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Abstract : A space of infinitely differentiable functions defined on an open cone of Rn and
of prescribed growth near the boundary of the cone and at infinity is considered. The
problem of polynomial approximation in this space is studied. It is shown that every linear
continuous operator on this space that commutes with each partial derivative operator and
is not a scalar multiple of the identity is hypercyclic.
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1. Introduction

Let Ω be an open connected cone in Rn with apex at the origin, Ω be the
closure of Ω in Rn.

Let (hm)
∞
m=1 be a sequence of positive functions hm ∈ C(Ω) such that for

all m ∈ N there exists am ≥ 0 such that for all x ∈ Ω

hm(x)− hm+1(x) ≥
(
ln

1

d(x)

)+

− am ,

where d(x) is the distance from x ∈ Ω to the boundary ∂Ω of Ω, t+ = t for
t ≥ 0, and t+ = 0 for t < 0.

Let (ψm)
∞
m=1 be a sequence of positive functions ψm ∈ C(Ω) such that for

each m ∈ N:

(a) lim
x∈Ω, x→∞

ψm(x)

∥x∥
= +∞ , where ∥ · ∥ is the Euclidean norm in Rn,

(b) there exists bm ≥ 0 such that for all x ∈ Ω

ψm(x)− ψm+1(x) ≥ ln(1 + ∥x∥)− bm .
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Let φm(x) = hm(x) + ψm(x), x ∈ Ω, m ∈ N.
For each m ∈ N let

Em =

{
f ∈ Cm(Ω) : pm(f) = sup

x∈Ω, |α|≤m

|(Dαf)(x)|
exp(φm(x))

<∞

}
.

Obviously, Em+1 ⊂ Em (m ∈ N).

Let φ = {φm}∞m=1 and Eφ(Ω) =
∞∩
m=1

Em. Under usual operations of addi-

tion and multiplication by complex numbers Eφ(Ω) is a linear space. Endow
Eφ(Ω) with the topology of projective limit of the spaces Em. Obviously,
Eφ(Ω) is a Fréchet space. In view of condition (b) on the family (ψm)

∞
m=1

the space Eφ(Ω) is invariant under multiplication by polynomials. In Section
3 it is shown that linear differential operators with constant coefficients are
continuous on Eφ(Ω).

In this paper the following two problems are considered:

1. approximation by polynomials in Eφ(Ω);

2. hypercyclicity of linear continuous operators on Eφ(Ω) commuting with
each partial derivative operator.

The motivation to study the first problem is the following. In [10] M.M.
Mannanov has considered the problem of description of a dual space to a
weighted space of holomorphic functions on an unbounded convex domain
of Cn with given majorants of growth near the boundary and at infinity in
terms of the Laplace transform of linear continuous functionals on this space.
To solve the problem he used the known scheme of the proof of the Polya-
Martineau-Ehrenpreis theorem (see for details [7, Theorem 4.5.3]) and devel-
oped methods of the article [12]. Therefore he had to consider some space
of infinitely differentiable functions on an unbounded convex domain of R2n

with given majorants of growth near the boundary of a domain and at infinity.
But for this space approximation problems (for example, approximation by
polynomials or by a system of exponentials) have not been studied. There
was no need to study them to obtain the main result of [10].

Note that problems of approximation by polynomials in Eφ(Ω) are studied
here under minimal conditions on weight functions hm and ψm. In Section 2
the following theorem is proved.

Theorem 1. The polynomials are dense in Eφ(Ω).
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From this theorem it easily follows that Eφ(Ω) is a separable space.

Theorem 1 helps us to study the second problem. Recall that a linear con-
tinuous operator T on a separable locally convex space X is called hypercyclic
if there is an element x ∈ X such that its orbit Orb{x, T} = {x, Tx, T 2x, . . .}
is dense in X. Hypercyclic operators have been extensively studied since
the 1980’s. For background, development, the most known results of theory
of hypercyclic operators we refer the reader to the surveys of K.-G. Grosse-
Erdmann [5] (where, in particular, results on hypercyclicity of operators in
the real analysis setting are described), [6] and to the articles by R. Gethner
and J.H. Shapiro [2], G. Godefroy and J.H. Shapiro [3], A. Montes-Rodŕıguez
and N. Salas [11]. Note that C. Kitai [8] and R. Gethner and J.H. Shapiro [2]
provided a useful sufficient condition (the so-called Hypercyclicity Criterion)
for an operator to be hypercyclic. It was refined afterwards by many authors
(see [1], [5], [6]). In some cases it is convenient to use the following result
established by G. Godefroy and J.H. Shapiro [3] (see also [4, Corollary 1.10])
with the help of the Hypercyclicity Criterion.

Theorem A. (Godefroy-Shapiro Criterion) Let X be a separable
Fréchet space and T : X → X be a linear continuous operator. Suppose that∪

|λ|<1 ker(T − λ) and
∪

|λ|>1 ker(T − λ) both span a dense subspace of X.
Then T is hypercyclic.

In Section 3, Theorem 1 and Theorem A are used to prove the following
statement. For notation, see below.

Theorem 2. Every linear continuous operator on Eφ(Ω) that commutes
with each partial derivative operator and is not a scalar multiple of the identity
is hypercyclic.

Let us fix some notation. For u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn (Cn) ,
⟨u, v⟩ = u1v1 + · · · + unvn and ∥u∥ denotes the Euclidean norm in Rn(Cn).
For α = (α1, . . . , αn) ∈ Zn+, x = (x1, . . . , xn) ∈ Rn, z = (z1, . . . , zn) ∈ Cn,

|α| = α1 + . . .+ αn , xα = xα1
1 · · ·xαn

n , zα = zα1
1 · · · zαn

n ,

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n
, Dα

z =
∂|α|

∂zα1
1 · · · ∂zαn

n
.

For multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn+ the notation β ≤ α
indicates that βj ≤ αj for j = 1, 2, . . . , n.
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For a positive function Φ ∈ C(Ω) such that lim
x∈Ω, x→∞

Φ(x)

∥x∥
= +∞ we set

Φ̃(x) := − inf
y∈Ω

(
⟨x, y⟩+ Φ(y)

)
, x ∈ Rn.

For the sake of simplicity, we put

θm(x) := exp(φm(x)) , x ∈ Rn.

If Sn−1 = {x ∈ Rn : ∥x∥ = 1} we set

pr(Ω) := Ω ∩ Sn−1 .

For each σ ∈ pr(Ω), let

ψm,σ(t) := ψm(σt) , t > 0 .

For a function u : (0,∞) → R, let

u[e](x) := u(ex) , x ≥ 0 .

For Ω ⊂ Rn and ε > 0, let Ω(ε) be the ε-enlargement of Ω.

2. On approximation by polynomials in Eφ(Ω)

For a lower semi-continuous function u : [0,∞) → R such that

lim
x→+∞

u(x)

x
= +∞ (1)

let

u∗(x) = sup
y≥0

(
xy − u(y)

)
, x ≥ 0 .

Note that u∗(x) <∞ on [0,∞) and lim
x→+∞

u∗(x)

x
= +∞.

Lemma 1. Let a lower semi-continuous function u : [0,∞) → R satisfies
the condition (1). Then

(u[e])∗(x) + (u∗[e])∗(x) ≤ x lnx− x , x > 0 .
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Proof. Let x > 0. There exist numbers t ≥ 0 and ξ ≥ 0 such that

(u[e])∗(x) = xt− u(et) ,

(u∗[e])∗(x) = xξ − u∗(eξ) .

Thus,

(u[e])∗(x) + (u∗[e])∗(x) = xt− u(et) + xξ − sup
η≥0

(
eξη − u(η)

)
.

Hence, for each η ≥ 0

(u[e])∗(x) + (u∗[e])∗(x) ≤ xt− u(et) + xξ − eξη + u(η) .

Putting here η = et we have

(u[e])∗(x) + (u∗[e])∗(x) ≤ xt+ xξ − eξ+t.

Consequently,

(u[e])∗(x) + (u∗[e])∗(x) ≤ sup
y≥0

(
xy − ey

)
≤ sup

y∈R

(
xy − ey

)
= x lnx− x .

Proof of Theorem 1. Let ω be the function on Rn defined as follows:

ω(t) = cω exp
(
− 1

1−∥t∥2

)
for ∥t∥ < 1 ,

ω(t) = 0 for ∥t∥ ≥ 1 ,

where cω > 0 is chosen so that

∫
Rn

ω(t) dt = 1.

For ε > 0 let ωε(t) = ε−nω( tε), t ∈ Rn. For each ν ∈ N let

Kν =

{
x ∈ Ω : ∥x∥ ≤ ν, dist(x, ∂Ω) ≥ 1

ν

}
.

Obviously, the closed sets Kν are non-empty for ν ≥ ν0 (ν0 is some positive
integer) and Kν ⊂ intKν+1 ,

∪∞
ν=ν0

Kν = Ω.

For ν ≥ ν0 let rν = 1
4

(
1
ν − 1

ν+1

)
and

ην(x) =

∫
K

(2rν )
ν

ωrν (x− y) dy , x ∈ Rn.
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Obviously, ην ∈ C∞
0 (Rn), ην(x) = 1 for x ∈ K

(rν)
ν , ην(x) = 0 for x /∈ K

(3rν)
ν ,

0 ≤ ην(x) ≤ 1 for x ∈ Rn.
Since for each α ∈ Zn+

(Dαην)(x) =
1

r
n+|α|
ν

∫
K

(2rν )
ν

(Dαω)

(
x− y

rν

)
dy , x ∈ Rn,

we have for all x ∈ Rn

|(Dαην)(x)| ≤
1

r
n+|α|
ν

· sup
t∈Rn

|(Dαω)(t)| · µ
(
K(2rν)
ν

)
≤ mα

r
n+|α|
ν

· µ
(
K(2rν)
ν

)
≤ Mα(1 + ν)n

r
n+|α|
ν

,

where mα = sup
t∈Rn

|(Dαω)(t)| , Mα = mαπ
n
2

Γ(n
2
+1) , Γ is the Gamma-function and

µ denotes n-dimensional Lebesgue measure. Thus, for each α ∈ Zn+

|(Dαην)(x)| ≤Mα4
n+|α|(ν + 1)3n+2|α|, x ∈ Rn, (2)

where Mα > 0 does not depend on ν ≥ ν0.
Now let f ∈ Eφ(Ω). This means that f ∈ C∞(Ω) and for each m ∈ N there

exists cm > 0 such that

|(Dαf)(x)| ≤ cmθm(x) , x ∈ Ω , |α| ≤ m. (3)

Let us approximate f by polynomials in Eφ(Ω). There are three steps in the
proof.

1. For every positive integer ν ≥ ν0 let fν(x) = f(x)ην(x), x ∈ Ω.
Obviously, fν ∈ Eφ(Ω). Note that supp(fν) ⊂ Kν+1.

Let us show that fν → f in Eφ(Ω) as ν → ∞.
First note that for each m ∈ N

sup
x∈Ω

|fν(x)− f(x)|
θm(x)

= sup
x∈Ω

|f(x)|(1− ην(x))

θm(x)
≤ sup

x∈Ω\Kν

|f(x)|
θm(x)

≤ pm+1(f) · exp
(

sup
x∈Ω\Kν

(
φm+1(x)− φm(x)

))
.

Let Tν = Ω∩ {x ∈ Rn : ∥x∥ > ν}, Sν = Ω \ (Kν ∪ Tν), ν ≥ ν0. Since for each
m ∈ N one has (see the properties of the families (hm)

∞
m=1 and (ψm)

∞
m=1) that

φm+1(x)− φm(x) ≤ − ln(1 + ν) + am + bm , x ∈ Tν ,

φm+1(x)− φm(x) ≤ − ln ν + am + bm , x ∈ Sν ,
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then

exp

(
sup

x∈Ω\Kν

(
φm+1(x)− φm(x)

))
→ 0 , ν → +∞ . (4)

Hence, for each m ∈ N

sup
x∈Ω

|fν(x)− f(x)|
θm(x)

→ 0 as ν → ∞ . (5)

Further, for x ∈ Ω and α ∈ Zn+ with |α| > 0 we have

Dα(fν(x)− f(x)) =
∑

β≤α, |β|<|α|

Cβα(D
βf)(x)(Dα−βην)(x) (6)

+
∑

β≤α, |β|<|α|

(Dαf)(x)(ην(x)− 1) ,

where Cβα =
∏n
j=1C

βj
αj and C

βj
αj are the combinatorial numbers.

Denote by Fν(x) the first term of the right-hand side in (6). We have for
each m ∈ N

sup
x ∈ Ω

1 ≤ |α| ≤ m

|Fν(x)|
θm(x)

≤ sup
x ∈ Kν+1 \Kν

1 ≤ |α| ≤ m

∑
β≤α, |β|<|α|

Cβα |(Dβf)(x)(Dα−βην)(x)|

θm(x)
.

With the help of the inequalities (2) and (3) we have for each s ∈ N

sup
x ∈ Ω

1 ≤ |α| ≤ m

|Fν(x)|
θm(x)

≤ sup
x ∈ Kν+1 \Kν

1 ≤ |α| ≤ m

2mn4n+mpm+s(f)(ν + 1)3n+2m

eφm(x)−φm+s(x)
.

(7)
Let Rν = (Kν+1 \Kν) ∩ {ν ≤ ∥x∥ ≤ ν + 1}, Pν = (Kν+1 \Kν) ∩ {∥x∥ ≤ ν}.
Note that for each k ∈ N

φk(x)− φk+1(x) ≥ ln(1 + ν)− ak − bk , x ∈ Rν ,

φk(x)− φk+1(x) ≥ ln ν − ak − bk , x ∈ Pν .

Thus, for each s ∈ N one obtains

sup
x∈Rν , 1≤|α|≤m

|Fν(x)|
θm(x)

≤ 2mn4n+mpm+s(f)(ν + 1)3n+2m

(1 + ν)se−am−···−am+s−bm−···−bm+s
,
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sup
x∈Pν , 1≤|α|≤m

|Fν(x)|
θm(x)

≤ 2mn4n+mpm+s(f)(ν + 1)3n+2m

νse−am−···−am+s−bm−···−bm+s
.

Letting s = 3n+2m+1 we get from these two estimates and (7) that for each
m ∈ N

sup
x∈Ω, 1≤|α|≤m

|Fν(x)|
θm(x)

→ 0 as ν → ∞ . (8)

Now let us consider the second term in (6). For arbitrary m ∈ N we have

sup
x ∈ Ω

1 ≤ |α| ≤ m

|(Dαf)(x)(ην(x)− 1)|
θm(x)

≤ sup
x ∈ Ω \Kν

1 ≤ |α| ≤ m

|(Dαf)(x)|
θm(x)

≤ pm+1(f) exp

(
sup

x∈Ω\Kν

(
φm+1(x)− φm(x)

))
.

Using (4) we get

sup
x∈Ω, 1≤|α|≤m

|(Dαf)(x)(ην(x)− 1)|
θm(x)

→ 0 , ν → ∞ .

From this, (8) and (5) it follows that pm(fν − f) → 0 as ν → ∞ for each
m ∈ N. Thus, the sequence (fν)

∞
ν=1 converges to f in Eφ(Ω) as ν → ∞.

2. Fix a positive integer ν ≥ ν0. Let h ̸≡ 0 be an entire function of
exponential type at most 1 such that h ∈ L1(R) and h(x) ≥ 0 for x ∈ R. For

example, we can take h(z) =
sin2 z2
z2

, z ∈ C. By the Paley-Wiener theorem [9]

there exists a function g ∈ C(R) with support in [−1, 1] such that

h(z) =

1∫
−1

g(t)eizt dt , z ∈ C .

From this representation it follows that for each k ∈ Z+

|h(k)(x)| ≤ 2max
|t|≤1

|g(t)| , x ∈ R . (9)

Let H(z1, z2, . . . , zn) = h(z1)h(z2) · · ·h(zn). It is an entire function in Cn.
From (9) it follows that there exists a positive constant CH > 0 such that for
each α ∈ Zn+

|(DαH)(x)| ≤ CH , x ∈ Rn . (10)
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Let
∫
Rn

H(x) dx = A. Define a function f̃ν on Rn as follows: f̃ν(x) = fν(x),

x ∈ Ω; f̃ν(x) = 0, x ∈ Rn \ Ω. Obviously, f̃ν ∈ C∞(Rn).
For λ > 1 let

f̃ν,λ(x) =
λn

A

∫
Rn

f̃ν(y)H(λ(x− y)) dy , x ∈ Rn .

It is clear that f̃ν,λ ∈ C∞(Rn). Moreover, f̃ν,λ admits holomorphic continua-
tion in Cn. Note that for all α ∈ Zn+ and x ∈ Rn∣∣(Dαf̃ν,λ)(x)

∣∣ ≤ λn

A

∫
Rn

∣∣(Dαf̃ν)(y)
∣∣H(λ(x− y)) dy

≤ max
y∈Kν+1

∣∣(Dαfν)(y)
∣∣ · λn

A

∫
Rn

H(λ(x− y)) dy

= max
y∈Kν+1

∣∣(Dαfν)(y)
∣∣ .

Let fν,λ be the restriction of f̃ν,λ on Ω. Obviously, fν,λ ∈ Eφ(Ω).
Let us show that fν,λ → fν in Eφ(Ω) as λ→ +∞.

Take an arbitrary m ∈ N and let r(λ) = λ−
2n

2n+1 (λ > 1). Note that for all
α ∈ Zn+, x ∈ Ω

(Dαfν,λ)(x)− (Dαfν)(x)

=
λn

A

∫
Rn

(
(Dαf̃ν)(y)− (Dαf̃ν)(x)

)
H(λ(x− y)) dy

=
λn

A

∫
{y∈Rn:∥y−x∥≤r(λ)}

(
(Dαf̃ν)(y)− (Dαf̃ν)(x)

)
H(λ(x− y)) dy

+
λn

A

∫
{y∈Rn:∥y−x∥>r(λ)}

(
(Dαf̃ν)(y)− (Dαf̃ν)(x)

)
H(λ(x− y)) dy .

Denote the terms on the right-hand side of this equality by I1,α(x) and I2,α(x),
respectively. Let Cν,m = sup

t∈Rn, |β|≤m+1

∣∣(Dβ f̃ν)(t)
∣∣. Then

sup
x∈Ω, |α|≤m

|I1,α(x)| ≤
π

n
2
√
nCHCν,m

AΓ(n2 + 1)
λ−

n
2n+1 ,

sup
x∈Ω, |α|≤m

|I2,α(x)| ≤
2Cν,m
A

∫
∥u∥>λ

1
2n+1

H(u) du .
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From these two estimates it follows that

sup
x∈Ω, |α|≤m

|(Dαfν,λ)(x)− (Dαfν)(x)| → 0

as λ → +∞. Hence, pm(fν,λ − fν) → 0 as λ → +∞. Since m ∈ N was
arbitrary then fν,λ → fν in Eφ(Ω) as λ→ +∞.

3. For fixed λ > 0 and positive integer ν ≥ ν0 let us approximate fν,λ by
polynomials in Eφ(Ω).

For N ∈ N let

UN (x) = H(0) +

N∑
k=1

∑
1≤i1≤n

· · ·
∑

1≤ik≤n

∂kH

∂xi1 · · · ∂xik
(0)xi1 · · ·xik

k!
.

For x ∈ Rn we have

|H(x)− UN (x)| ≤

∑
1≤i1≤n

· · ·
∑

1≤iN+1≤n
sup
ξ∈[0,x]

∣∣∣∣ ∂N+1H

∂xi1 · · · ∂xiN+1

(ξ)xi1 · · ·xiN+1

∣∣∣∣
(N + 1)!

.

Using the inequality (10) we get

|H(x)− UN (x)| ≤
CHn

N+1∥x∥N+1

(N + 1)!
, x ∈ Rn . (11)

Let

VN (x) =
λn

A

∫
Rn

f̃ν(y)UN (λ(x− y)) dy , x ∈ Rn .

It is clear that VN is a polynomial of degree at most N . We claim that the
sequence (VN )

∞
N=1 converges to fν,λ in Eφ(Ω) as N → ∞. Let m ∈ N be

arbitrary. For α ∈ Zn+ and x ∈ Ω we have

(Dαfν,λ)(x)−(DαVN )(x) =
λn

A

∫
Rn

(Dαf̃ν)(y)
(
H(λ(x−y))−UN (λ(x−y))

)
dy .

Using the inequality (11) and taking into account that f̃ν has a bounded
support we can find positive constants C1 and C2 (depending on n, λ, ν and
m) such that for all N∈ N, α ∈ Zn+ with |α| ≤ m, x ∈ Ω

∣∣(Dαfν,λ)(x)− (DαVN )(x))
∣∣ ≤ C1C

N
2 (1 + ∥x∥)N+1

(N + 1)!
.
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Thus, for each N∈ N

pm(fν,λ − VN ) ≤ C1C
N
2

(N + 1)!
sup
x∈Ω

(1 + ∥x∥)N+1

θm(x)
.

Furthermore,

sup
x∈Ω

(1 + ∥x∥)N+1

θm(x)
≤ sup

x∈Ω

(1 + ∥x∥)N+1

eψm(x)

= exp

(
sup

r>0, σ∈pr(Ω)

(
(N + 1) ln(r + 1)− ψm(rσ)

))

≤ 2N+1 exp

((
sup

r>1, σ∈pr(Ω)

(
(N + 1) ln r − ψm(rσ)

))+)

= 2N+1 exp

((
sup

t>0, σ∈pr(Ω)

(
(N + 1)t− ψm(e

tσ)
))+)

= 2N+1 exp

((
sup

σ∈(prΩ)

(
sup
t>0

(
(N + 1)t− ψm,σ(e

t)
)))+)

= 2N+1 exp

((
sup

σ∈pr(Ω)
(ψm,σ[e])

∗(N + 1)

)+)
.

Now applying Lemma 1 we obtain

sup
x∈Ω

(1 + ∥x∥)N+1

θm(x)
≤ 2N+1max

(
1,

(N + 1)N+1

eN+1e
inf

σ∈pr(Ω)
(ψ∗

m,σ[e])
∗(N+1)

)
.

Thus, for each N∈ N

pm(fν,λ − VN ) ≤
C1C

N
2 2N+1

(N + 1)!
max

(
1,

(N + 1)N+1

eN+1e
inf

σ∈pr(Ω)
(ψ∗

m,σ[e])
∗(N+1)

)
. (12)

Since N ! ≥ NN

eN
for all N ∈ N, we get

C1C
N
2 2N+1

(N + 1)!
· (N + 1)N+1

eN+1e
inf

σ∈pr(Ω)
(ψ∗

m,σ[e])
∗(N+1)

≤ C1C
N
2 2N+1

e
inf

σ∈pr(Ω)
(ψ∗

m,σ[e])
∗(N+1)

. (13)
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Note that uniformly for σ ∈ pr(Ω) one has

lim
ξ→+∞

(ψ∗
m,σ[e])

∗(ξ)

ξ
= +∞ . (14)

This is so because for each σ ∈ pr(Ω)

(ψ∗
m,σ[e])

∗(ξ) ≥ ξt− ψ∗
m,σ(e

t) , ξ > 0 , t > 0 ,

and

ψ∗
m,σ(e

t) = sup
r≥0

(
etr − ψm,σ(r)

)
≤ sup

r≥0, σ∈pr(Ω)

(
etr − ψm(rσ)

)
= sup

x∈Ω

(
et∥x∥ − ψm(x)

)
.

Using (13) and (14) we have from (12) that pm(fν,λ − VN ) → 0 as N → ∞.
From the conclusions of all three above steps, one derives that each func-

tion f ∈ Eφ(Ω) can be approximated by polynomials in Eφ(Ω).

3. Application of Theorem 1 to hypercyclicity

The following auxiliary results will be used in the proof of Theorem 2.

Lemma 2. Partial derivative operators are continuous on Eφ(Ω).

Proof. Let m ∈ N be arbitrary. Since φm(x)−φm+1(x) ≥ −am−bm for all
x ∈ Ω, we get for each f ∈ Eφ(Ω), all α ∈ Zn+ with |α| ≤ m and j = 1, . . . , n
that ∣∣∣∣(Dα

(
∂

∂xj
f

))
(x)

∣∣∣∣ ≤ pm+1(f)e
φm+1(x)

≤ pm+1(f)e
φm(x)+am+bm , x ∈ Ω .

Thus,

pm

(
∂

∂xj
f

)
≤ eam+bmpm+1(f) , f ∈ Eφ(Ω) .

This means that the operators ∂
∂xj

are continuous on Eφ(Ω).

Corollary 1. Let P (x) =
∑

|α|≤N
aαx

α be a polynomial in Rn (N ∈ N).

Then the operator
∑

|α|≤N
aαD

α is continuous on Eφ(Ω).
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Note that for each z ∈ Cn the function fz(ξ) := exp(i⟨ξ, z⟩) belongs to
Eφ(Ω) since for each m ∈ N

pm(fz) ≤ (1 + ∥z∥)m exp
(
φ̃m(Im z)

)
.

So for each functional Φ ∈ (Eφ(Ω))′ its Fourier-Laplace transform Φ̂(z) =
Φ(ei⟨ξ,z⟩) is well defined everywhere on Cn.

Lemma 3. Let Φ ∈ (Eφ(Ω))′. Then Φ̂ is an entire function on Cn. More-
over, for each α ∈ Zn+

(Dα
z Φ̂)(z) = Φ

(
(iξ)αei⟨ξ,z⟩

)
, z ∈ Cn. (15)

Proof. Fix Φ as in the hypothesis as well as an arbitrary point ζ ∈ Cn.
For each z ∈ Cn such that ∥z − ζ∥ < 1 let

gz,ζ(ξ) := ei⟨ξ,z⟩ − ei⟨ξ,ζ⟩ − i⟨ξ, z − ζ⟩ei⟨ξ,ζ⟩ , ξ ∈ Rn. (16)

Using the inequality

|(Dαgz,ζ)(ξ)| ≤ (1 + ∥ζ∥)|α|(1 + ∥ξ∥+ ∥ξ∥2)e∥ξ∥∥z − ζ∥2e⟨ξ,− Im ζ⟩ , α ∈ Zn+ ,

positivity of functions hm and condition (a) on the system (ψm)
∞
m=1 for each

m ∈ N we can find a constant C > 0 depending on ζ and m such that

pm(gz,ζ) ≤ C∥z − ζ∥2. (17)

Since Φ is a continuous functional then Φ(gz,ζ) = o(∥z− ζ∥), z → ζ. And now
since Φ is linear we get

Φ̂(z)− Φ̂(ζ) =

n∑
j=1

Φ
(
iξje

i⟨ξ,ζ⟩
)
(zj − ζj) + o(∥z − ζ∥) , z → ζ .

Therefore, Φ̂ is holomorphic at the point ζ. Since ζ ∈ Cn was arbitrary, then
Φ̂ is an entire function.

The second part of the statement is evident. The lemma is proved.

Lemma 4. Let O be a non-empty open set in Cn. Then the system
{exp(i⟨ξ, z⟩)}z∈O is complete in Eφ(Ω).
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Proof. Let S be an arbitrary linear continuous functional on Eφ(Ω) such
that S

(
ei⟨ξ,z⟩

)
= 0 for each z ∈ O. By using the Hahn-Banach theorem, our

task is to show that S is a zero functional. By Lemma 3 the Fourier-Laplace
transform Ŝ of S is an entire function on Cn. So by the uniqueness theorem
Ŝ(z) = 0 for each z ∈ Cn. Now using (15) we get S(ξα) = 0 for all α ∈ Zn+.
Thus, S(p) = 0 for each polynomial p. By Theorem 1 polynomials are dense
in Eφ(Ω). Therefore, S = 0 and the proof is complete.

Denote by L(Eφ(Ω)) the set of linear continuous operators on Eφ(Ω). Let
T ∈ L(Eφ(Ω)). Define the function FT on Ω × Cn by the rule FT (ξ, z) =
T (fz)(ξ). For each fixed z ∈ Cn let fj,z(ξ) := iξj exp(i⟨ξ, z⟩).

Lemma 5. Let T ∈ L(Eφ(Ω)). Then the function FT is an entire function
in the second variable.

Proof. Let T be a linear continuous operator on Eφ(Ω). Then for each
k ∈ N there exist numbers ck > 0 and m ∈ N such that for all g ∈ Eφ(Ω)

pk(T (g)) ≤ ckpm(g) . (18)

Let ξ ∈ Ω, ζ ∈ Cn be arbitrary points. For each z ∈ Cn such that
∥z − ζ∥ < 1 consider the function gz,ζ (see (16)). From (18) it follows that

|T (gz,ζ)(ξ)| ≤ ckpm(gz,ζ)e
φk(ξ) , ξ ∈ Ω .

From this, the inequality (17) and linearity of T we get for each ξ ∈ Ω

FT (ξ, z)− FT (ξ, ζ) =

n∑
j=1

T (fj,ζ)(ξ)(zj − ζj) + o(∥z − ζ∥) , z → ζ .

Therefore, for each fixed ξ ∈ Ω, FT (ξ, z) is holomorphic at the point ζ as a
function of z. Since ζ ∈ Cn was arbitrary, then the assertion of lemma is
proved.

Proof of Theorem 2. Since T commutes with each partial derivative
operator, then for each z ∈ Cn and j = 1, . . . , n

DjT (fz) = TDj(fz) = T (izjfz) = izjT (fz) .

From this it follows that for each z ∈ Cn there is a complex number aT (z)
such that

T (fz) = aT (z)fz . (19)
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Thus, for all z ∈ Cn, ξ ∈ Ω we have FT (ξ, z) = aT (z)e
i⟨ξ,z⟩. Using Lemma

5 we get that aT is an entire function on Cn. Taking into account that T
is not a scalar multiple of the identity and Lemma 4 we conclude that aT
is not a constant function. Note that, if Ω is a non-empty open set in Cn,
then the system {T (fz)}z∈Ω is complete in Eφ(Ω). It is easy to show using
the representation (19) and Lemma 4. Consider the sets W1 = {z ∈ Cn :
|aT (z)| < 1} and W2 = {z ∈ Cn : |aT (z)| > 1}. They are open in Cn. Let
X0 be the linear span of the system {T (fz)}z∈W1 , Y0 be the linear span of
the system {T (fz)}z∈W2 . The sets X0 and Y0 are dense in Eφ(Ω). Therefore,
linear spans of the sets

∪
|λ|<1

ker(T −λ) and
∪

|λ|>1

ker(T −λ) are dense in Eφ(Ω).

Thus, all the conditions of Theorem A are fulfilled. Hence, the operator T is
hypercyclic.

Corollary 2. Let P (x) =
∑

|α|≤m
aαx

α be a non-constant polynomial in

Rn (N ∈ N). Then the operator
∑

|α|≤N
aαD

α is hypercyclic in Eφ(Ω).
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