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Abstract : What has category theory to offer to Banach spacers? In this survey-like paper we
will focus on some of the five basic elements of category theory –namely, i) The definition of
category, functor and natural transformation; ii) Limits and colimits; iii) Adjoint functors;
plus a naive presentation of Kan extensions– to support the simplest answer “tools that
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all about categories”. Homology will be treated in a second part.

Key words: Categorical Banach space theory, universal constructions, duality and adjoint-
ness.

AMS Subject Class. (2000): 46Mxx, 18-02, 46-02.

1. Prologue

Functional analysis, in general, and Banach space theory, in particular, are
unthinkable outside the ambient of algebraic structures. In fact, functional
analysis can be defined as the blend of algebra and topology. One of the major
achievements of mathematics in the XXth century is category theory, whose
paramount importance comes from the fact of establishing a common language
for all mathematics. Indeed, it becomes easier for mathematicians working in
different areas to communicate if they are able to identify their basic construc-
tions, knowing that certain objects of their disciplines are particular instances
of the same concept. And the only part of mathematics able today to provide
such common language is categorical algebra. The organization of this paper
is as follows:
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Now, focusing in Banach space theory:

What is categorical Banach space theory?

It is the blend of categorical algebra and Banach space theory. The first
steps should be the understanding and interpretation of the basic categorical
concepts in the domain of Banach space theory. In this regard, probably the
five basic elements of category theory are
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1. The definition of category, functor and natural transformation.

2. Limits and colimits.

3. Adjoint functors.

4. Derived functors.

5. Kan extensions.

In this survey we will focus on the first three of those elements plus a naive
presentation of Kan extensions. The study of derived functors conforms what
is called homology theory, and will be treated in part II. Impatient readers
will find a few homological elements in [82]; and most of them in [80].

What has category theory to offer to Banach spacers?

The answer is simple: Tools that work and a point of view that helps to
understand problems, even if one does not care at all about categories.

A second type of answer could be: almost the same as Banach space theory
has to offer to category theory. Indeed, there are good arguments to sustain
the idea that Banach spaces is a very interesting category, even if one just
cares about category theory.

The purpose of this survey is therefore to establish a few travel signals
along the road towards “Categorical Banach space theory”.

↓ (downwards direction) Making the basic ideas, elements and techniques of
categorical algebra accessible to Banach spacers. This implies, but is
not restricted to, bringing the categorical concepts to life in a Banach
space ambient.

↑ (upwards direction) To encourage research in the complementary aspect of
the problem: identifying the categorical elements that correspond to
Banach space constructions which are useful inside the theory; and, if
necessary, to invent and develop them.

The categorical approach to Banach space theory has a far richer and
longer history than one can expect; a brief account of how categorical concepts
have appeared and have been studied in Banach space theory will also be
presented.
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2. The Eilenberg-MacLane program

The Eilenberg-MacLane program, from now on EM, lays the foundations
for any theory having expectations to be “well-done”. As stated in [3], it
reads:

”The theory emphasizes that, whenever new abstract objects are
constructed in a specified way out of given ones, it is advisable to
regard the construction of the corresponding induced mappings on
these new objects as an integral part of their definition. The pur-
suit of this program entails a simultaneous consideration of objects
and their mappings (in modern terminology, the category). This
emphasis on the specification of the type of mappings employed
gives more insight into the degree of invariance of the various con-
cepts involved [...] For instance, the concept of the commutator
subgroup of a group is in a sense a more invariant one than that
of the center, which in turn is more invariant than the concept of
the automorphism group of a group, even though in the classical
sense all three concepts are invariant.

The invariant character of a mathematical discipline can be for-
mulated in these terms. Thus, in group theory all the basic con-
structions can be regarded as the definitions of co- or contravariant
functors, so we may formulate the dictum: The subject of group
theory is essentially the study of those constructions of groups
which behave in a covariant or contravariant manner under in-
duced homomorphisms.”

It is a pity that The Eilenberg-MacLane paper did not contemplate Banach
space theory, although this had been formalized almost fifteen years ago with
Banach’s book [1]. Otherwise, it should not sound so strange that “The
subject of Banach space theory is essentially the study of those constructions
of Banach spaces which behave in a covariant or contravariant manner under
induced homomorphisms”.

3. The principles of categorical Banach space theory

A functor F : A→ C between two categories is a correspondence assign-
ing objects to objects and arrows to arrows which respects composition and
identities. the functor is called covariant if whenever f : A → C then F(f) :
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F(A)→ F(C). It is said contravariant if, however, F(f) : F(C)→ F(A).
Thus, what EM means, translated to the Banach space world is:

I Banach space constructions must be understood and formulated as functors.

As it is formulated by Mityagin and Švarc [22]:

“The essence of the matter is that nearly every natural construc-
tion of a new Banach space from a given Banach space generates
a certain (covariant o contravariant) functor”.

This is the foundational rule for any categorical (Banach space or not)
work. So let us start labelling Ban the category of Banach spaces, whose
objects are Banach spaces and whose arrows are the linear continuous op-
erators. It will be often necessary to work with the related category Ban1

whose objects are Banach spaces but whose arrows are only the linear contin-
uous contractions (operators having norm at most 1). Here it comes the first
scholium:

Scholium. Naively speaking, a good category to work within is one in
which one can safely work with diagrams. Working with diagrams is simple,
extremely nice; and powerful too, sometimes. To work with diagrams there
are some rules to follow; basically, that the drawings have to be complete,
which means that they start with 0 and end with 0. For instance, if we have
an operator T : W → X the completion will be a diagram like

W
T−−−−→ X

which, when completed should give

0 −−−−→ K
i−−−−→ W

T−−−−→ X
q−−−−→ C −−−−→ 0.

Do the objects K, i, C, q exist? Well, K is the kernel of T and i : kerT → W
is the canonical inclusion. When W is a Banach space and T s a linear
continuous operator then kerT is a Banach space so, up to here, things work.
But C should be the cokernel of T , namely C = X/ ImT . And the image of
an operator is not necessarily closed, so X/ ImT is not necessarily a Banach
space. And things have stopped to work.

Thus, the category of Banach spaces is a soft place to work since it is not
a “good” category –Abelian category is the proper name– and, nevertheless,
a lot of categorical (and homological) constructions can be used. Indeed, the
previous difficulty suggests two possible lines of action:
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• To widen up the ambient category to admit semi-Banach (in general,
non-Hausdorff spaces) spaces. Indeed, it is the Hausdorff character what
makes diagrams to be, in general, incomplete. This option has a a price:
loosing (in principle) tools as the open mapping theorem.

• To continue working within the category of Banach spaces but reduc-
ing the class of allowable operators in order to be able to complete
diagrams. Since operators with cokernel are those having closed range
(strict morphisms in the language of Raikov), the are essentially two
types of operators one wants to see in a diagram: isomorphic embed-
dings and quotient maps. These are the maps that appear in an exact
sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0.

Recall that an exact sequence is a diagram as above in which the kernel
of each arrow coincides with the image (cokernel) of the preceding. So,
j must be injective, q must be surjective –thus a quotient map– whose
kernel is j(Y ), which must be closed making thus j an into isomorphism.
This type of categories are called exact in Quillen’s sense.

End of the Scholium

To definitely loose fear to categorical thinking, we state now a couple of
categorical Banach space problems claiming life:

Problem 1. Study the category having as objects Banach spaces and
Lipschitz maps as morphisms.

Problem 2. Construct the very much needed category of Banach spaces
and multilinear maps.

See in [84] the construction of an operative category of exact sequences of
Banach spaces.

A Banach functor is a functor F : B→ B acting in a certain subcategory of
Banach spaces. Most often it will be moreover required that F be linear, with
the meaning that F(λT +S) = λF(T ) +F(S); also, it will also be sometimes
required that it is norm decreasing, with the meaning ∥F(T )∥ ≤ ∥T∥. A few
important examples of linear Banach functors are:

• The identity covariant functor ı : B → B which is defined in any sub-
category B of Ban.
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• The contravariant duality functor D defined byD(X) = X∗ for a Banach
space X and D(T ) = T ∗ for an operator T .

• More generally, given a Banach space Y the contravariant LY functor
defined by LY (X) = L(X,Y ) and LY (T ) = T ◦ with he meaning T ◦(S) =
ST . The choice Y = R gives the duality functor.

• Given a Banach space X the covariant LX functor defined by LX(Y ) =
L(X,Y ) and LX(T ) = T∗ with he meaning T∗(S) = TS. The choice
X = R gives the identity.

• Given a Banach space X the covariant ⊗X functor defined by ⊗X(Y ) =
X⊗̂πY and ⊗X(T ) = 1X ⊗ T .

• Semadeni’s covariant Banach-Mazur functor [28] (see below) that assigns
to a Banach space X the space C(BX∗); and to a norm one operator
T : X → Y the operator T ∗◦ defined by T ∗◦(f) = fT ∗.

• The covariant functors (see [17, 18]) assigning to a Banach space X the
space ℓp(X) of p-summable sequences with the natural induced opera-
tors.

