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Abstract : Let A be an invertible bounded linear operator on a complex Banach space, {A}′
the commutant of A and BA the set of all operators T such that supn≥0 ∥AnTA−n∥ < +∞.

Equality {A}′ = BA was studied by many authors for differents classes of operators. In this
paper we investigate a local version of this equality and the case where A is a C0–contraction.
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1. Introduction

Denote by L(X) the algebra of all bounded linear operators on the complex
Banach space X. Let A ∈ L(X). We denote by σ(A) the spectrum of A and
by {A}′ the commutant of A. Throughout this paper we assume that A is
invertible and we set

BA =
{
T ∈ L(X) : sup

n≥0
∥AnTA−n∥ < +∞

}
.

Clearly we have {A}′ ⊂ BA. When X is of finite dimension, Deddens showed
in [1] that equality {A}′ = BA holds if and only if σ(A) is a singleton. He
conjectured that the above result remains true when X is any Hilbert space.
P.G. Roth gave a negative answer to this conjecture. Let V be the integral
Volterra operator on H = L2([0, 1]) and let A be the operator acting on H⊕H
defined by

A =

(
1 + V 0

0 1

)
.
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It is shown in [8, Example 2.7] that {A}′ ̸= BA. Moreover we have

∥(A− 1)n∥ = ∥V n∥ =
1

(n− 1)!
,

which implies that

∥(A− 1)n∥1/n = O(1/n), n → +∞. (1)

On the other hand side one can easily obtain from Theorem 2.3 and Theo-
rem 2.5 of [8] the following result (see also Corollary 2.4).

Theorem 1.1. Assume that for some complex number λ,

∥(A− λ)n∥1/n = o(1/n), n → +∞. (2)

Then BA = {A}′.

The example given above shows that if we replace ”o” by ”O” in the
condition (2) then the conclusion of the theorem is false in general. Notice
that Williams showed in [11] that if σ(A) is a singleton then BA∩BA−1 = {A}′.
This was improved by Drissi and Mbekhta in [2], replacing BA−1 by the set
{T ∈ L(X) : ∀ϵ > 0, ∥A−nTAn∥ = o(eϵ

√
n), n → +∞}. Notice that equality

BA∩BA−1 = {A}′ was extensively studied by Drissi and Mbekhta for different
classes of operators and elements in Banach algebras (see [2], [3] and [4]).

In this note, we are interested in a local version of the above results. To
describe the results obtained here let us introduce some notations. For a
complex number λ, we set

V(A,λ) =
{
x ∈ X : ∥(A− λ)nx∥1/n = o(1/n), n → +∞

}
.

Notice that V(A,λ) is a linear subspace of X, invariant by A and is the zero
set if λ is not in the spectrum of A. We denote by CA the set of all operators
T ∈ L(X) such that, for all λ ∈ σ(A) and x ∈ V(A,λ),∥∥(A− λ)iT (A−1 − λ−1)jx

∥∥ 1
i+j = o

(
1

i+ j

)
, i+ j → +∞.

Finally if (Vi)i∈I is a family of subsets of X we denote by Span(Vi, i ∈ I) the
linear subspace of X generated by ∪i∈IVi.

We prove (Theorem 2.3) that if Span
(
V(A,λ), λ ∈ σ(A)

)
is dense in X then

BA ∩ CA = {A}′. To prove this we introduce a local version of the sets {A}′
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and BA and we study the relationship between these sets, using a theorem of
[5] about local properties of powers of an operator.

In Section 3 we study the above equalities when A is a C0–contraction.
Let H be a separable Hilbert space and let H∞ be the classical Hardy space of
all bounded and holomorphic functions on D. A contraction A on H is called
a C0–contraction (or in class C0) if it is completely nonunitary and there
exists a nonzero function θ ∈ H∞ such that θ(A) = 0. Notice that for a C0–
contraction A on H, there exists a minimal inner function ΘA that annihilates
A, i.e., is such that ΘA(A) = 0 (see [7] and [6]). Let A be an invertible C0–
contraction. We prove (Proposition 3.2) that if ΘA is a Blaschke product
then we have BA ∩ CA = {A}′. We obtain also (Proposition 3.3) that if ΘA

is a Blaschke product then the equality BA = {A}′ holds if and only if ΘA

is a Blaschke product with a unique root. If the singular part of ΘA is not
constant, we do not know when the above equalities holds.

