
E extracta mathematicae Vol. 27, Núm. 2, 231 – 244 (2012)
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Abstract : LetR be a ring and letM(R) stand for the multiplication ring of R. An idempotent
E in M(R) is called left semicentral if its range E(R) is a right ideal of R. In the case that
R is prime and centrally closed we give a description of the left semicentral idempotents in
M(R). As an application we prove that, if, in addition, M(R) is Baer (respectively, regular
or Rickart), then R is Baer (respectively, regular or Rickart). Similar results for ∗-rings are
also proved.
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Introduction

Let R be a (unital associative) ring and let EndZ(R) stand for the ring of
all endomorphisms of the additive group of R. For each a in R, let La and Ra

denote the left and right multiplications by a, respectively. The multiplication
ring of R is defined as the subring M(R) of EndZ(R) generated by the set
{La, Ra : a ∈ R}. If for any a, b ∈ R we define the two-sided multiplication
Ma,b ∈ EndZ(R) by Ma,b(x) = axb, it is clear that La = Ma,1, Ra = M1,a,
IdR = M1,1, and

M(R) =
{ n∑

i=1

Mai,bi : n ∈ N, ai, bi ∈ R (1 ≤ i ≤ n)
}
.

We say that an idempotent E inM(R) is left (respectively, right, or two-sided)
semicentral if its range E(R) is a right (respectively, left, or two-sided) ideal
of R.
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Our aim is to provide a description of the semicentral idempotents in the
multiplication ring of a centrally closed prime ring. While the general theory
of rings of quotients is developed in many books, we shall mostly follow [1].
Recall that a ring R is called prime if the product of two nonzero ideals of R is
always nonzero (equivalently, the condition aRb = 0, where a, b ∈ R, implies
a = 0 or b = 0), and R is called semiprime if it contains no nonzero nilpotent
ideals (equivalently, the condition aRa = 0, where a ∈ R, implies a = 0). The
extended centroid C of a semiprime ring R can be defined as the center of its
two-sided symmetric ring of quotients Qs(R), and R is said to be centrally
closed whenever C coincides with the center of R. Moreover, R is prime if
and only if C is a field. We prove that the left semicentral idempotents in
M(R), for R centrally closed prime ring, are just of the form

E = Le +

n∑
i=1

Mxi,yi

for suitable e idempotent in R, n ≥ 0, xi, yi ∈ R satisfying exi = xi, xie = 0,
and xixj = 0 for all i, j ∈ {1, . . . , n}, and such that both sets {e, x1, . . . , xn}
and {1, y1, . . . , yn} are linearly C-independent.

As usual, for a subset S of a ring R, the left respectively right annihilator
of S will be defined by

Annℓ(S) := {a ∈ R : aS = 0} and Annr(S) := {a ∈ R : Sa = 0}.

Clearly Annℓ(S) is a left ideal of R and Annr(S) is a right ideal of R. Recall
that a ring R is a Rickart ring if for each x in R there are idempotents e and f
in R such that Annr (x) = eR and Annℓ(x) = Rf . A ring R is a regular ring if
for each x in R there exists an element y in R such that x = xyx (equivalently,
xR = eR for suitable idempotent e in R). A ring R is a Baer ring if for each
subset S of R there is an idempotent e in R such that Annr (S) = eR. As an
application of the description of the semicentral idempotents in M(R), for R
centrally closed prime ring, we derive that if M(R) is a Rickart, regular, or
Baer ring, then R so is. Similar results for centrally closed ∗-prime ∗-rings are
also obtained. The classical books here are [2, 3, 6, 7].

1. The main results

We begin by stating some immediate characterizations of semicentral idem-
potents in the multiplication ring.
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Proposition 1.1. Let R be a ring and let E be an idempotent in M(R).
Then the following conditions are equivalent:

(i) E is a left (respectively, right) semicentral idempotent in M(R).

(ii) E(E(a)b) = E(a)b (respectively, E(bE(a)) = bE(a)) for all a, b ∈ R.

(iii) ERaE = RaE (respectively, ELaE = LaE) for every a ∈ R.

Corollary 1.2. Let R be a ring and let E be an idempotent in M(R).
Then the following conditions are equivalent:

(i) E is a two-sided semicentral idempotent in M(R).

(ii) E(E(a)b) = E(a)b and E(bE(a)) = bE(a) for all a, b ∈ R.

(iii) ETE = TE for every T ∈ M(R).

Note that the two-sided semicentral idempotents in M(R) in our sense are
just the left semicentral idempotents in the ring M(R) in the sense of [4].
Clearly every central idempotent in M(R) is two-sided semicentral. The con-
verse is true whenever R is prime.

Proposition 1.3. Let R be a prime ring. For E ∈ M(R), the following
conditions are equivalent:

(i) E is a central idempotent.

(ii) E is a two-sided semicentral idempotent.

(iii) E = 0 or IdR.

Proof. The implications (iii) ⇒ (i) ⇒ (ii) are true in a general context.

(ii) ⇒ (iii). If E is a two-sided semicentral idempotent in M(R), then

(IdR − E)M(R)E = 0.

Since M(R) is a prime ring [5, Proposition 4], it follows that E = 0
or IdR.

In order to obtain a description of the one-sided semicentral idempotents
in the multiplication ring of a centrally closed prime ring, we will make heavy
use of the following well-known fact [1, Corollary 6.1.3]:
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Let R be a centrally closed prime ring, and let ai, bi ∈ R (1 ≤ i ≤ n)
be such that

∑n
i=1 aixbi = 0 for every x ∈ R. If a1, . . . , an are linearly C-

independent, then b1 = · · · = bn = 0.

Given T ∈ M(R)\{0}, we will say that the length of T is n ∈ N if
T =

∑n
i=1Mai,bi for some ai, bi ∈ R and T cannot be written also as

∑m
i=1Mci,di

for some m < n, ci, di ∈ R.

Lemma 1.4. Let R be a centrally closed prime ring and let T be a nonzero
element in M(R). Then T has length n if and only if T =

∑n
i=1Mai,bi for

some ai, bi ∈ R with a1, . . . , an linearly C-independent and b1, . . . , bn linearly
C-independent.

Proof. Assume that T has length n. If T =
∑n

i=1Mai,bi , then it is clear
that any linear C-dependence of the ai’s or the bi’s allows us to write T as a
sum of two-sided multiplications with less than n summands. Therefore, both
{a1, . . . , an} and {b1, . . . , bn} are linearly C-independent sets.

Conversely, assume that T =
∑n

i=1Mai,bi and that both {a1, . . . , an}
and {b1, . . . , bn} are linearly C-independent sets. To obtain a contradic-
tion, we suppose that T =

∑m
j=1Mcj ,dj for some m < n, c1, . . . , cm lin-

early C-independent and d1, . . . , dm linearly C-independent. Then, there ex-
ists k, ℓ ∈ {1, . . . , n} such that ak is linearly C-independent of the cj ’s and
aℓ is linearly C-dependent of the cj ’s. By the incomplete basis theorem,
there exists a subset of {a1, . . . , an}, which we will assume {a1, . . . , ap}, such
that {a1, . . . , ap, c1, . . . , cm} is a basis of the C-vector subspace generated by
{a1, . . . , an, c1, . . . , cm}. So for each k ∈ {p+ 1, . . . , n} we can write

ak =

p∑
i=1

αi
kai +

m∑
j=1

βj
kcj (αi

k, β
j
k ∈ C).

Therefore, the equality
∑n

i=1Mai,bi =
∑m

j=1Mcj ,dj yields to

p∑
i=1

aix

(
bi +

n∑
k=p+1

αi
kbk

)
=

m∑
j=1

cjx

(
dj −

n∑
k=p+1

βj
kbk

)

for every x ∈ R. Hence b1 +
∑n

k=p+1 α
i
kbk = 0 -a contradiction. Thus T has

length n.

Our main result is the following.
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Theorem 1.5. Let R be a centrally closed prime ring, let E be in
M(R)\{0} and let n ≥ 0. Then E is a left semicentral idempotent in M(R)
of length n+ 1 if and only if

E = Le +
n∑

i=1

Mxi,yi

for suitable e idempotent in R, xi, yi ∈ R satisfying exi = xi, xie = 0, and
xixj = 0 for all i, j ∈ {1, . . . , n}, and such that both sets {e, x1, . . . , xn} and
{1, y1, . . . , yn} are linearly C-independent.

Proof. It is easy to see that, if E is of the form just described in the
statement, then E is a left semicentral idempotent in M(R). Moreover, by
Lemma 1.4, E has length n+ 1.