• One can equally define the Grothendieck-Pietsch functors that assign to
a Banach space X the space ℓwp (X) of weakly p-summmable sequences
on X.

• If B is a certain subcategory of Ban sometimes it is useful to consider
the “forgetful” functor � : B → Ban that simply “forgets” whatever
additional structure the objects or morphisms of B may have.

Now, the meaning of EM is that “right” Banach space constructions are
Banach functors. It is important here to remark that while there is not a
theory of X there cannot be a categorical theory of X. Nevertheless, once
the theory develops up to reach a certain stage of sophistication ... then
one realizes that what one is actually needing to know is something different.
And, from the categorical point of view, this extra “different thing” is the
uncovering of the functor behind. Let us exhibit deep Banach space problems
related to the knowledge of who is and who is not a Banach functor.

3.1. Banach space constructions as Banach functors. To have
a concrete example in mind, consider the well known construction: “Every
Banach space can be embedded into a Banach space of continuous functions”.
From the classical point of view that is what there is. And of course that
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it is an important result. The claim now is: that is not all there is. In
this case, (a part of) what the EM says is that a correspondence lies on a
categorical level only when it is a functor. Which exactly means, in this case,
to know how to assign an operator C(τ) : C(BX∗)→ C(BY ∗) to an operator
τ : X → Y in such a way that the basic rules are respected. When τ is a
norm one operator then C(τ) can be defined as C(τ)(f) = fτ∗. Thus, the
correspondence establishes a functor when acting Ban1 → Ban1 –although
Banach space tricks yield that to every operator τ : X → Y corresponds an
“extension operator” T : C(BX∗)→ C(BY ∗) given by ∥τ∥C

(
τ
∥τ∥

)
. Of course,

additivity has been lost. Accepted this restriction, the correspondence that
assigns X → C(BX∗ and τ → C(τ) establishes a Banach functor. Here we
have a few more examples of Banach space constructions and the categorical
questions they suggest.

• On the covariant side, apart of the example previously considered, prob-
ably the simplest construction is that associating to a Banach space X
the injective space l∞(BX∗). It was Semadeni [28] the first one to rec-
ognize a functor here.

• After the Bourgain-Delbaen paper [76] showing the existence of a Schur
L∞ space, Bourgain and Pisier entered the categorical approach in [77]
showing that any separable Banach space X can be embedded into a sep-
arable L∞ Banach space L∞(X) in such a way that L∞(X)/X has the
Radon-Nikodym and Schur properties. For nonseparable spaces, Abad
and Todorcevic [73] obtain the analogue construction: namely, every
Banach space X can be embedded into some L∞ space L∞(X) in such
a way that L∞(X)/X has the Schur and Radon-Nikodym properties.
The following question is still unsettled:

Problem 3. Does the Bourgain-Pisier correspondence X  L∞(X)
establish a functor?

The meaning of an affirmative answer is the following deep result: op-
erators τ : X → Y can be extended to operators T : L∞(X)→ L∞(Y ).
Very few things are currently known about the extension of L∞-valued
operators outside of the case of operators valued on C(K) or Linden-
strauss spaces. In [87] it is shown that Lindenstrauss-valued operators
on X can be extended to the Bourgain-Pisier space L∞(X). It is not
known if this holds for the Abad-Todorcevic construction.
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• Zippin showed in [102] that every separable Banach space X can be
embedded into a separable Banach space Z(X) with BAP in such a way
that the quotient space Z(X)/X also has BAP and every C(K)-valued
operator on X can be extended to Z(X).

Problem 4. Does Zippin’s construction establish a Banach functor?

• Pisier [99] solved Grothendieck’s problem of topologies by showing that
every separable Banach space X of cotype 2 can be embedded into a
cotype 2 space P(X) such that P(X)⊗ε P(X) = P(X)⊗π P(X).

Problem 5. Does Pisier’s construction establish a Banach functor?

• The paper [74] shows how to produce, given a Banach space X a James-
Tree-like space JT (X) some of whose properties depend on X. Still
unsettled is the question of to what extent this is a functor.

Problem 6. Does such constructions have a functorial character?

• On the contravariant side, each Banach space X is a quotient of ℓ1(BX).
The construction is obviously functorial.

• In [91] Gowers-Maurey solved the classical unconditional basic sequence
problem with the construction of a Hereditarily Indecomposable space
(in short H.I.). Recall that a Banach space X is said to be H.I. if no
infinite dimensional subspace Y ⊂ X can be decomposed as Y = A⊕B
with infinite dimensional A, B. A series of papers of Argyros et alt.
produced many variations of that construction leading to a great variety
of H.I. spaces. If it is clearly impossible to embed a space X into an
H.I. space, they show that every separable space not containing ℓ1 is a
quotient of an H.I. space.

Problem 7. Does there exist a functorial character behind such con-
structions?

A general pattern for this type of problems is that of envelopes, which we
consider now.
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3.2. Banach envelopes. Read in purely Banach space terms, the gen-
eral situation is that every Banach space X can be naturally embedded into
a space of continuous functions C(BX∗) in such a way that the embedding
δX : X → C(BX∗) has the universal property that every C(K)-valued oper-
ator defined on X can be extended through δX to the whole C(BX∗). Does
there exist a similar universal embedding for other classes of Banach spaces
or operators? In categorical terms: do other similar constructions provide
Banach functors?

L∞-spaces are though to be the local version of C(K)-spaces. The follow-
ing subclasses of L∞-spaces have appeared in the literature:

1. Lindenstrauss spaces (denoted L); i.e., spaces that are L1+ε-spaces for
all ε > 0.

2. Separably injective (Θ) and universally separably injective (Θu) spaces.
Recall that a Banach space E is said to be separably injective if for every
separable Banach space X and each subspace Y ⊂ X, every operator
t : Y → E extends to an operator T : X → E. If some extension T
exists with ∥T∥ ≤ λ∥t∥ we say that E is λ-separably injective. A Banach
space E is said to be universally separably injective –see [75]– if for every
Banach space X and each separable subspace Y ⊂ X, every operator
t : Y → E extends to an operator T : Y → X. If some extension T exists
with ∥T∥ ≤ λ∥t∥ we say that E is universally λ-separably injective.

3. Lindenstrauss-Pe lczyński spaces (LP). Recall from [85, 86] that a Ba-
nach space E is said to be a Lindenstrauss-Pe lczyński space if all opera-
tors from subspaces of c0 into E can be extended to c0. If some extension
exists verifying ∥T̂∥ ≤ λ∥T∥ we shall say that E is an LPλ space.

4. L∞-spaces (L∞).

Given a classA of Banach spaces, theA-envelope of X is a spaceA(X) ∈ A
and an embedding δ : X → A(X) with the property that every A-valued
operator defined on X can be extended through δ to A(X).

Problem 8. Let A denote one of the classes L,Θ,Θu,LP or L∞. Given
a Banach space X does there exists the A-envelope of X?

The construction of the L-envelope for separable Banach spaces can be
seen in [87]. The 1−Θ-envelope, as well as the 1−Θu envelope can be seen
in [75]. It is also possible to construct the 1− LP-envelope.
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3.3. Banach spaces as functors. But there is more. The EM pro-
gram considers that, even when a ”single” construction is studied, it must be
understood as a functor. This means that ℓp spaces, Tsirelson’s space, Gurarij
space, . . . are made out of something, and thus the comprehension of the space
is not “right”, in the Eilenberg-MacLane sense, until the correspondence be-
tween the constituents and the final space has been clearly established as an
understandable functor. So, what EM also says is:

I Banach spaces themselves must be understood as functors.

From the classical point of view, when one constructs Tsirelson’s
space, that’s it. One gets a reflexive space without copies of lp and
that is all one wanted to get. From the categorical point of view one
needs more. Let us test this point of view against the simplest classical
example: spaces of continuous functions on a compact space K.

The categorical point if view here is to understand this construction
as a contravariant functor C(·) from the category Comp of compact
topological Hausdorff spaces to a category of Banach spaces (in principle,
Ban or Ban1): it transforms a compact space K into the Banach space
C(K) and a continuous function f : K → S into the operator f ◦ :
C(S) → C(K) given by f◦(g) = gf . It is due to Semadeni the clear
understanding of the categorial approach. The series of papers [48, 101,
16, 28, 37] establish the nature and properties of the functor

C(·) : Comp→ Ban,

as well as its relationships with its natural “dual” (the right meaning of
the duality will be explained later)

⃝∗ : Ban→ Comp

defined by ⃝∗(X) = BX∗ .