2. Bounded conjugation orbit

Let A ∈ L(X) be invertible, x ∈ X and λ ∈ C\{0}. We denote by C(A,λ,x)

the set of all operators T ∈ L(X) such that

∥∥(A− λ)iT (A−1 − λ−1)jx
∥∥ 1

i+j = o

(
1

i+ j

)
, i+ j → +∞.

and C(A,λ) = ∩x∈V(A,λ)
C(A,λ,x). Then we have CA = ∩λ∈σ(A)C(A,λ).

We set

B(A,x) =
{
T ∈ L(X) : sup

n≥0
∥AnTA−nx∥ < +∞

}
and

{(A, x)}′ =
{
T ∈ L(X) : ATx = TAx

}
.

Clearly we have ∩n≥0{(A−n, x)}′ ⊂ B(A,x). We shall need the following ele-
mentary result.

Lemma 2.1. Let n, i and j be integers such that 0 ≤ i ≤ n and 0 ≤ j ≤ n.
We set

Fn(i, j) =
∑

max{i,j}≤k≤n

(−1)n−k

(
n

k

)(
k

i

)(
k

j

)
.
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Then for every integer n ≥ 0, we have

Fn(i, j) =

{
0 if i+ j < n,(

n
2n−i−j

)(
2n−i−j
n−j

)
if i+ j ≥ n,

and ∑
0≤i,j≤n

Fn(i, j) = 3n.

Proof. We set Q(x, y) = (x+ y + xy)n. Using the binomial formula twice,
we have

Q(x, y) =
n∑

k=0

(
n

k

)
(x+ y)kxn−kyn−k

=
n∑

k=0

k∑
l=0

(
n

k

)(
k

l

)
xn+l−kyn−l

=
∑

0≤i,j≤n

n≤i+j

(
n

2n− i− j

)(
2n− i− j

n− j

)
xiyj .

On the other hand side, writing Q(x, y) =
(
(1 + x)(1 + y) − 1

)n
and using

again the binomial formula, we get

Q(x, y) =
n∑

k=0

(−1)n−k

(
n

k

)
(1 + x)k(1 + y)k

=

n∑
k=0

(−1)n−k

(
n

k

) ∑
0≤i≤k

0≤j≤k

(
k

i

)(
k

j

)
xiyj

=
∑

0≤i,j≤n

Fn(i, j)x
iyj .

(3)

Now, by identifying the coefficients of xiyj in the two polynomial expressions
of Q(x, y) obtained above, we get the first equality of the lemma. To prove
the second one it suffices to take x = y = 1 in (3).

Theorem 2.2. Let A ∈ L(X) be invertible, x ∈ X and λ ∈ C\{0}. Then
we have

B(A,x) ∩ C(A,λ,x) =
∩
n≥0

{(A−n, x)}′ if and only if x ∈ V(A,λ).
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Proof. Assume that the equality B(A,x)∩C(A,λ,x) = ∩n≥0{(A−n, x)}′ holds.
Then the identity operator belongs to C(A,λ,x) which implies that x ∈ V(A,λ).

To prove the converse, we denote byW the bounded linear operator defined
on L(X) by W (T ) = ATA−1. We have

(W − I)nTx =

n∑
k=0

(−1)n−k

(
n

k

)
AkTA−kx,

where I is the identity operator defined on L(X). We write Ak = (A−λ+λ)k,
A−k = (A−1 − λ−1 + λ−1)k and we use the binomial formula. Then we get

(W − I)n Tx =
∑

0≤i,j≤n

λj−iFn(i, j)(A− λ)iT (A−1 − λ−1)jx, (4)

where Fn(i, j) is defined in Lemma 2.1.
Suppose that T ∈ C(A,λ,x). For every ϵ > 0, there exists a positive constant

Cϵ such that for all non–negative integers i and j, we have∥∥(A− λ)iT (A−1 − λ−1)jx
∥∥ ≤ Cϵ

ϵi+j

(i+ j)i+j
.

Since by Lemma 2.1 we have Fn(i, j) = 0 for i + j < n, it follows from the
last inequality and (4) that∥∥(W − I)nTx

∥∥ ≤ Cϵmax
(
|λ|n, |λ|−n

) ∑
0≤i,j≤n

n≤i+j

Fn(i, j)
ϵi+j

(i+ j)i+j
. (5)

The function t → ϵt

tt decreases on the set [ ϵe ,+∞[. So for i+ j ≥ n ≥ ϵ/e, we

have ϵi+j

(i+j)i+j ≤ ϵn

nn . Combining this observation with the second equality in

Lemma 2.1 and (5) we get∥∥ (W − I)n Tx
∥∥ ≤ Cϵ

(
3max

(
|λ|, |λ|−1

)
ϵ
)n

nn
.

This shows that ∥∥(W − I)nTx
∥∥1/n = o (1/n) , n → ∞. (6)

Let ℓ be an element in the dual X⋆ of X and let L be the continuous linear
functional on L(X) defined by L(R) = ℓ(Rx), R ∈ L(X). By (6) we have∣∣L((W − I)nT

)∣∣1/n = o (1/n) , n → ∞.
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Suppose in addition that T ∈ B(A,x). Then |L (WnT ) | = O(1), n → ∞. It
follows from Theorem 1.1 of [5] that L((W − I)nT ) = 0, n ≥ 1. Since ℓ is any
element of X⋆ we obtain by the Hahn-Banach theorem that (W − I)nTx = 0,
n ≥ 1. Now by induction on n, one checks easily that T ∈ {(A−n, x)}′ for
every n ≥ 1. So the inclusion B(A,x) ∩ C(A,λ,x) ⊂ ∩n≥0{(A−n, x)}′ holds for
every x ∈ X.

Assume now that x ∈ V(A,λ). Let T ∈ ∩n≥0{(A−n, x)}′. Obviously T ∈
B(A,x). On the other hand side, for all non-negative integers n,m, we have

A−nTA−mx = A−(n+m)Tx = TA−(n+m)x.

Therefore we obtain

(A− λ)iT (A−1 − λ−1)jx = (−λ)iAi(A−1 − λ−1)iT (A−1 − λ−1)jx

= (−λ)iAiT (A−1 − λ−1)i+jx

= (−λ)−jAiTA−i−j(A− λ)i+jx.

Thus∥∥(A− λ)iT (A−1 − λ−1)jx
∥∥ 1

i+j ≤
∥∥(−λ)−jAiTA−i−j

∥∥ 1
i+j
∥∥(A− λ)i+jx

∥∥ 1
i+j

= o

(
1

i+ j

)
, i+ j → ∞

and so T ∈ C(A,λ,x). Therefore we have ∩n≥0{(A−n, x)}′ ⊂ B(A,x) ∩ C(A,λ,x),
which concludes the proof.

Theorem 2.3. Let A ∈ L(X) be invertible. If Span
(
V(A,λ), λ ∈ σ(A)

)
is

dense in X then

BA ∩ CA = {A}′.

Proof. Let T ∈ {A}′. For every x ∈ X, we have T ∈ ∩n≥0{(A, x)}′.
It follows from Theorem 2.2 that if λ ∈ σ(A) and if x ∈ V(A,λ) then T ∈
C(A,λ,x). Thus T ∈ ∩λ∈σ(A)

(
∩x∈V(A,λ)

C(A,λ,x)

)
= CA. So {A}′ ⊂ BA ∩ CA.

Suppose now that T ∈ BA ∩ CA. For every λ ∈ σ(A) and x ∈ V(A,λ), we
have T ∈ B(A,x) ∩ C(A,λ,x). It follows again from Theorem 2.2 that for every
x ∈ V(A,λ), A−1Tx = TA−1x. Clearly this equality holds for every x ∈ X,
since Span

(
V(A,λ), λ ∈ σ(A)

)
is dense in X. So A−1 and A commute with T .
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Corollary 2.4. Let A be an invertible operator on X such that∥∥(A− λ)n
∥∥1/n = o(1/n), n → +∞.

for some complex number λ. Then BA = {A}′.

Proof. We have V(A,λ) = X. By Theorem 2.3 we only need to prove that
CA = L(X). Let T ∈ L(X) and let ϵ > 0. There exists Cϵ such that for every
nonnegative integer i ∥∥(A− λ)i

∥∥ ≤ Cϵ
ϵi

ii

Notice that the hypothesis implies that σ(A) = {λ} and so λ ̸= 0. We have∥∥(A−1 − λ−1)i
∥∥ ≤

∥∥λ−iA−i(λ−A)i
∥∥

≤ Cϵ

(
∥A−1∥
|λ|

)i
ϵi

ii
.