In order to prove the converse, assume that E is a left semicentral idem-
potent in M(R) of length n+1. Write E =

∑n
i=0Mai,bi for suitable ai, bi ∈ R,

and take into account that, by Lemma 1.4, {a0, a1, . . . , an} and {b0, b1, . . . , bn}
are each linearly C-independent sets. Set ai,j = aiaj . Then the equality
E(E(x)y) = E(x)y can be rewritten as follows

n∑
i,j=0

ai,jxbjybi =

n∑
k=0

akxbky. (1.1)

First assume that {a0, a1, . . . , an} is a C-basis of the vector subspace generated
by the set S := {ai,j , ak : 0 ≤ i, j, k ≤ n} and that for each i, j

ai,j =

n∑
k=0

αi,j
k ak (αi,j

k ∈ C).

Then (1.1) gives that

n∑
k=0

akx

(
bky −

n∑
i,j=0

αi,j
k bjybi

)
= 0,

and consequently, for each k we have

bky −
n∑

i,j=0

αi,j
k bjybi = 0.



236 j.c. cabello, m. cabrera, e. nieto

Writing this equality in the form

bky

(
1−

n∑
i=0

αi,k
k bi

)
−

n∑
j=0
j ̸=k

bjy

(
n∑

i=0

αi,j
k bi

)
= 0,

we see that

1−
n∑

i=0

αi,k
k bi = 0 and

n∑
i=0

αi,j
k bi = 0 (j ̸= k).

These equalities together with the linear C-independence of b0, b1, . . . , bn give

that αi,k
k = αi,k′

k′ for all i, k, k′ and αi,j
k = 0 for all i, j, k with j ̸= k. Set

αi = αi,k
k . Then, we have

n∑
i=0

αibi = 1 and ai,j = αiaj .

By suitable reordering of the summands appearing in E we can assume the
existence of m with 0 ≤ m ≤ n such that αi ̸= 0 for i ≤ m and αi = 0
otherwise. Now consider e = α−1

0 a0, xi = α−1
i ai−α−1

0 a0, yi = αibi if 1 ≤ i ≤ m
and xi = ai, yi = bi otherwise. It is easy to check that E = Le +

∑n
i=1Mxi,yi ,

e is an idempotent in R, and xi, yi ∈ R satisfy exi = xi, xie = 0, and xixj = 0
for all i, j, and both sets {e, x1, . . . , xn} and {1, y1, . . . , yn} are linearly C-
independent.

Finally suppose, towards a contradiction, that {a0, a1, . . . , an} is not a C-
basis of the vector subspace generated by S. If S is a linearly C-independent
set, then it follows from (1.1) that b0y = 0 for every y ∈ R, hence b0 = 0
-a contradiction. Therefore there exists a nonempty proper subset Γ of
{0, 1, . . . , n} × {0, 1, . . . , n} such that

{ai,j , ak : (i, j) ∈ Γ, 0 ≤ k ≤ n}

is a C-basis of the vector subspace generated by S. Accordingly, for each
(p, q) ̸∈ Γ, we may write

ap,q =
∑

(i,j)∈Γ

αp,q
i,j ai,j +

n∑
k=0

βp,q
k ak (αp,q

i,j , β
p,q
k ∈ C).
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Now, from (1.1) we see that∑
(i,j)∈Γ

ai,jx

(
bjybi +

∑
(p,q) ̸∈Γ

αp,q
i,j bqybp

)
=

n∑
k=0

akx

(
bky −

∑
(p,q) ̸∈Γ

βp,q
k bqybp

)
.

As a consequence, for a fixed (i0, j0) ∈ Γ, we have

bj0ybi0 +
∑

(p,q)̸∈Γ

αp,q
i0,j0

bqybp = 0,

hence

bj0y

(
bi0 +

∑
(p,j0) ̸∈Γ

αp,j0
i0,j0

bp

)
+
∑
j ̸=j0

bjy

( ∑
(p,j) ̸∈Γ

αp,j
i0,j0

bp

)
= 0,

and so
bi0 +

∑
(p,j0 )̸∈Γ

αp,j0
i0,j0

bp = 0,

which is a contradiction.

Let R be a ring, and let Rop stand for the opposite ring of R. Since the
additive groups of R and Rop agree, we can identify their endomorphism rings
EndZ(R) ≡ EndZ(R

op), as well as their multiplication rings M(R) ≡ M(Rop).
More precisely, if Mop

a,b denote the two-sided multiplication determined by the

elements a and b in the opposite ring Rop, then note that Mop
a,b = Mb,a.

