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On the Berezin Symbols and Toeplitz Operators∗
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Abstract : The present paper mainly gives some new applications of Berezin symbols. In
particular, the Berezin symbol is used in approximation problem for H∞-functions. We
study also asymptotic multiplicativity of the Berezin symbols. Moreover, we study the
solvability of some Riccati operator equations of the form XAX + XB − CX = D on the
Toeplitz algebra T , which is the C∗-subalgebra of the operator algebra B(L2

a) generated
by the Toeplitz operators {Tg : g ∈ H∞} on the Bergman space L2

a(D). We characterize
compactness of truncated Toeplitz operators Aϕ = PKθ Tϕ | Kθ, ϕ ∈ L∞(T), in terms of
Berezin symbols. The spectrum of model operators ϕ(Mθ), ϕ ∈ H∞, is localized in terms of
the so-called Berezin set by proving that σ(ϕ(Mθ)) ⊂ closBer(ϕ(Mθ)). Reducing subspaces
of n-tuple of invertible operators on the Hilbert space H are described.
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1. Introduction and notations

The Hardy space H2 = H2(D) is the Hilbert space consisting of the ana-
lytic functions on the unit disc D = {z ∈ C : |z| < 1} satisfying

‖f‖2
2 := sup

0<r<1

1
2π

∫ 2π

0

∣∣f(reit)
∣∣2 dt < +∞.

For λ ∈ D, the reproducing kernel (Szegö kernel) of H2 is the function kλ ∈ H2

such that f(λ) = 〈f, kλ〉 for every f ∈ H2. The normalized reproducing kernel
k̂λ is the function kλ

‖kλ‖2 . It is well known that kλ (z) =
(
1− λz

)−1. The set
of bounded linear operators on the Hilbert space H is denoted by B(H).
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(TÜBİTAK) with Project 109T590.
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For ϕ ∈ L∞(T), where T = ∂D = {ζ ∈ C : |ζ| = 1} is the unit circle,
the Toeplitz operator Tϕ with symbol ϕ is the operator on H2 defined by
Tϕf = P+(ϕf); here P+ is the orthogonal projection from L2(T) onto H2.
Note that if ϕ ∈ H∞ (the set of all bounded analytic functions on D), then
Tϕ is just the operator of multiplication by ϕ on H2.

For A ∈ B(H2), the Berezin symbol (transform) of A is the complex valued
function Ã on D defined by

Ã(λ) =
〈
Ak̂λ, k̂λ

〉
.

It is well known (see Zhu [24], Englís [8] and Karaev [14]) that T̃ϕ = ϕ̃, where
ϕ̃ denotes the harmonic extension of ϕ into the unit disc D.

Often the behavior of the Berezin transform of an operator provides im-
portant information about the operator itself. For example, it is well known
(see, for instance, Zhu [24], Fricain [9] and Yang [23]) that in most functional
Hilbert spaces of analytic functions, including Hardy and Bergman spaces, the
Berezin symbol uniquely determines the operator, that is A = B if and only if
Ã = B̃. It is also known (see Nordgren and Rosenthal [19]) that compact op-
erators on the so-called standard functional reproducing kernel Hilbert spaces
are completely characterized by the boundary behavior of Berezin symbols of
their unitary orbits.

In the present paper we mainly study some new applications of Berezin
symbols. In particular, the Berezin transform is used in approximation prob-
lem for H∞-functions (see Theorem 1 in Section 2). In Section 3 of this
article, we study the asymptotical multiplicatively of the Berezin symbols. In
Section 4, we consider the Riccati equations of the form

XAX + XB − CX = D

with bounded operators A,B, C,D on the Bergman space L2
a(D) and study the

solvability of such operator equations on the Toeplitz algebra T which is the
C∗-subalgebra of B(L2

a) generated by {Tg : g ∈ H∞}. Section 5 characterizes
the compact truncated Toeplitz operators (which are defined by Aϕ = PKθ

Tϕ |
Kθ for any symbol ϕ ∈ L∞(T) and inner function θ) in terms of Berezin
symbols. One important subclass of truncated Toeplitz operators is the class
of model operators ϕ(Mθ), ϕ ∈ H∞, of Sz. -Nagy and Foias. In Section 6,
we give in terms of the so-called Berezin set some localizations of spectrum of
model operators ϕ(Mθ) by proving that σ

(
ϕ(Mθ)

) ⊂ Ber
(
ϕ(Mθ)

)
. Section 7

describes the reducing subspaces of n-tuple of invertible operators on a Hilbert
space H, which is important in the invariant subspace problem for H.
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Before giving the results of this paper, let us introduce some necessary
notations. The symbol H∞ = H∞(D) denotes the Banach algebra of functions
bounded and analytic on the unit disc D equipped with the norm ‖f‖∞ =
supz∈D |f(z)|. A function θ ∈ H∞ such that |θ(ζ)| = 1 almost everywhere in T
is called an inner function. It is convenient to establish a natural embedding
of the space H2 in the space L2 = L2(T) by associating to each function
f ∈ H2 its radial boundary values (bf)(ζ) := limr→1− f(rζ), which (by the
Fatou Theorem [12]) exist for m-almost all ζ ∈ T; where m is the normalized
Lebesgue measure on T. Then we have

H2 =
{
f ∈ L2 : f̂(n) = 0, n < 0

}

where f̂(n) :=
∫
T ζ

n
f(ζ)dm(ζ) is the Fourier coefficient of the function f . We

denote
H2
− =

{
f ∈ L2 : f̂(n) = 0, n ≥ 0

}

If ϕ ∈ L∞ = L∞(T), then the Hankel operator Hϕ is defined by Hϕf = P−ϕf ,
f ∈ H2, where P− = I − P+. The harmonic extension of function ϕ ∈ L∞ is
denoted, as before, by the symbol ϕ̃, and the space of all bounded harmonic
functions on D is denoted by h∞(D). For any inner function θ the model space
is defined by Kθ = H2ΘθH2.

The Berezin set and Berezin number of the operator A ∈ B(H2) is defined
respectively by

Ber(A) := Range
(
Ã

)
=

{
Ã(λ) : λ ∈ D}

and
ber(A) := sup

{∣∣Ã(λ)
∣∣ : λ ∈ D}

.

The symbol W (A) denotes the numerical range of the operator A ∈ B(H2),
and w(A) its numerical radius (see Halmos [11]):

W (A) =
{ 〈Ax, x〉 : ‖x‖2 = 1

}

w(A) = sup
{ |〈Ax, x〉| : ‖x‖2 = 1

}
.

2. Approximation of H∞-functions

In this section we consider an approximation problem for H∞-functions
ϕ on level sets of inner functions θ using Berezin symbols of some operators
associated to ϕ and θ.
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Theorem 1. Let ϕ ∈ H∞, ‖ϕ‖∞ ≤ 1, be any function, and θ be any
nonconstant inner function. For any nonzero A ∈ {Tθ}′ := {B ∈ B(H2) :
BTθ = TθB} (the commutant of the Toeplitz operator Tθ) we denote

Nϕ,θ,A := Tