $*$-prime $*$-ring. The next result shows that every centrally closed nonprime $*$-prime $*$-ring is of this type.

Proposition 2.3. For every *-ring R, the following assertions are equivalent:
(i) R is a centrally closed nonprime $*$-prime $*$-ring.
(ii) There exists an ideal I of R, which is a centrally closed prime ring, such that $R=I \oplus I^{*}$.

Proof. (i) \Rightarrow (ii). By the nonprimeness of R there are nonzero ideals J, K of R such that $J K=0$, hence $\left(J \cap J^{*}\right)\left(K \cap K^{*}\right)=0$, and so either $J \cap J^{*}=0$ or $K \cap K^{*}=0$. Assume, for example, that $J \cap J^{*}=0$, so that $J J^{*}=0$. Let $\mathrm{Ann}_{C}(J)$ denote the annihilator of J in C, and let e be the idempotent in C associated to J; that is, e is the unique idempotent in C such that $\operatorname{Ann}_{C}(J)=(1-e) C$ (cf. [1, Theorem 2.3.9.(ii)]). Since

$$
\operatorname{Ann}_{C}\left(J^{*}\right)=\operatorname{Ann}_{C}(J)^{*}=((1-e) C)^{*}=\left(1-e^{*}\right) C
$$

it follows that e^{*} is the idempotent in C associated to J^{*}. Moreover, the condition $J J^{*}=0$ implies that $e e^{*}=0$ (by [1, Lemma 2.3.10]). On the other hand, the $*$-primeness of R implies that $J \oplus J^{*}$ is an essential ideal of R, hence $J \oplus J^{*}$ has zero annihilator in R, and in particular $\operatorname{Ann}_{C}\left(J \oplus J^{*}\right)=0$. Since $(1-e)\left(1-e^{*}\right) \in \operatorname{Ann}_{C}(J) \cap \operatorname{Ann}_{C}\left(J^{*}\right) \subseteq \operatorname{Ann}_{C}\left(J \oplus J^{*}\right)$, it follows that $(1-e)\left(1-e^{*}\right)=0$. Therefore $e^{*}=1-e$, and hence $R=e R \oplus e^{*} R$. It is easy to verify that $e R$ is a prime ring. Moreover, since $e Q_{s}(R) \cap R=e R$, it follows from [1, Proposition 2.3.14] that $Q_{s}(e R)=e Q_{s}(R)$, hence the extended centroid of $e R$ is $e C$, and so $e R$ is centrally closed. Summarizing, $I:=e R$ is an ideal of R, which is a centrally closed prime ring, and $R=I \oplus I^{*}$.
(ii) \Rightarrow (i). It is clear that R is a nonprime $*$-prime $*$-ring. The fact that R is centrally closed follows from the obvious equality

$$
Q_{s}(R)=Q_{s}(I) \oplus Q_{s}(I)^{*}
$$

The involution of a $*$-ring R is called proper whenever the condition $a^{*} a=0$, for $a \in R$, implies that $a=0$.

Proposition 2.4. Let R be a centrally closed nonprime $*$-prime $*$-ring. Then $M(R)$ is a *-ring for the involution defined by

$$
T=\sum_{i=1}^{n} M_{a_{i}, b_{i}} \mapsto T^{*}=\sum_{i=1}^{n} M_{a_{i}^{*}, b_{i}^{*}}
$$

which is not proper.
Proof. By Proposition 2.3, there exists an ideal I of R, which is a centrally closed prime ring, such that $R=I \oplus I^{*}$. Suppose that $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are elements in R satisfying $\sum_{i=1}^{n} M_{a_{i}, b_{i}}=0$. By writing $a_{i}=x_{i} \oplus y_{i}^{*}$ and $b_{i}=z_{i} \oplus t_{i}^{*}$ for $x_{i}, y_{i}, z_{i}, t_{i} \in I$, we see that

$$
0=\sum_{i=1}^{n} M_{a_{i}, b_{i}}=\sum_{i=1}^{n} M_{x_{i} \oplus y_{i}^{*}, z_{i} \oplus t_{i}^{*}}=\sum_{i=1}^{n} M_{x_{i}, z_{i}}+\sum_{i=1}^{n} M_{y_{i}^{*}, t_{i}^{*}}
$$

and consequently $\sum_{i=1}^{n} M_{x_{i}, z_{i}}=\sum_{i=1}^{n} M_{y_{i}^{*}, t_{i}^{*}}=0$. For each x, y in I, let us denote by $M_{x, y}^{I}$ the two-sided multiplication determined by x and y in the ring I. It follows from the above that $\sum_{i=1}^{n} M_{x_{i}, z_{i}}^{I}=\sum_{i=1}^{n} M_{t_{i}, y_{i}}^{I}=0$. Hence, by Lemma 1.8, we have also $\sum_{i=1}^{n} M_{z_{i}, x_{i}}^{I}=\sum_{i=1}^{n} M_{y_{i}, t_{i}}^{I}=0$, and so $\sum_{i=1}^{n} M_{x_{i}^{*}, z_{i}^{*}}=\sum_{i=1}^{n} M_{y_{i}, t_{i}}=0$. Therefore

$$
\sum_{i=1}^{n} M_{a_{i}^{*}, b_{i}^{*}}=\sum_{i=1}^{n} M_{x_{i}^{*} \oplus y_{i}, z_{i}^{*} \oplus t_{i}}=\sum_{i=1}^{n} M_{x_{i}^{*}, z_{i}^{*}}+\sum_{i=1}^{n} M_{y_{i}, t_{i}}=0
$$

Thus the correspondence $T \mapsto T^{*}$ is a well-defined map. It is routine to verify that this map is an involution on $M(R)$. Finally, note that for $x, y \in I \backslash\{0\}$ we have $M_{x, y} \neq 0$, but $M_{x, y}^{*} M_{x, y}=0$, and hence $*$ is not proper.

Putting together Propositions 1.9 and 2.4 we have the following result: If R is a centrally closed $*$-prime $*$-ring, then $M(R)$ is a $*$-ring for the involution defined by

$$
T=\sum_{i=1}^{n} M_{a_{i}, b_{i}} \mapsto T^{*}=\sum_{i=1}^{n} M_{a_{i}^{*}, b_{i}^{*}}
$$

This involution will be referred to as the involution on $M(R)$ associated to the involution $*$ on R.

Recall that a $*$-ring R is a Rickart *-ring if for each x in R there is a projection e in R such that $\operatorname{Ann}_{r}(x)=e R$. A *-ring R is a $*$-regular ring if for each x in R there is a projection e in R such that $x R=e R$. A $*$-ring R is a Baer *-ring if for each left ideal I of R there is a projection e in R such that $\operatorname{Ann}_{r}(I)=e R$.

Theorem 2.5. Let R be a centrally closed $*$-prime $*$-ring. Consider $M(R)$ endowed with the involution associated to the involution of R. We have:
(1) If $M(R)$ is a Rickart *-ring, then R is a Rickart *-ring.
(2) If $M(R)$ is a *-regular ring, then R is a *-regular ring.
(3) If $M(R)$ is a Baer *-ring, then R is a Baer *-ring.

Proof. If R is nonprime, then the involution on $M(R)$ associated to the involution on R is not proper (cf. Proposition 2.4), and hence $M(R)$ is not a Rickart $*$-ring [3, 1.10]. Since $*$-regular rings and Baer $*$-rings are Rickart *-rings [3, Propositions 1.13 and 1.24], in order to prove the statement we may assume that R is prime. Now, we can argue as in the proof of Theorem 2.2 with Corollary 1.10 instead of Corollary 1.7.

Acknowledgements

The authors are most grateful to the referee for several valuable remarks.

References

[1] K.I. Beidar, W.S. Martindale 3rd, A.V. Mikhalev, "Rings with Generalized Identities", Textbooks in Pure and Applied Mathematics 196, Marcel Dekker, New York 1996.
[2] S.K. Berberian, "Baer *-Rings", Grundlehren Math. Wiss. 195, SpringerVerlag, Berlin-Heidelberg-New York, 1972.
[3] S.K. Berberian, "Baer rings and Baer *-rings", The University of Texas at Austin, 1988.
[4] G.F. Birkenmeier, Idempotents and completely semiprime ideals. Comm. Algebra 11 (6) (1983), 567-580.
[5] M. Cabrera, A.A. Mohammed, Extended centroid and central closure of the multiplication algebra. Comm. Algebra 27 (12) (1999), 5723-5736.
[6] K.R. Goodearl, "Von Neumann Regular Rings", Second edition, R.E. Krieger Publishing Co., Malabar, FL, 1991.
[7] I. Kaplansky, "Rings of Operators", W.A. Benjamin, Inc., New YorkAmsterdam, 1968.

[^0]: This research was partially supported by the Spanish MICINN and Fondos FEDER, jointly, trough proyect MTM2009-12067, and, in addition, by the Junta de Andalucía Grant FQM290.