Corollary 1.6. Let R be a centrally closed prime ring, let E be in
M(R)\{0} and let n ≥ 0. Then E is a right semicentral idempotent in M(R)
of length n+ 1 if and only if

E = Re +
n∑

i=1

Mxi,yi

for suitable e idempotent in R, xi, yi ∈ R satisfying yie = yi, eyi = 0, and
yiyj = 0 for all i, j ∈ {1, . . . , n}, and such that both sets {1, x1, . . . , xn} and
{e, y1, . . . , yn} are linearly C-independent.

Proof. Note that Rop is a centrally closed prime ring. It is clear that
E ∈ M(R) is a right semicentral idempotent in M(R) of length n + 1 if and
only if E ∈ M(Rop) is a left semicentral idempotent in M(Rop) of length n+1.
Now, the result follows straightforwardly from Theorem 1.5 applied to Rop.
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Corollary 1.7. Let R be a centrally closed prime ring. We have:

(1) If E is a left semicentral idempotent in M(R), then there exists an
idempotent e in R such that ELe = Le and LeE = E. In particular,
E(R) = eR.

(2) If E is a right semicentral idempotent in M(R), then there exists an
idempotent e in R such that ERe = Re and ReE = E. In particular,
E(R) = Re.

Proof. (1) We may assume that E ̸= 0. By Theorem 1.5, we have

E = Le +

n∑
i=1

Mxi,yi

for suitable e idempotent in R, n ≥ 0, xi, yi ∈ R such that exi = xi, xie = 0,
and xixj = 0 for all i, j ∈ {1, . . . , n}. Note that these conditions imply that
ELe = Le and LeE = E, and therefore E(R) = eR.

(2) This assertion can be proved similarly, taking into account Corol-
lary 1.6.

A ∗-ring is a ring R endowed with an involution, that is a map ∗ : R → R
satisfying

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, and (a∗)∗ = a.

Lemma 1.8. Let R be a centrally closed prime ring. Then M(R) is a
∗-ring for the involution ◦ defined by

T =

n∑
i=1

Mai,bi 7→ T ◦ :=

n∑
i=1

Mbi,ai .

Proof. In order to prove the map T 7→ T ◦ is well-defined, we show
that

∑n
i=1Mbi,ai = 0 whenever

∑n
i=1Mai,bi = 0. This is clear whenever

a1 = · · · = an = 0. Assume that some ai is nonzero. By suitable reordering
of the summands we may assume the existence of m with 1 < m ≤ n such
that {a1, . . . , am} is a C-basis of the vector subspace generated by the set
{a1, . . . , an}. For each j with m < j ≤ n, write aj =

∑m
i=1 λ

j
iai (λj

i ∈ C).
Then, we have

0 =
n∑

i=1

Mai,bi =
m∑
i=1

M
ai,bi+

∑n
j=m+1 λ

j
i bj

,
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hence, for every i with 1 ≤ i ≤ m, we obtain that bi +
∑n

j=m+1 λ
j
i bj = 0, and

so

0 =

m∑
i=1

M
bi+

∑n
j=m+1 λ

j
i bj ,ai

=

n∑
i=1

Mbi,ai ,

as required. The proofs of the remaining assertions are straightforward.

Note that the involution ◦ on M(R) given by Lemma 1.8 is not linked to
any involution on R. Therefore, when R is actually a ∗-ring, the involution ∗
on M(R) given by Proposition 1.9 below becomes more useful in order to
relate R and M(R) as ∗-rings.

Let R be a ∗-ring with involution ∗. For each T ∈ EndZ(R), let T ′ stand
for the endomorphism of the additive group of R defined by T ′(x) := T (x∗)∗

for every x ∈ R. It is clear that the map T 7→ T ′ becomes an involutive
automorphism of the ring EndZ(R).

Proposition 1.9. Let R be a centrally closed prime ∗-ring. Then M(R)
is a ∗-ring for the involution defined by

T =
n∑

i=1

Mai,bi 7→ T ∗ =
n∑

i=1

Ma∗i ,b
∗
i
.

Proof. Note that if T ∈ M(R) and T =
∑n

i=1Mai,bi , then T ′ =
∑n

i=1Mb∗i ,a
∗
i

belongs also to M(R). Therefore, we can regard the map T 7→ T ′ as an in-
volutive automorphism of M(R). By considering the involution ◦ on M(R)
provided by Lemma 1.8, and noticing that ′ and ◦ commute, we find that
the map T 7→ T ∗ := (T ◦)′ becomes an involution on M(R), and the proof is
complete.