Thus for every x ∈ X and every nonnegative integers i and j, we get

∥∥(A− λ)iT (A−1 − λ−1)jx
∥∥ ≤ ∥T∥∥x∥C2

ϵ

(
∥A−1∥
|λ|

)i
ϵi+j

iijj
.

Since (i+ j)i+j ≤ ei+jiijj , we obtain

∥∥(A− λ)iT (A−1 − λ−1)jx
∥∥ ≤ C ′

ϵ

(ecϵ)i+j

(i+ j)i+j
,

where c = max
{

∥A−1∥
|λ| , 1

}
and C ′

ϵ is a constant independent of i and j. Hence

CA = L(X).

Remark. For a family of subspaces (Vi)i∈I of X, we set

Alg (Vi, i ∈ I) = {T ∈ L(X) : TVi ⊂ Vi, (i ∈ I)}.

If λ ∈ σ(A) and if V(A,λ) is closed, it follows from the Banach–Steinhauss
theorem that ∥∥∥(A|V(A,λ)

− λ
)n∥∥∥1/n = o (1/n) , n → +∞.

Then it follows that C(A,λ) = {T ∈ L(X) : TV(A,λ) ⊂ V(A,λ)}. So, if for every
λ ∈ σ(A), V(A,λ) is closed, then we have CA = Alg

(
V(A,λ), λ ∈ σ(A)

)
.
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Let A∈L(X) be invertible and with finite spectrum, σ(A)={λ1, λ2, . . . ,λp}.
It is well known that X = F1+ · · ·+Fp, where F1, . . . , Fp are closed subspaces
which are invariant by A and such that σ(A|Fi

) = {λi}, 1 ≤ i ≤ p.
Assume that ∥∥Q(A)n

∥∥1/n = o(1/n), n → +∞,

where Q(x) =
∏

1≤i≤p(x − λi). It is easily seen that Fi = V(A,λi), 1 ≤ i ≤ p.
We deduce from Corollary 2.4 that

BA ∩Alg
(
V(A,λi), 1 ≤ i ≤ p

)
= {A}′.

3. The case of C0–contractions

In this section we investigate the equalities BA = {A} and BA∩CA = {A}′
when A is a C0-contraction. Notice that when the spectrum of A is reduced
to a single point, say σ(A) = {λ}, then A − λ is nilpotent if |λ| < 1 and
∥(A − λ)n∥1/n = O(1/n) (n → +∞), if |λ| = 1 (see the proof at the end of
this section).

Henceforth we denote by A a C0-contraction on a separable Hilbert space
H and by ΘA it’s minimal inner function (see [6]). We have

σ(A) = Clos Θ−1
A (0) ∪ suppµ,

where µ is the singular measure associated to the singular part of ΘA and
suppµ is the closed support of µ (see [6, p. 63]). The set of eigenvalues of A
is given by the formula

σp(A) = σ(A) ∩ D = Θ−1
A (0).

We see that A is invertible if and only if ΘA(0) ̸= 0. For λ ∈ D we set

bλ(z) =
|λ|
λ

λ−z
1−λz

, z ∈ D. If ΘA(λ) = 0 we set kλ to be the multiplicity of λ.

A typical example of a C0-contraction is the so-called model operator SΘ,
where Θ is an inner function. Let KΘ = H2 ⊖ΘH2, where H2 is the classical
Hardy space. SΘ is the compression of the shift, defined on KΘ by: f →
PΘ(zf), where PΘ : H2 → KΘ is the orthogonal projection. Notice that the
minimal inner function of SΘ is Θ.

Lemma 3.1. We have

V(A,λ) =

{
{0} if λ ∈ σ(A) ∩ T,

ker (A− λ)kλ if λ ∈ σ(A) ∩ D.
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Proof. Let λ ∈ σ(A)∩T and x ∈ V(A,λ). Since A is a contraction, it follows
from [5, Theorem 1.1] that Ax = λx. Since A has no eigenvalue on T, we have
x = 0. So V(A,λ) = {0}.

Now let λ ∈ σ(A)∩D = σp(A). Notice that λ is an isolated point in σ(A).
Denote by Fλ the (maximal) spectral subspace of A such that σ

(
A|Fλ

)
=

{λ} (see [6, p. 84–86]). The space H decomposes into the direct sum of two
subspaces Hλ and H ′

λ, hyperinvariant for A and so that Hλ = ker (A− λ)kλ

and λ /∈ σ
(
A|H′

λ

)
(see [7, Theorem 7.1, p. 135]). So Fλ = ker (A− λ)kλ .

On the other hand Fλ is the set of all x ∈ H such that the map z →
(z − A)−1x admits an analytic extension to C \ {λ}. We have (z − A)−1x =∑

n≥0(z − λ)−n−1(A − λ)nx for |z| sufficiently large. So Fλ = {x ∈ H :

limn→+∞ ∥(A− λ)nx∥1/n = 0}. Thus we get ker (A− λ)kλ = V(A,λ) = Fλ.

Proposition 3.2. Suppose that ΘA is a Blaschke product with ΘA(0) ̸=
0. Then

BA ∩ CA = {A}′.

Proof. By Lemma 3.1 we have

Span
{
V(A,λ), λ ∈ σ(A)

}
= Span

{
ker (A− λ)kλ , λ ∈ ΛΘ

}
.

Now the result follows from the completeness theorem ([7, Proposition 7.2,
p. 135]) and Theorem 2.3.

For u and v in H we denote by v ⊗ u the operator defined on H by
x →< x, v > u.

Proposition 3.3. Suppose that ΘA is a Blaschke product with ΘA(0) ̸=
0. Then BA = {A}′ if and only if ΘA is a Blaschke product with a unique
root.

Proof. If ΘA has the form bkλλ , |λ| < 1, then H = ker(A − λ)kλ and the
equality BA = {A}′ follows from Corollary 2.4.

For the converse assume that ΘA vanishes at two distincts points λ1 and
λ2 with |λ1| ≤ |λ2| < 1. Notice that A∗ is a C0–contraction and ΘA∗(z) =
ΘA(z), z ∈ D. So λ1 is an eigenvalue of A and λ2 is an eingenvalue of A∗.
Let u and v be a nonzero vectors in H such that Au = λ1u and A∗v = λ2v.

We have An(v ⊗ u)A−n =
(
λ1
λ2

)n
v ⊗ u and so v ⊗ u ∈ BA \ {A}′.
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When Θ is not a Blaschke product, we do not know when the equalities
BA∩CA = {A}′ and BA = {A}′ hold. It is interesting to study the particular

case when ΘA(z) = e
z+1
z−1 , z ∈ D. Notice that in this case σ(A) = {1} and A

satisfies condition (1). Indeed, let, for ζ ∈ C \ {1},

∆ζ(z) =
ΘA(z)−ΘA(ζ)

z − ζ
, |z| < 1.

Clearly ∆ζ ∈ H∞ and since ΘA(A) = 0, we have ∆ζ(A) = −ΘA(ζ) (A− ζ)−1.
Hence ∥∥(A− ζ)−1

∥∥ ≤
∥∆ζ∥∞
ΘA(ζ)

,

where ∥ · ∥∞ is the supremum norm on D.
If |z − ζ| ≥ 1

2 |ζ − 1| then |∆ζ(z)| ≤ 4
|ζ−1| . On the other hand if |z − ζ| ≤

1
2 |ζ − 1|, then |∆ζ(z)| ≤ supw∈[z,ζ] |Θ′

A(w)| ≤
8

|ζ−1|2 . So

∥∆ζ∥∞ ≤ 8

|ζ − 1|2
for |ζ − 1| ≤ 1.

Thus ∥∥(A− ζ)−1
∥∥ ≤ 8

|ζ − 1|2
e

2
|ζ−1| for |ζ − 1| ≤ 1. (7)

Since σ(A) = {1}, we obtain from the Dunford–Riesz functional calculus that
for every r > 0,

(A− I)n =
1

2iπ

∫
|ζ−1|=r

(ζ − 1)n(ζ −A)−1dζ.

It follows from this and inequality (7) that∥∥(A− I)n
∥∥ ≤ 8rn−1e

2
r , 0 < r ≤ 1.

Taking r = 1
n , we see that A satisfies condition (1).
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