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Summary

This thesis studies various systems made of Janus particles. Firstly, we start cal-

culating the equilibrium properties of the one-dimensional fluid. The system is

composed of particles with two faces, so that the pair interaction is that of hard

rods, except if the two active faces are in front of each other, in which case the

interaction has a square-well attractive tail. Our exact solution refers to quenched

systems (i.e., each particle has a fixed face orientation). Comparison between the-

oretical results and Monte Carlo simulations for quenched and annealed (i.e. each

particle can dynamically flip its face and orientation) systems, respectively, shows

an excellent agreement.

On the other hand, the analytical approach in three dimensions hinges on a map-

ping of the above Janus fluid onto a quenched binary mixture interacting via a

“quasi” isotropic potential and formed by colloidal spheres with the hydrophobic

hemisphere constrained to point either up or down. The anisotropic nature of the

original Kern–Frenkel potential is reflected by the asymmetry in the interactions

occurring between the unlike components of the mixture. A rational-function ap-

proximation extending the corresponding symmetric case is obtained in the sticky

limit, where the square-well becomes infinitely narrow and deep, and allows for

a fully analytical approach. Notwithstanding the rather drastic approximations

in the analytical theory, this is shown to provide a rather precise estimate of

the structural and thermodynamical properties of the quenched fluid simulated

through the Monte Carlo method.

Finally, a class of quenched asymmetric binary mixtures formed by colloidal Janus

spherical particles with the attractive hemisphere constrained to point either up or

down are studied by means of Gibbs ensemble Monte Carlo simulations and simple

analytical approximations. The gas-liquid and demixing phase transitions for each

of five choices of the patch-patch affinities are analyzed. It is found that a gas-

liquid transition is present in all the models, even if only one of the four possible

patch-patch interactions is attractive. Moreover, provided the attraction between

iii
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like particles is stronger than between unlike particles, the system demixes into

two subsystems with different composition at sufficiently low temperatures and

high densities.



Resumen

Esta tesis abordará el estudio de varios sistemas compuestos por part́ıculas de

Janus. En primer lugar, calcularemos las propiedades en equilibrio del fluido uni-

dimensional, cuyas part́ıculas presentan dos regiones bien diferenciadas, con poten-

cial de esfera dura excepto si las dos regiones activas interaccionan, tomando en-

tonces la forma del potencial de pozo cuadrado. La solución anaĺıtica corresponde

al sistema quenched (con orientaciones fijas en una dirección del espacio). En

cualquier caso, la comparación entre los resultados teóricos y simulaciones, tanto

para el caso quenched como annealed (orientaciones libres) muestra un acuerdo

excelente.

Por otra parte, el desarrollo anaĺıtico en tres dimensiones se basará en mapear

el fluido en una mezcla binaria que interactúa mediante un potencial “cuasi”

isotrópico y formado por esferas coloidales cuyos hemisferios hidrofóbicos apuntan

arriba o abajo. La naturaleza anisotrópica del potencial de Kern–Frenkel original

se verá reflejada por la asimetŕıa en las interacciones entre los diferentes compo-

nente de la mezcla. Una aproximación del tipo RFA (Rational Function Approxi-

mation), extendiendo el correspondiente caso simétrico, es obtenida para el caso de

atracción adhesiva (sticky), donde el potencial pozo se convierte en infinitamente

estrecho y profundo, permitiendo un estudio anaĺıtico. A pesar de implementar

una aproximación tan drástica, los resultados proporcionan una estimación precisa

de las propiedades estructurales y termodinámicas del fluido quenched simulado

mediante el método de Monte Carlo.

Por último, una mezcla binaria del fluido de Janus, formado por esferas coloidales

con hemisferios hodrófóbico alineados en una dirección (arriba o abajo), será estu-

diada por medio de simulaciones de Monte Carlo en la colectividad de Gibbs, junto

con aproximaciones anaĺıticas. A su vez, tanto las transiciones ĺıquido-gas como la

separación de fases (demixing) serán analizados en cinco modelos espećıficos con

diferentes afinidades entre los hemisferios, descubriendo que la transición demixing

se haya presente en los cinco modelos, incluso si solo una de las cuatro posibles

v
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interacciones es atractiva.

Sin embargo, si la atracción entre part́ıculas similares es más fuerte que entre

part́ıculas diferentes, el sistema se dividirá en dos subsistemas con diferente com-

posición, para una temperatura suficientemente baja a alta densidad.



.





Contents

Acknowledgements ii

Contents viii

List of Figures xiii

1 General Introduction 1

2 One-dimensional Janus fluids. Exact solution and mapping from
the quenched to the annealed system 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 General (quenched) mixture with anisotropic interactions . . . . . . 8

2.2.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Probability densities . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Pair correlation function . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Nearest-neighbor distribution. Isothermal-isobaric ensemble 14

2.3 Binary anisotropic (quenched) mixture . . . . . . . . . . . . . . . . 16

2.3.1 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Thermodynamic properties . . . . . . . . . . . . . . . . . . . 17

2.4 Quenched Janus particles with Kern–Frenkel interaction . . . . . . 19

2.4.1 Thermodynamic properties . . . . . . . . . . . . . . . . . . . 20

2.4.2 Structural properties . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Asymptotic decay of correlations. Structural crossover . . . 26

2.5 Orientationally constrained Janus models. Mapping of the quenched
(binary-mixture) system onto the annealed (one-component) system 31

2.5.1 Annealed system . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Quenched system . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Mapping gquen
ij (r1, r2)→ gann(ς1, ς2) . . . . . . . . . . . . . . 36

2.6 Validation of the quenched-annealed mapping by Monte Carlo sim-
ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Janus fluid with fixed patch orientations: Theory and simulations 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Mapping the Kern–Frenkel potential onto a binary mixture . . . . . 50

ix



Contents x

3.2.1 The Kern–Frenkel potential for a Janus fluid . . . . . . . . . 50

3.2.2 Asymmetric binary mixture . . . . . . . . . . . . . . . . . . 51

3.3 Orientational average and thermodynamics . . . . . . . . . . . . . . 55

3.3.1 Orientational average . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Thermodynamics of the mixture: energy, virial, and com-
pressibility routes . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 The sticky limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 A heuristic, non-perturbative analytical theory . . . . . . . . . . . . 62

3.5.1 A simple approximate scheme within the Percus–Yevick clo-
sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 RFA method for SHS . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Case of interest: t11 = t22 = t21 = 0 . . . . . . . . . . . . . . 66

3.5.3.1 Structural properties . . . . . . . . . . . . . . . . . 67

3.5.3.2 Thermodynamic properties . . . . . . . . . . . . . 68

Virial route. . . . . . . . . . . . . . . . . . . . . . . . 68

Energy route. . . . . . . . . . . . . . . . . . . . . . . 69

Compressibility route. . . . . . . . . . . . . . . . . . . 69

3.5.3.3 Low-density expansion . . . . . . . . . . . . . . . . 70

3.5.3.4 Phase transition and critical point . . . . . . . . . 72

3.5.3.5 A modified approximation . . . . . . . . . . . . . . 73

3.6 Numerical calculations . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.1 Details of the simulations . . . . . . . . . . . . . . . . . . . 75

3.6.2 Results for non-equimolar binary mixtures . . . . . . . . . . 76

3.6.3 Results for equimolar binary mixtures . . . . . . . . . . . . . 81

3.6.4 Preliminary results on the critical behavior . . . . . . . . . . 83

3.7 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Phase diagrams of Janus fluids with up-down constrained orien-
tations 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Description of the models . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Gibbs ensemble Monte Carlo simulations . . . . . . . . . . . . . . . 94

4.3.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 Gas-liquid coexistence . . . . . . . . . . . . . . . . . . . . . 95

4.3.3 Demixing transition . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Simple analytical theories . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Equations of state . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Gas-liquid coexistence . . . . . . . . . . . . . . . . . . . . . 106

4.4.3 Demixing transition . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Final outlook and conclusions 111



Contents xi

A Consistency tests of the exact solution for one-dimensional sys-
tems 115

A.1 Virial route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2 Compressibility route . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Energy route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B Sticky-hard-sphere limit in one-dimensional Janus fluids 119

C Exact low-density properties for anisotropic SHS mixtures 123

C.1 Cavity function to first order in density . . . . . . . . . . . . . . . . 123

C.2 Second and third virial coefficients . . . . . . . . . . . . . . . . . . 126

C.3 Case t11 = t22 = t21 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 128

D Evaluation of the coefficients L
(0)
ij , L

(1)
ij , and L

(2)
ij 131

E Recovery of the pseudo-PY solution 135

Bibliography 137





List of Figures

1.1 Opaque Microspheres for coatings in industrial implementations.
Source: Yelena Lipovetskaya. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Appearance by year of the word “Janus” in the headline of papers
recorded by the web www.sciencedirect.com. . . . . . . . . . . . 3

1.3 Mythological Janus. Commonly represented as a man with two
heads looking in opposites directions, he was the god of beginnings,
endings, transitions, and duality. A prominent temple within the
Forum of Rome was devoted to Ianus Geminus, one of the few ro-
man deities without any Greek counterpart. The term “Janus par-
ticle” was coined in the nineties by the Nobel Prize winner Pierre-
Gilles de Gennes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sketch of a binary mixture of one-dimensional Janus particles. Par-
ticles of species 1 (2) have a white (green) left face and a green
(white) right face. Three types of interactions are possible: green–
white (φ11 and φ22), green–green (φ12), and white–white (φ21). Note
that, due to invariance under reflection, one must have φ11(r) =
φ22(r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Plot of (a) the compressibility factor βp/ρ and (b) the excess inter-
nal energy per particle uex/ε versus density at temperatures T ∗ =
0, 0.1, 0.2, 0.5, 1,∞ for an equimolar mixture (x1 = x2 = 1

2
) with

λ = 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Plot of (a) g11(r) = g22(r), (b) g21(r), (c) g12(r), and (d) g(r) at
density ρ = 0.7 and temperatures T ∗ = 0, 0.1, 0.2, 0.5, 1,∞ for an
equimolar mixture (x1 = x2 = 1

2
) with λ = 1.2. . . . . . . . . . . . . 26

2.4 Phase diagram for an equimolar mixture (x1 = x2 = 1
2
) with

λ = 1.2. In the states above the crossover line, the pair corre-
lation functions present an asymptotic oscillatory behavior with a
wavelength 2π/ω comprised between the values 1 and 2 (i.e., a spa-
tial frequency π < ω < 2π), while the wavelength 2π/ω is larger
than 2 (i.e., ω < π) for states below the curve. The circle represents
the “critical” point ρc = 0.1105, T ∗c = 0.3517. When crossing the
curve, the value of ω experiences a discontinuous change. . . . . . . 27

2.5 Plot of (a) the damping coefficient κ and (b) the wavelength 2π/ω
versus density at temperatures T ∗ = 0, 0.1, 0.2, 0.5, 1,∞ for an
equimolar mixture (x1 = x2 = 1

2
) with λ = 1.2. . . . . . . . . . . . . 28

xiii



List of Figures xiv

2.6 Plot of of the total correlation functions hij(r) and h(r) for an
equimolar mixture (x1 = x2 = 1

2
) with λ = 1.2 at ρ = 0.8. Panels

(a) and (b) correspond to T ∗ = 0.5, while panels (c) and (d) corre-
spond to T ∗ = 0.1. The dotted curves represent the full functions,
while the solid lines represent the asymptotic behavior (2.61). Note
that in panels (a) and (c) the curves representing hij have been
shifted vertically for better clarity. . . . . . . . . . . . . . . . . . . . 29

2.7 Evolution of (a) N1/N and (b) uex/ε versus the number of MC steps
per particle for an annealed system (unbiased one-component fluid)
with λ = 1.2 at T ∗ = 1 and ρ = 0.5. The horizontal lines represent
the equilibrium values (a) N1/N = 1

2
and (b) uex/ε = −0.0962(4). . 38

2.8 Logarithmic plot of the ACF of (a)N1 and (b) uex versus the number
of MC steps per particle for an annealed system (unbiased one-
component fluid) with λ = 1.2 at T ∗ = 1 and ρ = 0.5. The dashed
lines represent e−t/τc , where t is the number of MC steps per particle
and the autocorrelation time is (a) τc = 1.34 and (b) τc = 2.47. . . . 38

2.9 Plot of (a) g11(r) = g22(r), (b) g21(r), (c) g12(r), and (d) g(r) at
density ρ = 0.7 and temperatures T ∗ = 0.2 and 1 for a Janus fluid
with λ = 1.2. Lines represent the exact solution for the quenched
system (equimolar binary mixture), while symbols are MC results
for the annealed system (unbiased one-component fluid). . . . . . . 39

2.10 Plot of ln g11(r) = ln g22(r), ln g21(r), and ln y12(r) in the first coor-
dination shell (1 < r < 2), as obtained from MC simulations for an
annealed system (unbiased one-component fluid) with λ = 1.2 at
ρ = 0.8 and (a) T ∗ = 0.2 and (b) T ∗ = 1. The average slopes give
(a) βp = 2.68 and (b) βp = 3.63, respectively. . . . . . . . . . . . . 41

2.11 Plot of (a) the compressibility factor βp/ρ and (b) the excess inter-
nal energy per particle uex/ε versus density at temperatures T ∗ =
0.2 and 1 for a Janus fluid with λ = 1.2. Lines represent the ex-
act solution for the quenched system (equimolar binary mixture),
while symbols are MC results for the annealed system (unbiased
one-component fluid). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Plot of (a) g11(r), (b) g22(r), (c) g12(r), and (d) g21(r) at density
ρ = 0.5 and temperature T ∗ = 1 for a Janus fluid with λ = 1.2 and
a mole fraction x1 = 0.7748. Lines represent the exact solution for
the quenched system (nonequimolar binary mixture), while symbols
are MC results for the annealed system (biased one-component fluid). 43

3.1 The Kern–Frenkel potential for Janus fluids. . . . . . . . . . . . . . 51

3.2 (Top-left) A particle of type 1 is “below” another particle of type 1
providing SW/HS=HS interactions. (Top-right) A particle of type 1
is “below” a particle of type 2 leading to SW/SW=SW interactions.
(Bottom-left) A particle of type 2 is “below” a particle of type
1 yielding HS/HS=HS interactions. (Bottom-right) A particle of
type 2 is “below” another particle of type 2 thus leading again to
HS/SW=HS interactions. . . . . . . . . . . . . . . . . . . . . . . . 53



List of Figures xv

3.3 (Top) Plot of g
(1)
11 (r) as a function of r for (a) θ = 0 and π, (b)

θ = π
4

and 3π
4

, and (c) θ = π
2
. (Bottom) Plot of the regular part

of g
(1)
12 (r) as a function of r for (a) θ = 0, (b) θ = π

4
, (c) θ = π

2
,

(d) θ = 3π
4

, and (e) θ = π. The interaction potential is given by
Eq. (3.6) (sketched in Fig. 3.2), except that the sticky limit with
Baxter’s temperature τ = 0.1 has been taken (see Sec. 3.4). . . . . . 54

3.4 Binodals from the RFA virial route in the equimolar x1 = 1
2

case.
The phase diagram is depicted in the (η, τ) plane (solid line, top
panel) and in the (η−1, ηZv) plane (dashed line, bottom panel). A
few characteristic isotherms are plotted in the bottom panel. The
critical point is found at ηc ' 0.1941, τc ' 0.02050, and ηcZc '
0.07153 (indicated by a circle in both panels). . . . . . . . . . . . . 74

3.5 Snapshot of an equilibrated MC simulation under non-equimolar
conditions (x1 = 1/5) with Baxter temperature τ = 0.1 and density
ρ∗ = 0.3. In the simulations, the total number of particles was
N = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Comparison between MC simulations and the theoretical predic-
tions from RFA (top) and mRFA (bottom) for the orientational av-
eraged distribution functions g11(r), y12(r), g21(r), and g22(r) under
non-equimolar conditions (x1 = 1/5) at density ρ∗ = 0.5 and Baxter
temperature τ = 0.2. The dashed vertical line indicates the range
r = λ = 1.05 of the (1, 2) SW interaction used in the simulations.
Note that the radial distribution function g12(r) is obtained in the
MC case by multiplying y12(r) in the region 1 ≤ r ≤ λ = 1.05 by
the factor e1/T ∗ ' 8.93; in the theoretical cases (SHS limit) g12(r)
is obtained by adding the singular term (12τ)−1y12(1)δ+(r − 1) to
y12(r). The error bars on the MC data are within the size of the
symbols used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Comparison of MC simulations and RFA theory for the thermody-
namics. Both the compressibility factor Z = βp/ρ (top) and the
excess internal energy per particle uex/ε (bottom) are displayed as
functions of density for the non-equimolar case x1 = 1/5 and for
Baxter temperature τ = 0.1. In the case of the compressibility fac-
tor (top), results for all four routes (compressibility, virial, energy,
and hybrid virial-energy) are reported. . . . . . . . . . . . . . . . . 80

3.8 Same as in Fig. 3.5, but for an equimolar mixture (x1 = x2 = 1/2). 82

3.9 Same as in Fig. 3.6, but for an equimolar mixture (x1 = x2 = 1/2). 82

3.10 MC simulation data for the scaled pressure ηZ = π
6
σ3βp as a func-

tion of ρ∗ at τ = 0.030 (top panel), 0.0205 (middle panel), and
τ = 0.018 (bottom panel) in an equimolar mixture. Densities higher
than ρ∗ = 0.7 are not shown because at these very low temperatures
the particles tend to overlap their SW shells and then the calcula-
tions slow down considerably. Also shown are the theoretical results
for the four routes of the RFA. . . . . . . . . . . . . . . . . . . . . . 84



List of Figures xvi

4.1 Sketch of a binary-mixture Janus fluid with up-down constrained
orientations. The energy scales of the attractive interactions are
(from left to right and from top to bottom) ε11, ε12, ε21, and ε22 =
ε11, respectively. Here we have adopted the convention that εij is
the energy scale when a particle of species i is “below” a particle of
species j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Parameter space of the class of Janus models defined in this chapter. 92

4.3 Gas-liquid binodals for models SW, B0, I0, J0, and A0. The points
indicated as SHS in the legend are grand canonical MC (GCMC)
results taken from Ref. [66], where the actual one-component SHS
model was studied. The remaining results are those obtained in this
work from GEMC simulations. In each case, the solid line is a guide
to the eye, while the dashed line is the result of the extrapolation
to the critical point, which is represented by a square. . . . . . . . 97

4.4 Snapshot of the liquid-phase box in model A0 at T ∗ = 0.15. . . . . 99

4.5 Demixing curves for models (a) I0 and (b) B0 at two temperatures,
as obtained from GEMC simulations, in the density-mole fraction
plane. In each case, the solid line is a guide to the eye, while the
critical consolute point is represented by a square. For model I0 we
found ρ∗cc(T

∗ = 0.4) = 0.336 and ρ∗cc(T
∗ = 0.45) = 0.429; for model

B0 the results are ρ∗cc(T
∗ = 0.35) = 0.650 and ρ∗cc(T

∗ = 0.4) = 0.665.
The dashed-dotted lines are the theoretical predictions (see Sec. 4.4.3).100

4.6 Gas-liquid binodals for models SW, A0, B0, I0, and J0, as obtained
from our theoretical method (solid lines). The critical points are
represented by open squares. The symbols joined by dashed lines
correspond to GEMC data (see Fig. 4.3). . . . . . . . . . . . . . . . 108



Que un individuo quiera despertar

en otro individuo pensamientos

que no pertenecieron más que a un

tercero, es una paradoja evidente.

Jorge Luis Borges, Evaristo

Carriego.
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1
General Introduction

The study of colloidal particles has been a subject of increasing interest in the

last decades, not only due to the numerous technological applications associated

with these systems, but also regarding their fundamental role within liquid theory

[1, 2].

Many of the mathematical models describing colloids were linked from their

very inception to the concept of patchy particles, in which uniform spheres present

a surface region (called a patch) with an interaction pattern different from that

of the rest of the surface. Simple as it may seem, this approach of adding a little

patchy impurity on the homogeneous chemical surface endows the corresponding

fluid model with a good deal of rich features providing a powerful tool to get a

better understanding of their aggregation properties (regarding both organic and

1
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Figure 1.1: Opaque Microspheres for coatings in industrial implementations.
Source: Yelena Lipovetskaya.

inorganic molecules), colloidal hierarchical structures (micelles, vesicles, nanocom-

posites, polymers, etc.), and eventually, laboratory synthesis of new materials. As

a matter of fact, material science has experienced a true revolution thanks to

the unprecedented development of innovative techniques related not only to the

chemical but also physical or mechanical synthesis technology. This avant-garde

processes are generating new sets of colloidal particles with a wide range of size,

composition, and anisotropic patch structure [3, 4, 5] (see Fig. 1.1).

Janus fluids are made of colloidal-size particles whose surface is divided into

two symmetric regions (patches) with different properties (for example, chemi-

cal composition), thus presenting different behaviors [5, 6, 7]. The lack of cen-

trosymmetry inherent to the pair potential yields a dynamic and vigorous surface

activity derived from its anisotropic character, in some cases more interactional

than a uniform particle in the same context [8]. The remarkable precision of these

avant-garde methods of synthesis makes it possible to obtain experimental results

involving chainlike or one-dimensional arrays of Janus particles [9, 10].

Analysis of Janus particles lies in the focus of many scientific fields, ranging

from physics and chemistry, to biological systems and active matter. As may be

observed from databases indexes, the academic efforts devoted to the study of
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Figure 1.2: Appearance by year of the word “Janus” in the headline of papers
recorded by the web www.sciencedirect.com.

these particles has been steadily rising up in the recent years (see Fig. 1.2).

The concept of a Janus fluid was firstly envisaged by the French physicist

Pierre-Gilles de Gennes, during his Physics Nobel Prize speech in 1991. In that oc-

casion, de Gennes proposed the Janus particle as a colloid with a well-differentiated

structure in every hemisphere that could form, in his own words “a skin able to

breathe” [11]. This speech was the first time that molecules consisting in two sym-

metric hemispheres with different composition was called after Janus, the Roman

god of duality (see Fig. 1.3).

The insight that de Gennes had in mind arises clearly if we consider the two

hemispheres of the particle behaving as solvophilic and solvophobic substances.

Provided this amphiphilic character between the two regions, Janus particles might

be regarded as the simplest and most elementary case of a surfactant.

Therefore, combining the properties exhibited by these particles (simple geom-

etry, amphiphilic behavior, and surfactant character), we can easily consider the
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Figure 1.3: Mythological Janus. Commonly represented as a man with two
heads looking in opposites directions, he was the god of beginnings, endings,
transitions, and duality. A prominent temple within the Forum of Rome was
devoted to Ianus Geminus, one of the few roman deities without any Greek
counterpart. The term “Janus particle” was coined in the nineties by the Nobel
Prize winner Pierre-Gilles de Gennes.

Janus spheres as a perfect candidate for fluids systems with peculiar aggregation

and clustering properties as relevant as proteins, nanocomposites, and polymers

[5].

De Gennes’ simile “the skin that is able to breathe” proves to be an intuitive

and meaningful allegory, as the skin would refer to the adsorption at the layer in-

terface between two fluids, while the ability to breathe should refer to the possible

diffusion through the layer.

The self-assembly is just one of the mechanism that has recently attracted

increasing attention due to the unprecedented improvement in the chemical syn-

thesis and functionalization of such colloidal particles, that allows a precise and

reliable control on the aggregation process that was not possible until a few years

ago [12]. From a technological point of view, this is very attractive as it paves
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the way to a bottom-up design and engineering of nanomaterials alternative to

conventional top-down techniques [13].

One popular choice of model describing the typical duality characteristic of the

Janus fluid is the Kern–Frenkel model [14]. This model considers a fluid of rigid

spheres having their surfaces partitioned into two hemispheres. One of them has

a square-well (SW) character, i.e., it attracts other similar hemispheres through

a SW interaction, thus mimicking the short-range hydrophobic interactions oc-

curring in real Janus fluids. The other part of the surface is assumed to have

hard-sphere (HS) interactions with all other hemispheres, i.e., with both like HS

as well as SW hemispheres. The HS hemisphere hence models the charged part

in the limit of highly screened interactions that is required to have aggregation of

the clusters.

Although in the present work only an even distribution between SW and HS

surface distributions will be considered (Janus limit), other choices of the cover-

age, that is the fraction of SW surface with respect to the total one, have been

studied within the Kern–Frenkel model [15]. In fact, one of the most attractive

features of the general model stems from the fact that it smoothly interpolates

between an isotropic HS fluid (zero coverage) and an equally isotropic SW fluid

(full coverage)[16, 17].

On the other hand, the behavior of patchy and Janus particles under external

fields has received a great deal of attention in the recent years [18, 19]. By applying

an external electrical or magnetic field, appropriately synthesized dipolar Janus

particles may be made to align orientationally, so as to expose their functionally

active hemisphere either all up or all down (See Ref. [19], Secs. 1.4.3.1 and 1.4.3.2,

and references therein). By mixing the two species one could have in the laboratory

a binary mixture of Janus particles where the functionally active patch points in

opposite directions for each species.

While theoretical studies have been keeping up with, and sometimes even antic-

ipated, experimental developments, the complexities of the anisotropic interactions
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in patchy colloids have mainly restricted these investigations to numerical simu-

lations, which have revealed interesting specificities in the corresponding phase

diagrams.

The aim of this thesis is to contribute to the understanding of the equilibrium

properties of Janus fluids by focusing on one-dimensional and three-dimensional

structures. This allows us to obtain a description of the thermodynamic and struc-

tural spatial correlation quantities. Apart from its interest in modelling laboratory

realizations of colloidal chains [9, 10], the results derived in this work can also be

useful as a benchmark to test approximate fluid-state theories.

This thesis is organized as follows:

We start with the development of the Janus-rod study in the one-dimensional case

in Ch. 2 [20]. The model of amphiphilic Janus particles in three dimensions is

presented in Ch. 3 [21]. Then, we develop the study of the phase diagram for this

model in Ch. 4 [22]. Finally, an overview of the thesis is presented, with some

remarks and conclusions in Ch. 5.

Apart from the main text, five Appendixes has been added at the end of this work,

in order to support and give additional background to the topics discussed in the

remainder of the thesis.



2
One-dimensional Janus fluids. Exact

solution and mapping from the quenched

to the annealed system

2.1 Introduction

This work opens with the study of the equilibrium properties of particular

Janus fluids constrained in one-dimensional geometry. Some methods developed

in the next pages allow us to obtain an exact description of the thermodynamic

and spatial correlation quantities.