If R is a centrally closed prime ∗-ring, then the involution ∗ on M(R)
given by the above proposition will hereafter be referred to as the involution
associated to the involution ∗ on R.

The self-adjoint idempotents in a ∗-ring are called projections.

Corollary 1.10. Let R be a centrally closed prime ∗-ring and let E be
in M(R). Consider M(R) as a ∗-ring for the involution associated to the
involution ∗ on R. Then:

(1) E is a left semicentral projection of M(R) if and only if E = Le for some
projection e of R.
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(2) E is a right semicentral projection of M(R) if and only if E = Re for
some projection e of R.

Proof. (1) For a projection e of R, it is clear that Le is a left semicentral
projection of M(R). Let E be a left semicentral projection in M(R). We may
assume that E ̸= 0. If E has length 1, then, by Theorem 1.5, E = Le for
suitable idempotent e in R. Therefore

e = Le(1) = E(1) = E∗(1) = Le∗(1) = e∗,

hence e is a projection in R, and so the proof is concluded in this case. Sup-
pose, to derive a contradiction, that E has length n + 1 for n ∈ N. Then,
by Theorem 1.5, E = Le +

∑n
i=1Mxi,yi for suitable e idempotent in R,

xi, yi ∈ R satisfying exi = xi, xie = 0, and xixj = 0 for all i, j ∈ {1, . . . , n},
and such that the sets {e, x1, . . . , xn} and {1, y1, . . . , yn} are both linearly
C-independent. Therefore

Le∗e +
n∑

i=1

Me∗xi,yi = Le∗E = L∗
eE = (ELe)

∗ = L∗
e = Le∗ ,

and hence

Le∗(e−1) +
n∑

i=1

Me∗xi,yi = 0.

Since 1, y1, . . . , yn are linearly C-independent, we see that e∗= e∗e and e∗xi=0
for all i. Thus e∗ = e and xi = exi = 0 for all i, which is a contradiction.

(2) This assertion can be deduced from (1) in the standard way.

2. Prime rings with Baer multiplication ring.

Let R be a ring. Note that, for each left ideal I of R,

MI,R :=
{ n∑

i=1

Mxi,ai : n ∈ N, xi ∈ I, ai ∈ R
}

is the left ideal of M(R) generated by the set {Lx : x ∈ I}. Analogously, for
each right ideal I of R,

MR,I :=
{ n∑

i=1

Mai,xi : n ∈ N, ai ∈ R, xi ∈ I
}

is the left ideal of M(R) generated by the set {Rx : x ∈ I}.
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Lemma 2.1. Let R be a ring. We have:

(1) If I is a left ideal of R such that Annr (MI,R) = EM(R) for suitable
idempotent E of M(R), then Annr (I) = E(R).

(2) If I is a right ideal of R such that Annr (MR,I) = EM(R) for suitable
idempotent E of M(R), then Annℓ(I) = E(R).

Proof. Assume that I is a left ideal of R such that Annr (MI,R) = EM(R)
for suitable idempotent E in M(R). If a ∈ Annr (I), then La ∈ Annr (MI,R),
hence La = ET for suitable T ∈ M(R), and so

a = La(1) = E
(
T (1)

)
∈ E(R).

Therefore Annr (I) ⊆ E(R). Conversely, since LxE = 0 for every x ∈ I, it
follows that IE(R) = 0, and so E(R) ⊆ Annr (I). Thus Annr (I) = E(R), and
the proof of assertion (1) is complete. The proof of assertion (2) is similar.

Theorem 2.2. Let R be a centrally closed prime ring. We have:

(1) If M(R) is Rickart, then R is Rickart.

(2) If M(R) is regular, then R is regular.

(3) If M(R) is Baer, then R is Baer.

Proof. (1) Assume that M(R) is Rickart. For a given x ∈ R, there
exist idempotents E and F in M(R) such that Annr (Lx) = EM(R) and
Annr (Rx) = FM(R). Since M(R)Lx = MRx,R and M(R)Rx = MR,xR, and
hence Annr (Lx) = Annr (MRx,R) and Annr (Rx) = Annr (MR,xR), it follows
from Lemma 2.1 that Annr (Rx) = E(R) and Annℓ(xR) = F (R). Therefore E
and F are left (resp. right) semicentral idempotents in M(R). Now, by Corol-
lary 1.7, we can confirm the existence of idempotents e and f in R such that
Annr (Rx) = eR and Annℓ(xR) = Rf . Thus R is Rickart.