In addition to Semadeni’s papers, Pe lczyński’s monograph [36] also
adopts a categorial approach for what concerns the understanding of
C(K)-spaces. Right from the start Pe lczyński sees the connection be-
tween continuous functions ϕ : K → S and linear ”composition with
ϕ” operators ϕ◦ : C(S) → C(K); namely, the necessity of considering
the contravariant functor C(·) : Comp → Ban. In fact, Pe lczyński is
concerned with the problem of the existence of “simultaneous extension
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operators” E : C(T )→ C(S) when S ⊂ T is a subcompact; i.e., if there
is a linear continuous operator such that the restriction of E(f) to S is
again f . Pe lczyński defines a linear exave as follows: if φ : S → T is a
continuous map between two compact spaces then φ◦ : C(T ) → C(S)
denotes the natural dual operator: φ◦(f) = fφ. Now, a linear operator
u : C(S)→ C(T ) is called a linear exave if φ◦uφ◦ = φ◦. The condition is
always satisfied whenever u is either a left of right inverse for φ◦. In the
first case u is in called a linear averaging operator while in the second case
u is a linear extension operator. The work closes in the only way that can
really do justice to the author’s categorical thinking: with an appendix
entitled ”category-theoretical approach”. In the appendix Pe lczyński re-
alizes that what was useful from C(K)-spaces was their functorial char-
acter. He says that one could have considered a contravariant functor F
-instead of C(·)- as starting point, define F -extension and F -averaging
operators and that, under some extra hypothesis on the functor F , the
theory developed for C(K)-space can be reproduced for functors F he
calls “of the Banach-Stone type”.

Of course that the same idea (Banach spaces must be understood
as functors) applies, or should be applied, to other spaces. Sequence
spaces, spaces of functions on trees... The EM general approach here,
still incipient, would be to precise a category D of “diagrams” (N, trees,
. . . ) and then establish the adequate functors D→ Ban able to generate
the desired spaces (say, ℓp, James, James-tree, Schreier, Tsirelson, . . . ).

3.4. Operators as natural transformations. The impact of the
categorical approach does not however fades here and makes necessary
to reinterpret operators in the same categorical point of view. To see this
at work, let us return again to the sample assertion “every Banach space
can be embedded into a Banach space of continuous functions”. We have
explained so far the terms “we can associate with each Banach space a
certain space o continuous functions” as a Banach functor and ”space of
continuous functions” understanding spaces themselves as functors. Still
to explain is the “embedding” part.

To start with, the abstract point of view clearly demands that if one
wants to construct a category with functors as objects, then a definition
for arrows is required.
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Definition of natural transformation. Given two functors F ,G
acting between the same categories A → C, a natural transformation
τ : F → G is a correspondence that assigns to each object A in A an
arrow τA : F(A) → G(A) in such a way that give an arrow f : A → C
there is a commutative diagram:

F(A)
τA−−−→ G(A)

F(f)
y yG(f)
F(C) −−−→

τC
G(C).

Natural transformation is arguably the most important notion in math-
ematics. If functors tell us how things change natural transformations
exist to tell us when things change in the same manner. So, turning back
to EM and Banach space theory, if one has to understand Banach spaces
as functors, then

I Operators have to be understood as natural transformations.

3.5. Banach spaces of natural transformations; Yoneda’s lemma

and examples. The definition of Banach natural transformation is due
to Mityagin and Švarc [22, 17, 18].

Definition. Let F ,G : B → B two Banach functors acting on a
subcategory B of Ban. A Banach natural transformation is a natural
transformation τ : F → G such that the quantity

∥τ∥ = sup
X
∥τX∥

is finite; here the supremum is taken over all the Banach spaces of the
category B. Addition and multiplication by scalars can be defined in an
obvious way for Banach natural transformations, and it is clear that the
quantity above is a complete norm. So the space [F ,G] of all Banach nat-
ural transformations between the Banach functors F and G is a Banach
space.

Scholium. A point here that Banach spacers overlook is that the
previous definition makes sense only if the “space” of all natural transfor-
mations between two Banach functors forms a set. A study fairly general
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and complete of the situation has been performed by Linton [26]. Linton
defines a category to be autonomous as one in which, roughly speaking,
the “space” of natural transformations between two functors forms a set
(which is not automatically true) and admits the same natural additional
structure as the “spaces” Hom(A,B). Just for the readers peace of mind:
yes, Banach spaces is an autonomous category.

Let us identify a few spaces of natural transformations:

Proposition 3.1.

1. For a covariant Banach functor F one has

(a) Svarc [17], Mityagin and Svarc [22, Lemma 2]

[LA,F ] = F(A)

(b) Pothoven [52]
[⊗A,F ] = L(A,F(R))

2. For a contravariant Banach functor G one has

(a) [LA,G] = G(A).

(b) [⊗A(·)∗,G] = L(A,GR).

The results (1a) and (2a) can be considered special instances of Yoneda’s
lemmas [95]. We make the proof for covariant functors, and leave for the
reader the contravariant case.

Proof of (1a). The natural equivalence η : F −→ [LA, F ] must be
defined as follows: for each A the operator ηA : FA → [LA, F ] takes
points p ∈ FA and send them into a natural transformation ηA(p) : LA →
F : for each X one must have an operator ηA(p)X : L(A,X) → FX,
which is

ηA(p)X(T ) = FT (p).

This is well defined because if T : A→ X then FT : FA→ FX.

Proof of (1b). Recall that every element x ∈ X can be understood
as an operator x : R → X; therefore Fx is an operator R → FX.
Given an operator T : X → FR the associated natural transformation
ν(T ) : ⊗X → F comes defined by

ν(T )X(a⊗ x) = Fx(Ta).
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Conversely, given a natural transformation η ∈ [⊗A,F ] the associated
operator is T = ηR.

The result (1) in particular yields

[LX ,LY ] = L(Y,X),

while the second result had been formulated by Mityagin and Svarc [22]
as

[⊗X ,⊗Y ] = L(X,Y ),

showing that the interpretation of the space X as the functor ⊗X pro-
duces no loss of information.

The basic functor in homology, the functor Ext, allows analogous
results. Recall that Ext(B,A) is the space of exact sequences 0→ A→
♢ → B → 0 modulus a certain equivalence relation. This is not a
Banach functor although in [78, 79] it is made a “semi-Banach” functor.
One has [44, IV, Prop. 10.3] (see also [83])

[Ext(X, ·),Ext(Y, ·)] = L(Y,X)

This results inherits the ideas of Hilton and Rees [15]. There is a
true Banach (better, quasi-Banach) space theory result without general
counterpart (see [83]):

Proposition 3.2. Let 0 < p < 1. Given subspaces A,B of Lp(0, 1)
one has

[Ext(Lp/A, ·),Ext(Lp/B, ·)] = L(B,A).

We check now our test assertion (“operators are natural transforma-
tions”):

• The canonical embedding δX : X → C(BX∗) means the existence
of a natural transformation δ : ı→ C(⃝∗) between the identity and
the Banach-Mazur functor; it assigns to each space X the canonical
embedding δX . It is clear the commutativity of the squares

X
δX−−−→ C(BX∗)

T

y yT ∗◦

Y −−−→
δY

C(BY ∗).
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It was again Semadeni [28] the first one to recognize and study a
natural transformation here.

• If the Bourgain-Pisier construction [77] was a functor, it would be
natural to expect that the embedding iX : X → L∞(X) given by
the theorem would be a natural transformation. The same can be
said about Zippin construction [102] and Pisier’s construction [99].
Related constructions are worth mentioning.

• Let A be the functor defining the A-envelope. It carries with it a
natural transformation δ : ı→ A
• On the contravariant side, each Banach space X is a quotient of
ℓ1(BX). These quotients obviously establish natural transforma-
tions ℓ1(·)→ ı.

• [Interpolation theory] This is one of the theories most suitable,
in principle, for a categorical treatment. Indeed, Mityagin and
Shvarts [22, 17, 18] already mention interpolation theory as one
of the key examples. The paradox appears again when realizing
that the existence of a categorical context does not move “interpo-
lation people” to stop working by hand1. The categorical context
is as follows: let us consider the category (Ban,Ban) whose ob-
jects are compatible couples of Banach spaces, and whose arrows
T : (A0, A1) → (B0, B1) are operators T : A0 + A1 → B0 + B1

such that T : A0 → B0 and T : A1 → B1 are continuous. Al-
though it is rather standard to say that an interpolation method is
a functor (Ban,Ban) → Ban this is not entirely correct since it
overlooks the fact (otherwise required) that the interpolated space
is “intermediate” between the intersection space A0 ∩ A1 in the
max norm and the sum A0 + A1 in the inf norm. Each author
skips this difficulty his own way. The simplest way, however, is
to recall the two interpolation functors already implicitly defined
in the definition of ”compatible couple”: the intersection functor
∆(A0, A1) = A0∩A1 and the sum functor Σ(A0, A1) = A0 +A1. In

1The following sentence, reproduced here without any permission, reflects the thinking
of one expert in interpolation theory: “In my opinion, interpolation theory is what it is,
independently of whether some of its results/parts can be described with a more or less
categorical language. The “shortcomings” of classical theory are what they are. Sometimes
sufficient conditions to get the results are known. I don’t feel categorical perspectives serve
to amend the shortcomings of classical theory”
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this way, what makes a true (at least an interesting) interpolation
functor F : (Ban,Ban) → Ban is the existence of two injective
natural transformations ∆ → F and F → Σ such that their com-
position is the canonical inclusion ∆→ Σ.