7
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The remainder of this chapter is organized as follows: Section 2.2 presents

the exact equilibrium statistical-mechanical solution of a general m-component

mixture with nearest-neighbor interactions where the interaction potential between

two adjacent particles α and γ = α±1 may depend on their ordering (i.e., γ = α−1

versus γ = α + 1). The particularization to a binary mixture (but yet with

arbitrary anisotropic pair interactions) is worked out in Sec. 2.3 with expressions

for thermodynamic quantities (density, Gibbs free energy, chemical potentials, and

internal energy) and structural properties (pair correlation functions in Laplace

space) as functions of pressure, temperature, and composition. Those expressions

are made more explicit in Sec. 2.4, where the Kern–Frenkel anisotropic interaction

potential [14] is considered, the thermodynamic and structural properties being

plotted for several representative cases. Moreover, an analysis in Sec. 2.4 of the

asymptotic decay of the pair correlation functions shows the absence of a Fisher–

Widom transition line (separating a region in the density-temperature plane where

the decay is oscillatory from a region where the decay is monotonic) [23]. While

the decay is always oscillatory, a structural crossover line exists between a region

with a large wavelength from a region with a smaller wavelength. All those results

correspond to a mixture of particles with quenched orientation, but in Sec. 2.5 we

provide compelling arguments on the mapping of those results onto the case of one-

component Janus fluids of particles with flipping orientation (annealed system).

Such an equivalence is confirmed in Sec. 2.6 by comparison between the theoretical

results for quenched systems and Monte Carlo simulations for annealed systems.

2.2 General (quenched) mixture with anisotropic

interactions

2.2.1 The system

Let us consider an N -particle, m-component fluid mixture with number densities

{ρi; i = 1, . . . ,m}, so that the total number density is ρ =
∑m

i=1 ρi and the mole
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fractions are xi = ρi/ρ. The species i any given particle α belongs to is fixed, and

in this sense the system is said to be quenched.

The potential energy function of a particle α (located at rα) of species i due to

the interaction with another particle γ (located at rγ) of species j will be denoted

by φij(rγ − rα). According to Newton’s third law, φij(rγ − rα) = φji(rα − rγ),

i.e., φij(r) = φji(−r) for all species pairs i, j. On the other hand, the interaction

potential is assumed to be anisotropic and thus one may have, in general, φij(r) 6=

φji(r) if i 6= j. This anisotropic character means that, in general, the potential

energy of a particle α due to the action of another particle γ depends not only on

the distance |rγ−rα| between both particles but also on the relative orientation of γ

with respect to α. We will also assume that limr→0 φij(r) =∞ and limr→∞ φij(r) =

0, implying that the particles are impenetrable and the interactions have a finite

range.

Now we particularize to a system confined to one dimension, so that particles

are aligned along an axis of length L. By assuming that the interaction is restricted

to nearest neighbors, the total potential energy can be written as

ΦN(r1, r2, . . . , rN) =
N−1∑
α=1

φiα,iα+1(rα+1 − rα), (2.1)

where iα(= 1, 2, . . . ,m) denotes the species of particle α and, without loss of

generality, we assume that particles 1, 2, . . . , N are ordered from left to right.

Therefore, φiα,iα+1(rα+1 − rα) = φiα,iα+1(rα,α+1), where rα,α+1 ≡ |rα+1 − rα|. The

anisotropy of the interaction implies that, in general, φij(r) 6= φji(r). Figure 2.1

shows a sketch of the system in the case of a binary mixture (m = 2) of Janus

particles (see Sec. 2.3). More in general, one can imagine w different side faces

(or “colors”) and m = w(w − 1) species corresponding to the different ways of

ordering pairs of unequal faces. It is also possible to think of an m-component

mixture where every particle of a given species has a patch spin vector pointing in

one of m possible directions; in the polydisperse limit (m → ∞), the spin vector

would point in any arbitrary direction.
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Species: 

Potentials: 

Figure 2.1: Sketch of a binary mixture of one-dimensional Janus particles.
Particles of species 1 (2) have a white (green) left face and a green (white)
right face. Three types of interactions are possible: green–white (φ11 and φ22),
green–green (φ12), and white–white (φ21). Note that, due to invariance under
reflection, one must have φ11(r) = φ22(r).

2.2.2 Probability densities

Let us now use arguments similar to those conventionally used for isotropic po-

tentials [24, 25, 26, 27, 28, 29] to derive the structural properties of the mixture.

Given a reference particle of species i, we focus on those particles to its right and

denote by p
(`,+)
ij (r)dr the (conditional) probability that its `th right neighbor be-

longs to species j and is located at a distance between r and r+ dr. In particular,

p
(1,+)
ij (r) is the right nearest-neighbor probability distribution function. Obviously,

if ` = 0 one has p
(0,+)
ij (r) = δijδ(r). The (conditional) total probability density of

finding a particle of species j at a distance r to the right of a given particle of

species i is

p
(+)
ij (r) ≡

∞∑
`=1

p
(`,+)
ij (r). (2.2)

In making the upper limit of the summation equal to infinity, we are assuming the

thermodynamic limit (L→∞, N →∞, ρ = N/L = constant).

Let us consider now a few basic relations. First, since the `th right neighbor

must be somewhere and belong to any of the species, the normalization condition

reads
m∑
j=1

∫ ∞
0

dr p
(`,+)
ij (r) = 1. (2.3)
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As before, the infinite upper limit of the integral reflects the thermodynamic limit

assumption. An obvious condition is the recurrence relation [27]

p
(`,+)
ij (r) =

m∑
k=1

∫ r

0

dr′ p
(`−1,+)
ik (r′)p

(1,+)
kj (r − r′). (2.4)

Equation (2.4) allows one to prove by induction that the normalization condition

(2.3) is satisfied by all p
(`,+)
ij (r), provided it is satisfied by p

(1,+)
ij (r).

Another physical condition is [24, 25, 27]

lim
r→∞

p
(1,+)
ij (r)

p
(1,+)
ik (r)

= independent of i. (2.5)

This means that the ratio between the two probabilities that the right nearest

neighbor of a given reference particle is located at a certain distance r and belongs

to species j and k, respectively, becomes asymptotically insensitive to the nature

of the reference particle in the limit of large separations. This is a consequence of

the fact that the reference particle and its nearest neighbor do not interact if r is

beyond the range of φij(r) or φik(r).

In analogy with p
(`,+)
ij (r) and p

(+)
ij (r), one can introduce the distribution p

(`,−)
ij (r)

for neighbors of species j located at a distance r to the left of i, as well as the

associated total distribution p
(−)
ij (r). Obviously, the symmetry relation

ρip
(`,+)
ij (r) = ρjp

(`,−)
ji (r) (2.6)

holds. Even though, in general, p
(`,+)
ij (r) 6= p

(`,−)
ij (r) at a local level, one has

∫ ∞
0

dr p
(`,+)
ij (r) =

∫ ∞
0

dr p
(`,−)
ij (r). (2.7)

This implies that, given a reference particle of species i, the probability that its

`th neighbor (regardless of the distance) belongs to species j is independent of

whether the neighbor is located to the right or to the left of the reference particle.
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Combination of Eqs. (2.6) and (2.7) yields

ρi

∫ ∞
0

dr p
(`,+)
ij (r) = ρj

∫ ∞
0

dr p
(`,+)
ji (r). (2.8)

Because of the symmetry relation (2.6), henceforth we will restrict ourselves to

the right probability densities p
(`,+)
ij (r) and p

(+)
ij (r).

The convolution structure of the integral in Eq. (2.4) suggests the introduction

of the Laplace transforms

P
(`)
ij (s) ≡

∫ ∞
0

dr e−srp
(`,+)
ij (r), Pij(s) ≡

∫ ∞
0

dr e−srp
(+)
ij (r), (2.9)

so that Eq. (2.4) becomes

P
(`)
ij (s) =

m∑
k=1

P
(`−1)
ik (s)P

(1)
kj (s), P(`)(s) =

[
P(1)(s)

]`
, (2.10)

where P(`)(s) is the m × m matrix of elements P
(`)
ij (s). Consequently, from Eq.

(2.2) we have

P(s) = P(1)(s) ·
[
I− P(1)(s)

]−1
, (2.11)

where P(s) is the matrix whose elements are Pij(s) and I is the m × m identity

matrix.

Condition (2.3) for ` = 1 is equivalent to

m∑
j=1

P
(1)
ij (0) = 1 (2.12)

for any i, what implies det
[
I− P(1)(0)

]
= 0. Thus, the matrix P(s) is singular at

s = 0. Also, Eq. (2.8) implies

ρiP
(`)
ij (0) = ρjP

(`)
ji (0). (2.13)

As in the case of Eqs. (2.3), the recursion relation (2.10) allows one to prove by

induction that Eq. (2.13) is satisfied for all ` provided it holds for ` = 1.



Chapter 2. One-dimensional Janus fluids 13

2.2.3 Pair correlation function

The probability distribution p
(+)
ij (r) is related to the pair correlation function gij(r)

(where a particle of species j is supposed to be located at a distance r to the right

of a particle of species i) by [24, 27]

ρjgij(r) = p
(+)
ij (r). (2.14)

Note that, in general, gij(r) 6= gji(r). One can also define an average pair correla-

tion function as

g(r) =
∑
i,j

xixjgij(r). (2.15)

In Laplace space, Eq. (2.14) becomes

Gij(s) =
1

ρj
Pij(s), (2.16)

where Gij(s) is the Laplace transform of gij(r). If we denote by Hij(s) the Laplace

transform of the total correlation function hij(r) ≡ gij(r)− 1, we have

Gij(s) =
1

s
+Hij(s). (2.17)

The values Hij(0) are related to the isothermal compressibility (see below) and

must be finite. Theqrefore, the behavior of Gij(s) for small s is

Gij(s) =
1

s
+Hij(0) +O(s). (2.18)

According to Eq. (2.16), this implies

lim
s→0

sPij(s) = ρj. (2.19)

This confirms that, as said before, the matrix P(s) is singular at s = 0. Equations

(2.5), (2.12), (2.13), and (2.19) are basic constraints on P
(1)
ij (s) that will be used

later on.
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2.2.4 Nearest-neighbor distribution. Isothermal-isobaric

ensemble

From Eqs. (2.11) and (2.16) we see that the knowledge of the nearest-neighbor

distribution functions {P (1)
ij (s)} suffices to determine the pair correlation functions

{Gij(s)}.

In the isothermal-isobaric ensemble, the N -body probability distribution func-

tion in configuration space is proportional to e−βpL−βΦN (r1,...,rN ), where p is the pres-

sure and β ≡ 1/kBT (kB and T being the Boltzmann constant and the absolute

temperature, respectively) [27]. Therefore, the evaluation of any physical quantity

implies integrating over the system size L and over the particle coordinates. Thus,

in this ensemble the nearest-neighbor probability distribution function is [25, 27]

p
(1,+)
ij (r) ∝

∫ ∞
r

dL e−βpL
∫ L

r2

dr3

∫ L

r3

dr4 · · ·
∫ L

rN−1

drN e
−βΦN (r1,...,rN ), (2.20)

where, without loss of generality, we have chosen the particles α = 1 (at r1 = 0)

and α = 2 (at r2 = r) as the canonical nearest-neighbor pair of species i and

j, respectively. After taking into account Eq. (2.1), applying periodic boundary

conditions, and performing the change of variables rα → r̂α = rα − rα−1 (α =

3, . . . , N), one gets [27]

p
(1,+)
ij (r) = xjKije

−βpr−βφij(r), (2.21)

where the amplitudes Kij are normalization constants. These m2 parameters

can be determined by application of the consistency conditions (2.5), (2.12), and

(2.13). Once determined, the equation of state relating ρ, p, and T is obtained by

application of Eq. (2.19).

First, we note that, according to Eq. (2.5), the ratio Kij/Kik does not depend

on the index i. In particular, Kij/Kii = Kjj/Kji, i.e.,

KijKji = KiiKjj (2.22)
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for all pairs (i, j). Next, Laplace transformation of Eq. (2.21) yields

P
(1)
ij (s) = xjKijΩij(s+ βp), (2.23)

where

Ωij(s) ≡
∫ ∞

0

dr e−sre−βφij(r). (2.24)

Note that these functions depend parameterically on temperature. For small s,

P
(1)
ij (s) = xjKij

[
Ωij(βp) + Ω′ij(βp)s+O(s2)

]
, (2.25)

where the prime denotes a derivative with respect to s. Therefore, the normaliza-

tion condition (2.12) implies

m∑
j=1

xjKijΩij(βp) = 1. (2.26)

Finally, Eq. (2.13) with ` = 1 gives

KijΩij(βp) = KjiΩji(βp). (2.27)

Equations (2.22), (2.26), and (2.27) give m(m − 1)/2 + m + m(m − 1)/2 = m2

constraints that allow one to determine the m2 parameters {Kij} in terms of the set

of mole fractions {xi}, the temperature T , and the pressure p. Then, the equation

of state ρ(T, p, {xi}) is given by Eq. (2.19). Although the matrix equation (2.19) is

in principle equivalent to m2 scalar equations, it turns out that all of them collapse

into a single scalar equation. This consistency test, that will be checked in Sec.

2.3 for the case m = 2, is a direct consequence of the exact character of the results

presented in this section.
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2.3 Binary anisotropic (quenched) mixture

2.3.1 Exact solution

Let us now particularize the general scheme of Sec. 2.2 to the case of a binary

mixture (m = 2), although the interaction potentials φij(r) will not be specified

yet. In that case, Eqs. (2.22), (2.26), and (2.27) become

K11K22 = K12K21, (2.28a)

x1K11Ω11(βp) + x2K12Ω12(βp) = 1, x1K21Ω21(βp) + x2K22Ω22(βp) = 1,

(2.28b)

K12Ω12(βp) = K21Ω21(βp). (2.28c)

From Eqs. (2.28b) and (2.28c) it is possible to express K11, K22, and K21 in terms

of K12:

K11 =
1− x2K12Ω12(βp)

x1Ω11(βp)
, K22 =

1− x1K12Ω12(βp)

x2Ω22(βp)
, K21 =

Ω12(βp)

Ω21(βp)
K12.

(2.29)

Then, insertion of Eqs. (2.29) into Eq. (2.28a) gives a quadratic equation for K12

whose physical solution is

K12 =
2

Ω12(βp)
(
1 +
√

1− 4x1x2R
) , R ≡ 1− Ω11(βp)Ω22(βp)

Ω12(βp)Ω21(βp)
. (2.30)

Once the normalization constants {Kij} are known in terms of p, T , x1, and

x2 = 1− x1, we can proceed to the determination of the equation of state. First,

Eq. (2.11) in the binary case gives

P11(s) =
1− P (1)

22 (s)

D(s)
− 1, P22(s) =

1− P (1)
11 (s)

D(s)
− 1, (2.31a)

P12(s) =
P

(1)
12 (s)

D(s)
, P21(s) =

P
(1)
21 (s)

D(s)
, (2.31b)
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where

D(s) ≡
[
1− P (1)

11 (s)
] [

1− P (1)
22 (s)

]
− P (1)

12 (s)P
(1)
21 (s) (2.32)

is the determinant of I − P(1)(s). Using Eqs. (2.25) and (2.28b), one can easily

prove that D(s) = D′(0)s+O(s2) with

D′(0) = −x1x2K12K21 [Ω′12(βp)Ω21(βp) + Ω12(βp)Ω′21(βp)]

−x2
1K11K21Ω′11(βp)Ω21(βp)− x2

2K12K22Ω12(βp)Ω′22(βp). (2.33)

Application of Eq. (2.19) gives

ρx1 =
1− x2K22Ω22(βp)

D′(0)
=
x1K21Ω21(βp)

D′(0)
, (2.34a)

ρx2 =
1− x1K11Ω11(βp)

D′(0)
=
x2K12Ω12(βp)

D′(0)
. (2.34b)

Equations (2.28b) and (2.28c) show that, out of the four equalities in Eqs.

(2.34a) and (2.34b), only one is new, i.e., ρ = K12Ω12(βp)/D′(0). Therefore, the

equation of state is

− 1

ρ(T, p, x1)
= x2

1K11Ω′11(βp) +x2
2K22Ω′22(βp) +x1x2 [K12Ω′12(βp) +K21Ω′21(βp)] .

(2.35)

This closes the solution to the problem (see Appendix A Ec. (A.4)). Given

the four interaction potentials {φij(r)}, the mole fraction x1, the temperature T ,

and the pressure p, the normalization constants {Kij} are given by Eqs. (2.29)

and (2.30), while the number density ρ is given by Eq. (2.35). Then, Eqs. (2.16),

(2.23), and (2.31b) provide the pair correlation functions {gij(r)} in Laplace space.

2.3.2 Thermodynamic properties

Since the exact explicit solution of the statistical-mechanical problem relies upon

the isothermal-isobaric ensemble, the key thermodynamic quantity is the Gibbs
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free energy G(T, p,N1, N2) [27]. Using the thermodynamic relation

N

ρ
=

(
∂G
∂p

)
T,N1,N2

(2.36)

in combination with Eq. (2.35), and after some algebra, it can be found that:

G(T, p,N1, N2)

NkBT
= x1 ln

x1Λ1

Ω11

+ x2 ln
x2Λ2

Ω22

− ln
1 +
√

1− 4x1x2R

2
√

1−R

+|x1 − x2| ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√

1−R
, (2.37)

where Λi = h/
√

2πmikBT is the thermal de Broglie’s wavelength of species i

(h and mi being the Planck constant and the mass of a particle of species i,

respectively) and henceforth the absence of arguments in functions of s (Ωij, Ω′ij,

. . . ) means that those functions are evaluated at s = βp. From Eq. (2.37) one can

derive the chemical potential of species i by means of the thermodynamic relation

µi = (∂G/∂Ni)T,p,Nj 6=i as

βµi(T, p, x1) = ln
xiΛi

Ωii

− ln
1 +
√

1− 4x1x2R

2
√

1−R

+sgn (2xi − 1) ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√

1−R
, (2.38)

where the sign function is sgn(x) = +1 if x > 0 and −1 otherwise. Notice that

G = N1µ1 +N2µ2, as should be.

The internal energy U obeys the thermodynamic relation

U = G − T
(
∂G
∂T

)
p,N1,N2

− p
(
∂G
∂p

)
T,N1,N2

. (2.39)

If G is seen as a function of (β, βp,N1, N2) rather than as a function of (T, p,N1, N2),

it is easy to check that the previous relation is equivalent to U = (∂βG/∂β)βp,N1,N2 .

Thus, Eq. (2.37) gives

U(T, p,N1, N2)

N
=
kBT

2
+ x1Υ11 + x2Υ22 − x1x2K12Ω12 (Υ11 + Υ22 −Υ12 −Υ21) ,

(2.40)
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where [see Ec. (A.12) in Appendix A]

Υij(s) ≡ −
∂ ln Ωij(s)

∂β
=

1

Ωij(s)

∫ ∞
0

dr e−srφij(r)e
−βφij(r). (2.41)

As tests on the exact character of the solution, it is proved in Appendix A

that the equation of state (2.35) and the internal energy (2.40) are consistent with

standard (virial, compressibility, and energy) routes to derive the thermodynamic

quantities from the pair correlation functions [27, 30].

2.4 Quenched Janus particles with Kern–Frenkel

interaction

The solution of the one-dimensional statistical-mechanical problem for an arbitrary

mixture with anisotropic interactions has been developed in Sec. 2.2. Next, the

specialization to binary mixtures has allowed us in Sec. 2.3 to reach more explicit

and detailed expressions. Now we go a step forward and particularize to a binary

mixture of Janus particles (see Fig. 2.1). The Janus symmetry implies that a

particle of species 1 is the specular reflection of a particle of species 2, so that

only three interactions need to be fixed: φ11(r) = φ22(r) (green–white), φ12(r)

(green–green), and φ21(r) (white–white). Moreover, we assume the Kern–Frenkel

model [14], i.e., the white face acts as a hard sphere (HS) of diameter σ in front of

any face (either white or green), while the (“active”) green face acts as a square-

well (SW) sphere of hard-core diameter σ, range λσ, and well depth ε in front of

another green face. Therefore, the precise model is

φ11(r) = φ22(r) = φ21(r) =

 ∞, r < σ,

0, r > σ,
φ12(r) =


∞, r < σ,

−ε, σ < r < λσ,

0, r > λσ,

(2.42)
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where λ ≤ 2. Therefore,

Ω11(s) = Ω22(s) = Ω21(s) = Ω(s) =
e−s

s
, Ω12(s) = (1+θ)Ω(s)−λθΩ(λs), (2.43)

where we have taken σ = 1 and the quantity θ ≡ eβε − 1 embodies all the depen-

dence on temperature.

2.4.1 Thermodynamic properties

Despite the simplicity of Eq. (2.43), the equation of state (2.35) gives ρ as an

explicit function of βp and β but cannot be analytically inverted to express βp

as a function of ρ and β. Actually, Eq. (2.35) can be seen as a transcendental

equation for βp(ρ, β) that needs to be solved numerically. On the other hand, by

inserting the virial expansion

βp(ρ, T ) = ρ+B2(T )ρ2 +B3(T )ρ3 +B4(T )ρ4 + · · · (2.44)

into Eq. (2.35) and equating terms of the same order in both sides, one can easily

obtain the virial coefficients Bn(T ) sequentially. In particular, the second, third,

and fourth coefficients are

B2(T ) = 1−x1x2(λ−1)θ, B3(T ) = 1−x1x2(λ−1)θ [3− λ− (λ− 1)θ] , (2.45a)

B4(T ) = 1− x1x2
λ− 1

2
θ{13− 8λ+ λ2 − 3(λ− 1)θ[3− λ− x1x2(λ− 1)

+2(λ− 1)2θ21 + x1x2)}. (2.45b)

The second virial coefficient is negative, implying a prevalence of the attraction

between green–green faces in the low-density regime, if the temperature is smaller

than a certain Boyle temperature TB, i.e., T ∗ ≡ kBT/ε < T ∗B = 1/ ln[1+1/x1x2(λ−

1)]. At exactly T ∗ = T ∗B, B2 = 0 but B3(TB) = 1/x1x2− (2−λ) > 0, so that βp/ρ

is an increasing function of ρ at T ∗ = T ∗B.
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It is instructive to consider the high-temperature and low-temperature limits.

The results are

βp(ρ, T ) =
ρ

1− ρ
− ρ2

(1− ρ)2
e−(λ−1)ρ/(1−ρ)x1x2(λ− 1)βε+O(β2), (2.46a)

lim
T ∗→0

1

ρ
=

1 + βp

βp
−min(x1, x2)

λ− 1

e(λ−1)βp − 1
. (2.46b)

Equation (2.46a) displays the first high-temperature correction to the equation of

state of the HS Tonks gas [31] due to the SW nature of the interaction φ12(r). On

the other hand, Eq. (2.46b) shows that in the opposite zero-temperature limit the

equation of state is far from trivial and cannot be analytically inverted to express

βp as a function of ρ.

As for the excess internal energy per particle uex = U/N − kBT/2, Eq. (2.40)

yields
uex

ε
= −x1x2K12(1 + θ)

e−βp − e−λβp

βp
. (2.47)

In the limit of low densities,

uex(ρ, T )

ε
= u2(T )ρ+ u3(T )ρ2 + u4(T )ρ3 + · · · , (2.48)

where

u2(T ) = −x1x2(λ− 1)eβε, u3(T ) = −x1x2
λ− 1

2
eβε [3− λ− 2(λ− 1)θ] ,

(2.49a)

u4(T ) = −x1x2
λ− 1

6
eβε{13− 8λ+ λ2 − 6(λ− 1)θ[3− λ− x1x2(λ− 1)]. (2.49b)

+6(λ− 1)2θ2(1 + x1x2)}. (2.49c)

The curvature of uex(ρ, T )/ε at ρ = 0 is dictated by the sign of the coefficient

u3(T ). Thus, uex(ρ, T )/ε is concave (convex) at ρ = 0 if T ∗ < T ∗u (T ∗ > T ∗u ),

where T ∗u = 1/ ln[(λ + 1)/2(λ − 1)] > T ∗B. As before, it is instructive to analyze
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the high-temperature and low-temperature limits. The results are

lim
T ∗→∞

uex(ρ, T )

ε
= −x1x2[1− e−(λ−1)ρ/(1−ρ)], (2.50a)

lim
T ∗→0

uex(ρ, T )

ε
= −min(x1, x2). (2.50b)

Equation (2.50a) shows that limT ∗→∞ uex(ρ, T )/ε is a non-trivial finite limit,

even though limT ∗→∞ uex(ρ, T )/kBT = 0. In what concerns Eq. (2.50b), it has a

simple interpretation. Suppose that N1 ≤ N2. At zero temperature and any finite

density, the free energy is minimized by minimizing the internal energy and this

corresponds to configurations of N1 pairs of the type 1–2 plus N2−N1 particles of

species 2. The total internal energy is then U = −N1/ε, what implies uex/ε = −x1.

It is interesting to remark that the limits ρ → 0 and T ∗ → 0 do not com-

mute. While limρ→0 βp(ρ, T )/ρ = 1 and limρ→0 uex(ρ, T )/ε = 0 at any non-zero

temperature, Eqs. (2.46b) and (2.50b) imply that limρ→0 limT ∗→0 βp(ρ, T )/ρ =

1 − min(x1, x2) and limρ→0 limT ∗→0 uex(ρ, T )/ε = −min(x1, x2). Notice also that

Eqs. (2.44)–(2.50b) are consistent with the exact thermodynamic relation [27]

ρ2

(
∂uex

∂ρ

)
β,x1

=

(
∂βp

∂β

)
ρ,x1

. (2.51)

As an illustration, Fig. 2.2 shows βp/ρ and uex/ε versus ρ at temperatures

T ∗ = 0, 0.1, 0.2, 0.5, 1,∞ for an equimolar mixture (x1 = x2 = 1
2
) with λ = 1.2.

For such a system, T ∗B = 0.328 and T ∗u = 0.587. We observe that, as expected,

the isotherms are “sandwiched” between the curves corresponding to the limits

T ∗ = 0 and T ∗ →∞. It is quite apparent that the compressibility factor βp/ρ at

T ∗ = 0.1 is practically indistinguishable from the one corresponding to T ∗ = 0,

except for very small densities. Analogously, the isotherm T ∗ = 1 in Fig. 2.2(a)

is very close to that of infinite temperature. Thus, in contrast to what happens

in the case of the conventional SW fluid [27], the influence of temperature on the

equation of state is relatively moderate. On the other hand, temperature does
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Figure 2.2: Plot of (a) the compressibility factor βp/ρ and (b) the ex-
cess internal energy per particle uex/ε versus density at temperatures T ∗ =
0, 0.1, 0.2, 0.5, 1,∞ for an equimolar mixture (x1 = x2 = 1

2) with λ = 1.2.

play a relevant role on the excess internal energy, as Fig. 2.2(b) shows. A clear

transition from concavity to convexity can be observed as temperature increases.

In the case of T ∗ = 0.5 < T ∗u , although the curve is slightly concave at ρ = 0, an

inflection point is present at ρ = 0.293, the curve becoming convex thereafter.

2.4.2 Structural properties

According to Eqs. (2.23) and (2.32), the determinant D(s) becomes

D(s) = 1− aΩ(s+ βp)− bΩ(s+ βp) [Ω(s+ βp)− λΩ(λ(s+ βp))] , (2.52)

where we have called

a ≡ x1K11 + x2K22, b ≡ x1x2K11K22θ. (2.53)
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Moreover, from Eqs. (2.16), (2.31a), and (2.31b), we find the following expressions

for the pair correlation functions in Laplace space:

G11(s) =
K11

ρ
Ψ(1,0)(s) +

x2K11K22θ

ρ

[
Ψ(2,0)(s)− λΨ(1,1)(s)

]
, (2.54a)

G22(s) =
K22

ρ
Ψ(1,0)(s) +

x1K11K22θ

ρ

[
Ψ(2,0)(s)− λΨ(1,1)(s)

]
, (2.54b)

G12(s) =
K12(1 + θ)

ρ
Ψ(1,0)(s)− K12λθ

ρ
Ψ(0,1)(s), (2.54c)

G21(s) =
K21

ρ
Ψ(1,0)(s), (2.54d)

where

Ψ(k1,k2)(s) ≡ [Ω(s+ βp)]k1 [Ω(λ(s+ βp))]k2

D(s)
. (2.55)

The pair correlation functions gij(r) in real space are given by expressions

analogous to Eq. (2.54a)–(2.54d) with the replacement Ψ(k1,k2)(s) → ψ(k1,k2)(r),

where the function ψ(k1,k2)(r) = L−1
[
Ψ(k1,k2)(s)

]
is the inverse Laplace transform

of Ψ(k1,k2)(s). In order to find practical representations of gij(r), let us use the

mathematical identity

[1− ax− bx(x− y)]−1 =
∞∑
n=0

n∑
`=0

Cn,`x
ny` (2.56)

where

Cn,` ≡
an−`(−b)`

`!

[(n−`)/2]∑
q=0

(n− q)!
q!(n− `− 2q)!

(b/a2)q, (2.57)

[(n−`)/2] denoting the integer part of (n−`)/2. Equation (2.52) shows that D(s)

has the structure 1− ax− bx(x− y) with x = Ω(s+ βp) and y = λΩ(λ(s+ βp)).

Therefore,

Ψ(k1,k2)(s) =
∞∑
n=0

n∑
`=0

Cn,`λ
` [Ω(s+ βp)]n+k1 [Ω(λ(s+ βp))]`+k2

=
1

λk2

∞∑
n=0

n∑
`=0

Cn,`
e−(n+k1+λ`+λk2)(s+βp)

(s+ βp)n+`+k1+k2
. (2.58)
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Then, taking into account the Laplace property

L−1

[
e−n(s+βp)

(s+ βp)`+1

]
=

(r − n)`

`!
e−βprΘ(r − n), (2.59)

where Θ(x) is the Heaviside step function, we finally have

ψ(k1,k2)(r) =
e−βpr

λk2

∞∑
n=0

n∑
`=0

Cn,`
(r − n− k1 − λ`− λk2)n+`+k1+k2−1

(n+ `+ k1 + k2 − 1)!

×Θ(r − n− k1 − λ`− λk2). (2.60)

Although in principle the summation in Eq. (2.60) extends to n→∞, truncation

at n = nmax allows one to obtain ψ(k1,k2)(r) in the interval 1 ≤ r ≤ nmax + 1 +

k1 +λk2. In view of Eqs. (2.54a)–(2.54d), this implies that truncation at n = nmax

guarantees the exact evaluation of gij(r) up to r = nmax + 2.

As an illustration, Fig. 2.3 considers the same system as in Fig. 2.2, i.e., an

equimolar mixture (x1 = x2 = 1
2
) with λ = 1.2, and displays the pair correlation

functions g11(r) = g22(r), g21(r), and g12(r), as well as the average function g(r) =

1
2
g11(r)+ 1

4
g12(r)+ 1

4
g21(r) [see Eq. (2.15)] for the representative density ρ = 0.7 and

the same temperatures as in Fig. 2.2. Clear changes in the structural properties

are apparent as the temperature changes. In the limit T ∗ →∞, all the correlation

functions are identical and coincide with that of the pure HS system. In fact, at

temperature T ∗ = 1 the deviations from the common HS function are rather small,

except for the discontinuity of g12(r) and g(r) at r = λ. The deviations from the HS

pair correlation function become much more important as temperature decreases

to T ∗ = 0.5 and then to T ∗ = 0.2. At T ∗ = 0.1 the correlation functions are

hardly distinguishable from those corresponding to T ∗ = 0 and exhibit features

characteristic of the expected “dimer” configurations (1–2)—(1–2)—(1–2)—· · · ,

where the two particles of a dimer (1–2) are separated a distance between r = 1

and r = λ, while the distance between two adjacent dimers is more flexible, its

typical value depending on density. Thus, we observe that, at T ∗ = 0, g11(r) and

g22(r) vanish for 1 ≤ r ≤ 2 and g12(r) vanish for λ < r < 3.

The special sticky-hard-sphere limit [21, 22, 27, 32], where T ∗ → 0 and λ→ 1
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Figure 2.3: Plot of (a) g11(r) = g22(r), (b) g21(r), (c) g12(r), and (d) g(r)
at density ρ = 0.7 and temperatures T ∗ = 0, 0.1, 0.2, 0.5, 1,∞ for an equimolar
mixture (x1 = x2 = 1

2) with λ = 1.2.

with a constant stickiness parameter τ−1 ≡ (λ − 1)θ, is worked out in Appendix

B.

2.4.3 Asymptotic decay of correlations. Structural crossover

The representation of gij(r) in terms of the auxiliary functions ψ(k1,k2)(r) [see Eqs.

(2.54a)–(2.54d) and (2.60)] is not practical for asymptotically large values of r

because of the many terms involved. In that case, the asymptotic behaviors of

the total correlation functions hij(r) = gij(r) − 1 and of the average function

h(r) = g(r)− 1 =
∑

i,j xixjhij(r) are of the form [33]

hij(r) ∼ Aije
−κr cos(ωr + ϕij), h(r) ∼ Ae−κr cos(ωr + ϕ), (2.61)
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Figure 2.4: Phase diagram for an equimolar mixture (x1 = x2 = 1
2) with

λ = 1.2. In the states above the crossover line, the pair correlation functions
present an asymptotic oscillatory behavior with a wavelength 2π/ω comprised
between the values 1 and 2 (i.e., a spatial frequency π < ω < 2π), while the
wavelength 2π/ω is larger than 2 (i.e., ω < π) for states below the curve. The
circle represents the “critical” point ρc = 0.1105, T ∗c = 0.3517. When crossing
the curve, the value of ω experiences a discontinuous change.

where s± = −κ±iω are the conjugate pair of zeroes of D(s) with a real part closest

to the origin. Setting D(s±) = 0 in Eq. (2.52) yields the two coupled equations

e−ξ(ξ cosω + ω sinω) = −a− b

ξ2 + ω2
[eλξ(ξ cosλω + ω sinλω)

−eξ(ξ cosω + ω sinω)], (2.62a)

e−ξ(ξ sinω − ω cosω) =
b

ξ2 + ω2
[eλξ(ξ sinλω − ω cosλω)

−eξ(ξ sinω − ω cosω)], (2.62b)

where ξ ≡ κ− βp.

An analysis of the numerical solutions of the set of Eqs. (2.62a) and (2.62a)

shows that the zeroes of D(s) with a real part closest to the origin are always

complex numbers (i.e., ω 6= 0). Therefore, no Fisher–Widom line [23] separating

the oscillatory and monotonic large-distance behaviors exists in a one-dimensional

Janus fluid, in contrast to what happens in the case of one-dimensional isotropic

fluids [23, 29, 34]. Therefore, the restriction of attractive interactions to only the
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Figure 2.5: Plot of (a) the damping coefficient κ and (b) the wavelength
2π/ω versus density at temperatures T ∗ = 0, 0.1, 0.2, 0.5, 1,∞ for an equimolar
mixture (x1 = x2 = 1

2) with λ = 1.2.

1–2 pair frustrates the possibility of monotonic decay of correlations, even at low

temperature.

However, a structural crossover line can be identified on the plane T ∗ vs ρ

separating (typically high-temperature) states where the wavelength 2π/ω of the

oscillations lies between the values 1 and 2 from (typically low-temperature) states

with a larger wavelength. This crossover transition is reminiscent of the one ob-

served in binary HS mixtures [35, 36, 37].

The structural crossover line, and the associated phase diagram, are shown

in Fig. 2.4 for an equimolar mixture (x1 = x2 = 1
2
) with λ = 1.2. The line has

a maximum at a “critical” point ρc = 0.1105, T ∗c = 0.3517, so that if T ∗ > T ∗c

the asymptotic oscillatory behavior corresponds to 1 < 2π/ω < 2. However, if

0.32 < T ∗ < T ∗c , there exists a window of densities ρ−(T ∗) < ρ < ρ+(T ∗) around

ρc where the oscillations have a wavelength 2π/ω > 2. Such a window extends to

0 < ρ < ρ+(T ∗) if T ∗ < 0.32. Upon crossing the line, the transition from shorter

to longer wavelength (or vice versa) is discontinuous.

Figure 2.5 shows κ and ω versus ρ at temperatures T ∗ = 0, 0.1, 0.2, 0.5, 1,∞

for an equimolar mixture (x1 = x2 = 1
2
) with λ = 1.2. As density increases
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Figure 2.6: Plot of of the total correlation functions hij(r) and h(r) for an
equimolar mixture (x1 = x2 = 1

2) with λ = 1.2 at ρ = 0.8. Panels (a) and
(b) correspond to T ∗ = 0.5, while panels (c) and (d) correspond to T ∗ = 0.1.
The dotted curves represent the full functions, while the solid lines represent
the asymptotic behavior (2.61). Note that in panels (a) and (c) the curves
representing hij have been shifted vertically for better clarity.

and/or temperature decreases, the damping coefficient κ and the wavelength 2π/ω

decrease. In analogy with Fig. 2.2(a), the curves corresponding to T ∗ = 0.1

are hardly distinguishable from those corresponding to T ∗ = 0, except for the

discontinuous change of ω at ρ+(T ∗ = 0.1) = 0.969. In the case of T ∗ = 0.2 the

transition takes place at ρ+(T ∗ = 0.2) = 0.860.

The amplitudes (Aij, A) and phases (ϕij, ϕ) in Eq. (2.61) are obtained by

application of the residue theorem as

Aij = 2|Rij|, ϕij = arg(Rij), A = 2|R|, ϕ = arg(R), (2.63)
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where, according to Eqs. (2.54a)–(2.54d),

R11 =
1− x2K22Ω(s± + βp)

ρx1D′(s±)
, R22 =

1− x1K11Ω(s± + βp)

ρx2D′(s±)
, (2.64a)

R12 =
K12Ω12(s± + βp)

ρD′(s±)
, R21 =

K21Ω(s± + βp)

ρD′(s±)
, R =

∑
i,j

xixjRij. (2.64b)

From a practical point of view, the asymptotic behavior of Eq. (2.61) is, in

general, already very accurate at not too large distances. Figure 2.6 displays

the partial functions hij(r) and the average function h(r), again for an equimolar

mixture (x1 = x2 = 1
2
) with λ = 1.2. Two representative states have been chosen,

one above the transition line of Fig. 2.4, namely (ρ, T ∗) = (0.8, 0.5), and the

other one below the line, namely (ρ, T ∗) = (0.8, 0.1). The associated values of

the damping coefficient and the wavelength are (κ, 2π/ω) = (0.460, 1.168) and

(κ, 2π/ω) = (0.185, 2.417), respectively. We observe from Fig. 2.6(a) that the

oscillations of h11(r) = h22(r), h12(r), and h21(r) are almost on phase, so that

the average correlation function h(r) is qualitatively very similar to the partial

functions hij(r). Figure 2.6(b) clearly shows that h(r) asymptotically oscillates

with a wavelength smaller than 2. The scenario changes at the state (ρ, T ∗) =

(0.8, 0.1). As shown by Fig. 2.6(c), h12(r) and h21(r) are rather on phase, but

they are dephased almost half a wavelength with respect to h11(r) = h22(r). As

a consequence, a large amount of cancellation takes place when computing the

average correlation function h(r), its oscillations in the range 4 < r < 10 being

about twice as frequent as those of the partial contributions hij(r). In fact, it

can be seen from Fig. 2.6(c) that the asymptotic function h(r) corresponding to

(κ, 2π/ω) = (0.185, 2.417) is not accurate at all in the range 4 < r < 10 and

one needs to move to much larger distances to match the asymptotic form, as

Fig. 2.6(d) shows. It is interesting to note that the behavior of h(r) in the range

4 < r < 10 is very well captured (not shown) by the asymptotic form associated

with the “competing” (subleading) root (κ′, 2π/ω′) = (0.435, 1.159).

To understand the physical origin of the crossover transition, consider the

extreme cases T ∗ � 1 and T ∗ � 1. In the first case, the asymptotic behavior of
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the correlation functions hij(r) is qualitatively similar to that of a hard-rod one-

component system, with oscillation wavelengths between the hard-core diameter

and twice that value. On the other hand, dimer-like configurations (1–2)—(1–2)—

(1–2)—· · · prevail if T ∗ � 1, resulting in larger wavelengths.

2.5 Orientationally constrained Janus models. Map-

ping of the quenched (binary-mixture) sys-

tem onto the annealed (one-component) sys-

tem

In Janus models of one-dimensional rods, only two orientations of the active face

are possible, as exemplified in Fig. 2.1. However, in the case of particles in two and

three dimensions, even if confined in a one-dimensional channel, the unit “spin”

vector sα characterizing the orientation of the active face of particle α can point in

any direction. In such a case, a mixture version of the model requires considering

a polydisperse system with an infinite number of species, each one characterized

by a different frozen spin vector.

On the other hand, one can also assume two- or three-dimensional models

where only two mutually anti-parallel (up–down) spin vectors s+ = −s− are al-

lowed (see Chaps. 3 and 4). In this special class of orientationally constrained

Janus models, the system can be one- or two-component. In the former case (an-

nealed system), the spin sα of any particle α is not fixed and can flip from sα = s+

to sα = s−, and vice versa. In contrast, in the two-component (quenched) system

the spins are frozen, so that sα is fixed to sα = s+ if particle α belongs to species

i = 1, while it is fixed to sα = s− if particle α belongs to species i = 2. The fraction

of particles having spin s+ fluctuates around 1
2

in the one-component (annealed)

case, while it is strictly fixed to the mole fraction x1 = 1
2

in the parallel two-

component (quenched) case. More in general, in a biased one-component system,

the fraction of particles with spin s+ may fluctuate around a value x1 6= 1
2
. While
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the arguments of this section can be extended to that more general scenario, here

we focus for simplicity on the unbiased case (x1 = 1
2
).

The total number of possible spin configurations is 2N in the annealed system

and
(
N
N1

)
'
√

2/πN2N in the quenched system with N1 = N/2. The interesting

question is, does there exist a relationship between the physical properties of both

systems? The aim of this section is to argue that the pair correlation functions of

the annealed one-component system coincide with those of the quenched binary

mixture in the thermodynamic limit.

First, we describe the annealed and quenched versions of the system in any

dimensionality.

2.5.1 Annealed system

In this case, all the particles are identical and the specification of a microstate (in

configuration space) requires, apart from the positions rN ≡ {r1, . . . , rN} of the

N particles, the spins sN ≡ {s1, . . . , sN}. Thus, a given microstate is specified as

ςN ≡ {ς1, . . . , ςN} with the short-hand notation ςα ≡ {sα, rα}. The total potential

energy is

Φann
N (ςN) =

N−1∑
α=1

N∑
γ=α+1

φ(ςα, ςγ), φ(ςα, ςγ) ≡ φ(sα, rα; sγ, rγ) = φsα,sγ (rγα), (2.65)

where the superscript “ann” stands for “annealed.” The interaction potential

φ(ςα, ςγ) between two particles α and γ depends not only on their positions rα and

rγ (actually on the relative vector rγα ≡ rγ − rα) but also on their spins sα and sγ

In the canonical ensemble, the probability density of the microstate ςN is

[27, 30]

ρann
N (ςN) =

exp
[
−βΦann

N (ςN)
]

Qann
N

, Qann
N =

∫
dςN exp

[
−βΦann

N (ςN)
]
, (2.66)
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where Qann
N is the configuration integral and the notations

∫
dςN ≡

∫
dς1 · · ·

∫
dςN

and
∫
dςα ≡

∑
sα=s±

∫
drα have been introduced. The pair correlation function is

defined as

gann(ςa, ςb) =
1

(ρ/2)2

〈∑
α 6=γ

δ(ςa − ςα)δ(ςb − ςγ)

〉
ρannN

=
4N(N − 1)

ρ2Qann
N

∫
dςN δ(ςa − ς1)δ(ςb − ς2) exp

[
−βΦann

N (ςN)
]
,

(2.67)

where δ(ςa − ςα) ≡ δsa,sαδ(ra − rα). In the absence of interactions, Qann
N → 2NV N

and gann(ςa, ςb)→ 1 in the thermodynamic limit.

By standard diagrammatic methods [27] one can find the virial expansion of

the pair correlation function as

gann(ς1, ς2) = e−βφ(ς1,ς2)

[
1 + d dt

�� AA ρ+
1

2

(
2

d dt t + 4
d dt t��

+
t dd t +

t dd t@@

)
ρ2

]
+O(ρ3), (2.68)

where, for instance,

d dt
�� AA =

1

2

∫
dς3 f(ς1, ς3)f(ς3, ς2), (2.69a)

d dt t =
1

22

∫
dς3

∫
dς4 f(ς1, ς3)f(ς3, ς4)f(ς4, ς2). (2.69b)

Here, f(ςα, ςγ) ≡ e−βφ(ςα,ςγ) − 1 is the Mayer function. The rest of the diagrams

are defined in a similar way.

By summing over the four possible combinations (s1, s2), we can finally define

the radial distribution function of the annealed system as

gann(r12) =
1

4

∑
s1=s±

∑
s2=s±

gann(s1, r1; s2, r2). (2.70)
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2.5.2 Quenched system

Now we consider a system where N1 particles have always spin up (s+) and there-

fore belong to species i = 1. The rest of the particles (N2 = N − N1) have

always spin down (s−) and belong to species i = 2. Without loss of generality

we can assume that species i = 1 is made of particles α = 1, . . . , N1 and species

i = 2 is made of particles α = N1 + 1, . . . , N . The mole fractions are xi = Ni/N .

In this quenched binary mixture a microstate is specified by the set of positions

rN ≡ {r1, . . . , rN} only, as the spins are fixed from the beginning.

In the canonical ensemble, the probability density of the microstate {r1, . . . , rN}

is

ρquen
N1,N2

(rN) =
exp

[
−βΦquen

N1,N2
(rN)

]
Qquen
N1,N2

, Qquen
N1,N2

=

∫
drN exp

[
−βΦquen

N1,N2
(rN)

]
,

(2.71)

where the superscript “quen” stands for “quenched” and

Φquen
N1,N2

(rN) =

N1−1∑
α=1

N1∑
γ=α+1

φ11(rγα) +
N−1∑

α=N1+1

N∑
γ=α+1

φ22(rγα) +

N1∑
α=1

N∑
γ=N1+1

φ12(rγα)

(2.72)

is the total potential energy. Comparison between Eqs. (2.66) and (2.71) shows

the relationship

Qann
N =

N∑
N1=0

(
N

N1

)
Qquen
N1,N2

. (2.73)
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The three pair correlation functions of the binary mixture are defined as

gquen
11 (ra, rb) =

1

x2
1ρ

2

〈
N1∑
α=1

N1∑
γ=1

′ δ(ra − rα)δ(rb − rγ)

〉
ρquenN

=
N1(N1 − 1)

x2
1ρ

2Qquen
N1,N2

∫
drN δ(ra − r1)δ(rb − r2) exp

[
−βΦquen

N1,N2
(rN)

]
,

(2.74a)

gquen
22 (ra, rb) =

1

x2
2ρ

2

〈
N∑

α=N1+1

N∑
γ=N1+1

′ δ(ra − rα)δ(rb − rγ)

〉
ρquenN

=
N2(N2 − 1)

x2
2ρ

2Qquen
N1,N2

∫
drN δ(ra − rN−1)δ(rb − rN) exp

[
−βΦquen

N1,N2
(rN)

]
,

(2.74b)

gquen
12 (ra, rb) =

1

x1x2ρ2

〈
N1∑
α=1

N∑
γ=N1+1

δ(ra − rα)δ(rb − rγ)

〉

=
N1N2

x1x2ρ2Qquen
N1,N2

∫
drN δ(ra − r1)δ(rb − rN) exp

[
−βΦquen

N1,N2
(rN)

]
.

(2.74c)

In Eqs. (2.74a) and (2.74b) the prime in the summations denotes the constraint

α 6= γ. Equations (2.74a)–(2.74c) can be written in a compact way as

gquen
ij (ra, rb) =

Ni(Nj − δij)
xixjρ2Qquen

N1,N2

∫
drN δ(ra − rIi)δ(rb − rJj) exp

[
−βΦquen

N1,N2
(rN)

]
.

(2.75)

where I1 = 1, I2 = N−1, J1 = 2, J2 = N . Note that, in the absence of interactions,

Qquen
N1,N2

= V N and gij(ra, rb)→ 1 in the thermodynamic limit.

The virial expansion of the pair correlation function gquen
ij (r1, r2) is

gquen
ij (r1, r2) = e−βφij(r1,r2)

[
1 + d dt

�� AA ρ+
1

2

(
2

d dt t + 4
d dt t��

+
t dd t +

t dd t@@

)
ρ2

]
+O(ρ3), (2.76)
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where in this quenched case [compare with Eq. (2.69) for the annealed case],

d dt
�� AA =

∫ †
dς3 f(ς1, ς3)f(ς3, ς2),

d dt t =

∫ †
dς3

∫ †
dς4 f(ς1, ς3)f(ς3, ς4)f(ς4, ς2),

(2.77)

and so on. Here, we have introduced the notation
∫ †
dςα ≡

∑
iα=1,2 xiα

∫
drα,

where, in each term of the sum, particle α belongs to species iα.

In analogy with Eq. (2.15), the average pair correlation function is

gquen(r12) =
∑
i,j

xixjg
quen
ij (r1, r2). (2.78)

2.5.3 Mapping gquenij (r1, r2)→ gann(ς1, ς2)

Comparison between Eqs. (2.67) and (2.75) shows that, for a finite value of N

and in a strict mathematical sense, gann(si, r1; sj, r2) 6= gquen
ij (r1, r2), even if the

quenched mixture is equimolar (x1 = x2 = 1
2
). On the other hand, comparison

between Eqs. (2.68) and (2.76) shows that

gann(si, r1; sj, r2) = gquen
ij (r1, r2) (2.79)

if x1 = x2 = 1
2
. The equality in Eq. (2.79) is obvious to second order in density,

as can be seen by comparison between Eqs. (2.69) and (2.77), but extends to any

order.

The solution to this paradox lies in the fact that the thermodynamic limit

needs to be taken in the derivation of Eqs. (2.68) and (2.76). Thus, the equivalence

between the annealed and quenched systems holds in that limit, similarly to the

equivalence between different statistical ensembles. In other words, if N → ∞,

the huge majority of the relevant microstates in the quenched system correspond

to a number of up spins practically equal to the number of down spins. As a

consequence, we can expect that [see Eq. (2.73)]

lnQann
N ≈ ln

[(
N

N/2

)
Qquen
N/2,N/2

]
(2.80)
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and Eq. (2.79) holds true in the thermodynamic limit. As a plausibility argument

in favor of Eq. (2.80), note that

ln
N∑

N1=0

(
N

N1

)
= N ln 2 ≈ ln

(
N

N/2

)
. (2.81)

As said before, the content of this section can easily be extended to the case

where in the annealed system a certain bias makes the fraction of particles with

spin s+ fluctuate around a value x1 6= 1
2
, in which case the equivalent quenched

system has a mole fraction x1 6= 1
2
.

2.6 Validation of the quenched-annealed map-

ping by Monte Carlo simulations

Strictly speaking, the exact statistical-mechanical solution to the one-dimensional

Janus fluid worked out in Sec. 2.4 applies to the quenched system with arbitrary

composition, but not, in principle, to the annealed system. On the other hand,

according to the arguments presented in Sec. 2.5, the annealed system is expected

to be described in the thermodynamic limit by the solution to the quenched system.

In order to validate and confirm this expectation, we have carried out NV T Monte

Carlo (MC) simulations [38] on the one-component, annealed system.

In the MC simulations, a system of N = 500 Janus particles are distributed

over a ring of length L = N/ρ (with periodic boundary conditions). In each

computational step, the microscopic configuration of the system is fully determined

by the position and orientation of every particle. In order to thermalize the system

and measure its equilibrium properties, a random walk over the configuration

(position plus orientation) space is performed. In each MC step, a particle is

selected at random and provisionally displaced a random distance. If an overlap

occurs, the displacement is rejected and a new MC step is initiated. In the absence

of any overlap, the active face of the chosen particle is provisionally assigned to
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Figure 2.7: Evolution of (a) N1/N and (b) uex/ε versus the number of MC
steps per particle for an annealed system (unbiased one-component fluid) with
λ = 1.2 at T ∗ = 1 and ρ = 0.5. The horizontal lines represent the equilibrium
values (a) N1/N = 1

2 and (b) uex/ε = −0.0962(4).
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Figure 2.8: Logarithmic plot of the ACF of (a) N1 and (b) uex versus the num-
ber of MC steps per particle for an annealed system (unbiased one-component
fluid) with λ = 1.2 at T ∗ = 1 and ρ = 0.5. The dashed lines represent e−t/τc ,
where t is the number of MC steps per particle and the autocorrelation time is
(a) τc = 1.34 and (b) τc = 2.47.
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Figure 2.9: Plot of (a) g11(r) = g22(r), (b) g21(r), (c) g12(r), and (d) g(r) at
density ρ = 0.7 and temperatures T ∗ = 0.2 and 1 for a Janus fluid with λ = 1.2.
Lines represent the exact solution for the quenched system (equimolar binary
mixture), while symbols are MC results for the annealed system (unbiased one-
component fluid).

its right-hand side or to its left-hand side with probabilities q1 or q2 = 1 − q1,

respectively. The attempt (displacement plus active face assignment) is accepted

according to the Metropolis criterion [38]. The size of the position displacement

is adjusted so that the acceptance ratio is approximately 50%. We have typically

used 105 MC steps per particle for equilibration plus an additional set of 5×105 MC

steps per particle for the computation of the equilibrium quantities as averages.

Except at the end of this section, we have restricted ourselves to unbiased annealed

Janus fluids (q1 = q2 = 1
2
).

We have simulated annealed systems with λ = 1.2 at a low temperature (T ∗ =

0.2) and at an intermediate temperature (T ∗ = 1), in each case with densities
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ρ = 0.1, 0.2, . . . , 0.8. As an illustration of the evolution of the main quantities,

Fig. 2.7 displays the MC evolution of the ratio N1/N (where N1 denotes the

fluctuating number of particles with a right active face) and the (reduced) excess

energy per particle uex/ε at T ∗ = 1 and ρ = 0.5. In the initial configuration,

particles are equispaced (so that uex/ε = 0) with their active faces oriented to the

right (so that N1 = N). As we can observe in Fig. 2.7(a), after about only 10

MC steps per particle the fraction of particles with a given orientation fluctuates

about the value 1
2
. On the other hand, the equilibration of the thermodynamic

and structural properties is much slower. In particular, Fig. 2.7(b) shows that the

energy has not relaxed yet to its equilibrium value after about 100 MC steps per

particle.