(2) Assume that M(R) is regular. For a given x ∈ R, there exists an
idempotent E in M(R) such that LxM(R) = EM(R), hence xR = E(R), and
so E is left semicentral. Now, by Corollary 1.7.(1), we conclude that xR = eR
for suitable idempotent e in R. Thus R is regular.

(3) Assume that M(R) is Baer. Let I be a left ideal of R. Then, there
exists an idempotent E of M(R) such that Annr (MI,R) = EM(R). Arguing
as in the proof of assertion (1) we can assert that Annr (I) = eR for suitable
idempotent e in R. Thus R is a Baer ring.
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We recall that a ∗-ring R is said to be ∗-prime if UV ̸= 0 whenever U
and V are nonzero ∗-ideals of R. Every ∗-prime ∗-ring R is semiprime, and
hence its involution can be extended uniquely to an involution on Qs(R) [1,
Proposition 2.5.4]. Clearly every prime ∗-ring is ∗-prime. However, there exist
nonprime ∗-prime ∗-rings. Indeed, if R is a prime ring, then R⊕Rop endowed
with the exchange involution is a nonprime ∗-prime ∗-ring. The next result
shows that every centrally closed nonprime ∗-prime ∗-ring is of this type.

Proposition 2.3. For every ∗-ring R, the following assertions are equiv-
alent:

(i) R is a centrally closed nonprime ∗-prime ∗-ring.

(ii) There exists an ideal I of R, which is a centrally closed prime ring, such
that R = I ⊕ I∗.

Proof. (i) ⇒ (ii). By the nonprimeness of R there are nonzero ideals J,K
of R such that JK = 0, hence (J ∩J∗)(K ∩K∗) = 0, and so either J ∩J∗ = 0
or K ∩ K∗ = 0. Assume, for example, that J ∩ J∗ = 0, so that JJ∗ = 0.
Let AnnC(J) denote the annihilator of J in C, and let e be the idempotent
in C associated to J ; that is, e is the unique idempotent in C such that
AnnC(J) = (1− e)C (cf. [1, Theorem 2.3.9.(ii)]). Since

AnnC(J
∗) = AnnC(J)

∗ =
(
(1− e)C

)∗
= (1− e∗)C,

it follows that e∗ is the idempotent in C associated to J∗. Moreover, the
condition JJ∗ = 0 implies that ee∗ = 0 (by [1, Lemma 2.3.10]). On the other
hand, the ∗-primeness of R implies that J ⊕ J∗ is an essential ideal of R,
hence J ⊕ J∗ has zero annihilator in R, and in particular AnnC(J ⊕ J∗) = 0.
Since (1− e)(1− e∗) ∈ AnnC(J)∩AnnC(J

∗) ⊆ AnnC(J ⊕ J∗), it follows that
(1 − e)(1 − e∗) = 0. Therefore e∗ = 1 − e, and hence R = eR ⊕ e∗R. It is
easy to verify that eR is a prime ring. Moreover, since eQs(R) ∩ R = eR, it
follows from [1, Proposition 2.3.14] thatQs(eR) = eQs(R), hence the extended
centroid of eR is eC, and so eR is centrally closed. Summarizing, I := eR is
an ideal of R, which is a centrally closed prime ring, and R = I ⊕ I∗.

(ii) ⇒ (i). It is clear that R is a nonprime ∗-prime ∗-ring. The fact that R
is centrally closed follows from the obvious equality

Qs(R) = Qs(I)⊕Qs(I)
∗.
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The involution of a ∗-ring R is called proper whenever the condition
a∗a = 0, for a ∈ R, implies that a = 0.

Proposition 2.4. Let R be a centrally closed nonprime ∗-prime ∗-ring.
Then M(R) is a ∗-ring for the involution defined by

T =

n∑
i=1

Mai,bi 7→ T ∗ =

n∑
i=1

Ma∗i ,b
∗
i
,

which is not proper.