The approaches to interpolation can be summarized as: 1) The
classical approach to interpolation, contemplating “interpolation
functors” such as described in Chapter 2 of Bergh-Löfstrom [60].
Since the text does not contains the word natural transformation
which is, as we have remarked, at the core of the theory, we under-
stand that that exposition does not have, categorically speaking,
much to offer. 2) The very general schema presented [55]; although
the categorical language is omitted, the approach of the author is
pregnant of categorical ideas. 3) The interpretation of Kaijser and
Pelletier [92, 93] via a special type of pull-back-push-out diagrams
called Doolittle diagrams. Their approach is conceptually very in-
teresting, soundly categorically based and they, moreover, obtain
a remarkable duality theorem. 4) A particularly interesting and
categorically biased approach has been presented by Carro, Cerdá
and Soria in [81] then generalized by Cwikel, Rochberg and Kalton
in [88].

4. Universal constructions: limits and colimits

If Banach functor is the categorical way of saying “a correspondence
that assigns to certain Banach spaces another Banach spaces”, Universal
construction is the categorical form of saying “a correspondence that
assigns to certain family of Banach spaces another Banach space”. The
word “universal” contains the meaning that the construction must be
compatible with the point of view that contemplates spaces as functors
and operators as natural transformations.

There are two types of universal constructions: limits and colimits.
The prefix co- is the heart of categorical duality, to be considered later:
whenever a statement (definition, theorem, . . . ) can be formulated in
categorical terms, namely, in terms of points (objects) and arrows (i.e.,
diagrams) then there is a correspondent “dual” statement obtained re-
versing the arrows. To give an example, if given the situation



120 j.m.f. castillo

• −−−→ •y
•

there is a universal (i.e., well and uniquely defined) construction of an
object ▽

• −−−→ •y y
• −−−→ ▽

then the dual construction is the universal construction that allows one
to pass from

• −−−→ •x
•

to
• −−−→ •x x
△ −−−→ •.

It is a matter of choice which construction ▽ or △ will be called limit
and which co-limit. But the natural choice should be that all construc-
tions of one type will be called say limits and all belonging to the other
will then be colimits.

Products, pull-backs, subspaces, projective limits . . . are all of the
same type; as well as co-products, push-outs, quotients, inductive lim-
its. It would therefore be natural to call limits to the first and co-limits
to the second. But Banach space tradition is illogical: indeed, tradi-
tion gave the names “inductive limit” to a construction of type ▽, and
“product” to a construction of type △. However, one of the two should
have a “co”. Since it is hard to change either the name product or the
inductive limit, let us from now on to fix that constructions of type △
will be called inverse limits, while those of type ▽ will be direct limits.
This makes Products, pull-backs, subspaces, projective limits . . . to be
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inverse limits; while co-products, push-outs, quotients, inductive limits
. . . become direct limits.

Direct limit. The definition goes back to Grothendieck [11]. Let D be
an abstract diagram made with points and arrows. There is no difficulty
in considering D as a category. A functor F : D → Ban means just
drawing D with Banach spaces in the place of points and operators in
the place of arrows.

So, given a Banach functor F : D → Ban, a Banach space L(F)
will be called the direct limit of F through D if there is a family of
operators αd : F(d) → L(F), d ∈ D, making commutative the whole
diagram in Ban in such a way that for every other Banach space X
and family of morphisms βd with the same property, there is a unique
operator α : L(F) → X making the whole diagram (i.e., ααd = βd)
commutative.

Inverse limit. Let D and F be as before. A Banach space L(F)
will be called the inverse limit of F through D if there is a family of
operators αd : L(F) → F(i), d ∈ D, making commutative the whole
diagram in Ban in such a way that for every other Banach space X
and family of morphisms βd with the same property, there is a unique
operator X → α : L(F) making the whole diagram commutative (i.e.,
αdα = βd).

Probably the most important result in this regard is [27]:

Theorem 4.1. (Semadeni-Zidenberg) Every diagram in Ban1 ad-
mits limits and colimits.

This result is not trivial even although Grothendieck had already
proved in [11] that in a suitable abelian category –recall that Ban is
not abelian– limits and colimits exist. On the other hand, the reason
to work with the category Ban1 in the Semadeni-Zidenberg theorem is
simple: one cannot expect that even the simplest infinite diagram have
limits in Ban since the fact that operators have norm prevents it. When
working with finite diagrams no essential difference exists between Ban
and Ban1. A partial converse of this result is:

Proposition 4.1. Every Banach space can be represented as a di-
rect limit of ℓn1 spaces.
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Proof. Indeed, the proof is easy: let FIN(X) be the set of all finite
dimensional subspaces of X. Take for each Xd ∈ FIN(X) a quotient norm
one operator qd : ℓd1 → Xd. Without too much precision we are using also
d for the dimension of Xd and ℓd1, so that qd has the form qd(ej) = xj for
a certain normalized Hamel basis (xj)of Xd. Use now as index set the
set of couples (ℓd1, qd)Xd∈FIN(X) with the partial order (ℓd1, qd) ≤ (ℓe1, qe) if
d ≤ e and qe|ℓd1 = qd. It is almost obvious that

X = lim
→

(ℓd1, qd)Xd∈FIN(X).

Given a Banach space Z and a compatible collection of operators
rd : ℓd1 → Z, simply define q : X → Z as q(x) = rd(x) for d = (ℓ11, qx)
with qx(e1) = x.

4.1. Products and coproducts. The set-theorethic definition of
product

∏
i∈I Xi of spaces is∏

i∈I

Xi = {f : I →
∪

Xi : f(i) ∈ Xi},

whose existence obviously depends on the axiom of choice. The categor-
ical definition of the product space is: it is (the unique, up to isomor-
phisms) object

∏
i∈I Xi admitting arrows πj :

∏
i∈I Xi → Xj with the

property that for every object O and arrows pj : O → Xj there is a un
unique arrow P : O →

∏
i∈I Xi such that πiP = pi for all i.

The simplest infinite diagram is obviously

. . . ••••••••••••••••••••••••••••••••••••••••••••••••••••••••· · ·

i.e., just points, no arrows (except identities). If a two minutes break
does not clearly brings into the reader’s mind the unquestionable idea
that the inverse limit of this diagram is the product, he can stop reading.

The existence of that product in a specific category, in particular in
Banach spaces is a different thing. In the category of sets the product set
was defined above. In the category of vector spaces the underlying set
is the same and the vector space structure is quite naturally defined. If
one tries to transport the same construction to Banach spaces then one
soon realizes that when there is an infinite number of spaces involved
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there is no Banach space structure on
∏

i∈I Xi making continuous the
projections πj. When there is only a finite number of factors then the
natural norm is

∥(xi)I∥∞ = sup
i∈I
∥xi∥Xi

.

The problem with infinite terms is how to handle the universal property
with respect to an infinite sequence of operators . . . with norms tending
to infinity. There are ways to circumvent this difficulty, but since they
do not bring news to Banach spacers we will omit that part. When
limits exist with respect to bounded families of operators we will simply
say that there exist restricted limits; another way is to work in Ban1,
but we prefer to keep this notation for the situations that truly require
to work with norm one operators. In particular, restricted products
exist in Banach spaces: the product of a family (Xi) is the Banach
space ℓ∞(Xi), the essential point being that to each bounded family of
operators Ti : X → Xi corresponds an operator T : X → ℓ∞(Xi). In the
Banach space language,

L
(
X, ℓ∞(Xi)

)
= ℓ∞(L(X,Xi)

)
.

The dual notion i.e., the direct limit of the diagram

. . . ••••••••••••••••••••••••••••••••••••••••••••••••••••••••· · ·

is that of co-product. It must be obvious now that, in the restricted
sense, it corresponds to the ℓ1-vector sum. The universal property here
means that for every uniformly bounded family of operators Ti : Xi → Y
there exists a unique operator T : ℓ1(Xi)→ Y whose restriction to each
Xi is Ti. The operator is Tx =

∑
Tixi. In classical Banach space terms

L
(
ℓ1(Xi), X)

)
= ℓ∞(L(Xi, X)

)
.

4.2. Inductive and projective limits. The second simplest infi-
nite diagrams are

• −−−→ • −−−→ • −−−→ · · ·

whose direct limit is called usually inductive limit and whose inverse
limit is just the selection of the first left element; and

· · · • −−−→ • −−−→ •
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whose inverse limit is usually called projective limit and its direct limit
is just the picking of the last right element.

The explicit form of the projective limit of a projective spectrum
τn : Xn → Xn−1, n ≥ 0, is the subspace of the product formed by those
elements with “linked” coordinates; precisely . . .

lim
←

τnXn = {x ∈ ℓ∞(Xn) : ∀n ∈ N τnxn = xn−1}.

The inductive limit in Ban1 of an inductive system ⟨Xn, in⟩ can be ob-
tained as follows: consider the vector space

X = {(xn)n ∈ ℓ∞(Xn) : ∃µ ∈ N : in(xn) = xn+1, ∀n > µ},

endowed with the seminorm ∥(xn)n∥ = lim ∥xn∥. If K = ker ∥ · ∥ then
limto⟨Xn, in⟩ is the completion of the quotient X/K together with the
family of isometries In : Xn → X defined as In(x) = [(0, 0, . . . , x, x, . . .)].