Figure 2.8 shows the autocorrelation function (ACF) [39, 40] of N1 and uex for

the same case as that of Fig. 2.7. The ACF has been obtained in the equilibrium

stage by averaging over 4000 blocks, each one made of 2.5 MC steps per particle.

It can be observed that in both cases the ACF decays exponentially with a charac-

teristic autocorrelation time, τc, of about 1.34 and 2.47 MC steps per particle for

N1 and uex, respectively. Therefore, the number of MC steps needed to perform

sampling between statistically uncorrelated configurations in the case of energy is

almost twice that in the case of the number of particles with a given orientation.

In all the simulated states, we have found an excellent agreement between the

theoretical and the MC functions gij(r) for the quenched and annealed systems,

respectively. As an example, Fig. 2.9 shows g11(r) = g22(r), g12(r), g21(r), and

g(r) at ρ = 0.7 and T ∗ = 0.2 and 1.

Apart from the pair correlation functions, the excess internal energy per par-

ticle (uex/ε) and the pressure (βp) have been computed in the MC simulations.

While the excess internal energy can be evaluated directly, the pressure requires

an alternative method. According to Eqs. (2.2), (2.14), and (2.21), the cavity

functions yij(r) ≡ gij(r)e
βφij(r) are proportional to e−βpr within the first coor-

dination shell (1 < r < 2). In the case of the Janus fluid, this means that

a logarithmic plot of y11(r) = y22(r) = g11(r) = g22(r), y21(r) = g21(r), and
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Figure 2.10: Plot of ln g11(r) = ln g22(r), ln g21(r), and ln y12(r) in the first
coordination shell (1 < r < 2), as obtained from MC simulations for an annealed
system (unbiased one-component fluid) with λ = 1.2 at ρ = 0.8 and (a) T ∗ = 0.2
and (b) T ∗ = 1. The average slopes give (a) βp = 2.68 and (b) βp = 3.63,
respectively.

y12(r) = g12(r)
[
1− (1− e−1/T ∗)Θ(λ− r)

]
in the region 1 < r < 2 should give

straight lines with a common slope equal to −βp. As an illustration, Fig. 2.10

shows a plot of ln yij(r) in the cases T ∗ = 0.2 and T ∗ = 1, both with ρ = 0.8.

It must be noted that this method to obtain the pressure cannot be applied to

the average pair correlation function g(r) but requires to disentangle the partial

contributions gij(r).

The thermodynamic quantities βp/ρ and uex/ε as functions of ρ are compared

with the theoretical curves for the quenched systems in Fig. 2.11, again with a

virtually perfect agreement. We have estimated the errors in the simulation values

by dividing the 5 × 105 MC steps per particle into 25 blocks, each one made of

2 × 104 MC steps per particle, and checked that the error bars are smaller than

the size of symbols in Fig. 2.11. For instance, in the state ρ = 0.5 and T ∗ = 1 we

have obtained uex/ε = −0.0962(4) and βp = 1.890(2), where the numbers enclosed

by parentheses represent standard deviations. In the case of pressure, the error

estimate takes into account that the linear fit of ln yij(r) is made over 100 values

equispaced between r = 1, and r = 2, each one with an error of about 0.014.

So far, we have paid special attention to the mapping between unbiased an-

nealed systems and equimolar quenched systems. On the other hand, given that
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Figure 2.11: Plot of (a) the compressibility factor βp/ρ and (b) the excess
internal energy per particle uex/ε versus density at temperatures T ∗ = 0.2 and
1 for a Janus fluid with λ = 1.2. Lines represent the exact solution for the
quenched system (equimolar binary mixture), while symbols are MC results for
the annealed system (unbiased one-component fluid).

the arguments in Sec. 2.5 can be extended to the biased/nonequimolar scenario,

it is important to validate this expectation also in that case. A biased annealed

system can be simulated by choosing a value different from 1
2

for the parameter

q1 introduced above. In such a case, the fraction of particles with the orientation

labeled as 1 fluctuates around a value x1 6= 1
2
. One might intuitively expect that

x1 = q1 after thermalization. However, we have observed that this is not the case

but instead x1 < q1 if q1 >
1
2
. This means that there are more rejections in the

attempts to assign the majority orientation than in the attempts to assign the

minority one.

In particular, we have studied biased systems with λ = 1.2, ρ = 0.5, and T ∗ =

1, observing that the choices q1 = 0.60, 0.70, and 0.80 lead to average fractions

x1 = 0.5883, 0.6789, and 0.7748, respectively. As an illustrative example, Fig. 2.12

compares the four correlation functions gij(r) obtained in our MC simulations with

q1 = 0.80 against the exact solution for the quenched system with x1 = 0.7748.

Again, an excellent agreement is apparent. The simulation points in the case of

g22(r) are a bit noisier because in that case the 2–2 pairs represent about 5% of the

total number of pairs. The simulation (theoretical) values of the excess internal
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Figure 2.12: Plot of (a) g11(r), (b) g22(r), (c) g12(r), and (d) g21(r) at density
ρ = 0.5 and temperature T ∗ = 1 for a Janus fluid with λ = 1.2 and a mole
fraction x1 = 0.7748. Lines represent the exact solution for the quenched system
(nonequimolar binary mixture), while symbols are MC results for the annealed
system (biased one-component fluid).

energy per particle are |uex|/ε = 0.09313 (0.09307), 0.08364 (0.08357), and 0.06654

(0.06662) for x1 = 0.5883, 0.6789, and 0.7748, respectively.

Therefore, Figs. 2.9–2.12 confirm that, as argued in Sec. 2.5, the macroscopic

properties of the quenched Janus fluid (where particles have a fixed orientation)

are equivalent, in the thermodynamic limit, to those of the annealed Janus fluid

(where particles are allowed to flip their orientation).
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2.7 Summary and remarks

In this chapter we have extensively studied the statistical-mechanical properties

of one-dimensional Janus fluids. First, we have considered a general m-component

mixture with anisotropic interactions, such that the interaction potential between

a particle α and its nearest neighbor γ = α ± 1 depends on whether the latter

is located to the left (γ = α − 1) or to the right (γ = α + 1) of α. By carefully

extending the method followed in the case of isotropic interactions [27], we have

derived the exact solution in the isothermal-isobaric ensemble. By particularizing

to a binary mixture (m = 2) with the Kern–Frenkel potential [14], as given by Eq.

(2.42), the pair correlation functions gij(r) and thermodynamic quantities (density

and internal energy) are obtained as explicit functions of pressure, temperature,

and composition. The mixture represents what we have called a quenched Janus

fluid since the orientation of the active face of each particle is kept fixed.

In the final part of the first chapter we have addressed the question of whether

the derived exact results for the quenched Janus fluid are applicable to the case

of the annealed Janus fluid. In the latter, all the particles are identical, so that

one is dealing with a one-component system in which the particles are allowed to

flip their orientation and, as a consequence, the number of particles with either

orientation fluctuates around a certain average value. In Sec. 2.5 we have pre-

sented compelling arguments in favor of the quenched↔annealed equivalence in

the thermodynamic limit. This has been further supported by comparison between

the theoretical results for quenched systems and MC simulations for annealed sys-

tems (both unbiased and biased). Structural as well as thermodynamic quantities

are seen to exhibit an excellent agreement. This in turn validates the theoretical

results derived in this chapter.

While most of the results presented in this chapter apply to fluids confined to

one-dimensional geometries, they can contribute to a better understanding of some

of the peculiar physical properties of Janus fluids and also serve as a benchmark to

test theoretical approaches. Additionally, the equivalence between the quenched
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and annealed systems gives support to the three-dimensional (quenched) up-down

Janus mixture model considered in the following chapters.





3
Janus fluid with fixed patch orientations:

Theory and simulations

3.1 Introduction

The thermophysical and structural properties of the three-dimensional Janus

fluid have been investigated within the framework of the Kern–Frenkel model

using numerical simulations [8, 15], thus rationalizing the cluster formation mech-

anism characteristic of the experiments [41]. The fluid-fluid transition was found

to display an unconventional and particularly interesting phase diagram, with a

re-entrant transition associated with the formation of a cluster phase at low tem-

peratures and densities [8, 15]. While numerical evidence of this transition is quite

47
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convincing, a minimal theory including all necessary ingredients for the onset of

this anomalous behavior is still missing. Two previous attempts are however note-

worthy. Reinhardt et al. [42] introduced a van der Waals theory for a suitable

mixture of clusters and monomers that accounts for a re-entrant phase diagram,

whereas Fantoni et al. [43, 44] developed a cluster theory explaining the appear-

ance of some “magic numbers” in the cluster formation.

The aim of the present chapter is to attempt a new route in this direction.

We will do this by considering a Janus fluid within the Kern–Frenkel model, where

the orientations of the SW hemispheres are constrained to be along either North

or South, in a spirit akin to Zwanzig model for the isotropic-nematic transition

in liquid crystals [45] and reminiscent of the one-dimensional situation studied in

Ch. 2.

Upon observing that under those conditions, one ends up with only four pos-

sible different interactions (North-North, North-South, South-North, and South-

South), this constrained model will be further mapped onto a binary mixture in-

teracting via a “quasi” isotropic potential. Here the term “quasi” refers to the fact

that a certain memory of the original anisotropic Kern–Frenkel potential is left:

after the mapping, one has to discriminate whether a particle with patch pointing

North (“spin-up”) is lying above or below that with a patch pointing South (“spin-

down”). This will introduce an asymmetry in the unlike components of the binary

mixture, as explained in detail below. In order to make the problem tractable

from the analytical point of view, the particular limit of an infinitely narrow and

deep square-well (sticky limit) will be considered. This limit was originally de-

vised by Baxter and constitutes the celebrated one-component sticky-hard-sphere

(SHS) or adhesive Baxter model [32]. By construction, our model reduces to it in

the limit of fully isotropic attractive interactions. The latter model was studied

within the Percus–Yevick (PY) closure [30] in the original Baxter work and in a

subsequent work by Watts et al. [46] The extension of this model to a binary

mixture was studied by several authors [47, 48, 49, 50, 51]. The SHS model with

Kern–Frenkel potential was also studied in Ref. [52], via a virial expansion at low

densities.
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A methodology alternative to the one used in the above studies hinges on

the so-called “rational-function approximation” (RFA) [53, 54, 55, 56, 57], and

is known to be equivalent to the PY approximation for the one-component SHS

Baxter model [32] and for its extension to symmetric SHS mixtures [47, 51, 53].

The advantage of this approach is that it can be readily extended to more general

cases, and this is the reason why it will be employed in the present analysis to

consider the case of asymmetric interactions. We will show that this approach

provides a rather precise estimate of the thermodynamic and structural properties

of the Janus fluids with up-down orientations by explicitly testing it against Monte

Carlo (MC) simulations of the same Janus fluid.

The remaining part of the chapter is envisaged as follows. Section 3.2 de-

scribes our Janus model and its mapping onto a binary mixture with asymmetric

interactions. It is shown in Sec. 3.3 that the thermophysical quantities do not

require the knowledge of the full (anisotropic) pair correlation functions but only

of the functions averaged over all possible North or South orientations. Section

3.4 is devoted to the sticky-limit version of the model, i.e., the limit in which

the SW hemisphere has a vanishing well width but an infinite depth leading to

a constant value of the Baxter parameter τ . The exact cavity functions to first

order in density (and hence exact up to second and third virial coefficients) in

the sticky limit are worked out in Appendix C. Up to that point all the equations

are formally exact in the context of the model. Then, in Sec. 3.5 we present our

approximate RFA theory, which hinges on a heuristic extension from the PY solu-

tion for mixtures with symmetric SHS interactions to the realm of asymmetric SHS

interactions. Some technical aspects are relegated to Appendices D and E. The

prediction of the resulting analytical theory are compared with MC simulations in

Sec. 3.6, where a semi-quantitative agreement is found.
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3.2 Mapping the Kern–Frenkel potential onto a

binary mixture

3.2.1 The Kern–Frenkel potential for a Janus fluid

Consider a fluid of spheres with identical diameters σ where the surface of each

sphere is divided into two parts. The first hemisphere (the green one in the

color code given in Fig. 3.1) has a SW character, thus attracting another identi-

cal hemisphere via a SW potential of width (λ − 1)σ and depth ε. The second

hemisphere (the red one in the color code of Fig. 3.1) is instead a HS potential.

The orientational dependent pair potential between two arbitrary particles µ and

ν (µ, ν = 1, . . . , N , where N is the total number of particles in the fluid) has then

the form proposed by Kern and Frenkel [14]

Φ (rµν , n̂µ, n̂ν) = φHS (rµν) + φSW (rµν) Ψ (r̂µν , n̂µ, n̂ν) ,

(3.1)

where the first term is the HS contribution

φHS (r) =

∞, 0 < r < σ,

0, σ < r,

(3.2)

and the second term is the orientation-dependent attractive part, which can be

factorized into an isotropic SW tail

φSW (r) =

−ε, σ < r < λσ,

0, λσ < r,

(3.3)

multiplied by an angular dependent factor
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Figure 3.1: The Kern–Frenkel potential for Janus fluids.

Ψ (r̂µν , n̂µ, n̂ν) =

1, if n̂µ · r̂µν ≥ 0 and n̂ν · r̂µν ≤ 0

0, otherwise.

(3.4)

Here, r̂µν = rµν/rµν , where rµν = rν − rµ, is the unit vector pointing (by conven-

tion) from particle µ to particle ν and the unit vectors n̂µ and n̂ν are “spin” vectors

associated with the orientation of the attractive hemispheres of particles µ and ν,

respectively (see Fig. 3.1). An attractive interaction then exists only between the

two SW portions of the surface sphere, provided that the two particles are within

the range of the SW potential.

3.2.2 Asymmetric binary mixture

In analogy with the one-dimensional case (see Chap. 1), we now consider the

particular case where the only possible orientations of particles are with attractive

caps pointing only either North or South with equal probability, as obtained by

Fig. 3.1 in the limit n̂µ = ẑ, n̂ν = −ẑ, and with ẑ pointing North.

Under these conditions, one then notes that the Kern–Frenkel potential (3.1)–

(3.4) can be simplified by associating a spin i = 1 (up) to particles with SW
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hemispheres pointing in the North ẑ direction and a spin j = 2 (down) to particles

with SW hemispheres pointing in the South −ẑ direction, so one is left with only

four possible configurations depending on whether particles of type 1 lie above

or below particles of type 2, as illustrated in Fig. 3.2. The relationship between

the genuine Janus model (see Fig. 3.1) and the up-down model (see Fig. 3.2) is

reminiscent to the relationship between the Heisenberg and the Ising model of

ferromagnetism. From that point of view, our model can be seen as an Ising-like

version of the original Janus model. A similar spirit was also adopted in the

Zwanzig model for the isotropic-nematic transition in liquid crystals [45].

The advantage of this mapping is that one can disregard the original anisotropic

Janus-like nature of the interactions and recast the problem in the form of a binary

mixture such that the interaction potential between a particle of species i located

at r1 and a particle of species j located at r2 has the asymmetric form

φij(r1, r2) = φij(r12)

= ϕij(r12)Θ(cos θ12) + ϕji(r12)Θ(− cos θ12), (3.5)

where cos θ12 = r̂12 · ẑ (recall our convention r12 = r2 − r1) and

ϕij(r) = φHS(r) +

φSW(r), if i = 1 and j = 2,

0, otherwise.

(3.6)

We recall that the Heaviside function is defined as Θ(x) = 1 and 0 for x > 0 and

x < 0, respectively.

It is important to remark that, in general, ϕ12(r) 6= ϕ21(r), as evident from

Eq. (3.6). Thus, the binary mixture is not necessarily symmetric [unless ε = 0

or λ = 1 in Eq. (3.3)], unlike standard binary mixtures where this symmetry

condition is ensured by construction. In the potential (3.5), there however is

still a “memory” of the original anisotropy since the potential energy of a pair of

particles of species i and j separated a distance r12 depends on whether particle j is
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Figure 3.2: (Top-left) A particle of type 1 is “below” another particle of
type 1 providing SW/HS=HS interactions. (Top-right) A particle of type 1 is
“below” a particle of type 2 leading to SW/SW=SW interactions. (Bottom-
left) A particle of type 2 is “below” a particle of type 1 yielding HS/HS=HS
interactions. (Bottom-right) A particle of type 2 is “below” another particle of
type 2 thus leading again to HS/SW=HS interactions.

“above” (cos θ12 > 0) or “below” (cos θ12 < 0) particle i. In this sense, the binary

mixture obtained in this way is “quasi”, and not “fully”, spherically symmetric.

Another important point to be stressed is that, while the sign of cos θ12 rep-

resents the only source of anisotropy in the above potential φij(r12), this is not

the case for the corresponding correlation functions, which will explicitly depend

upon the relative orientation cos θ12 and not only upon its sign. This applies, for

instance, to the pair correlation functions gij(r) = gij(r; θ), as shown in Appendix
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C to first order in density in the sticky limit (see Sec. 3.4). As an illustration, Fig.

3.3 shows the first-order pair correlation functions g
(1)
11 (r) and g

(1)
12 (r) as functions

of the radial distance r for several orientations θ. Since in the one dimensional

case either θ = 0 or θ = π, a true dependence on the orientation angle θ was

absent.
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Figure 3.3: (Top) Plot of g
(1)
11 (r) as a function of r for (a) θ = 0 and π, (b)

θ = π
4 and 3π

4 , and (c) θ = π
2 . (Bottom) Plot of the regular part of g

(1)
12 (r) as a

function of r for (a) θ = 0, (b) θ = π
4 , (c) θ = π

2 , (d) θ = 3π
4 , and (e) θ = π. The

interaction potential is given by Eq. (3.6) (sketched in Fig. 3.2), except that the
sticky limit with Baxter’s temperature τ = 0.1 has been taken (see Sec. 3.4).

As our aim is to remove the orientational dependence in the original potential

altogether, a further simplification is required to reduce the problem to a simple

binary mixture having asymmetric correlation functions dependent only on dis-

tances and not on orientations of spheres. This will be the orientational average

discussed in Sec. 3.3.
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3.3 Orientational average and thermodynamics

3.3.1 Orientational average

Most of the content of this section applies to a mixture (with any number of com-

ponents) characterized by any anisotropic potential φij(r) = φji(−r) exhibiting

the quasi-isotropic form (3.5), where, in general ϕij(r) 6= ϕji(r) if i 6= j. In that

case, we note that the thermodynamic quantities will generally involve integrals

of the general form

Iij =

∫
dr gij(r)Fij(r) (3.7)

with

Fij (r) = Fij(r)Θ (cos θ) + Fji(r)Θ (− cos θ) , (3.8)

where in general Fij(r) 6= Fji(r) if i 6= j. This strongly suggests that one can

define the two orientational averages g+
ij(r) and g−ij(r) as

g+
ij(r) ≡ gij(r) =

∫ 1

0

d (cos θ) gij(r), (3.9a)

g−ij(r) ≡ gji(r) =

∫ 0

−1

d (cos θ) gij(r). (3.9b)

Note that g−ij(r) = g+
ji(r), and this suggests the use of the notation gij(r) and gji(r)

instead of g+
ij(r) and g−ij(r), respectively. Taking into account Eqs. (3.8)–(3.9b),

Eq. (3.7) becomes

Iij =
1

2

∫
dr
[
gij(r)Fij (r) + gji(r)Fji (r)

]
. (3.10)

In the case of a double summation over i and j,

∑
i,j

xixjIij =
∑
i,j

xixj

∫
dr gij(r)Fij (r) , (3.11)
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where xi denotes the mole fraction of species i.

3.3.2 Thermodynamics of the mixture: energy, virial, and

compressibility routes

We can now particularize the general result (3.11) to specific cases.

In the case of the internal energy, Fij(r) = φij(r) and so the energy equation

of state can be written as [30, 56]

uex =
1

2
ρ
∑
i,j

xixj

∫
dr gij (r)φij (r)

=
1

2
ρ
∑
i,j

xixj

∫
dr yij (r)ϕij(r)e

−βϕij(r), (3.12)

where, as defined in Ch. 2, uex is the excess internal energy per particle, ρ is the

number density, β = 1/kBT (kB and T being the Boltzmann constant and the

temperature, respectively), and yij(r) ≡ gij(r)e
βϕij(r) is the orientational average

of the cavity function yij(r) ≡ gij(r)eβφij(r).

A similar result holds for the virial route to the equation of state,

Z ≡ p

ρkBT

= 1 +
1

6
ρ
∑
i,j

xixj

∫
dr yij (r) r · ∇e−βφij(r), (3.13)

where p is the pressure. First, note that

∇φij (r) =

[
dϕij (r)

dr
Θ (cos θ) +

dϕji (r)

dr
Θ (− cos θ)

]
r̂

−δ (z) [ϕij (r)− ϕji (r)] ẑ. (3.14)

Therefore,

r · ∇φij(r) = r

[
dϕij(r)

dr
Θ(cos θ) +

dϕji(r)

dr
Θ(− cos θ)

]
, (3.15)
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and thus

Z = 1 +
1

6
ρ
∑
i,j

xixj

∫
dr yij (r) r

d

dr
e−βϕij(r). (3.16)

Finally, let us consider the compressibility route. In a mixture, the (dimen-

sionless) isothermal compressibility χT is in general given by

χ−1
T =

1

kBT

(
∂p

∂ρ

)
T,{xj}

=
∑
i,j

√
xixj

[
I + ĥ (0)

]−1

ij
, (3.17)

where ĥij(0) is proportional to the zero wavenumber limit of the Fourier transform

of the total correlation function hij(r) = gij(r)− 1, namely

ĥij(0) = ρ
√
xixj

∫
drhij (r)

=
ρ
√
xixj

2

∫
dr
[
hij (r) + hji (r)

]
. (3.18)

In the specific case of a binary mixture considered here, Eq. (3.17) becomes

χ−1
T =

1 + x2ĥ11(0) + x1ĥ22(0)− 2
√
x1x2ĥ12(0)[

1 + ĥ11(0)
] [

1 + ĥ22(0)
]
− ĥ2

12(0)
. (3.19)

Equations (3.12), (3.16), (3.17), and (3.18) confirm that the knowledge of the

two average quantities gij(r) and gji(r) for each pair ij suffices to determine the

thermodynamic quantities. In fact, Eqs. (3.12), (3.16), (3.17), and (3.18) are

formally indistinguishable from those corresponding to mixtures with standard

isotropic interactions, except that in our case one generally has ϕij(r) 6= ϕji(r)

and, consequently, gij(r) 6= gji(r).
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For future convenience, it is expedient to introduce the Laplace transform of

rgij(r):

Gij(s) =

∫ ∞
0

dr e−srrgij(r). (3.20)

Its small-s behavior is of the form [54]

s2Gij(s) = 1 +H
(0)
ij s

2 +H
(1)
ij s

3 + · · · , (3.21)

where

H
(n)
ij ≡

∫ ∞
0

dr (−r)nrhij(r). (3.22)

Thus, Eq. (3.18) becomes

ĥij(0) = −2πρ
√
xixj

[
H

(1)
ij +H

(1)
ji

]
. (3.23)

Note that Eq. (3.21) implies

lim
s→0

s2Gij(s) = 1, lim
s→0

s2Gij(s)− 1

s
= 0. (3.24)

3.4 The sticky limit

The mapping of the Kern–Frenkel potential with fixed patch orientation along

the ±ẑ axis onto a binary mixture represents a considerable simplification. On

the other hand, no approximation is involved in this mapping.

The presence of the original SW interactions for the radial part [see Eq. (3.3)]

makes the analytical treatment of the problem a formidable task. Progresses can

however be made by considering the Baxter SHS limit, for which a well defined

approximate scheme of solution is available in the isotropic case for both one-

component [32] and multi-component [47, 48, 49, 50, 51] fluids. The discussion
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reported below closely follows the analogue for Baxter symmetric mixtures [48,

49].

Let us start by rewriting Eq. (3.6) as

ϕij(r) =


∞, r < σ,

−εij, σ < r < λσ,

0, r > λσ,

(3.25)

where ε11 = ε22 = ε21 = 0 and ε12 = ε > 0. However, in this section we will assume

generic energy scales εij. In that case, the virial equation of state (3.16) becomes

Z = 1 + 4ηy(σ)− 12η
∑
i,j

xixjtij
λ3yij(λσ)− yij(σ)

λ3 − 1
, (3.26)

where η ≡ π
6
ρσ3 is the packing fraction,

y(r) =
∑
i,j

xixjyij(r) (3.27)

is the orientational average global cavity function, and

tij ≡
1

12τij
≡ 1

3

(
λ3 − 1

) (
eβεij − 1

)
(3.28)

is a parameter measuring the degree of “stickiness” of the SW interaction ϕij(r).

This parameter will be used later on to connect results from numerical simulations

of the actual Janus fluid with analytical results derived for asymmetric SHS

mixtures. Although Baxter’s temperature parameters τij are commonly used in

the literature, we will employ the inverse temperature parameters tij = 1/12τij in

most of the mathematical expressions.

In the case of the interaction potential (3.25), the energy equation of state

(3.12) reduces to

uex = −12
η

σ3

∑
i,j

xixjεije
βεij

∫ λσ

σ

dr r2yij(r). (3.29)
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The compressibility equation of state (3.17) does not simplify for the SW interac-

tion.

Since the (orientational average) cavity function yij(r) must be continuous, it

follows that

gij(r) = yij(r)
[
eβεijΘ(r − σ)−

(
eβεij − 1

)
Θ(r − λσ)

]
. (3.30)

Following Baxter’s prescription [32], we now consider the SHS limit

λ→ 1, εij →∞, tij ≡
1

12τij
→ (λ− 1)eβεij = finite, (3.31)

so that the well (3.25) becomes infinitely deep and narrow and can be described

by a single (inverse) stickiness parameter τij. Note that in the present Janus case

(ε11 = ε22 = ε21 = 0, ε12 = ε > 0) one actually has t11 = t22 = t21 = 0 and

t12 = t = 1/12τ .

In the SHS limit (3.31), Eqs. (3.26), (3.29), and (3.30) become, respectively,

Z = 1 + 4ηy(σ)− 4η
∑
i,j

xixjtij
[
3yij(σ) + σy′ij(σ)

]
, (3.32a)

uex = −12η
∑
i,j

xixjεijtijyij(σ), (3.32b)

gij(r) = yij(r) [Θ(r − σ) + tijσδ+(r − σ)] . (3.32c)

In Eq. (3.32a), y′ij(σ) must be interpreted as limλ→1
d
dr
yij(r)

∣∣
r=σ

, which in principle

differs from d
dr

limλ→1 yij(r)
∣∣
r=σ

[58]. However, both quantities coincide in the one-

dimensional case [58] and are expected to coincide in the three-dimensional case

as well. This is just a consequence of the expected continuity of d
dr
yij(r) at r = λσ

in the SW case [59].
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Thermodynamic consistency between the virial and energy routes implies

ρ
∂uex

∂ρ
=
∂Z

∂β
=
∑
i,j

εijtij
∂Z

∂tij
. (3.33)

Using Eqs. (3.32a) and (3.32b) and equating the coefficients of εij in both sides,

the consistency condition (3.33) yields

xixj

[
σy′ij(σ)− 3η

∂yij(σ)

∂η

]
=

∑
k,`

xkx`

{
∂yk`(σ)

∂tij

−tk`
∂

∂tij
[3yk`(σ) + σy′k`(σ)]

}
. (3.34)

For distances r & σ, the orientational averages of the cavity functions can be

Taylor expanded as

Θ(r − σ)yij(r) = Θ(r − σ)
[
yij(σ) + y′ij(σ)(r − σ) + · · ·

]
. (3.35)

Hence, if we denote by Yij(s) the Laplace transform of Θ(r−σ)ryij(r), Eq. (3.35)

yields for large s

eσssYij(s) = σyij(σ) +
[
yij(σ) + σy′ij(σ)

]
s−1 + · · · . (3.36)

According to Eqs. (3.20) and (3.32c), the relationship between the Laplace func-

tion Gij(s) and Yij(s) is

Gij(s) = Yij(s) + σ2tijyij(σ)e−σs. (3.37)

Inserting Eq. (3.36) into Eq. (3.37), we obtain the following large-s behavior of

Gij(s):

eσsGij(s) = σ2tijyij(σ) + σyij(σ)s−1 +
[
yij(σ) + σy′ij(σ)

]
s−2 +O(s−3). (3.38)
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A consequence of this is

lims→∞ e
σsGij(s)

lims→∞ s [eσsGij(s)− lims→∞ eσsGij(s)]
= σtij. (3.39)

3.5 A heuristic, non-perturbative analytical the-

ory

3.5.1 A simple approximate scheme within the Percus–

Yevick closure

The Ornstein–Zernike (OZ) equation for an anisotropic mixture reads [30]

hij(r12) = cij(r12) + ρ
∑
k

xk

∫
dr3 hik(r13)ckj(r32)

= cij(r12) + ρ
∑
k

xk

∫
dr3 cik(r13)hkj(r32), (3.40)

where cij(r) is the direct correlation function. The PY closure reads

cij(r) = gij(r)
[
1− eβφij(r)

]
. (3.41)

Introducing the averages c+
ij(r) = cij(r) and c−ij(r) = cji(r) for cij(r) in a way

similar to Eqs. (3.9a) and (3.9b), Eq. (3.41) yields

cij(r) = gij(r)
[
1− eβϕij(r)

]
. (3.42)

Thus, the PY closure for the full correlation functions cij(r) and gij(r) translates

into an equivalent relation for the orientational average functions cij(r) and gij(r).

A similar reasoning, on the other hand, is not valid for the OZ relation. Multiplying

both sides of the first equality in Eq. (3.40) by Θ(cos θ12) and integrating over
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cos θ12 one gets

hij(r12) = cij(r12) + ρ
∑
k

xk

∫
dr3

∫ 1

0

d (cos θ12)hik(r13)ckj(r32). (3.43)

The same result is obtained if we start from the second equality in Eq. (3.40),

multiply by Θ(− cos θ12), integrate over cos θ12, and make the changes r12 → −r12,

r13 → −r13, and i ↔ j. Equation (3.43) shows that in the case of anisotropic

potentials of the form (3.5) the OZ equation does not reduce to a closed equation

involving the averages hij(r) and cij(r) only, as remarked.

In order to obtain a closed theory, we adopt the heuristic mean-field decoupling

approximation

∫
dr3

∫ 1

0

d (cos θ12) hik(r13)ckj(r32)→
∫
dr3 hik (r13)ckj (r32). (3.44)

Under these conditions, the true OZ relation (3.43) is replaced by the pseudo-OZ

relation

hij(r12) = cij(r12) + ρ
∑
k

xk

∫
dr3 hik(r13)ckj(r32). (3.45)

This can then be closed by the PY equation (3.42) and standard theory applies.

An alternative and equivalent view is to consider cij(r) not as the orientational

average of the true direct correlation function cij(r) but as exactly defined by Eq.

(3.45). Within this interpretation, Eq. (3.42) then represents a pseudo-PY closure

not derivable from the true PY closure (3.41).

Within the above interpretation, it is then important to bear in mind that

the functions gij(r) obtained from the solution of a combination of Eqs. (3.42)

and (3.45) are not equivalent to the orientational averages of the functions gij(r)

obtained from the solution of the true PY problem posed by Eqs. (3.40) and

complemented by the PY condition (3.41). As a consequence, the solutions to

Eqs. (3.42) and (3.45) are not expected to provide the exact gij(r) to first order

in ρ, in contrast to the true PY problem. This is an interesting nuance that will

be further discussed in Sec. 3.5.3.3.
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The main advantage of the approximate OZ relation (3.45) in the case of

anisotropic interactions of the form (3.5) is that it allows to transform the obtention

of an anisotropic function gij(r), but symmetric in the sense that gij(r) = gji(−r),

into the obtention of an isotropic function gij(r), but asymmetric since gij(r) 6=

gji(r). In the case of the anisotropic SHS potential defined above, we can exploit

the known solution of the PY equation for isotropic SHS mixtures to construct

the solution of the set made of Eqs. (3.42) and (3.45). This is done in Sec. 3.5.2

by following the RFA methodology.

3.5.2 RFA method for SHS

Henceforth, for the sake of simplicity, we take σ = 1 as length unit. The aim

of this section is to extend the RFA approximation proposed for symmetric SHS

mixtures [53, 54] to the asymmetric case.

We start with the one-component case [58]. Let us introduce an auxiliary

function F (s) related to the Laplace transform G(s) of rg(r) by

G(s) =
1

2π

se−s

F (s) + ρe−s
. (3.46)

The next step is to approximate F (s) by a rational function,

F (s) =
S(s)

L(s)
, (3.47)

with S(s) = S(0) + S(1)s+ S(2)s2 + s3 and

L(s) = L(0) + L(1)s+ L(2)s2. (3.48)

Note that lims→∞ F (s)/s = 1/L(2) = finite, so that lims→∞ e
sG(s) = finite, in

agreement with Eq. (3.38). Furthermore, Eq. (3.24) requires F (s) + ρe−s =

O(s3), so that S(0) = −ρL(0), S(1) = ρ
(
L(0) − L(1)

)
, S(2) = ρ

(
L(1) − 1

2
L(0) − L(2)

)
.
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Taking all of this into account, Eq. (3.46) can be rewritten as

G(s) =
e−s

2πs2

L(s)

1− A(s)
, (3.49)

where

A(s) =
ρ

s3

[
(1− e−s)L(s)− L(0)s+

(
1

2
L(0) − L(1)

)
s2

]
. (3.50)

In the case of a mixture, G(s), L(s), and A(s) become matrices and Eq. (3.49)

is generalized as

Gij(s) =
e−s

2πs2

(
L(s) · [I− A(s)]−1)

ij
, (3.51)

where I is the identity matrix and

Lij(s) = L
(0)
ij + L

(1)
ij s+ L

(2)
ij s

2, (3.52a)

Aij(s) = ρ
xi
s3

[
(1− e−s)Lij(s)− L(0)

ij s+

(
1

2
L

(0)
ij − L

(1)
ij

)
s2

]
. (3.52b)

Note that lims→0Aij(s) = finite, so that lims→0 s
2Gij(s) = finite 6= 0 by construc-

tion. Analogously, lims→∞ e
sGij(s) = finite also by construction.

The coefficients L
(0)
ij , L

(1)
ij , and L

(2)
ij are determined by enforcing the exact con-

ditions (3.24) and (3.39). The details of the derivation are presented in Appendix

D and here we present the final results. The coefficients L
(0)
ij and L

(1)
ij do not

depend upon the first index i and can be expressed as linear functions of the

coefficients {L(2)
kj }:

L
(0)
ij = 2π

1 + 2η

(1− η)2
− 12η

1− η
∑
k

xkL
(2)
kj , (3.53a)

L
(1)
ij = 2π

1 + η/2

(1− η)2
− 6η

1− η
∑
k

xkL
(2)
kj , (3.53b)
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and the coefficients L
(2)
ij obey the closed set of quadratic equations

L
(2)
ij

tij
= 2π

1 + η/2

(1− η)2
− 6η

1− η
∑
k

xk

(
L

(2)
ik + L

(2)
kj

)
+

6

π
η
∑
k

xkL
(2)
ik L

(2)
kj . (3.54)

This closes the problem. Once L
(2)
ij are known, the contact values are given by

yij(1) =
L

(2)
ij

2πtij
. (3.55)

Although here we have taken into account that all the diameters are equal

(σij = σ = 1), the above scheme can be easily generalized to the case of different

diameters with the additive rule σij = (σi + σj)/2. For symmetric interactions

(i.e., tij = tji) one recovers the PY solution of SHS mixtures for any number of

components [51, 53]. It is shown in Appendix E that the pair correlation functions

gij(r) derived here are indeed the solution to the PY-like problem posed by Eqs.

(3.42) and (3.45).

3.5.3 Case of interest: t11 = t22 = t21 = 0

In the general scheme described by Eqs. (3.51)–(3.55), four different stickiness

parameters (t11, t12, t21, and t22) are in principle possible. With the convention

that in tij the particle of species i is always located below the particle of species

j, we might consider the simplest possibility of having only one SHS interaction

t12 = t = 1/12τ and all other HS interactions (t11 = t22 = t21 = 0), as illustrated

in Fig. 3.2. This is clearly an intermediate case between a full SHS model (tij =

t = 1/12τ) and a full HS model (tij = 0), with a predominance of repulsive HS

interactions with respect to attractive SHS interactions. This is meant to model

the intermediate nature of the original anisotropic Kern–Frenkel potential that

interpolates between a SW and a HS isotropic potentials upon decreasing the

coverage, that is, the fraction of the SW surface patch with respect to the full

surface of the sphere.
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3.5.3.1 Structural properties

If t11 = t22 = t21 = 0, Eq. (3.54) implies L
(2)
11 = L

(2)
22 = L

(2)
21 = 0. As a consequence,

Eq. (3.54) for i = 1 and j = 2 yields a linear equation for L
(2)
12 whose solution is

L
(2)
12 = 2π

1 + η/2

1− η
t

1− η + 6ηt
. (3.56)

According to Eq. (3.55),

y12(1) =
1 + η/2

(1− η)2

(
1− 6ηt

1− η + 6ηt

)
. (3.57)

Next, Eqs. (3.53a) and (3.53b) yield

L
(0)
11

2π
=
L

(0)
21

2π
=

1 + 2η

(1− η)2
, (3.58a)

L
(0)
12

2π
=
L

(0)
22

2π
=

1 + 2η

(1− η)2
− 12ηt

1− η
x1y12(1), (3.58b)

L
(1)
11

2π
=
L

(1)
21

2π
=

1 + η/2

(1− η)2
, (3.58c)

L
(1)
12

2π
=
L

(1)
22

2π
=

1 + η/2

(1− η)2
− 6ηt

1− η
x1y12(1). (3.58d)

Once the functions Lij(s) are fully determined, Eq. (3.51) provides the Laplace

transforms Gij(s). From Eq. (3.37) it follows that Y11(s) = G11(s), Y22(s) =

G22(s), Y21(s) = G21(s), and

Y12(s) = G12(s)− ty12(1)e−s. (3.59)

A numerical inverse Laplace transform [60] allows one to obtain g11(r), g22(r),

g21(r), and y12(r) for any packing fraction η, stickiness parameter t = 1/12τ , and

mole fraction x1. In what follows, we will omit explicit expressions related to

g22(r) since they can be readily obtained from g11(r) by the exchange x1 ↔ x2.
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The contact values gij(1
+) = yij(1) with (i, j) 6= (1, 2) cannot be obtained

from Eq. (3.55), unless the associated tij are first assumed to be nonzero and then

the limit tij → 0 is taken. A more direct method is to realize that, if tij = 0, Eq.

(3.38) gives

gij(1
+) = lim

s→∞
essGij(s), (i, j) 6= (1, 2). (3.60)

The results are

g11(1+) = y11(1) =
1 + η/2

(1− η)2
− x2

6ηt

1− η
y12(1), (3.61a)

g21(1+) = y21(1) =
1 + η/2

(1− η)2
, (3.61b)

y(1) =
1 + η/2

(1− η)2

(
1− x1x2

12ηt

1− η + 6ηt

)
. (3.61c)

It is interesting to note the property g11(1+) + g22(1+) = y12(1) + g21(1+).

To obtain the equation of state from the virial route we will need the derivative

y′12(1). Expanding esG12(s) in powers of s−1 and using Eq. (3.38), one gets

y′12(1)

y12(1)
=

η

(1− η)2

[
3t

(
2− 4η − 7η2

1 + η/2
+ 12x1x2η

)
− 9

2

1− η2

1 + η/2

]
. (3.62)

3.5.3.2 Thermodynamic properties

Virial route. According to Eq. (3.32a),

Zv = 1 + 4ηy(1)− 4x1x2ηt [3y12(1) + y′12(1)]

= Zv
HS − 4x1x2ηt

[
3

1 + 3η

1− η
y12(1) + y′12(1)

]
, (3.63)

where the superscript v denotes the virial route and

Zv
HS =

1 + 2η + 3η2

(1− η)2
(3.64)

is the HS compressibility factor predicted by the virial route in the PY approxi-

mation.
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Energy route. From Eq. (3.32b) we have

uex

ε
= −12x1x2ηty12(1). (3.65)

The compressibility factor can be obtained from uex via the thermodynamic rela-

tion (3.33), which in our case reads

η
∂uex/ε

∂η
=

1

ε

∂Z

∂β
= t

∂Z

∂t
. (3.66)

Thus, the compressibility factor derived from the energy route is

Zu = Zu
HS + η

∂

∂η

∫ t

0

dt′
uex(η, t′)/ε

t′

= Zu
HS − 3x1x2

η

1− η

4ty12(1) +
ln
(

1 + 6ηt
1−η

)
1− η

 , (3.67)

where Zu
HS plays the role of an integration constant and thus it can be chosen

arbitrarily. It can be shown [61, 62] that the energy and the virial routes coincide

when the HS system is the limit of a square-shoulder interaction with vanishing

shoulder width. From that point of view one should take Zu
HS = Zv

HS in Eq. (3.67).

On the other hand, a better description is expected from the Carnahan–Starling

(CS) equation of state [63]

ZCS
HS =

1 + η + η2 − η3

(1− η)3
(3.68)

Henceforth we will take Zu
HS = ZCS

HS .

Compressibility route. Expanding s2Gij(s) in powers of s it is straightfor-

ward to obtain H
(1)
ij from Eq. (3.21). This allows one to use Eqs. (3.19) and (3.23)

to get the inverse susceptibility χ−1
T as

χ−1
T =

1 + 2η

(1− η)4

1 + 2η − 24x1x2tη(1− η)y12(1)

1− x1x2

[
12tη(1+η/2)y12(1)

1+2η+36x1x2tη2y12(1)

]2 , (3.69)
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that, for an equimolar mixture (x1 = x2 = 1
2
), reduces to

χ−1
T =

[
(1− η)2(1 + 2η) + 3ηt

(
2 + 5η − 5

2
η2
)]2

(1− η)5(1− η + 6ηt) [(1− η)2 + 3ηt(4− η)]
. (3.70)

The associated compressibility factor is then

Zc =
1

η

∫ η

0

dη′ χ−1
T (η′). (3.71)

The above integral has an analytical solution, but it is too cumbersome to be

displayed here.

3.5.3.3 Low-density expansion

In the standard case of SHS mixtures with symmetric coefficients in the potential

parameters, the PY closure is known to reproduce the exact cavity functions to first

order in density and thus the third virial coefficient (see Appendix C.2). However,

this needs not be the case in the RFA description for the present asymmetric case,

as further discussed below. Note that here, “exact” still refers to the simplified

problem (orientational average+sticky limit) of Secs. 3.3 and 3.4.

The expansion to first order in density of the Laplace transforms Yij(s) ob-

tained from Eqs. (3.37), (3.51)–(3.52b), and (3.56)–(3.58d) is

Yij(s) = e−s
(
s−1 + s−2

)
+ Y

(1)
ij (s)ρ+ · · · , (3.72)

where the expressions of the first-order coefficients Y
(1)
ij (s) will be omitted here.

Laplace inversion yields

y
(1)
ij (r) = y

(1)
ij (r)

∣∣∣
exact
−∆y

(1)
ij (r), (3.73)
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where y
(1)
ij (r)

∣∣∣
exact

are the exact first-order functions given by Eqs. (C.20c)–(C.20e)

and the deviations ∆y
(1)
ij (r) are

∆y
(1)
11 (r) = Θ(2− r)x2

2t2

r
cos−1 r

2
, (3.74a)

∆y
(1)
12 (r) = Θ(2− r)t

(
2
√

1− r2/4− r cos−1 r

2

)
, (3.74b)

∆y
(1)
21 (r) = −∆y

(1)
12 (r). (3.74c)

In the case of the global quantity y(1)(r) the result is

y(1)(r) = y(1)(r)
∣∣
exact
−∆y(1)(r), (3.75)

where y(1)(r)
∣∣
exact

is given by Eq. (C.20f) and

∆y(1)(r) = Θ(2− r)x1x2
2t2

r
cos−1 r

2
. (3.76)

While the main qualitative features of the exact cavity function are preserved,

there exist quantitative differences. The first-order functions y
(1)
11 (r), y

(1)
22 (r), and

y(1)(r) predicted by the RFA account for the exact coefficient of t but do not include

the exact term of order t2 proportional to r−1 cos−1(r/2). In the case of y
(1)
12 (r)

and y
(1)
21 (r) the exact term of order t proportional to 2

√
1− r2/4− r cos−1(r/2) is

lacking. Also, while the combination y
(1)
11 (r) + y

(1)
22 (r) − y(1)

12 (r) − y(1)
21 (r) vanishes

in the RFA, the exact result is proportional to t2r−1 cos−1(r/2). In short, the

RFA correctly accounts for the polynomial terms in y
(1)
ij (r)

∣∣∣
exact

but misses the

non-polynomial terms.

As for the thermodynamic quantities, expansion of Eqs. (3.63), (3.67), and

(3.71) gives

Zv = 1 + 4 (1− 3x1x2t) η + 10

[
1− 6x1x2t

(
1− 4

5
t

)]
η2 +O(η3),(3.77a)

Zu = 1 + 4 (1− 3x1x2t) η + 10

[
1− 6x1x2t

(
1− 6

5
t

)]
η2 +O(η3),(3.77b)
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Zc = 1 + 4 (1− 3x1x2t) η + 10

[
1− 6x1x2t

(
1− 8

5
t

)]
η2 +O(η3).(3.77c)

Comparison with the exact third virial coefficient, Eq. (C.20p), shows that the

coefficient of t2 is not correct, with the exact factor 4 − 3
√

3/π ' 2.35 replaced

by 2, 3, and 4 in Eqs. (3.77a)–(3.77c), respectively. One consequence is that

the virial and energy routes predict the third virial coefficient much better than

the compressibility route. A possible improvement is through the interpolation

formula

Zv,u = α
(
Zv + ZCS

HS − Zv
HS

)
+ (1− α)Zu, (3.78)

where

α ≡ 3
√

3

π
− 1 ' 0.65 (3.79)

with the proviso that Zu
HS = ZCS

HS in Eq. (3.67). Equation (3.78) then reduces to

the CS equation of state if t = 0 and reproduces the exact third virial coefficient

when t 6= 0.

3.5.3.4 Phase transition and critical point

In the limit of isotropic interaction (tij = t), our model reduces to the usual SHS

Baxter adhesive one-component model. In spite of the fact that the model is,

strictly speaking, known to be pathological [64], it displays a critical behavior

that was numerically studied in some details by MC techniques [65, 66]. The

corresponding binary mixture also displays well defined critical properties that,

interestingly, are even free from any pathological behavior [50].

Moreover, the mechanism behind the pathology of the isotropic Baxter model

hinges crucially on the geometry of certain close-packed clusters involving 12 or

more equal-sized spheres [64]. On the other hand, our Janus model, having frozen

orientations, cannot sustain those pathological configurations.

Within the PY approximation, the critical behavior of the original one-component

Baxter SHS model was studied using the compressibility and virial routes [32], as

well as the energy route [46], in the latter case with the implicit assumption
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Table 3.1: Location of the critical point in the RFA, according to different
routes.

Route τc ηc Zc
virial, Eq. (3.63) 0.02050 0.1941 0.3685
energy, Eq. (3.67) 0.0008606 0.2779 0.2906

hybrid virial-energy, Eq. (3.78) 0.01504 0.1878 0.3441

Zu
HS = ZCS

HS . Numerical simulations indicate that the critical point found through

the energy route is the closest to numerical simulation results [65, 66].

As the present specific model ( with, tij = tδi1δj2) is, in some sense, intermedi-

ate between the fully isotropic Baxter SHS one-component model (that has a full,

albeit peculiar, gas-liquid transition) and the equally isotropic HS model (that,

lacking any attractive part in the potential, cannot have any gas-liquid transi-

tion), it is then interesting to ask whether in the equimolar case (x1 = x2 = 1
2
) it

still presents a critical gas-liquid transition.

The answer depends on the route followed to obtain the pressure. As seen

from Eq. (3.70), the compressibility route yields a positive definite χ−1
T , so that

no critical point is predicted by this route. On the other hand, an analysis of the

virial [Eq. (3.63)], energy [Eq. (3.67) with Zu
HS = ZCS

HS ], and hybrid virial-energy

[Eq. (3.78)] equations of state reveals the existence of van der Waals loops with the

respective critical points shown in Table 3.1. The energy route predicts a critical

value τc about twenty times smaller than the values predicted by the other two

routes.

As an illustration, Fig. 3.4 shows the binodal and a few isotherms, as obtained

from the virial route.

3.5.3.5 A modified approximation

The failure of the RFA to reproduce the exact cavity functions to first order in

density (and hence the third virial coefficient) for asymmetric interactions (tij 6=

tji) reveals the price paid for using the orientationally averaged quantities gij(r)

instead of the true pair correlation functions gij(r).
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Figure 3.4: Binodals from the RFA virial route in the equimolar x1 = 1
2 case.

The phase diagram is depicted in the (η, τ) plane (solid line, top panel) and in
the (η−1, ηZv) plane (dashed line, bottom panel). A few characteristic isotherms
are plotted in the bottom panel. The critical point is found at ηc ' 0.1941,
τc ' 0.02050, and ηcZc ' 0.07153 (indicated by a circle in both panels).

A simple way of getting around this drawback for sufficiently low values of

both η and t consists in modifying the RFA as follows:

yij(r)→ yij(r) + ∆y
(1)
ij (r)ρ, (3.80)

where the functions ∆y
(1)
ij (r) are given by Eqs. (3.74a)–(3.74c). We will refer

to this as the modified rational-function approximation (mRFA). Note that Eq.

(3.80) implies that gij(r) → gij(r) + ∆y
(1)
ij (r)ρ, except if (i, j) = (1, 2), in which

case g12(r)→ g12(r) + ∆y
(1)
12 (r)ρ+ ∆y

(1)
12 (1)δ+(r − 1)ρt.

Since the extra terms in Eq. (3.80) are proportional to t or t2, this modifica-

tion can produce poor results for sufficiently large stickiness (say, t & 1) as, for
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instance, near the critical point.

3.6 Numerical calculations

3.6.1 Details of the simulations

In order to check the theoretical predictions previously reported, NVT (isochoric-

isothermal) MC simulations have been performed using the Kern–Frenkel potential

defined in Eqs. (3.1)–(3.4) with a single attractive SW patch (green in the color

code of Fig. 3.1) covering one of the two hemispheres, and with up-down symmetry

as depicted in Fig. 3.2. Particles are then not allowed to rotate around but only

to translate rigidly.

The model is completely defined by specifying the relative width λ − 1, the

concentration of one species (mole fraction) x1 = 1 − x2, the reduced density

ρ∗ = ρσ3, and the reduced temperature T ∗ = kBT/ε.

In order to make sensible comparison with the RFA theoretical predictions,

we have selected the value λ − 1 = 0.05 as a well width, which is known to be

well represented by the SHS limit [67], and use Baxter’s temperature parameter

τ =
[
4(λ3 − 1)

(
e1/T ∗ − 1

)]−1
[see Eq. (3.28)] instead of T ∗. It is interesting to

note that, while the unconventional phase diagram found in the simulations of

Ref. [15] corresponded to a larger well width (λ = 1.5), the value λ = 1.05 is in

fact closer to the experimental conditions of Ref. [41].

During the simulations, the orientational averaged pair correlation functions

defined by Eqs. (3.9a) and (3.9b) have been computed, accumulating separate

histograms when z2 − z1 > 0 or z1 − z2 > 0 in order to distinguish between

functions g12(r) = g+
12(r) and g21(r) = g−12(r).

The compressibility factor Z = βP/ρ has been evaluated from the values of

yij(r) at r = σ and r = λσ by following Eq. (3.26) with tij = (12τ)−1δi1δj2, and
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the reduced excess internal energy per particle u∗ex = uex/ε has been evaluated

directly from simulations.

In all the simulations, N = 500 particles, periodic boundary conditions, an

equilibration time of around 105 MC steps (where a MC step corresponds to a

single particle displacement), and a production time of about 108 MC steps for

the structure calculations and up to 5 × 108 MC steps for the thermophysical

calculations were used. The maximum particle displacement was determined dur-

ing the first stage of the equilibration run in such a way as to ensure an average

acceptance ratio of 50% at production time.

3.6.2 Results for non-equimolar binary mixtures

As a preliminary attempt, we consider a binary mixture under non-equimolar

conditions, to avoid possible pathologies arising from the symmetry of the two

components akin to those occurring in ionic systems. As we shall see below, no

such pathologies are found.

In the present case, we consider a system with x1 = 1/5 and x2 = 1−x1 = 4/5,

so that the majority of the spheres have (green) attractive patches pointing in the

direction of −ẑ.

A snapshot of an equilibrated configuration is shown in Fig. 3.5. This config-

uration was obtained using N = 500 particles at ρ∗ = 0.3 and Baxter temperature

τ = 0.1 (corresponding to T ∗ ' 0.354). Note that the above chosen state point

(ρ∗ = 0.3 and τ = 0.1) lies well inside the critical region of the full Baxter SHS ad-

hesive model as obtained from direct MC simulations [65, 66], although of course

the present case is expected to display a different behavior as only a fraction of

about x1x2 = 4/25 of the pair contacts are attractive.

A good insight on the structural properties of the system can be obtained

from the computation of the radial distribution functions g11(r), g+
12(r) = g12(r),

g−12(r) = g21(r), and g22(r). This is reported in Fig. 3.6 for a state point at density
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Figure 3.5: Snapshot of an equilibrated MC simulation under non-equimolar
conditions (x1 = 1/5) with Baxter temperature τ = 0.1 and density ρ∗ = 0.3.
In the simulations, the total number of particles was N = 500.

ρ∗ = 0.5 and Baxter temperature τ = 0.2 (corresponding to T ∗ ' 0.457). Note

that in the case of the pair (1, 2) what is actually plotted is the cavity function

y12(r) rather than g12(r), as explained in the caption of Fig. 3.6.

The relatively low value τ = 0.2 gives rise to clearly distinct features of the four

MC functions gij(r) (which would collapse to a common HS distribution function in

the high-temperature limit τ → ∞). We observe that g22(r) ' g21(r) > g11(r) >

y12(r) in the region 1 ≤ r . 1.5. Moreover, g11(r) and g12(r) exhibit a rapid

change around r = 2. This is because when a pair (1, 1) is separated a distance

r ≈ 2 there is enough room to fit a particle of species 2 in between and that

particle will interact attractively with the particle of the pair (1, 1) below it. In

the case of the pair (1, 2) separated a distance r ≈ 2, the intermediate particle can

be either of species 1 (interacting attractively with the particle of species 2 above

it) or of species 2 (interacting attractively with the particle of species 1 below it).

The same argument applies to a pair (2, 2) separated a distance r ≈ 2, but in

that case the intermediate particle must be of species 1 to produce an attractive

interaction; since the concentration of species 1 is four times smaller than that of

species 2, the rapid change of g22(r) around r = 2 is much less apparent than that

of g11(r) and g12(r) in Fig. 3.6. On the other hand, in a pair (2, 1) separated a

distance r ≈ 2 an intermediate particle of either species 1 or of species 2 does not



Chapter 3. Janus fluid with fixed patch orientations 78

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

g
-
11

 MC

g
-
21

 MC

g
-
12

 MC

g
-
22

 MC

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

RFA

RFA

RFA

RFA

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

g
-
11

 MC

g
-
21

 MC

g
-
12

 MC

g
-
22

 MC

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

mRFA

mRFA

mRFA

mRFA

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 1.5 2.0 2.5 3.0

g-
ij
(r

)

r/σ

Figure 3.6: Comparison between MC simulations and the theoretical pre-
dictions from RFA (top) and mRFA (bottom) for the orientational averaged
distribution functions g11(r), y12(r), g21(r), and g22(r) under non-equimolar
conditions (x1 = 1/5) at density ρ∗ = 0.5 and Baxter temperature τ = 0.2. The
dashed vertical line indicates the range r = λ = 1.05 of the (1, 2) SW interaction
used in the simulations. Note that the radial distribution function g12(r) is ob-
tained in the MC case by multiplying y12(r) in the region 1 ≤ r ≤ λ = 1.05 by
the factor e1/T ∗ ' 8.93; in the theoretical cases (SHS limit) g12(r) is obtained
by adding the singular term (12τ)−1y12(1)δ+(r − 1) to y12(r). The error bars
on the MC data are within the size of the symbols used.

create any attraction and thus g21(r) is rather smooth at r = 2. In short, the

pair correlation function g21(r) exhibits HS-like features, g12(r) exhibits SW-like

features (very high values in the region 1 ≤ r ≤ λ and discontinuity at r = λ

due to the direct SW interaction; rapid change around r = 2 due to indirect SW

interaction), while g11(r) and g22(r) exhibit intermediate features (rapid change

around r = 2 due to indirect SW interaction).
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It is rewarding to notice how well the MC results are reproduced at a semi-

quantitative level by the RFA theory (top panel of Fig. 3.6), in spite of the various

approximations involved. In this respect, it is worth recalling that while MC

simulations deal with the real Kern–Frenkel potential, albeit with constrained

angular orientations, the RFA theory deals with the asymmetric binary mixture

resulting from the mapping described in Section 3.2, and this represents an indirect

test of the correctness of the procedure. In addition, the RFA does not attempt

to describe the true SW interaction (i.e., finite λ − 1 and T ∗) but the SHS limit

(λ − 1 → 0 and T ∗ → 0 with finite τ). This limit replaces the high jump of

g12(r) in the region 1 ≤ r ≤ λ by a Dirac’s delta at r = 1+ and the rapid

change of g12(r), g11(r), and g22(r) around r = 2 by a kink. Finally, the RFA

worked out in Sec. 3.5.2 results from a heuristic generalization to asymmetric

mixtures (τij 6= τji) of the PY exact solution for SHS symmetric mixtures (τij =

τji) [47, 48, 49, 50, 51, 53], but it is not the solution of the PY theory for the

asymmetric problem, as discussed in Sec. 3.5.1. As a matter of fact, the top panel

of Fig. 3.6 shows that some of the drawbacks of the RFA observed to first order

in density in Sec. 3.5.3.3 [see Eqs. (3.73)–(3.74c)] remain at finite density: in the

region 1 ≤ r . 1.5 the RFA underestimates y12(r), g11(r), and g22(r), while it

overestimates g21(r). These discrepancies are widely remedied, at least in the

region 1 ≤ r . 1.25, by the mRFA approach [see Eq. (3.80)], as shown in the

bottom panel of Fig. 3.6. In particular, the contact values are well accounted for

by the mRFA, as well as the property g22(r) ' g21(r). We have observed that the

limitations of the correlation functions gij(r) predicted by the RFA become more

important as the density and, especially, the stickiness increase and in those cases

the mRFA version does not help much since the correction terms ∆y
(1)
ij (r)ρ, being

proportional to ρ and to t or t2, become too large.

Next we consider thermodynamic quantities, as represented by the compress-

ibility factor Z = βp/ρ and the excess internal energy per particle uex/ε, both

directly accessible from NVT numerical MC simulations. These quantities are de-

picted in Fig. 3.7 as functions of the reduced density ρ∗ and for a Baxter temper-

ature τ = 0.1. In both cases, the results for the RFA theory are also included. In
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Figure 3.7: Comparison of MC simulations and RFA theory for the thermody-
namics. Both the compressibility factor Z = βp/ρ (top) and the excess internal
energy per particle uex/ε (bottom) are displayed as functions of density for the
non-equimolar case x1 = 1/5 and for Baxter temperature τ = 0.1. In the case
of the compressibility factor (top), results for all four routes (compressibility,
virial, energy, and hybrid virial-energy) are reported.

the case of the compressibility factor, all four routes are displayed: compressibility

[Eqs. (3.57), (3.69), and (3.71)], virial [Eqs. (3.57), (3.62), and (3.63)], energy [Eq.

(3.57) and (3.67) with Zu
HS = ZCS

HS ], and hybrid virial-energy [Eq. (3.78)]. In the

case of uex/ε, only the genuine energy route, Eq. (3.65), is considered. Note that

all RFA thermodynamic quantities, including Eq. (3.71), have explicit analytical

expressions.

The top panel of Fig. 3.7 shows that up to ρ∗ ≈ 0.7 the MC data for the com-

pressibility factor are well predicted by the theoretical Zv and, especially, Zu and

Zv,u. Beyond that point, the numerical results are bracketed by the compressibility

route, that overestimates the pressure, and the hybrid virial-energy route, that on
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the contrary underestimates it. It is interesting to note that, while Zv < Zv,u < Zu

to second order in density [cf. Eqs. (3.77a), (3.77b), and (3.78)], the difference

Zv − Zv
HS grows with density more rapidly than the difference Zu − Zu

HS and so

both quantities cross at a certain density (ρ∗ ' 0.567 if x1 = 1/5 and τ = 0.1).

Therefore, even though Zv < Zu (because Zv
HS < ZCS

HS), Zv,u is no longer bracketed

by Zv and Zu beyond that density (ρ∗ ' 0.567 in the case of Fig. 3.7). On bal-

ance, the virial-energy route appears to be the most effective one in reproducing

the numerical simulations results of the pressure at x1 = 1/5 and τ = 0.1.

As for the internal energy, the bottom panel of Fig. 3.7 shows that the RFA

underestimates its magnitude as a direct consequence of the underestimation of

the contact value y12(1) [see Eq. (3.65)]. Although not shown in Fig. 3.7, we have

checked that the internal energy per particle obtained from the virial equation

of state (3.63) via the thermodynamic relation (3.66) exhibits a better agreement

with the simulation data than the direct energy route.

3.6.3 Results for equimolar binary mixtures

Having rationalized the non-equimolar case, the equimolar (x1 = x2 = 1/2) case

can now be safely tackled. The equimolarity condition makes the system be more

akin to the original Janus model (see Fig. 3.1) since both spin orientations are

equally represented.

We start with the snapshot of an equilibrated configuration at density ρ∗ = 0.3

and Baxter temperature τ = 0.1, that are the same values used in the non-

equimolar case. From Fig. 3.8 it can be visually inspected that, in contrast to

the non-equimolar case of Fig. 3.5, the number of particles with spin up matches

that with spin down. This equimolar condition then facilitates the interpretation

of the corresponding structural properties, as illustrated by the radial distribution

function gij(r) given in Fig. 3.9.

This was obtained at a Baxter temperature τ = 0.2 and a density ρ∗ = 0.5, a

state point that is expected to be outside the coexistence curve (see below), but
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Figure 3.8: Same as in Fig. 3.5, but for an equimolar mixture (x1 = x2 = 1/2).
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Figure 3.9: Same as in Fig. 3.6, but for an equimolar mixture (x1 = x2 = 1/2).
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inside the liquid region. Again, this is the same state point as the non-equimolar

case previously discussed. Now g11(r) = g22(r) (independently computed) as

it should. Notice that the main features commented before in connection with

Fig. 3.6 persist. In particular, g21(r) > g11(r) = g22(r) > y12(r) in the region

1 ≤ r . 1.5, g11(r) = g22(r) and g12(r) present rapid changes around r = 2,

and g21(r) exhibits a HS-like shape. Also, as before, the RFA captures quite

well the behaviors of the correlation functions (especially noteworthy in the case

of g11 = g22). On the other hand, the RFA tends to underestimate y12(r) and

g11(r) = g22(r) and to overestimate g21(r) in the region 1 ≤ r . 1.5. The use of

the modified version (mRFA) partially corrects those discrepancies near contact,

although the general behavior only improves in the case of g21(r).

Comparison between Figs. 3.6 and 3.9 shows that y12(r) and g21(r) are very

weakly affected by the change in composition. In fact, the spatial correlations

between particles of species 1 and 2 mediated by a third particle (i.e., to first

order in density) depend strongly on which particle (1 or 2) is above o below

the other one but not on the nature of the third intermediate particle, as made

explicit by Eqs. (C.20d) and (C.20e). Of course, higher-order terms (i.e., two

or more intermediate particles) create a composition-dependence on y12(r) and

g21(r), but this effect seems to be rather weak. On the contrary, the minority

pair increases its correlation function g11(r), while the majority pair decreases

its correlation function g22(r) in the region 1 ≤ r . 1.5 when the composition

becomes more balanced. Again, this can be qualitatively understood by the exact

results to first order in density [see Eq. (C.20c)].

3.6.4 Preliminary results on the critical behavior

One of the most interesting and intriguing predictions of the RFA is the existence

of a gas-liquid transition in the equimolar model, despite the fact that only one

of the four classes of interactions is attractive (see Sec. 3.5.3.4). The elusiveness

of this prediction is reflected by the fact that the compressibility route does not

account for a critical point and, although the virial and energy routes do, they
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Figure 3.10: MC simulation data for the scaled pressure ηZ = π
6σ

3βp as a
function of ρ∗ at τ = 0.030 (top panel), 0.0205 (middle panel), and τ = 0.018
(bottom panel) in an equimolar mixture. Densities higher than ρ∗ = 0.7 are
not shown because at these very low temperatures the particles tend to overlap
their SW shells and then the calculations slow down considerably. Also shown
are the theoretical results for the four routes of the RFA.
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widely differ in its location, as seen in Table 3.1. In this region of very low values

of τ the hybrid virial-energy equation of state is dominated by the virial one and

thus the corresponding critical point is not far from the virial value.

A simple heuristic argument can be used to support the existence of a true

critical point in our model. According to the Noro–Frenkel (NF) generalized prin-

ciple of corresponding states [68], the critical temperatures of different systems

of particles interacting via a hard-core potential plus a short-range attraction

are such that the reduced second virial coefficient B∗2 = B2/B
HS
2 has a com-

mon value B∗c2 ' −1.21. In our model, the reduced second virial coefficient is

B∗2 = 1− 3t/4 = 1− 1/16τ [see Eq. (C.20o)]. Thus, assuming the NF ansatz, the

critical point would correspond to τNF
c ' 0.028, a value higher than but compara-

ble to that listed in Table 3.1 from the virial route.

From the computational point of view, a direct assessment on the existence of

a gas-liquid transition in the present model is not a straightforward task and will

be postponed to Ch. 4. Unlike the original SHS Baxter model, a Gibbs ensemble

MC (GEMC) calculation for a binary mixture is required to find the coexistence

lines. As a preliminary study, we here report NVT results with values of the

Baxter temperature close to the critical value τNF
c ' 0.028 expected on the basis

of the NF conjecture. More specifically, we have considered τ = 0.030, 0.0205,

and 0.018 (corresponding to T ∗ ' 0.251, 0.229, and 0.223, respectively). The

numerical results for the pressure, along with the RFA theoretical predictions, are

displayed in Fig. 3.10.

We observe that at τ = 0.030 (top panel) the four theoretical routes clearly

indicate a single-phase gas-like behavior with a monotonic increase of the pressure

as a function of the density, in consistence with the value τc ' 0.0205 obtained

from the RFA virial route. On the other hand, the MC data show a practically

constant pressure between ρ∗ = 0.2 and ρ∗ = 0.4, which is suggestive of τ = 0.030

being close to the critical isotherm (remember that τNF
c ' 0.028). The middle

panel has been chosen to represent the critical isotherm predicted by the RFA-

virial equation of state. In that case, the simulation data present a clear van der
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Waals loop with even negative pressures around the minimum. A similar behavior

is observed at τ = 0.018 (bottom panel), except that now the RFA-virial isotherm

also presents a visible van der Waals loop. Whereas the observation of negative

values of isothermal compressibility in the MC simulations can be attributed to

finite-size effects and are expected to disappear in the thermodynamic limit, these

preliminary results are highly supportive of the existence of a gas-liquid phase

transition in our model with a critical (Baxter) temperature τc ≈ 0.03. Further

results will be presented in Ch. 4.

In view of the extremely short-range nature of the potential, the stability

of the above liquid phases with respect to the corresponding solid ones may be

rightfully questioned [15]. This is a general issue—present even in the original

Baxter model, as well as in the spherically symmetric SW or Yukawa potentials

with sufficiently small interaction range [69, 70, 71, 72]—that is outside the scope

of the present thesis. In any case, it seems reasonable to expect that at sufficiently

low temperature and high density the stable phase will consist of an fcc crystal

made of layers of alternating species (1-2-1-2-· · · ) along the z direction.

3.7 Summary and remarks

Along this chapter, we have studied thermophysical and structural properties of

a three-dimensional Janus fluid having constrained orientations for the attractive

hemisphere. The Janus fluid has been modeled using a Kern–Frenkel potential

with a single SW patch pointing either up or down, and studied using numerical

NVT MC simulations.

The above model has been mapped onto an asymmetric binary mixture where

the only memory of the original anisotropic potential stems from the relative

position along the z-axis of particles of the two species 1 and 2. In this way,

only one [(1, 2) with our choice of labels] out of the four possible interactions is

attractive, the other ones [(1, 1), (2, 1), and (2, 2)] being simply HS interactions.
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In the limit of infinitely short and deep SW interactions (sticky limit), we dis-

cussed how a full analytical theory is possible. We developed a new formulation

for asymmetric mixtures of the rational-function approximation (RFA), that is

equivalent to the PY approximation in the case of symmetric SHS interactions,

but differs from it in the asymmetric case. Results from this theory were shown

to be in nice agreement with MC simulations using SW interactions of sufficiently

short width (5% of particle size), both for the structural and the thermodynamic

properties.

The above agreement is rather remarkable in view of the rather severe approx-

imations involved in the RFA analysis—that are however largely compensated

by the possibility of a full analytical treatment—and, more importantly, by the

fact that simulations deal with the one-component Kern–Frenkel potential with

up-down constrained orientations of the patches and SW attractions, while the

RFA theory deals with the corresponding asymmetric binary mixture and SHS

interactions. This agreement can be regarded as an important indication on the

correctness of the mapping.

The work presented in this chapter seems to lead toward an analytical theory

of the anomalous phase diagram revealed by numerical simulations of the uncon-

strained one-component Janus fluid, where the responsible inert clusters (micelles

and vesicles) formed at low temperatures may be probably reproduced at the cost

of modeling the fluid by a multi-component asymmetric mixture with each compo-

nent corresponding to a differently oriented attractive hemisphere. An interesting

question would be to ask how many components, how many directions, we would

need to observe the formation of micelles or of vesicles. In the next chapter we

will deal with the extension of the present model allowing for more general in-

teractions where the red hemispheres in Fig. 3.2 also present a certain adhesion

(e.g., τ12 < τ11 = τ22 = τ21 < ∞). This more general model (to which the theory

presented in Sec. 3.5.2 still applies) can be continuously tuned from isotropic SHS

(τij = τ) to isotropic HS interactions (τij → ∞). The increase in the (Baxter)

critical temperatures and densities moving towards the full isotropic SHS fluid

model would then mimic the corresponding displacement of the location of the
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critical point upon an increase of the patch coverage observed in the unconstrained

one-component Kern–Frenkel model [15].



4
Phase diagrams of Janus fluids with

up-down constrained orientations

4.1 Introduction

In the present chapter, we generalize the Janus fluid model presented in Ch. 3

by assuming arbitrary values for the energy scales εij of the attractive interactions

associated with the four possible pair configurations (see Fig. 4.1), which allows

for a free tuning of the strength of the patch-patch attraction. In some cases this

can effectively mimic the reduction of the coverage in the original Kern–Frenkel

model.

89
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Figure 4.1: Sketch of a binary-mixture Janus fluid with up-down constrained
orientations. The energy scales of the attractive interactions are (from left to
right and from top to bottom) ε11, ε12, ε21, and ε22 = ε11, respectively. Here
we have adopted the convention that εij is the energy scale when a particle of
species i is “below” a particle of species j.

Note that, in Fig. 4.1, εij is the energy associated with the (attractive) inter-

action between a particle of species i (at the left) and a particle of species j (at

the right) when the former is below the latter, with the arrow always indicating

the hydrophobic (i.e. attractive) patch. The original Kern–Frenkel model then

corresponds to ε12 > 0 and ε11 = ε22 = ε21 = 0, whereas the full coverage limit

is equivalent to ε11 = ε22 = ε12 = ε21 > 0. On the other hand, the effect of re-

ducing the coverage from the full to the Janus limit, can be effectively mimicked

by fixing ε12 > 0 and progressively decreasing ε21 and ε11 = ε22. Moreover, the

class of models depicted in Fig. 4.1 allows for an interpretation more general and

flexible than the hydrophobic-hydrophilic one. For instance, one may assume that

attraction is only possible when patches of different type are facing one another

(i.e., ε11 = ε22 > 0 and ε12 = ε21 = 0). As shown below, this will provide a rich

scenario of intermediate cases with a number of interesting features in the phase

diagram of both the gas-liquid and the demixing transitions.

We emphasize the fact that in the simulation part of this chapter we will

always assume “global” equimolarity, that is, the combined number of particles of

species 1 (N1) is always equal to the combined number of particles of species 2
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(N2), so that N1 = N2 = N/2, where N is the total number of particles. On the

other hand, the equimolarity condition is not imposed on each coexisting phase.

This chapter opens with a brief definition of the models in Sec. 4.2, just to go

with Gibbs ensemble Monte Carlo (GEMC) results for the gas-liquid and demixing

transitions. The complementary theoretical approach is presented in Sec. 4.4.

4.2 Description of the models

In our class of binary-mixture Janus models, particles of species 1 (with a mole

fraction x1) and 2 (with a mole fraction x2 = 1−x1) are dressed with two up-down

hemispheres with different attraction properties, as sketched in Fig. 4.1. The pair

potential between a particle of species i at r1 and a particle of species j at r2 is

[see Eq. (3.5)]

φij(r12) = ϕij(r12)Θ(z12) + ϕji(r12)Θ(−z12), (4.1)

where, as before, Θ(z) is the Heaviside step function, r12 = r2 − r1, z12 = z2 − z1,

and [see Eq. (3.25)]

ϕij(r) =


∞, 0 ≤ r < σ,

−εij, σ ≤ r < σ + ∆,

0, σ + ∆ ≤ r,

(4.2)

is a standard square-well (SW) potential of diameter σ, width ∆, and energy

depth εij, except that, in general, ε12 6= ε21. By symmetry, one must have ε22 = ε11

(see Fig. 4.1), so that (for given values of σ and ∆) the space parameter of the

interaction potential becomes three-dimensional, as displayed in Fig. 4.2. Except

in the case of the hard-sphere (HS) model (εij = 0), one can freely choose one

of the non-zero εij to fix the energy scale. Thus, we call ε = maxi,j{εij} and

use the three independent ratios εij/ε as axes in Fig. 4.2. The model represented

by the coordinates (1, 1, 1) is the fully isotropic SW fluid, where species 1 and 2

become indistinguishable. Next, without loss of generality, we choose ε12 ≥ ε21.
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Figure 4.2: Parameter space of the class of Janus models defined in this
chapter.

Table 4.1: Definition of the models.

Model ε11 ε12 ε21 ε22

HS 0 0 0 0
A0 0 ε 0 0
I0 ε 0 0 ε
J0 0 ε ε 0
B0 ε ε 0 ε
SW ε ε ε ε

With those criteria, all possible models of the class lie either inside the triangle

SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW. One could argue that any

point inside the cube displayed in Fig. 4.2 may represent a distinct model, but

this is not so. First, the choice ε = maxi,j{εij} restricts the models to those lying

on one of the three faces ε11/ε = 1, ε12/ε = 1, or ε21/ε = 1. Second, the choice

ε12 ≥ ε21 reduces the face ε21/ε = 1 to the line SW-J0 and the face ε11/ε = 1 to

the half-face SW-I0-B0-SW. The vertices SW, I0, B0, A0, and J0 define the five

distinguished models we will specifically study. Those models, together with the

HS one, are summarized in Table 4.1.

The rationale behind our nomenclature for the models goes as follows. Models

with ε12 = ε21 are isotropic and so we use the letter I to denote the isotropic models

with 0 ≤ ε12/ε = ε21/ε ≤ 1 and ε11/ε = 1. Apart from them, the only additional
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isotropic models are those with ε12/ε = ε21/ε = 1 and 0 ≤ ε11/ε ≤ 1, and we denote

them with the letter (J) next to I. All the remaining models are anisotropic (i.e.,

ε12 6= ε21). Out of them, we use the letter A to denote the particular subclass of

anisotropic models (0 ≤ ε11/ε = ε21/ε ≤ 1 and ε12/ε = 1) which can be viewed

as the anisotropic counterpart of the isotropic subclass I. Analogously, we employ

the letter (B) next to A to refer to the anisotropic counterpart (ε11/ε = ε12/ε = 1

and 0 ≤ ε21/ε ≤ 1) of the isotropic models J. Finally, the number 0 is used to

emphasize that the corresponding models are the extreme cases of the subclasses

I, J, A, and B, respectively.

Model A0 is the one more directly related to the original Kern–Frenkel poten-

tial and was the one analyzed in Ch. 3. Also related to that potential is model B0,

where only the interaction between the two hydrophilic patches is purely repulsive.

On the other hand, in models I0 and J0 (where ε12 = ε21) the interaction becomes

isotropic and the Janus character of the model is blurred. In model I0 the fluid

reduces to a binary mixture with attractive interactions between like components

and HS repulsions between unlike ones. This model was previously studied by

Zaccarelli et al. [73] using integral equation techniques. In the complementary

model J0 attraction exists only between unlike particles. The points A0, B0, I0,

and J0 can be reached from the one-component SW fluid along models represented

by the lines A, B, I, and J, respectively. Of course, other intermediate models are

possible inside the triangle SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW.

In addition to the energy parameters εij, the number density ρ, and the tem-

perature T , each particular system is specified by the mixture composition (i.e.,

the mole fraction x1). In fact, in Ch. 3 the thermodynamic and structural prop-

erties of model A0 were studied both under non-equimolar (see Sec. 3.6.2) and

equimolar (see Sec. 3.6.3) conditions.
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4.3 Gibbs ensemble Monte Carlo simulations

In this chapter, GEMC techniques [74, 75, 76] are used to study the gas-liquid

condensation process of models SW, A0, B0, I0, and J0 and the demixing transition

of models I0 and B0. We have chosen the width of the active attractive patch as

in the experiment of Hong et al. [41] (∆/σ = 0.05). Given the very small width

of the attractive wells, we expect the liquid phase to be metastable with respect

to the corresponding solid one [65, 77, 78]. As usual, reduced densities ρ∗ = ρσ3

and temperatures T ∗ = kBT/ε will be employed throughout.

4.3.1 Technical details

The GEMC method is widely adopted as a standard method for calculating phase

equilibria from molecular simulations. According to this method, the simulation is

performed in two boxes (I and II) containing the coexisting phases. Equilibration

in each phase is guaranteed by moving particles. Equality of pressures is satisfied in

a statistical sense by expanding the volume of one of the boxes and contracting the

volume of the other one, keeping the total volume constant. Chemical potentials

are equalized by transferring particles from one box to the other one.

In the GEMC run we have on each step a probability ap/(ap+av+as), av/(ap+

av + as), and as/(ap + av + as) for a particle random displacement, a volume

change, and a particle swap move between both boxes, respectively. In the results

presented in this chapter, the relative weights ap = 1, av = 1/10, and as = 20 have

been generally used. To preserve the up-down fixed patch orientation, rotation

of particles was not allowed. The maximum particle displacement was kept equal

to 10−3L(γ) where L(γ) is the side of the (cubic) box γ =I, II. Regarding the

volume changes, following Ref. [38] a random walk in ln(V (I)/V (II)) is performed

with V (γ) the volume of the box γ, choosing a maximum volume displacement

of 1%. The volume move is computationally the most expensive one. This is

because, after each volume move, it is necessary, in order to determine the next

acceptance probability, to perform a full potential energy calculation since all the
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particle coordinates are rescaled by the factor associated with the enlargement or

reduction of the boxes. However, this is not necessary for the other two moves

since in those cases only the coordinates of a single particle change.

Both in the condensation and in the demixing problems, the Monte Carlo

swap move consisted in moving a particle selected randomly in one box into the

other box, so that the number of particles of each species in both boxes (N
(I)
1 ,

N
(I)
2 , N

(II)
1 , and N

(II)
2 ) were fluctuating quantities. The only constraint was that

the total number of particles was the same for both species, i.e., N1 ≡ N
(I)
1 +

N
(II)
1 = N

(I)
2 +N

(II)
2 ≡ N2 = N/2. In the condensation problem the global density

ρ = N/(V (I) +V (II)) was fixed (in all the cases ρ∗ = 0.3, a value slightly below the

expected critical density) and then varied the temperature T (below the critical

temperature). The measured output quantities were the partial densities ρ(I) =

N (I)/V (I) and ρ(II) = N (II)/V (II), where N (γ) = N
(γ)
1 +N

(γ)
2 is the total number of

particles in box γ =I, II. Note that (ρ(II) − ρ)/(ρ− ρ(I)) = V (I)/V (II). In contrast,

in the demixing problem T (above the critical temperature) was fixed and ρ was

varied, the output observables being the local mole fractions x
(I)
1 = N

(I)
1 /N (I) and

x
(II)
1 = N

(II)
1 /N (II). In this case, the lever rule is (x

(II)
1 − 1

2
)/(1

2
− x(I)

1 ) = N (I)/N (II).

The total number of particles of each species was N1 = N2 = 250, what

was checked to be sufficient for our purposes. The number of MC steps used was

50–100×106 for the equilibration (longer near the critical point) and 100–200×106

for the production.

4.3.2 Gas-liquid coexistence

Results for the gas-liquid transition are depicted in Fig. 4.3 in the temperature-

density plane. Some representative numerical values for models A0, B0, I0, and

J0 are tabulated in Table 4.2. In this case, one of the two simulation boxes (I=g)

contains the gas phase and the other one (II=l) contains the liquid phase. Since

ρg < ρ < ρl, the choice of the global density ρ establishes a natural bound as

to how close to the critical point the measured binodal curve can be. In fact,
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Table 4.2: Gas-liquid coexistence properties for models A0, B0, I0, and J0,
as obtained from GEMC simulations. T ∗ is the reduced temperature, ρ∗γ is the

reduced density of the gas (γ = g) and liquid (γ = l) phases, N (g) is the average

number of particles in the gas box, and U
(γ)
ex /N (γ) is the excess internal energy

per particle in box γ.

Model T ∗ ρ∗g ρ∗l N (g)/N −U (g)
ex /εN (g) −U (l)

ex /εN (l)

A0 0.075 0.1994(6) 0.590(1) 0.493(2) 1.69(1) 1.796(7)
0.1 0.214(2) 0.559(5) 0.535(4) 1.785(4) 1.780(8)

0.125 0.223(1) 0.530(6) 0.556(3) 1.63(9) 1.71(5)
0.15 0.231(1) 0.503(4) 0.574(4) 1.60(1) 1.78(1)
0.175 0.250(2) 0.455(8) 0.630(6) 1.42(1) 1.632(9)

B0 0.3 0.112(2) 0.887(5) 0.284(5) 1.6(1) 3.27(1)
0.325 0.128(1) 0.839(3) 0.324(3) 0.761(1) 3.239(7)
0.328 0.145(5) 0.771(5) 0.363(9) 0.88(2) 2.99(1)
0.33 0.15(1) 0.73(1) 0.380(1) 0.95(1) 3.016(9)
0.335 0.18(3) 0.65(3) 0.45(1) 1.0(7) 2.83(2)
0.337 0.23(5) 0.54(5) 0.59(1) 1.273(4) 2.36(4)

I0 0.3 0.202(3) 0.61(1) 0.5146(7) 2.48(6) 3.04(1)
0.325 0.211(5) 0.58(2) 0.5371(6) 1.76(4) 2.765(8)
0.35 0.24(1) 0.50(3) 0.612(3) 1.24(3) 2.30(1)
0.36 0.25(2) 0.45(4) 0.657(5) 1.01(1) 1.85(5)
0.365 0.28(3) 0.42(5) 0.71(1) 0.96(2) 1.6(1)

J0 0.2 0.10(1) 0.93(3) 0.249(5) 1.67(2) 2.48(3)
0.25 0.14(1) 0.83(5) 0.34(1) 0.82(2) 2.25(3)
0.255 0.17(2) 0.70(5) 0.433(9) 0.90(2) 1.99(2)
0.257 0.19(3) 0.60(6) 0.62(6) 1.10(7) 1.5(2)

Table 4.3: Mole fractions in the gas and liquid boxes in model I0 at different
temperatures and with a global density ρ∗ = 0.3. For the gas and liquid densi-
ties, see Table 4.2. Because of the symmetry under label exchange 1 ↔ 2, we

have adopted the criterion x
(g)
1 ≤ x(g)

2 without loss of generality.

T ∗ x
(g)
1 x

(l)
1

0.3 0.03(1) 0.992(6)
0.325 0.09(2) 0.98(1)
0.35 0.18(3) 0.955(15)
0.36 0.26(3) 0.93(3)
0.365 0.34(3) 0.89(4)
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Figure 4.3: Gas-liquid binodals for models SW, B0, I0, J0, and A0. The points
indicated as SHS in the legend are grand canonical MC (GCMC) results taken
from Ref. [66], where the actual one-component SHS model was studied. The
remaining results are those obtained in this work from GEMC simulations. In
each case, the solid line is a guide to the eye, while the dashed line is the result
of the extrapolation to the critical point, which is represented by a square.

N (g) → 0 if ρl → ρ, while N (g) → N if ρg → ρ. As is apparent from the values of

N (g)/N in Table 4.2, the latter scenario seems to take place in our case ρ∗ = 0.3.

Although not strictly enforced, we observed that N
(g)
1 ' N

(g)
2 and N

(l)
1 ' N

(l)
2

(so both boxes were practically equimolar) in models A0, B0, and J0. On the

other hand, in the case of model I0 the final equilibrium state was non-equimolar

(despite the fact that, as said before, N1 = N2 globally), the low-density box having

a more disparate composition than the high-density box. The mole fraction values

are shown in Table 4.3. Thus, in contrast to models A0, B0, and J0, the GEMC

simulations at fixed temperature and global density ρ∗ = 0.3 spontaneously drove

the system I0 into two coexisting boxes differing both in density and composition.

This spontaneous demixing phenomenon means that in model I0 the equimolar

binodal curve must be metastable with respect to demixing and so it was not

observed in simulations. It is important to remark that, while the equimolar

binodal must be robust with respect to changes in the global density ρ (except for

the bound ρg < ρ < ρl mentioned above), the non-equimolar binodal depends on

the value of ρ.

In addition to cases SW, B0, I0, J0, and A0, we have also included in Fig.
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4.3, for completeness, numerical results obtained by Miller and Frenkel [66] on the

one-component Baxter’s sticky-hard-sphere (SHS) model [32]. As expected, they

agree quite well with our short-range SW results, the only qualitative difference

being a liquid branch at slightly larger densities.

In order to determine the critical point (T ∗c , ρ
∗
c) we empirically extrapolated

the GEMC binodals using the law of rectilinear “diameters” [79], 1
2

(
ρ∗g + ρ∗l

)
=

ρ∗c+A|T ∗−T ∗c |, and the Wegner expansion [79, 80] for the width of the coexistence

curve, ρ∗l −ρ∗g = B|T ∗−T ∗c |βI . The critical coordinates (T ∗c , ρ
∗
c) and the coefficients

A and B are taken as fitting parameters. The four points corresponding to the two

highest temperatures were used for the extrapolation in each case. We remark that

data do not extend sufficiently close to the critical region to allow for quantitative

estimates of critical exponents and non-universal quantities. However, assuming

that the models belong to the three-dimensional Ising universality class, we chose

βI = 0.325. The numerical values obtained by this extrapolation procedure will

be presented in Table 4.5 below.

The decrease in the critical temperatures and densities in going from the one-

component SW fluid to model B0 and then to model A0 is strongly reminiscent of

an analogous trend present in the unconstrained one-patch Kern–Frenkel model

upon decrease of the coverage [15].

It is interesting to remark that, even though the influence of attraction in

model A0 is strongly inhibited by the up-down constrained orientation (εij =

εδi1δj2), this model exhibits a gas-liquid transition. This surprising result was

preliminarily supported by canonical NVT MC simulations in Sec. 3.6.4, but now

it is confirmed by the new and more appropriate GEMC simulations presented

in this chapter. Given the patch geometry and interactions in model A0, one

might expect the formation of a lamellar-like liquid phase (approximately) made

of alternating layers (up-down-up-down-· · · ) of particles with the same orientation.

This scenario is confirmed by snapshots of the liquid-phase box, as illustrated by

Fig. 4.4.
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Figure 4.4: Snapshot of the liquid-phase box in model A0 at T ∗ = 0.15.

The Kern–Frenkel analogy is not applicable to the isotropic models I0 and

J0. Model J0 presents a critical point intermediate between those of models B0

and A0, as expected. However, while the decrease in the total average attractive

strength is certainly one of the main mechanisms dictating the location of the gas-

liquid coexistence curves, it cannot be the only discriminating factor, as shown by

the results for the isotropic model I0, where the critical temperature is higher and

the binodal curve is narrower than that corresponding to the anisotropic model

B0. This may be due to the fact that, as said before, the binodal curve in model I0

is not equimolar and this lack of equimolarity is expected to extend to the critical

point, as can be guessed from the trends observed in Table 4.3. In other words,

two demixed phases can be made to coexist at a higher temperature and with a

smaller density difference than two mixed phases.

4.3.3 Demixing transition

The bi-component nature of the systems raises the question of a possible demixing

transition in which a rich-1 phase coexists with a rich-2 phase at a given temper-

ature T , provided the density is larger than a certain critical consolute density

ρcc(T ). The points ρcc(T ) or, reciprocally, Tcc(ρ) define the so-called λ-line [81].
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Figure 4.5: Demixing curves for models (a) I0 and (b) B0 at two temperatures,
as obtained from GEMC simulations, in the density-mole fraction plane. In
each case, the solid line is a guide to the eye, while the critical consolute point
is represented by a square. For model I0 we found ρ∗cc(T

∗ = 0.4) = 0.336 and
ρ∗cc(T

∗ = 0.45) = 0.429; for model B0 the results are ρ∗cc(T
∗ = 0.35) = 0.650 and

ρ∗cc(T
∗ = 0.4) = 0.665. The dashed-dotted lines are the theoretical predictions

(see Sec. 4.4.3).

The interplay between the gas-liquid and demixing transitions is a very interesting

issue and was discussed in a general framework by Wilding et al. [82].

Since all the spheres have the same size, a necessary condition for demixing

in the case of isotropic potentials is that the like attractions must be sufficiently

stronger than the unlike attractions [82, 83]. Assuming the validity of this con-

dition to anisotropic potentials and making a simple estimate based on the virial

expansion, one finds that demixing requires the coefficient of x1x2 in the second

virial coefficient to be positive, i.e., 2eε11/kBT > eε12/kBT + eε21/kBT . While this
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Table 4.4: Demixing coexistence properties for models I0 and B0, as obtained
from GEMC simulations. T ∗ is the reduced temperature, ρ∗ is the reduced

density, and x
(γ)
1 is the mole fraction of species 1 in each one of the two coexisting

phases γ =I, II.

Model T ∗ ρ∗ x
(I)
1 x

(II)
1

I0 0.4 0.7 0.005(5) 0.992(5)
0.65 0.006(6) 0.985(6)
0.6 0.01(1) 0.97(1)
0.5 0.05(3) 0.93(3)
0.4 0.19(4) 0.81(4)
0.38 0.23(6) 0.77(6)
0.36 0.32(9) 0.68(9)
0.34 0.4(1) 0.6(1)

0.45 0.7 0.01(1) 0.99(1)
0.6 0.05(2) 0.96(2)
0.5 0.14(4) 0.87(4)
0.45 0.25(7) 0.74(7)
0.43 0.4(1) 0.6(1)

B0 0.35 0.725 0.09(2) 0.91(2)
0.7 0.11(2) 0.90(2)

0.675 0.15(3) 0.87(3)
0.66 0.18(4) 0.80(4)
0.65 0.40(6) 0.60(6)

0.4 0.725 0.20(3) 0.82(3)
0.7 0.22(4) 0.78(4)

0.675 0.31(5) 0.69(5)
0.665 0.45(6) 0.55(6)

demixing criterion is only approximate, it suggests that, out of the five models

considered, only models B0 and I0 are expected to display demixing transitions.

As a matter of fact, we have already discussed the spontaneous demixing phe-

nomenon taking place in model I0 when a low-density phase and a high-density

phase are in mutual equilibrium. In this section, however, we are interested in the

segregation of the system, at a given T and for ρ > ρcc(T ), into a rich-2 phase I

with x
(I)
1 = xd(ρ) < 1

2
and a symmetric rich-1 phase II with x

(II)
1 = 1− xd(ρ) > 1

2
,

both phases at the same density.

GEMC simulation results are presented in Fig. 4.5 and Table 4.4. We observe

that, as expected, x
(I)
1 = 1 − x

(II)
1 within statistical fluctuations. We have also
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checked that ρ(I) ' ρ(II), even though this equality is not artificially enforced in the

simulations. Such equality is also equivalent to ρ(I) ' ρ and we checked that it was

satisfied within a standard deviation of 0.02σ−3 in all cases considered in Table 4.4.

To obtain the critical consolute density ρ∗cc for each temperature, we extrapolated

the data again according to the Ising scaling relation 1
2
− xd(ρ) = C(ρ− ρcc)βI .

It is interesting to note that just the absence of attraction when a particle

of species 2 is below a particle of species 1 (ε21 = 0) in model B0 is sufficient

to drive a demixing transition. However, as expected, at a common temperature

(see T ∗ = 0.4 in Fig. 4.5), demixing requires higher densities in model B0 than in

model I0.

As said above, the interplay of condensation and demixing is an interesting

problem by itself [82, 84]. Three alternative scenarios are in principle possible for

the intersection of the λ-line and the binodal curve: a critical end point, a triple

point, or a tricritical point [82]. Elucidation of these scenarios would require grand

canonical simulations (rather than GEMC simulations), what is beyond the scope

of this thesis.

4.4 Simple analytical theories

Let us now compare the above numerical results with simple theoretical predic-

tions. The solution of integral equation theories for anisotropic interactions and/or

multicomponent systems requires formidable numerical efforts, with the absence

of explicit expressions often hampering physical insight. Here we want to deal

with simple, purely analytical theories that yet include the basic ingredients of

the models.

First, as already done in Ch. 3, we take advantage of the short-range of the
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attractive well (∆/σ = 0.05) to map the different SW interactions into SHS inter-

actions parameterized by the “stickiness” parameters

tij ≡
1

12τij
≡ ∆

σ

(
1 +

∆

σ
+

∆2

3σ2

)(
eεij/kBT − 1

)
, (4.3)

which combine the energy and length scales. This mapping preserves the exact

second virial coefficient of the genuine SW systems, namely

B2

BHS
2

= 1− 3t11 + 3x1x2(2t11 − t12 − t21), (4.4)

where BHS
2 = 2πσ3/3 is the HS coefficient. The exact expression of the third virial

coefficient B3 in the SHS limit for arbitrary tij is (see Appendix C)

B3

BHS
3

= 1− 6t11 +
72

5
t211 −

48

5
t311 −

6

5
x1x2

[
(12t11 − 5)

× (2t11 − t12 − t21)− 8t11

(
t211 − t12t21

)
−2(4t11 − 3)

(
2t211 − t212 − t221

)
+ 2α (t12 − t21)2

]
, (4.5)

where BHS
3 = 5π2σ6/18 and α is given by Ec. (3.79).

4.4.1 Equations of state

One advantage of the SW→ SHS mapping is that the Percus–Yevick (PY) integral

equation is exactly solvable for SHS mixtures with isotropic interactions (t12 = t21)

[47, 48]. In principle, that solution can be applied to the models SW, I0, and J0

represented in Fig. 4.2. On the other hand, if t11 6= 0 (models SW and I0), the PY

solutions are related to algebraic equations of second (SW) or fourth (I0) degrees,

what creates the problem of disappearance of the physical solution for large enough

densities or stickiness. In particular, we have observed that the breakdown of the

solution preempts the existence of a critical point in model I0. However, in the case

of model J0 (t11 = 0, t12 = t21 = t), the PY solution reduces to a linear equation

whose solution is straightforward. Following the virial (v) and the energy (u)

routes, the respective expressions for the compressibility factor Z ≡ p/ρkBT have
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the form

Zv(η, t, x1) = Zv
HS(η)− x1x2Z

v
(1)(η, t)− x2

1x
2
2Z

v
(2)(η, t), (4.6a)

Zu(η, t, x1) = Zu
HS(η)− x1x2Z

u
(1)(η, t), (4.6b)

where

Zv
HS(η) =

1 + 2η + 3η2

(1− η)2
(4.7)

is the HS compressibility factor derived from the PY equation via the virial route,

Zu
HS is an indeterminate integration constant, and the explicit expressions for Zv

(1),

Zv
(2), and Zu

(1) are

Zv
(1)(η, t) =

24ηt

(1− η + 6ηt)2

[
1 + 2η

1− η
+ 3ηt

2 + 2η − 5η2/2

(1− η)2
+ 6η2t2

2− 4η − 7η2

(1− η)3

]
,

(4.8a)

Zv
(2)(η, t) =

288η3t2(2 + η)

(1− η + 6ηt)3

[
1

1− η
− t 2− 11η

(1− η)2
+ t2

2− 10η + 61η2/2

(1− η)3

]
, (4.8b)

Zu
(1)(η, t) =

6η

(1− η)2

[
2t(2 + η)

1− η + 6ηt
+ ln

1− η + 6ηt

1− η

]
. (4.8c)

As apparent from Fig. 4.2, model A0 is a close relative of model J0. However,

the fact that ε12 6= ε21 = 0 (or t12 6= t21 = 0) makes the interaction anisotropic and

prevents the PY equation from being exactly solvable in this case. On the other

hand, the RFA worked out in Ch. 3 applies to models with t12 6= t21 and reduces

to the PY solution in the case of isotropic models (t12 = t21). The RFA solution

for model A0 yields once more a linear equation. The virial and energy equations

of state are again of the forms (4.6a) and (4.6b), respectively, with expressions for

Z
(v)
1 , Z

(v)
2 , and Z

(u)
1 given by [see Eqs. (3.63) and (3.67)]

Zv
(1)(η, t) =

12ηt

1− η + 6ηt

[
1 + 2η

(1− η)2
+ 2ηt

1− 2η − 7η2/2

(1− η)3

]
, (4.9a)

Zv
(2)(η, t) =

72η3t2(2 + η)

(1− η)3(1− η + 6ηt)
, (4.9b)

Zu
(1)(η, t) =

3η

(1− η)2

[
2t(2 + η)

1− η + 6ηt
+ ln

1− η + 6ηt

1− η

]
. (4.9c)
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In the RFA solution for model A0 the exact third virial coefficient (4.5) is recovered

by the interpolation relations [see Eq. (3.79)]

Z = ZCS
HS + α (Zv − Zv

HS) + (1− α) (Zu − Zu
HS)

= ZCS
HS − x1x2

[
αZv

(1) + (1− α)Zu
(1)

]
− x2

1x
2
2αZ

v
(2), (4.10)

where ZCS
HS is given by Eq. (3.68) and the interpolation weight α is given by Eq.

(3.79). By consistency, Eq. (4.10) will also be employed in the PY solution of

model J0.

In the cases of models with ε11 6= 0 (i.e., SW, B0, and I0), the PY and RFA

theories fail to have physical solutions in regions of the temperature-density plane

overlapping with the gas-liquid transition. In order to circumvent this problem,

we adopt here a simple perturbative approach:

Z = Zref +
(
B2 −Bref

2

)
ρ+

(
B3 −Bref

3

)
ρ2, (4.11)

where Zref is the compressibility factor of a reference model and Bref
2 and and Bref

3

are the associated virial coefficients. As a natural choice (see Fig. 4.2), we take

the models J0, A0, and HS (which lie on the plane ε11/ε = 0) as reference systems

for the models SW, B0, and I0 (which lie on the plane ε11/ε = 1), respectively.

More specifically,

ZSW = ZJ0 +
(
BSW

2 −BJ0
2

)
ρ+

(
BSW

3 −BJ0
3

)
ρ2, (4.12a)

ZB0 = ZA0 +
(
BB0

2 −BA0
2

)
ρ+

(
BB0

3 −BA0
3

)
ρ2, (4.12b)

ZI0 = ZCS
HS +

(
BI0

2 −BHS
2

)
ρ+

(
BI0

3 −BHS
3

)
ρ2. (4.12c)

Here, ZJ0 and ZA0 are given by Eq. (4.10) (with the corresponding expressions of

Zv
(1), Z

v
(2), and Zu

(1)) and the virial coefficients are obtained in each case from Eqs.

(4.4) and (4.5) with the appropriate values of t11, t12, and t21.

From the explicit knowledge of Z(η, t, x1), standard thermodynamic relations
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allow one to obtain the free energy per particle a(η, t, x1) and the chemical poten-

tials µi(η, t, x1) as

βa(η, t, x1) =

∫ η

0

dη′
Z(η′, t, x1)− 1

η′
+ x1 ln(x1η) + (1− x1) ln[(1− x1)η] + const,

(4.13a)

βµ1(η, t, x1) = βa(η, t, x1) + Z(η, t, x1) + (1− x1)
∂βa(η, t, x1)

∂x1

, (4.13b)

µ2(η, t, x1) = µ1(η, t, 1− x1). (4.13c)

4.4.2 Gas-liquid coexistence

The critical point (ηc, tc) of the gas-liquid transition is obtained from the well-

known condition that the critical isotherm in the pressure-density plane presents

an inflection point with horizontal slope at the critical density [30]. In terms of

the compressibility factor Z, this implies

∂ [ηZ(η, tc, 1/2)]

∂η

∣∣∣∣
η=ηc

=
∂2 [ηZ(η, tc, 1/2)]

∂η2

∣∣∣∣
η=ηc

= 0, (4.14)

where equimolarity (x1 = 1
2
) has been assumed. For temperatures below the crit-

ical temperature (i.e., t > tc) the packing fractions ηg and ηl of the gas and liquid

coexisting phases are obtained from the conditions of equal pressure (mechanical

equilibrium) and equal chemical potential (chemical equilibrium) [30], i.e.,

ηgZ(ηg, t, 1/2) = ηlZ(ηl, t, 1/2), (4.15a)

µ1(ηg, t, 1/2) = µ1(ηl, t, 1/2). (4.15b)

In order to make contact with the GEMC results, the theoretical values of tc

have been mapped onto those of T ∗c by inverting Eq. (4.3), namely

1

T ∗
= ln

[
1 +

t

(∆/σ) (1 + ∆/σ + ∆2/3σ2)

]
(4.16)

with ∆/σ = 0.05.
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Table 4.5: Comparison between the critical points measured in simulations
with those obtained from theoretical approaches.

Method SW B0 I0 J0 A0
T ∗c

Simulation 0.3691 0.3382 0.3682 0.2582 0.1932

Our theory 0.377 0.341 0.331 0.278 0.214
Noro–Frenkel 0.369 0.335 0.297 0.297 0.247

ρ∗c
Simulation 0.5081 0.3732 0.3442 0.3442 0.3422

Our theory 0.356 0.330 0.366 0.376 0.359
1 GCMC results for the one-component SHS fluid From Ref. [66]
2 Our GEMC simulation results

Table 4.5 compares the critical points obtained in simulations for the one-

component SW fluid (in the SHS limit) and for models B0, I0, J0, and A0

(see Fig. 4.2) with those stemming from our simple theoretical method. Results

from the Noro–Frenkel (NF) corresponding-state criterion [68], according to which

B2/B
HS
2 = −1.21 at the critical temperature, are also included. We observe that,

despite its simplicity and the lack of fitting parameters, our fully analytical theory

predicts quite well the location of the critical point, especially in the case of T ∗c .

It improves the estimates obtained from the NF criterion, except in the SW case,

where, by construction, the NF rule gives the correct value. In what concerns the

gas-liquid binodals, Fig. 4.6 shows that the theoretical curves agree fairly well with

the GEMC data, except in the cases of models I0 and A0, where the theoretical

curves are much flatter than the simulation ones. The lack of agreement with the

binodal curve of model I0 can be partially due to the fact that in the theoretical

treatment the two coexisting phases are supposed to be equimolar, while this is

not the case in the actual simulations (see Table 4.3).

4.4.3 Demixing transition

In the case of the demixing transition, the critical consolute density ηcc at a given

temperature is obtained from

∂2a(ηcc, t, x1)

∂x2
1

∣∣∣∣
x1= 1

2

= 0. (4.17)
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Figure 4.6: Gas-liquid binodals for models SW, A0, B0, I0, and J0, as obtained
from our theoretical method (solid lines). The critical points are represented by
open squares. The symbols joined by dashed lines correspond to GEMC data
(see Fig. 4.3).

For η > ηcc, the demixing mole fraction x1 = xd(η) is the solution to

µ1(η, t, xd) = µ1(η, t, 1− xd). (4.18)

In terms of the compressibility factor Z, Eqs. (4.17) and (4.18) can be rewritten

as ∫ ηcc

0

dη
∂2Z(η, t, x1)/∂x2

1|x1= 1
2

η
= −4, (4.19a)∫ η

0

dη′
∂Z(η′, t, xd)/∂xd

η′
= ln

1− xd
xd

, (4.19b)

respectively.

The perturbative approximations for models I0 and B0 succeed in predicting

demixing transitions, even though their respective reference systems (HS and A0)

do not demix. In the case of model I0, the critical consolute densities are ρ∗cc(T
∗ =

0.4) = 0.306 and ρ∗cc(T
∗ = 0.45) = 0.390, which are about 9% lower than the

values obtained in GEMC simulations. In the case of model B0, our simple theory

predicts a critical consolute point only if t > 0.7667, i.e., if T ∗ < 0.364, so no

demixing is predicted at T ∗ = 0.4, in contrast to the results of the simulations.

At T ∗ = 0.35 the theoretical prediction is ρ∗cc = 0.406, a value about 39% smaller

than the GEMC one. The theoretical demixing curves at T ∗ = 0.4 and T ∗ = 0.45
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for model I0 and at T ∗ = 0.35 for model B0 are compared with the GEMC results

in Fig. 4.5. We can observe a fairly good agreement in the case of model I0, but

not for model B0. In the latter case, the theoretical curve spans a density range

comparable to that of model I0, while simulations show a much flatter demixing

curve.

4.5 Summary and remarks

In this chapter, we have proposed a class of binary-mixture Janus fluids with

up-down constrained orientations. The class encompasses, as particular cases,

the conventional one-component SW fluid, mixtures with isotropic attractive in-

teractions only between like particles (model I0) or unlike particles (model J0),

and genuine Janus fluids with anisotropic interactions and different patch-patch

affinities (models A0 and B0). Both GEMC numerical simulations and simple the-

oretical approximations have been employed to analyze the gas-liquid transition

under global equimolar conditions for the five models and the demixing transi-

tion for the two models (I0 and B0) where the attraction between like particles is

stronger than between unlike ones. The theoretical analysis employed a mapping

onto SHS interactions, that were then studied by means of the PY theory (model

J0), the RFA (model A0), and low-density virial corrections (models SW, I0, and

B0), with semi-quantitative agreement with numerical simulations.





5
Final outlook and conclusions

This thesis has studied various fluid systems of Janus particles. Our work

started with the one-dimensional case, for which we defined a particular system

hard of rods (Sec. 2.2), basically a general m-component mixture with anisotropic

interactions. If we define m = 2 (binary mixture), we can easily get the radial

distribution functions gij(r) and the thermodynamic quantities, corresponding to

the Kern–Frenkel case.

An interesting result is the absence of a Fisher–Widom transition between an

oscillatory asymptotic decay of hij(r) ≡ gij(r) − 1 (if the repulsive part of the

interaction dominates) and a monotonic asymptotic decay (if the attractive part

of the interaction dominates), in contrast to what happens in the case of the

one-dimensional isotropic SW fluid [23]. This is a consequence of the inhibition

111
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of attractive forces, as they are restricted to pairs of particles with their active

faces facing each other. However, a structural crossover exists between an os-

cillatory decay with a wavelength smaller than twice the hard-core diameter (at

high temperatures) and an oscillatory decay with a larger wavelength (at low tem-

peratures). The phase diagram representing this structural crossover presents a

“critical” point, as illustrated by Fig. 2.4.

In the final part of the one-dimensional study we performed NVT MC simulations

which results we compared with the ones from the exact solution derived previ-

ously. The simulations, carried out for annealed systems, exhibited an excellent

agreement with the theory, even though this theoretical solution was developed

for the quenched system.

In order to proceed with the study in three dimensions, we defined the proper

model in Ch. 3, which turns out to be a binary mixture of Janus particles with

two fixed orientations, with three interactions being HS and the remaining one

being SW or SHS.

Within the RFA methodology, all three standard routes to thermodynamics (com-

pressibility, virial, and energy) were considered. To them we added a weighted

average of the virial and energy routes with a weight fixed as to reproduce the

exact third virial coefficient. Somewhat surprisingly, our results indicate that only

the compressibility route fails to display a full critical behavior with a well-defined

critical point. The existence of a critical point and a (possibly metastable to-

wards the solid formation) gas-liquid phase transition in our model (despite the

fact that attractive interactions are partially inhibited) are supported by the NF

generalized principle of corresponding states [68] and by NVT simulations results.

Finally in Ch. 4, we studied the phase diagram of three-dimensinal Janus par-

ticles with different classes of face-to-face interactions (see Figs. 4.1 and 4.2).
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Interestingly, the presence of attraction in only one out of the four possible patch-

patch interactions (model A0) turns out to be enough to make the gas-liquid

transition possible. Reciprocally, the lack of attraction in only one of the two

possible patch-patch interactions between unlike particles (model B0) is enough

to produce a demixing transition. The exact simulation results show that the

coexisting gas and liquid phase are close to the equimolar composition condition

used in the approximate liquid state theories except for the I0 model. As the av-

erage attraction is gradually decreased, the gas-liquid critical point shifts to lower

temperatures (except for an interesting inversion of tendency observed when go-

ing from the isotropic model I0 to the anisotropic model B0) and lower densities.

Moreover, the coexistence region progressively shrinks, in analogy with what is ob-

served in the unconstrained one-component Janus fluid [52, 85] and in the empty

liquid scenario [86]. On the other hand, the imposed constraint in the orientation

of the attractive patches does not allow for the formation of those inert clusters

[8, 43, 44] which in the unconstrained one-component Janus fluid are responsible

for a re-entrant gas branch [8, 15, 42].





A
Consistency tests of the exact solution for

one-dimensional systems

A.1 Virial route

In a general one-dimensional mixture (with isotropic or anisotropic interactions),

the virial equation of state reads

βp

ρ
= 1− ρβ

∑
i,j

xixj

∫ ∞
0

dr rgij(r)
∂φij(r)

∂r
. (A.1)
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Now, since the interaction φij(r) does not extend beyond the nearest neighbors,

we can replace gij(r)→ ρ−1
j p

(1,+)
ij (r) = ρ−1Kije

−βpre−βφij(r) in Eq. (A.1), so that

βp

ρ
= 1 +

∑
i,j

xixjKij

∫ ∞
0

dr re−βpr
∂e−βφij(r)

∂r
. (A.2)

Integrating by parts,

βp

ρ
= 1−

∑
i,j

xixjKij

∫ ∞
0

dr

(
1 + p

∂

∂p

)
e−βpre−βφij(r). (A.3)

This equation can be rewritten as

1

ρ
=

1

βp
−
∑
i,j

xixjKij

(
Ω′ij +

Ωij

βp

)
= −

∑
i,j

xixjKijΩ
′
ij, (A.4)

where in the last step we have taken into account the normalization condition

(2.26). Equation (A.4) is the generalization of Eq. (2.35) to an arbitrary number

of components.

A.2 Compressibility route

According to this route,

χ ≡ kBT

(
∂ρ

∂p

)
T,x1

=

[
1 + ρx1h̃11(0)

] [
1 + ρx2h̃22(0)

]
− ρ2x1x2h̃12(0)h̃21(0)

1 + ρx1x2

[
h̃11(0) + h̃22(0)− h̃12(0)− h̃21(0)

] , (A.5)

where h̃ij(k) =
∫
dr eik·rhij(r) is the Fourier transform of the total correlation func-

tion hij(r), i being the imaginary unit. In the particular case of one-dimensional

systems,

h̃ij(kx) = h̃ji(−kx) = [Hij(s) +Hji(−s)]s=ikx
, (A.6)
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so that the zero wavenumber limit is

h̃ij(0) = h̃ji(0) = lim
s→0

[Gij(s) +Gji(−s)] , (A.7)

where Eq. (2.17) has been taken into account. Making use of Eqs. (2.16), (2.23),

and (2.31a)–(2.32), and after some algebra, one finds

h̃11(0) = ρJ − 2
x2K22Ω′22

x1K12Ω12

− 2

ρx1

, h̃22(0) = ρJ − 2
x1K11Ω′11

x2K12Ω12

− 2

ρx2

, (A.8a)

h̃12(0) = h̃21(0) = ρJ +
Ω′12

Ω12

+
Ω′21

Ω21

, (A.8b)

where

J ≡ x2
1K11Ω′′11 + x2

2K22Ω′′22 + x1x2

(
K12Ω′′12 +K21Ω′′21−2K12

Ω′11Ω′22 − Ω′12Ω′21

Ω21

)
.

(A.9)

By inserting Eqs. (A.8a)–(A.9) into the right-hand side of Eq. (A.5), it can

be verified that the resulting expression for the isothermal susceptibility χ indeed

coincides with the one obtained as (∂ρ/∂βp)β,x1 from Eq. (2.35). Also, it can be

checked that the denominator on the right-hand side of Eq. (A.5) reduces to

1 + ρx1x2

[
h̃11(0) + h̃22(0)− h̃12(0)− h̃21(0)

]
=
√

1− 4x1x2R. (A.10)

Therefore, χ never diverges, what confirms the classical proof [87] by van Hove

about the absence of phase transitions in one-dimensional nearest-neighbor models.

A.3 Energy route

In general, the excess internal energy per particle in a one-dimensional mixture is

uex = ρ
∑
i,j

xixj

∫ ∞
0

dr gij(r)φij(r). (A.11)
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As in the case of Eq. (A.1), we can replace gij(r) → ρ−1Kije
−βpre−βφij(r) in Eq.

(A.11). Additionally, taking into account Eq. (2.41), we obtain

uex =
∑
i,j

xixjKijΩijΥij. (A.12)

Using the properties (2.29), it is straightforward to check that uex = U/N−kBT/2,

where U is given by Eq. (2.40). Note, however, that Eq. (A.12) applies to any

number of components, while Eq. (2.40) refers to binary mixtures only.



B
Sticky-hard-sphere limit in

one-dimensional Janus fluids

In the sticky-hard-sphere (SHS) limit, the SW depth ε goes to infinity (so that

θ → ∞) while the width λ − 1 goes to zero by keeping the stickiness parameter

τ−1 ≡ (λ− 1)θ fixed. In that case, Ω12(s) in Eq. (2.43) becomes

Ω12(s) = Ω(s)

{
1− τ−1

[
1 +

sΩ′(s)

Ω(s)

]}
= Ω(s)

(
1 + τ−1s

)
. (B.1)

The general equation of state (2.35) reduces to a quadratic equation for the pres-

sure whose physical root is

βp =
ρ

1− ρ

[
1− F

(
τ

1− ρ
ρ

)]
, F (z) ≡

1 + z −
√

(1 + z)2 − 4x1x2

2
. (B.2)

119



Appendix B: Sticky-hard-sphere limit 120

The associated first few virial coefficients are

B2 = 1− x1x2τ
−1, B3 = 1− x1x2τ

−1
(
2− τ−1

)
, (B.3a)

B4 = 1− x1x2τ
−1
[
3− 3τ−1 + τ−2 (1 + x1x2)

]
. (B.3b)

Obviously, the same expressions are obtained by taking the SHS limit in Eqs.

(2.45a) and (2.45b). In the high-temperature and low-temperature limits, Eq.

(B.2) yields

βp =
ρ

1− ρ

[
1− ρ

1− ρ
x1x2τ

−1

]
+O(τ−2), (B.4a)

lim
τ→0

βp = max(x1, x2)
ρ

1− ρ
, (B.4b)

where in Eq. (B.4b) we have taken into account that 1−
√

1− 4x1x2 = 2 min(x1, x2).

As expected, Eqs. (B.4a) and (B.4b) are fully consistent with Eqs. (2.46a) and

(2.46b), respectively.

In terms of density, the amplitudes (2.29) and (2.30) become

K11 =
eβp

x1

[
βp− τ + βp

x1

F

(
τ

1− ρ
ρ

)]
, K22 =

eβp

x2

[
βp− τ + βp

x2

F

(
τ

1− ρ
ρ

)]
,

(B.5a)

K12 =
τeβp

x1x2

F

(
τ

1− ρ
ρ

)
, K21 =

(τ + βp)eβp

x1x2

F

(
τ

1− ρ
ρ

)
. (B.5b)

As a consequence, Eq. (2.47) simply reduces to

uex

ε
= −F

(
τ

1− ρ
ρ

)
. (B.6)

Therefore,

u2 = −x1x2τ
−1, u3 = −x1x2τ

−1(1− τ−1), (B.7a)

u4 = −x1x2τ
−1
[
(1− τ−1)2 + x1x2τ

−2
]
, (B.7b)

uex

ε
= −x1x2

ρ

1− ρ
τ−1 +O(τ−2), lim

τ→0

uex

ε
= −min(x1, x2). (B.7c)
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In what concerns the structural properties, we note that in the SHS limit

Ψ(k1,k2)(s)→ Ψ̄(k1+k2,0)(s), (B.8a)

θ
[
Ψ(k1,k2)(s)− λΨ(k1−1,k2+1)(s)

]
→ τ−1Ψ̄(k1+k2−1,1)(s), (B.8b)

where

Ψ̄(k1,k2)(s) ≡ [Ω(s+ βp)]k1 e−k2(s+βp)

D(s)
. (B.9)

As a consequence, Eqs. (2.54a)–(2.54d) become

G11(s) =
K11

ρ
Ψ̄(1,0)(s) +

x2K11K22τ
−1

ρ
Ψ̄(1,1)(s), (B.10a)

G22(s) =
K22

ρ
Ψ̄(1,0)(s) +

x1K11K22τ
−1

ρ
Ψ̄(1,1)(s), (B.10b)

G12(s) =
K12

ρ
Ψ̄(1,0)(s) +

K12τ
−1

ρ
Ψ̄(0,1)(s), (B.10c)

G21(s) =
K21

ρ
Ψ̄(1,0)(s), (B.10d)

The determinant D(s) can be written in this case as

D(s) = 1− aΩ(s+ βp)− b̄Ω(s+ βp)e−(s+βp), (B.11)

where a is still given by Eq. (2.53) and b̄ ≡ x1x2K11K22τ
−1. Using the mathemat-

ical identity

(
1− ax− b̄xy

)−1
=
∞∑
n=0

n∑
`=0

C̄n,`x
ny`, C̄n,` ≡

n!

`!(n− `)!
an−`b̄`, (B.12)

we have

Ψ̄(k1,k2)(s) =
∞∑
n=0

n∑
`=0

C̄n,`
e−(n+`+k1+k2)(s+βp)

(s+ βp)n+k1
. (B.13)
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Thus, the Laplace property (2.59) allows us to write the inverse Laplace transform

of Ψ̄(k1,k2)(s) as

ψ̄(k1,k2)(r) = e−βpr
∞∑
n=0

n∑
`=0

C̄n,`
(r − n− `− k1 − k2)n+k1−1

(n+ k1 − 1)!
Θ(r − n− `− k1 − k2).

(B.14)

This expression holds if k1 > 0. On the other hand, if k1 = 0,

ψ̄(0,k2)(r) = e−βpr

[
δ(r − k2) +

∞∑
n=1

n∑
`=0

C̄n,`
(r − n− `− k2)n−1

(n− 1)!
Θ(r − n− `− k2)

]
,

(B.15)

where use has been made of L−1
[
e−n(s+βp)

]
= e−βprδ(r − n).



C
Exact low-density properties for

anisotropic SHS mixtures

C.1 Cavity function to first order in density

To first order in density, the cavity function of an anisotropic mixture is

yij(r) = 1 + y
(1)
ij (r)ρ+O(ρ2), (C.1)

where

y
(1)
ij (r) =

∑
k

xky
(1)
ij;k(r), (C.2)
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with

y
(1)
ij;k(r) =

∫
dr′ fik(r

′)fkj(r− r′). (C.3)

Here, fij(r) = e−βφij(r) − 1 is the Mayer function. In the particular case of the

anisotropic SHS potential considered in this paper,

fij(r) = fHS(r) + δ(r − 1) [tijΘ(cos θ) + tjiΘ(− cos θ)]

= fSHS
ji (r) + t−ijδ(r − 1)Θ(cos θ), (C.4)

where we have taken σ = 1, t−ij ≡ tij − tji, and

fHS(r) = −Θ(1− r), fSHS
ji (r) = fHS(r) + tjiδ(r − 1). (C.5)

Inserting Eq. (C.4) into Eq. (C.3), we get

y
(1)
ij;k(r) = Θ(2− r)

{ π
12

(2− r)2(4 + r)− (tki + tjk)π(2− r)

+tkitjk2π

[
2δ(r) +

1

r

]
− (t−ik + t−kj)A(r)

+(t−iktjk + t−kjtki)L(r) + t−ikt
−
kjL0(r)

}
, (C.6)

where

A(r) ≡
∫
dr′ δ(r′ − 1)Θ(1− |r− r′|)Θ(z′), (C.7a)

L(r) ≡
∫
dr′ δ(r′ − 1)δ(|r− r′| − 1)Θ(z′), (C.7b)

L0(r) ≡
∫
dr′ δ(r′ − 1)δ(|r− r′| − 1)Θ(z′)Θ(z − z′). (C.7c)

It can be proved that

A(r) =


π(2− r),

√
1− r2/4 ≤ cos θ ≤ 1,

A(r/2, θ), | cos θ| ≤
√

1− r2/4,

0, −1 ≤ cos θ ≤ −
√

1− r2/4,

(C.8a)
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L(r) =


2π/r,

√
1− r2/4 ≤ cos θ ≤ 1,

L(r/2, θ), | cos θ| ≤
√

1− r2/4,

0, −1 ≤ cos θ ≤ −
√

1− r2/4,

(C.8b)

L0(r) =


2π/r,

√
1− r2/4 ≤ cos θ ≤ 1,

L0(r/2, θ), 0 ≤ cos θ ≤
√

1− r2/4,

0, cos θ ≤ 0,

(C.8c)

where

A(`, θ) = 2πΘ(cos θ)− π`− 2` sin−1 ` cos θ√
1− `2 sin θ

− 2 tan−1

√
sin2 θ − `2

cos θ
, (C.9a)

L(`, θ) = − 1

2`

∂

∂`
A(`, θ)

=
1

`

[
π

2
+ sin−1 ` cos θ√

1− `2 sin θ

]
, (C.9b)

L0(`, θ) = L(`, θ)− L(`, π − θ)

=
2

`
sin−1 ` cos θ

sin θ
√

1− `2
. (C.9c)

In Eqs. (C.8b) and (C.8c) we have omitted terms proportional to δ(r) since they

will not contribute to gij(r). Note the symmetry relationsA(r)+A(−r) = π(2−r),

L(r) + L(−r) = 2π/r, L(r)− L(−r) = L0(r)− L0(−r).

The orientational average

y
(1)
ij;k(r) =

∫ π/2

0

dθ sin θy
(1)
ij;k(r) (C.10)
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becomes

y
(1)
ij;k(r) = Θ(2− r)

{ π
12

(2− r)2(4 + r)− (tki + tjk)π(2− r)

+tkitjk2π

[
2δ(r) +

1

r

]
− (t−ik + t−kj)A(r)

+(t−iktjk + t−kjtki)L(r) + t−ikt
−
kjL0(r)

}
, (C.11)

where

A(r) = π(2− r)
(

1−
√

1− r2/4
)

+ A(r/2), (C.12a)

L(r) =
2π

r

(
1−

√
1− r2/4

)
+ L(r/2), (C.12b)

L0(r) =
2π

r

(
1−

√
1− r2/4

)
+ L0(r/2), (C.12c)

with

A(`) =

∫ π/2

sin−1 `

dθ sin θA(`, θ)

= 2
√

1− `2 (π − π`− 1) + 2` cos−1 `, (C.13a)

L(`) =

∫ π/2

sin−1 `

dθ sin θL(`, θ)

=
1

`

(
π
√

1− `2 − cos−1 `
)
, (C.13b)

L0(`) =

∫ π/2

sin−1 `

dθ sin θL0(`, θ)

=
1

`

(
π
√

1− `2 − 2 cos−1 `
)
. (C.13c)

C.2 Second and third virial coefficients

The series expansion of the compressibility factor Z in powers of density defines

the virial coefficients:

Z = 1 +B2ρ+B3ρ
2 + · · · . (C.14)
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Using Eq. (C.1) in Eq. (3.32a), one can identify

B2 =
2π

3

(
1− 3

∑
i,j

xixjtij

)
, (C.15a)

B3 =
2π

3

∑
i,j,k

xixjxk

[
(1− 3tij)y

(1)
ij;k(1)− tijy(1)

ij;k

′
(1)
]
. (C.15b)

According to Eq. (C.11),

y
(1)
ij;k(1) =

5π

12
− (tki + tjk)π + tkitjk2π − (t−ik + t−kj)A(1)

+(t−iktjk + t−kjtki)L(1) + t−ikt
−
kjL0(1), (C.16a)

y
(1)
ij;k

′
(1) = −3

4
π + (tki + tjk)π − tkitjk2π − (t−ik + t−kj)A

′
(1)

+(t−iktjk + t−kjtki)L
′
(1) + t−ikt

−
kjL

′
0(1), (C.16b)

where

A(1) =
4π

3
−
√

3, A′(1) = −2π

3
, (C.17a)

L(1) =
4π

3
, L′(1) = −2

3

(
2π −

√
3
)
, (C.17b)

L0(1) =
2π

3
, L′0(1) = −2

3

(
π − 2

√
3
)
. (C.17c)

The second and third virial coefficients can also be obtained from the com-

pressibility equation (3.19). To that end, note that

ĥij(0) = ĥ
(1)
ij (0)ρ+ ĥ

(2)
ij (0)ρ2 + · · · , (C.18)

where, according to Eq. (3.18),

ĥ
(1)
ij (0) =

√
xixj2π

(
−2

3
+ tij + tji

)
, (C.19a)

ĥ
(2)
ij (0) =

√
xixj2π

{
tijy

(1)
ij (1) + tjiy

(1)
ji (1) +

∫ 2

1

dr r2
[
y

(1)
ij (r) + y

(1)
ji (r)

]}
.

(C.19b)
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Inserting this into Eq. (3.19) and making use of Eqs. (C.11)–(C.13c), one gets

χ−1
T = 1 + 2B2ρ+ 3B3ρ

2 + · · · , with B2 and B3 given by Eqs. (C.15a) and (C.15b),

respectively. Furthermore, it can be checked that the exact consistency condition

(3.34) is satisfied by Eqs. (C.1), (C.2), (C.16a), and (C.16b). The verification of

these two thermodynamic consistency conditions represent stringent tests on the

correctness of the results derived in this Appendix.

C.3 Case t11 = t22 = t21 = 0

Thus far, we have assumed general values for the stickiness parameters tij. On

the other hand, significant simplifications occur in our constrained Janus model,

where tij = tδi1δj2. More specifically,

y
(1)
11 (r) = Θ(2− r)

{ π
12

(2− r)2(4 + r)

−x2t [π(2− r)− tL(r) + tL0(r)]
}
, (C.20a)

y
(1)
12 (r) = Θ(2− r)

[ π
12

(2− r)2(4 + r)− tA(r)
]
, (C.20b)

y
(1)
11 (r) = Θ(2− r)

[ π
12

(2− r)2(4 + r)− x2πt
(

2− r − 2t

πr
cos−1 r

2

)]
, (C.20c)

y
(1)
12 (r) = Θ(2− r)

{ π
12

(2− r)2(4 + r)

−t
[
π(2− r)− 2

√
1− r2/4 + r cos−1 r

2

]}
, (C.20d)

y
(1)
21 (r) = Θ(2− r)

{ π
12

(2− r)2(4 + r)− t
[
2
√

1− r2/4− r cos−1 r

2

]}
, (C.20e)

y(1)(r) = Θ(2− r)
[ π

12
(2− r)2(4 + r)− x1x22πt

(
2− r − t

πr
cos−1 r

2

)]
,(C.20f)

y
(1)
11 (1) =

5π

12
− x2πt

(
1− 2t

3

)
, (C.20g)
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y
(1)
12 (1) =

5π

12
− t
(

4π

3
−
√

3

)
, (C.20h)

y
(1)
21 (1) =

5π

12
− t
(√

3− π

3

)
, (C.20i)

y
(1)
11

′
(1) = −3π

4
+ x2t

[
π − 2t

3

(
π +
√

3
)]

, (C.20j)

y
(1)
12

′
(1) = −3π

4
+ t

2π

3
, (C.20k)

y
(1)
21

′
(1) = −3π

4
+ t

π

3
, (C.20l)

y(1)(1) =
5π

12
− x1x22πt

(
1− t

3

)
, (C.20m)

y(1)′(1) = −3π

4
+ x1x22t

[
π − t

3

(
π +
√

3
)]

, (C.20n)

6

π
B2 = 4 (1− 3x1x2t) , (C.20o)

(
6

π

)2

B3 = 10

{
1− 6x1x2t

[
1− 2

5

(
4− 3

√
3

π

)
t

]}
, (C.20p)

uex

ε
= −12ηx1x2t

{
1 +

5

2

[
1− 4

5

(
4− 3

√
3

π

)
t

]
η

}
+O(η2). (C.20q)





D
Evaluation of the coefficients L

(0)
ij , L

(1)
ij ,

and L
(2)
ij

In order to apply Eq. (3.24), it is convenient to rewrite Eq. (3.51) as

1

2π
L(s) = Q(s) · [I− A(s)] , (D.1)

where we have introduced the matrix Q as

Qij(s) ≡ ess2Gij(s). (D.2)

Thus, Eq. (3.24) is equivalent to

Qij(s) = 1 + s+O(s2). (D.3)
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Expanding Aij(s) in powers of s and inserting the result into Eq. (D.1), one gets

1

2π
L

(0)
ij = 1−

∑
k

A
(0)
kj , (D.4a)

1

2π
L

(1)
ij = 1−

∑
k

(
A

(1)
kj + A

(0)
kj

)
, (D.4b)

where

A
(n)
ij = (−1)nρxi

[
L

(0)
ij

(n+ 3)!
−

L
(1)
ij

(n+ 2)!
+

L
(2)
ij

(n+ 1)!

]
. (D.5)

Equations (D.4a) and (D.4b) constitute a linear set of equations which allow us to

express the coefficients L
(0)
ij and L

(1)
ij in terms of the coefficients {L(2)

kj }. The result

is given by Eqs. (3.53a) and (3.53b).

It now remains the determination of L
(2)
ij . This is done by application of Eq.

(3.39), i.e., the ratio first term to second term in the expansion of esGij(s) for

large s must be exactly equal to tij. This is the only point where the stickiness

parameters of the mixture appear explicitly.

The large-s behavior from Eq. (3.51) is

2πesGij(s) = L
(2)
ij +

[
L

(1)
ij +

(
L(2) · D

)
ij

]
s−1 +O(s−2), (D.6)

where

Dij ≡ ρxi

(
1

2
L

(0)
ij − L

(1)
ij + L

(2)
ij

)
= ρxi

(
L

(2)
ij −

π

1− η

)
. (D.7)

Comparison of Eq. (3.38) with Eq. (D.6) yields Eq. (3.55) and

12τijL
(2)
ij

σij
= L

(1)
ij +

m∑
k=1

L
(2)
ik Dkj. (D.8a)
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L
(2)
ij

tij
= L

(1)
ij +

∑
k

L
(2)
ik Dkj. (D.8b)

Taking into account Eqs. (3.53b) and (D.7), Eq. (D.8b) becomes Eq. (3.54).





E
Recovery of the pseudo-PY solution

The aim of this appendix is to prove that the pair correlation functions gij(r)

obtained from the RFA method in Sec. 3.5.2 satisfy Eqs. (3.42) and (3.45).

First, note that the pseudo-OZ relation (3.45) can be rewritten in the form

ĉ(q) = ĥ(q) ·
[
I + ĥ(q)

]−1

, (E.1)

where I is the unit matrix and

ĉij(q) = ρ
√
xixj

∫
dr e−iq·rcij(r), (E.2a)

ĥij(q) = ρ
√
xixj

∫
dr e−iq·rhij(r). (E.2b)

Note that ĥij(0) = 1
2

[
ĥij(0) + ĥji(0)

]
, where ĥij(0) is defined by Eq. (3.18).
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The Fourier transform ĥij(q) of the (orientational average) total correlation

function hij(r) = gij(r) − 1 is related to the Laplace transform Gij(s) [see Eq.

(3.20)] by

ĥij(q) = −2πρ
√
xixj

[
Gij(s)−Gij(−s)

s

]
s=iq

. (E.3)

Making use of Eqs. (3.51)–(3.52b), it is possible to obtain, after some algebra,

ĉij(q)

ρ
√
xixj

=
4π

q3
C

(0)
ij (sin q − q cos q) +

4π

q4
C

(1)
ij [2q sin q

−2−
(
q2 − 2

)
cos q

]
+

4π

q6
C

(3)
ij

[
4q
(
q2 − 6

)
sin q

+24−
(
24− 12q2 + q4

)
cos q

]
+ 4πtijyij(1)

sin q

q
, (E.4)

where the coefficients C
(0)
ij , C

(1)
ij , and C

(3)
ij are independent of q but depend on the

density, the composition, and the stickiness parameters. Fourier inversion yields

cij(r) =
[
C

(0)
ij + C

(1)
ij r + C

(3)
ij r

3
]

Θ(1− r) + yij(1)tijδ+(r − 1). (E.5)

Taking into account Eq. (3.32c) we see that Eq. (E.5) has the structure

cij(r) = gij(r)− yij(r). (E.6)

But this is not but the PY closure relation (3.42). In passing, we get the cavity

function inside the core:

yij(r)Θ(1− r) = −
[
C

(0)
ij + C

(1)
ij r + C

(3)
ij r

3
]

Θ(1− r). (E.7)
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