Proof. By Proposition 2.3, there exists an ideal I of R, which is a centrally
closed prime ring, such that R = I ⊕ I∗. Suppose that a1, . . . , an, b1, . . . , bn
are elements in R satisfying

∑n
i=1Mai,bi = 0. By writing ai = xi ⊕ y∗i and

bi = zi ⊕ t∗i for xi, yi, zi, ti ∈ I, we see that

0 =

n∑
i=1

Mai,bi =

n∑
i=1

Mxi⊕y∗i ,zi⊕t∗i
=

n∑
i=1

Mxi,zi +

n∑
i=1

My∗i ,t
∗
i
,

and consequently
∑n

i=1Mxi,zi =
∑n

i=1My∗i ,t
∗
i
= 0. For each x, y in I, let

us denote by M I
x,y the two-sided multiplication determined by x and y in

the ring I. It follows from the above that
∑n

i=1M
I
xi,zi =

∑n
i=1M

I
ti,yi = 0.

Hence, by Lemma 1.8, we have also
∑n

i=1M
I
zi,xi

=
∑n

i=1M
I
yi,ti = 0, and so∑n

i=1Mx∗
i ,z

∗
i
=
∑n

i=1Myi,ti = 0. Therefore

n∑
i=1

Ma∗i ,b
∗
i
=

n∑
i=1

Mx∗
i⊕yi,z∗i ⊕ti =

n∑
i=1

Mx∗
i ,z

∗
i
+

n∑
i=1

Myi,ti = 0.

Thus the correspondence T 7→ T ∗ is a well-defined map. It is routine to verify
that this map is an involution on M(R). Finally, note that for x, y ∈ I \ {0}
we have Mx,y ̸= 0, but M∗

x,yMx,y = 0, and hence ∗ is not proper.

Putting together Propositions 1.9 and 2.4 we have the following result: If
R is a centrally closed ∗-prime ∗-ring, then M(R) is a ∗-ring for the involution
defined by

T =

n∑
i=1

Mai,bi 7→ T ∗ =

n∑
i=1

Ma∗i ,b
∗
i
.

This involution will be referred to as the involution on M(R) associated to
the involution ∗ on R.
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Recall that a ∗-ring R is a Rickart ∗-ring if for each x in R there is a
projection e in R such that Annr (x) = eR. A ∗-ring R is a ∗-regular ring if
for each x in R there is a projection e in R such that xR = eR. A ∗-ring R
is a Baer ∗-ring if for each left ideal I of R there is a projection e in R such
that Annr (I) = eR.

Theorem 2.5. Let R be a centrally closed ∗-prime ∗-ring. ConsiderM(R)
endowed with the involution associated to the involution of R. We have:

(1) If M(R) is a Rickart ∗-ring, then R is a Rickart ∗-ring.

(2) If M(R) is a ∗-regular ring, then R is a ∗-regular ring.

(3) If M(R) is a Baer ∗-ring, then R is a Baer ∗-ring.

Proof. If R is nonprime, then the involution on M(R) associated to the
involution on R is not proper (cf. Proposition 2.4), and hence M(R) is not
a Rickart ∗-ring [3, 1.10]. Since ∗-regular rings and Baer ∗-rings are Rickart
∗-rings [3, Propositions 1.13 and 1.24], in order to prove the statement we may
assume that R is prime. Now, we can argue as in the proof of Theorem 2.2
with Corollary 1.10 instead of Corollary 1.7.

Acknowledgements

The authors are most grateful to the referee for several valuable re-
marks.

References

[1] K.I. Beidar, W.S. Martindale 3rd, A.V. Mikhalev, “Rings with
Generalized Identities”, Textbooks in Pure and Applied Mathematics 196,
Marcel Dekker, New York 1996.

[2] S.K. Berberian, “Baer ∗-Rings”, Grundlehren Math. Wiss. 195, Springer-
Verlag, Berlin-Heidelberg-New York, 1972.

[3] S.K. Berberian, “Baer rings and Baer ∗-rings”, The University of Texas at
Austin, 1988.

[4] G.F. Birkenmeier, Idempotents and completely semiprime ideals. Comm.
Algebra 11 (6) (1983), 567-580.

[5] M. Cabrera, A.A. Mohammed, Extended centroid and central closure of
the multiplication algebra. Comm. Algebra 27 (12) (1999), 5723-5736.

[6] K.R. Goodearl, “Von Neumann Regular Rings”, Second edition, R.E. Krieger
Publishing Co., Malabar, FL, 1991.

[7] I. Kaplansky, “Rings of Operators”, W.A. Benjamin, Inc., New York-
Amsterdam, 1968.