The inductive limit can be described as limto⟨Xn, in⟩ = ∪In(Xn). If the
connecting morphisms are into isometries then the (Banach) inductive
limits is plainly the completion of the union (endowed with the unique
norm one is considering). The Banach inductive limit, in general, does
not coincide with locally convex inductive limit, and locally convex in-
ductive limits of Banach spaces are very far from being Banach or Fréchet
spaces.

Inductive limits were brought to the hard-core of Banach space the-
ory apparently by Pisier [99] and skilfully exploited, among others, by
Bourgain and Delbaen in [76] and Bourgain and Pisier in [77] to obtain
involved constructions of L∞-spaces. Semadeni has studied inductive
and projective limits. In [16] presents ad-hoc constructions attempting
to define the limit of a sequence of linear metric spaces.

4.3. Generalized pull-back and push-out. The direct limit for
the diagram

• −−−→ •y
•

is usually called push-out. Push-outs exist in Banach spaces, and it was
Kislyakov [94] who re-discovered this construction in the Banach space
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setting. The push-out of

Y
j−−−→ X

S

y
M

is the Banach space PO = (M ⊕1 X)/∆ where ∆ = {(Sy,−jy) ∈M ⊕1

X} together with the operators uS : X → PO and uj : M → PO which
are the restrictions to M and X of the quotient map M ⊕1 X → PO.
They obviously verify that uSj = ujS, and have the universal property
that given two operators α : M → E and β : X → E such that αS = βT
there exists a unique arrow γ : PO → E such that γuj = α and γuS = β.

If the starting diagram is, instead of two arrows with a common point,
a family of arrows with a common point –something we can represent
as • ▹– its direct limit will be called the generalized push-out. Thus,
if we instead consider the diagram given by given a family (fj)j∈J of
operators fj : Y → Xj, their generalized push-out PO is the quotient
ℓ1(Xj)/∆, where ∆ is the closed span in ℓ1(Xj) of the vectors (xj) such
that all its coordinates are null except a couple of indices a, b for which
one has xa = fa(y) and xb = −fb(y). Whenever fj is an embedding,
the operator uj : Xj → PO given by uj(xj) = (0, . . . , xj, . . . 0 . . .) + ∆ is
also an embedding. For all i, j one has uifi = ujfj. If all the maps fj
are into isometries then also the uj are into isometries. We will use the
following visual notation: the family (fj) will be denoted Y J Xj and
their push-out Xj I PO. In this form, Y J Xj I PO suggests that all
the squares

Y
fj−−−→ Xj

fi

y yuj

Xi −−−→
ui

PO

are commutative. This generalized push-out is useful when the construc-
tion of many successive push-outs is required.
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The inverse limit of the diagram

• −−−→ •x
•

is called the pull-back. The pull-back construction exists in Banach
spaces and, given a diagram

X
q−−−→ ZxT

W

the pull-back space comes defined as the Banach space PB = {(x,w) :
qx = Tw} ⊂ X ⊕∞ W endowed with the relative product topology,
together with the operators PB → X and PB → W , restrictions of
the canonical projections of X ⊕∞W into, respectively, X and W , and
i(y) = (jy, 0). Pull-backs were reinvented in the locally convex setting
by Dierolf [56, 89].

5. Functors and limits

If functors and natural transformations is everything there is, and
all Banach space constructions are limits, the obliged question is: How
things respect Banach space constructions? ; or, what is the same, How
to determine the behaviour of functors with respect to limits? In other
words, when do functors and limits commute?

Let us present an example. Consider as a sampler the functor C(·) :
Comp → Ban. Since the functor C(·) is contravariant, the question
is to which extent limits of compact spaces are transformed into co-
limits of Banach spaces, and conversely. The problem was considered by
Semadeni in [37]: he first proves that C(·) transforms direct limits into
inverse limits. Let us give an example:

Observe first that the category Comp of compact spaces admits push-

outs: indeed if K
fi→ Ai, i = 1, 2 then the push-out is the compact space

disjoint union of A1 and A2 under the identification a1 = a2 if there exists
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k ∈ K such that ai = fi(k). Let now I be an uncountable discrete set
and let γ : βN − N → αI be a continuous map; consider the canonical
inclusion i : βN − N → βN and construct the push-out diagram as
compact spaces the category Comp

βN− N i−−−→ βN

γ

y y
αI −−−→ POK.

The push-out-compact space POK is the quotient of the disjoint union
αI

∪
βN by the equivalence relation p ∼ U if and only if p = γ(U). Since

C(·) transforms direct limits into inverse limits, it transforms push-out
into pull-backs. One therefore gets the pull-back diagram

C(βN)
i∗−−−→ C(βN− N)x xγ∗

C(POK) −−−→ C(αI).

If, moreover, I has the cardinal of the continuum then, assuming CH, γ
can be chosen surjective (Probably the simplest way is to proceed as fol-
lows: enumerate the nodes of he dyadic tree; now, if b is the uncountable
set of its branches and U is a free ultrafilter then define

γ(U) =

{
r, r ∈ b; r ∈ U ;

∞, otherwise.

With this choice the compact POK turns out to be a classification of
the elements of βN in three types of ultrafilters: type 1 is formed by
the principal ultrafilters (identified to no point in αI); type 2 are those
containing a branch of the dyadic tree (all free ultrafilters containing a
given branch are thus identified); and type 3 is the identification of all
free ultrafilters that do not contain any branch. Since γ is surjective, γ∗

an into isomorphism, and thus one gets a pull pull-back diagram in Ban

0 −−−→ c0 −−−→ C(βN)
i∗−−−→ C(βN − N) −−−→ 0

∥
x xγ∗

0 −−−→ c0 −−−→ C(POK) −−−→ C(αI) −−−→ 0.
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whose lower sequence cannot split (otherwise C(POK) would be iso-
morphic to c0(I) and every operator c0(I) → ℓ∞ has separable range,
something that fails in this example since γ∗ has nonseparable range).
Thus, one gets a counterexample for the 3-space problem for weakly com-
pactly generated spaces: C(POK) cannot be WCG since copies of c0 in
WCG spaces are complemented.

Returning to the behavior of the functor C(·) against limits, Semadeni
obtains in [37] a deep result showing that when the diagram has the
property that given two points r, s there exists another point t such that
t ≥ {r, s} then C(·) also transforms inverse limits into direct limits.

Proposition 5.1. Given a projective system of compact spaces (Kα)
one has

C(lim
←

Kα) = lim
→

C(Kα)

A particular case of this result when the linking operators are surjec-
tive had been obtained by Pe lczyński in [36]. The “filtering” condition is
necessary since the functor C(·) does not send pull-backs into push-outs
(see [54]). The result is especially interesting since projective families
of compact spaces always have nonempty inverse limit, as it was proved
by Steenrod [90]. Such property was used by Tabor and Yost in [100]
to show that a function f : D → E defined on a convex set D of a
normed space with values in a finite dimensional Banach space such that
its Cauchy difference function ∆f(x, y) = f(x+ y)− f(x)− f(y) is Lip-
schitz on {(x, y) ∈ D ×D : x + y ∈ D} can be approximated by a true
Lipschitz function.

5.1. Adjointness. A beautiful technique to decide when a functor
commutes with limits is provided by the notion of adjointness. Two
examples will make clear the meaning of adjunction.

Example 1. Our first example is the classical identity:

L
(
A⊗̂πX, Y

)
= L

(
X,L(A, Y )

)
.

The proof is clear identifying both terms with the space of continuous
bilinear forms A×X → Y . After checking the corresponding naturality
assumptions, it yields

L (⊗AX, Y ) = L
(
X,LA(Y )

)
.
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Thus, if one says that a covariant functor F : A→ B is the left adjoint
of a covariant functor G : B→ A (and, consequently, G is called a right
adjoint for F ), something written as F ⊣ G, if for every object A of A
and B of B there is a natural isomorphism

HomB

(
F(A), B

)
= HomA

(
A,G(B)

)
.

Thus, what we have is that ⊗A is the left adjoint of LA; i.e., ⊗A ⊣ LA.

Example 2. Everything is contained in the following result [28,
Prop. 1]:

Proposition 5.2. For every compact space K and every norm one
operator X → C(K) there is a unique continuous map f : K → BX∗

making commutative the diagram

X

C(K)

C(BX∗)-

?

�
�

�
�

�
�	

T
C(f)

If ∆ : K → C(K)∗ is the natural embedding then the correspondence
is f = T ∗∆. The proposition thus establishes a correspondence between
operators T : X → C(K) in Ban1 and continuous functions f : K →
BX∗ in Comp; namely (let us agree that func(K,K ′) is the space of
continuous functions between the compact spaces K and K ′)

L
(
X,C(K)

)
−→ func(K,BX∗).

The inverse correspondence

L
(
X,C(K)

)
←− func(K,BX∗)

is f → f ∗δX where δX : X → C(BX∗) is the canonical embedding. These
two maps are inverse one of the other in a deep sense: there is a natural



130 j.m.f. castillo

isomorphism:
L
(
X,C(K)

)
= func(K,BX∗).

Two contravariant functors F : A → B and G : B → A are called
adjoint on the right if for every object A of A and B of B there is a
natural isomorphism

HomA

(
A,G(B)

)
= HomB

(
B,F(A)

)
.

Thus, what Semadeni shows in Proposition 5.2 is that the functors
C(·) and ⃝∗ are adjoints on the right.

Analogously, two contravariant functors F : A→ B and G : B→ A
are called adjoint on the left if for every object A of A and B of B there
is a natural isomorphism

HomA

(
G(B), A

)
= HomB

(
F(A), B

)
.

Observe that C(·) and⃝∗ are NOT adjoints on the left: a continuous
function f : BX∗ → K does not induce an operator C(K) → X and an
operator T : C(K) → X does not induce a continuous map BX∗ → K.
At least, not in general. Here is where the choice of the categories where
the functors act shows its foremost importance. Semadeni introduces in
the book [54] a certain category Bcf of “Bocoff” spaces which are defined
as those Banach spaces “of type C(K)” together with the operators
having the form C(f) = f ∗. Then C(·) is a well-defined contravariant
functor Comp → Bcf . Semadeni considers the Gelfand functor G :
Bcf → Comp associating to each X the Gelfand spectrum; i.e., the
compact space of all multiplicative functionals with norm lesser than
or equal to one endowed with the weak*-topology. Proposition 5.2 still
establishes that the functors C(·) : Comp→ Bcf and G : Bcf→ Comp
are adjoint on the right while it is easy to check they are also adjoint on
the left. So one has natural equivalences

func(K,G(X)) = HomBcf

(
X,C(K)

)
,

and
func

(
G(X), K

)
= Bcf

(
C(K), X

)
.

Adjointness was introduced by Kan in [13], as an attempt to formulate
a duality theory for functors.

Other examples one can consider:
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• Consider the contravariant functor LA. One has the well-known
identity:

L
(
X,L(Y,A)

)
= L

(
Y,L(X,A)

)
.

When A = R this equation is just the duality identity

L(X, Y ∗) = L(Y,X∗).

In both cases, the identities mean that the contravariant functor
LA is adjoint on the right of itself.

• Consider the covariant Banach-Mazur functor C⃝∗ : Ban1 −→
Ban1. As it is, it has no left or right adjoints. Nevertheless, as a
functor

C⃝∗ : Ban1 −→ Bcf

has an obvious right adjoint: the “forgetful” functor � : Bcf −→
Ban1 that simply “forgets” the additional structure. It is clear
that C⃝∗ ⊣ � since there is a natural equivalence

L
(
C(BX∗), C(K)

)
= L

(
X,C(K)

)
.

The paper [28] establishes many other adjointness results among those
and related functors such as the Stone-Cech compactification functor
β : Set→ Comp, the Banach-Mazur functor, etc.

5.2. Adjoints and limits. The adjointness relations are important
and relevant to the problem of studying the behavior of functors regard-
ing limits because:

Proposition 5.3. For covariant functors:

• Right adjoints preserve inverse limits.

• Left adjoints preserve direct limits.

The proof for this result is very simple with a bit of extra abstraction
effort able to give us the right definition of limit. Given a category C
and a diagram D understood as a category, a clean sense can be given
to CD: the objects are the functors D → C with the corresponding
natural transformations as morphisms. In this setting there is an obvious



132 j.m.f. castillo

covariant “diagonal” functor ∆ : C→ CD: the image of an object is the
functor D → C sending all elements to X and all arrows to the identity
of X. One obviously has (thirty seconds thought):

Proposition 5.4.

• ∆ ⊣ lim←,

• lim→ ⊣ ∆.

This can be considered the true definition of direct and inverse limit
constructions: inverse limits are right adjoints of ∆ while direct limits
are left adjoints of ∆. Moreover, it provides an immediate proof for
Proposition 5.3, since, equally obvious is that if F ⊣ G and F ′ ⊣ G ′,
and the compositions make sense, F ′F ⊣ GG′. Now, if one has

lim
→
⊣ ∆

F ⊣ G

then
F lim
→
⊣ ∆G.

While on the other hand, since

lim
→
⊣ ∆

FD ⊣ GD

then
lim
→
FD ⊣ GD∆.

Finally, since GD∆ = ∆G, the uniqueness of adjoints immediately
yields

lim
→
FD = F lim

→
.

For contravariant functors one has:

Proposition 5.5. For contravariant functors:

• Adjoints on the right transform direct limits into inverse limits.

• Adjoints on the left transform inverse limits into direct limits.
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The first immediate consequence is that the C(·) functor, which is
adjoint on the right of the Alaoglu functor, transforms direct limits of
compact spaces into inverse limits of Banach spaces as Semadeni proved.
Another immediate consequence, since the duality functor is adjoint on
the right of itself, is that the dual of a direct limit of Banach spaces is the
inverse limit of the duals (the converse is false: L∞(0, 1) = lim← Lp(0, 1)
while lim→ Lp(0, 1) = L1(0, 1) and L∞(0, 1)∗ ̸= L1(0, 1)).

5.3. Adjointess is not enough for Banach space theory. Fuks
[29, Section 6] established a wonderful result for covariant Banach func-
tors.

Proposition 5.6. Let S, T be two covariant Banach functors such
that S ⊣ T . Then there is a Banach space A such that S is naturally
equivalent with ⊗A and T is naturally equivalent to LA.

Proof. Since S ⊣ T one has

L(SR, X) = L(R, TX) = TX.

So, setting A = S(R), we have T = LA. On the other hand, since
X = lim→ ℓn1 and left adjoints commute with direct limits (applied to S,
to ⊗ and recalling that ℓn1 is a (finite) direct limit):

SX = S lim
→

ℓn1 = lim
→

S(ℓn1 ) = lim
→

ℓn1 (SR) = lim
→

(ℓn1 ⊗ SR)

= (lim
→

ℓn1 )⊗ SR = X ⊗ SR.

Our proof is different from his. For contravariant Banach functors
one also has:

Proposition 5.7. Let F ,G be two contravariant Banach functors
adjoint on the right. Then there is a Banach space X such that both F
and G are naturally equivalent to LX .

Proof. The adjointness relation L(A,G(B)) = L(B,F(A)) provides,
for the choice A = R, that G(B) = L(B,F(R)). We set X = F(R). The
choice B = R yields F(A) = L(R,F(A)) = L(A,G(R)) = L(A,F(R)),
which concludes the proof.
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A closely related result has been obtained by Semadeni and Wiweger
[49]: A covariant linear Banach functor that preserves cokernels and co-
products is naturally equivalent to some ⊗A. If it preserves kernels and
products it is naturally equivalent to some LA. The Semadeni-Wiweger
theorem is formally weaker and essentially equivalent to Fuks theorem
since left adjoints preserve direct limits and right adjoints preserve in-
verse limits.

This important result has, apart from its theoretical interest, appli-
cations to Banach space theory affairs:

• To prove that a correspondence commutes with a limit process, do
as follows:

– First be sure that the correspondence is functorial; i.e., defines
a Banach functor.

– Be sure that the limit process considered is a limit.

– If all that happens –and quite strange if not– then show that
the required Banach functor has an adjoint.

• To understand a certain correspondence F , do as follows:

– Be sure that the correspondence is functorial and thus defines
a Banach functor.

– That implies to know if it is covariant or contravariant.

– Try to determine if it has an adjoint. In that case, the corre-
spondence F must be –in the covariant case– either tensoriza-
tion with some Banach space A or taking operators L(A, ·) on
some Banach space.

A example of this appears in Nel’s papers [96, 97]. In the author’s
words “Topological algebras [X;A] of all continuous functions X → A
are familiar objects of study. Many situations are known in which the re-
stricted functors [−;A] have left adjoints (−, A), where (B,A) is usually
the æspectral spaceÆ formed by all continuous algebra homomorphisms
B → A. This paper was partly motivated by questions about the com-
panion covariant functors [X;−]. When do they also have left adjoints
X�− (say)? And when they do, what do the representing objects X�A
look like?”
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Nel creates a functor� (actually, two: one he calls the tensorization�
and the co-tensorization [·; ·] such that� ⊣ [·; ·]). If it is true that in other
categories those functors might require definition (which is what he does
in the paper [96]), in Banach spaces the problem is to find the left adjoint
of a covariant functor LA, which Fuks result solves: necessarily there
must exist a Banach space A such that � = ⊗A and [·; ·] = LA. Now,
passing to the applications to Banach spaces (see the end of [96] and [97]):
the choice A = l1(I) plus the well-known identities l1(I)⊗̂πX = l1(I,X)
and L(l1(I), X) = l∞(I,X) yields

L
(
l1(I,X), Y

)
= L

(
X, l∞(I, Y )

)
.

The choice A = L1(µ) and the well known identity L1(µ)⊗̂πX = L1(µ,X)
yields

L
(
L1(µ,X), Y

)
= L

(
X,L(L1(µ), Y )

)
,

which is the main theorem of [97], together with the observation that
L(L1(µ), Y ) = L∞(µ, Y ) if and only if Y has the Radon-Nikodym prop-
erty.

6. Duality

Duality is one of the basic notions in mathematics. And it is not
simple to formulate the adequate notion of duality corresponding to a
problem. In Banach space theory one is often satisfied with the knowl-
edge that the dual of X is X∗ and that some arrows “reverse” under du-
ality: embeddings transform into quotients and vice-versa. This duality
had a lot of success and applies with greater or minor variations to other
categories: topological groups, Banach algebras, operator spaces, . . .

There are however further notions of duality. In fact, the “categorical
duality” we have encountered so far roughly says that reversing arrows
in a good diagram yields a good diagram. So, the categorical dual of
pull-back is push-out and viceversa; and this is so even though we have
not proved that the Banach space dual of the pull-back (resp. push-out)
is the push-out (resp. pull-back) of the duals.

The categorical study of Banach space duality starts with Dixmier’s
paper [5]. Willing to attack one of Banach’s questions, Dixmier tackles
in [5] the problem of characterizing dual spaces. Naively speaking, ev-
erybody knows that a predual of a Banach space X is a Banach space
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V for which there is an isomorphism T : X → V ∗. Dixmier [5, Thm,
17] characterizes a predual V of X as a minimal vector subspace V of
X∗ with characteristic 1. Recall that the characteristic of V ⊂ X∗ is
the greatest number r ≥ 0 such that V ∩ BX∗ is weakly dense in rBX∗ ;
the subspace V is minimal if it is norm-closed, weakly dense in E∗ and
no norm-closed subspace of V is weakly dense in X∗. This character-
ization can be, loosely speaking, rephrased as if the unit ball of X is
weak*-compact, then X is a dual space (of course this is nonsense since
the problem is: weak* with respect to what?). Ng [51] made this for-
mulation sound by showing that if there is a Hausdorff locally convex
topology τ on X making its unit ball compact then X is a dual space;
i.e., there is a Banach space V such that X is isomorphic to V ∗.

A few important aspects of the problem are however overlooked by
this approach. One of them is the form in which X and V are in duality;
another is if two different subspaces V1, V2 ⊂ X∗ have to be considered
different preduals. For instance, the first point is essential when consid-
ering the dual of a twisted sum as a twisted sum of the duals. Instead
of considering V ⊂ X∗, let us consider an into isomorphism τ : V → X∗

(this is what we will call a position of V in X∗). Two preduals of X,
say V1 and V2, have to be considered different if they occupy differ-
ent positions in X∗, namely, they correspond to different embeddings
τ1 : V1 → X∗ and τ2 : V2 → X∗. And this must be taken into account
even if V1, V2 are isomorphic or even isometric.

About the form of the duality between V and X, the problem was
reconsidered in a much more homological setting by Dieudonné [6] to
conclude that, in the same form that to know when X is the dual space
of V one just takes the canonical inclusion δV : V → V ∗∗ to check that
the restriction δ∗V |X is an isomorphism, we say that V is a predual of X
if there is an embedding τ : V → X∗ such that τ ∗|X is an isomorphism.
The duality between V and X is thus clear: < v, x >=< τv, x >.

A more categorical point of view was adopted by Linton [72]. Define
the category B∗ (which plays the role of “duals of Banach spaces”) whose
objects are pairs (X,µ) where X is a Banach space and µ : X∗∗ → X a
contractive linear projection onto X making commutative the diagram
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X∗∗∗∗
µ∗∗
−−−→ X∗∗

δX∗∗
y yµ

X∗∗ −−−→
µ

X

A morphism f : (X,µ) → (Y, η) in B∗ is a linear operator f : X → Y
making commutative the diagram

X∗∗
f∗∗
−−−→ Y ∗∗

µ

y yη

X −−−→
f

Y

In this way, Linton shows that there is an equivalence of categories es-
tablished by the functor F : Bop −→ B∗ that sends X → (X∗, δX) and
T : X → Y to T ∗ : Y ∗ → X∗.

Moreover, once adopted the idea that Banach space are functors, the
existence of a duality theory for Banach spaces generates the necessity
to develop a duality theory for functors. Kan’s notion of adjointness
is a try, although it can be seen more as a way to establish when two
categories are one dual of the other (contravariant case) of equivalent
(covariant case) (see [95]). In any case, Fuks theorem shows that the
adjointness notion is too restrictive to work with Banach functors; and
thus the problem is to find a wider notion of duality. Actually, Fuks
developed his duality theory for functors with the following purpose in
mind [14]:

B. Eckmann and P. Hilton have obvserved in [12] that there
is a duality between certain concepts and theorems in homo-
topy theory. [...] in the Eckmann-Hilton theory cohomology
groups are dual to homotopy groups, the wedge spaces is dual
to the cartesian product, and cofibrations are dual to Serre
fibrations. If in any theorem of homotopy theory concepts
are replaced by their duas, then the resulting theorem is as a
rule true. [...] However, the Eckmann-Hilton duality suffers
from essential defects. No precise definition of the duality has
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yet been given, and in each separate case the definition of the
dual object must be given from intuitive considerations. If a
particular theorem of homotopy theory is given, then in the
best case a dual theorem can be formulated. But even if an
assertion can be dualized, the dual assertion does not follow
from the original, and requires an independent proof. Also,
there exist theorems that cannot be dualized [...].

Fuks’ still elementary formulation begins defining two functors: the
functor ΩA(X) = XA is a covariant Hom(A, ·)-like functor; the functor
ΣA(X) = X♯A is a tensor-like functor (a quotient of the product X ×A
under some identification of points). Then, given a covariant functor F
Fuks declares the dual functor of F to be

DF(A) = [F ,ΣA].

This is enough to show that DΩA = ΣA and DΣA = ΩA. When
applied to the Eckmann-Hilton homotopy theory one of the constructions
of that theory turns out to be a ΩA-like functor and the other in “duality”
with the previous one a ΣA-like construction. So Fuks theory pays off.

Of course that this theory has problems with the definitions and with
its applicability to other categories (Banach spaces in particular), but
the following remarkable comment of Fuks is pointing out where things
go: “It is clear that in the Eckmann-Hilton duality one can speak not
only of dual concepts, but also of dual functors”.

Svarc [17] translates Fuks ideas to “a wide class of categories” which
includes, in particular, abelian groups, topological spaces (with or with-
out base points), Banach spaces, sets, partially ordered sets and lattices.
He is however aware that Ban does not satisfy the axioms formulated
at the begining of the paper, but

A duality can also be constructed for Banach functors by
virtue of the fact that the category of unit spheres in Banach
spaces satisfies our requirements.

With this in mind, Svarc identifies ΩA as Hom(A, ·) and ΣA as the
tensor-like functor ⊗A defined as “the symmetric functor for which
Hom(X ⊗ Y, Z) = Hom(X,Hom(Y, Z)). His next paper [18] is devoted
to work out the notions for Banach spaces. He sets the notion of Banach
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functor, the Banach space structure in the set of natural transforma-
tions between two Banach functors, properly defines ΩA = L(A, ·) and
ΣA = A⊗̂π·) to finally formulate the definition of dual functors as fol-
lows: given a Banach functor F , its dual functor DF is defined as the
one assigning to the Banach space A the space

DFA = [F ,⊗A]

and given an arrow ϕ : X → Y then DF(ϕ) “is the map induced by
⊗(ϕ)”. In addition to state DLA = ⊗A and D⊗A = LA, Svarc also
considers the ℓp functors: if ℓp(·) denotes the covariant Banach functor
X → ℓp(X) then Dℓp(·) = ℓp∗(·). The theory culminates with the major
paper in the series, the Mitjagin-Svarc paper [22] in which the topic of
Banach functors and their duality theory comes to age.

It is mandatory to mention other related papers: Fuks [20] studies the
duality of functors in the category of topological spaces with base point;
Berman translates in [21] part of the theory to the category of locally
convex spaces, and in [34] to the category of nuclear F -spaces; Fuks [29]
produces a more topologically oriented paper in which the result about
the limitations of Kan’s duality appears; the last paper in the series is
again Fuks [33] who brings back the duality theory to the category of
homotopy types.

6.1. Duality for covariant Banach functors. We already know
that the space of natural transformations between two Banach functors
is a Banach space. But we should have not forgotten that Banach spaces
are functors. So the same occurs to these “new” Banach spaces; and tit
is important to look at them this way to clearly understand the meaning
of the definition.

So, given a Banach functor F consider the Banach functor [L,F ].
It assigns to a Banach space A the Banach space [LA,F ] and to an
operator T : A → B the operator T∗ : [LA,F ] −→ [LB,F ] given by
T∗(ν)X(ϕ) = νX(ϕT ). In this way the assertions of Mitjagin and Svarc
“for every A one has GA = [LA,F ]” has to be understood as: there is a
natural equivalence between the functors G and [L,F ].

Indeed, it is clear that under the natural equivalence the functor [L,F ]
is simply F : the equality was then proved for spaces, and we check it now
for operators: given T : A → B the operator T∗ : [LA,F ] −→ [LB,F ] is
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just composition with a natural transformation [LB,LA] = L(A,B), i.e.,
T again.

Dually, one can consider the functor [F ,⊗] which assigns to a Banach
space A the Banach space [FA,⊗A] and to an operator T : A → B
the operator T ∗ : [F ,⊗A] −→ [F ,⊗B] given by T ∗(ν)X(ϕ) = νX(ϕT ).
Hence, T ∗ is just right composition with a natural transformation T ∈
L(A,B) = [⊗A,⊗B].

Definition. The dual functor of F is defined to be DF = [F ,⊗].

Proposition 6.1.

• D⊗A = LA,

• DLA = ⊗A.

Proof. That the dual of ⊗A is LA is immediate:

D ⊗A (B) = [⊗A,⊗B] = L(A,B) = LA(B).

The dual of LA is calculated, with the help of Proposition 3.1, as:

DLA(B) = [LA,⊗B] = ⊗B(A) = ⊗A(B).

6.2. Duality for contravariant Banach functors. For contra-
variant functors Michor presented in [65] a duality theory modelled upon
Fuks’ theory for covariant functors. Precisely, the dual of a contravariant
functor G is defined as

DGX = [G, (X⊗̂ε·)∗].

6.3. General duality theory for functors. The Mityagin-Svarc
paper [22] concludes with a long section 11 in which a series of problems
and lines of research are pointed. The first one deals with the duality
process for functors. Precisely:

The algebraic properties of the duality operator D should be
the subject of a deeper investigation. The following two prob-
lems are the most interesting:
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1. To prove that in the category Ban the dual DF of any
functor is reflexive (i.e., DF = DDDF)

2. Under what conditions is the functor D(FG) isometric to
the functor DFDG ?

(This second problem was treated by Fuks in [20] in the category
of topological spaces with distinguished point; his results only partially
apply to Banach spaces.)

Recall that given a covariant functor F , the definition of the dual
functor immediately yields natural isometries [22, 2. Thm. 1]

[F , DG] = [G, DF ].

The choice G = DF yields [F , DDF ] = [DF , DF ]. The functor F is
said to be reflexive if the morphisms that corresponds to the identity (on
the right) is surjective. Mityagin and Svarc observe that when a functor
F is defined on a category of Banach spaces including the reflexive ones
then F is reflexive if and only if F(R) is reflexive. Michor obtains in [65]
the same result for contravariant functors.

The paper [57] gives a first step towards a general duality theory
for functors. The paper starts remarking that the relation F → DF
establishes itself a contravariant functor

D : BanBan −→ BanBan

acting in the category BanBan of Banach functors and natural Banach
transformations. This requires to observe that that given τ : F → G
is a natural transformation then there is a natural transformation Dτ :
DG → DF . The simplest way to describe it is as Dτ : [G,⊗] → [F,⊗]
is τ ∗, in the sense that given X and η ∈ [G,⊗X ] then Dτ(η) = ητ .

As a byside product this approach finally formalizes our starting am-
bition to identify the category Ban of [Banach spaces + operators] with
that of [Banach functors + Banach natural transformations]. Moreover,
it lifts the duality process from Ban to BanBan with a perfect symmetry.
In a sense, everything one has to do from now on is to replace Banach
spaces by Banach funtors and operators by Banach natural transforma-
tions. Thus, the classical duality formula L(X, Y ∗) = L(Y,X∗) becomes
[F , DG] = [G, DF ] (allowing identical interpretation in terms of adjoint-
ness). This is a good moment for the impatient reader that cannot wait
to Part II to see a naive definition of Kan extensions:
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Observe the existence of several natural interpretations

δ : Ban −→ BanBan

of Ban inside BanBan: it could be δ(X) = ⊗X since [⊗A,⊗B] =
L(A,B); or else δ(X) = LX : in this case the interpretation is
of Banop since [LA,LB] = L(B,A); etc.
Once an interpretation δ has been established, a Kan exten-
sion of a Banach functor F : Ban → Ban is a functor
FK : BanBan −→ BanBan such that FKδ = δF .

The formal appearance of a general duality theory for duality of func-
tors occurs in [68]. The first thing is to define a duality for covariant
functors as a contravariant Banach functor

D : BanBan −→ BanBan

self-adjoint on the right i.e., [F ,DG] = [G,DF ] naturally and isometri-
cally.

Recovering the idea that a duality between X and Y is something
generated by a bilinear form B : X×Y → R, one can generate a duality
for functors on a Banach category B with a covariant-covariant bifunctor

B : B×B −→ Ban

which is symmetric B(X, Y ) = B(Y,X) naturally and isometrically. The
duality B generates is

DBFX = [F ,B(X, ·)].

There are several possible B:

• B(X, Y ) = X⊗̂πY (this choice yields Fuks’ duality),

• B(X, Y ) = X⊗̂εY ,

• B(X, Y ) = Lw∗(X∗, Y ),

• B(X, Y ) = Aw∗(X∗, Y ) for an operator ideal A such that Schauder’s
theorem is valid for A; i.e., T ∈ A⇒ T ∗ ∈ A.

Moreover, all possible dualities can be generated this way: indeed, if
D is a duality then B(X,Y ) = DLX(Y ) is a symmetric bifunctor whose
associated duality is precisely D.
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Looking at these examples of duality, it was just a matter of time
until realizing that our “several examples of bifunctors” are essentially
one: a tensor-like product. Thus, the definition of tensor product for
functors (and operator ideal of natural transformations) is on its way
coming.
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solus, C.R. Acad. Sci. Paris 246 (1958), 2444 – 2447.

[13] D.M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294 – 329.



144 j.m.f. castillo

1960 – 1970

[14] D.B. Fuks, On homotopy duality, Dokl. Akad. Nauk SSSR 141 (1961)
818 – 821, (On duality in homotopy theory, Soviet Math. Dokl. 2 (1961),
1575 – 1578).

[15] P.J. Hilton, D. Rees, Natural maps of extension functors and a theo-
rem of R. G. Swan, Proc. Cambridge Philos. Soc. 57 (1961), 489 – 502.

[16] Z. Semadeni, Limit properties of ordered families of linear metric spaces,
Studia Math. 20 (1961), 245 – 270.
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Nederl. Akad. Wetensch. Proc. Ser. A 68, Indag. Math. 27 (1965), 787 – 789.

[24] V.L. Levin, Functors in categories of Banach spaces defined by KB-lineals,
Dokl. Akad. Nauk SSSR 162 (1965), 262 – 265, (Soviet Mat. Dokl. 162
(1965), 648 – 651).

[25] V.L. Levin, Tensor products and functors in categories of Banach spaces
defined by KB-lineals, Dokl. Akad. Nauk SSSR 163 (1965) 1058 – 1060,
(Soviet Mat. Dokl. 163 (1965), 1059 – 1061).

[26] F.E.J. Linton, Autonomous categories and duality of functors, J. Algebra
2 (1965), 315 – 349.

[27] Z. Semadeni, H. Zidenberg, Inductive and inverse limits in the cat-
egory of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys. 13 (1965), 579 – 583.

[28] Z. Semadeni, Structures in the sense of Bourbaki and categories, Prace
Mat. 10 (1966), 37 – 50.

[29] D.B. Fuks, Eckmann-Hilton duality and theory of functos in the category
of topological spaces, Russian math. Surveys 21 (1966), 1 – 33, (Uspehi Mat.
Nauk 21 (2)(128) (1966), 3 – 40).



categorical banach space theory i 145

[30] M. Karoubi, Cohomologie des catégories de Banach, C.R. Acad. Sci.
Paris Sér. A-B 263 (1966), A275 – A278.

[31] M. Karoubi, Cohomologie des catégories de Banach: Applications, C.R.
Acad. Sci. Paris Sér. A-B 263 (1966), A341 – A344

[32] M. Karoubi, Cohomologie des catégories de Banach: Applications, C.R.
Acad. Sci. Paris Sér. A-B 263 (1966), A357 – A360.

[33] D.B. Fuks, Duality of functors in the category of homotopy types, Dokl.
Akad. Nauk SSSR 175 (1967), 1232 – 1235.

[34] G.H. Berman, Duality of functors which are defined on the category of
nuclear (F )-spaces, Mat. Sb. (N.S.) 74 (116) (1967), 475 – 495.

[35] K. Borsuk, “Theory of Retracts”, Monografie Matematyczne 44, Panst-
wowe Wydawnictwo Naukowe, Warszawa, 1967.
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Différentielle 17 (4) (1976), 335 – 342.



categorical banach space theory i 147

[64] C. Herz, J.W. Pelletier, Dual functors and integral operators in the
category of Banach spaces, J. Pure Appl. Algebra 8 (1) (1976), 5 – 22.

[65] P.W. Michor, Duality for contravariant functors on Banach spaces,
Monatsh. Math. 82 (3) (1976), 177 – 186.
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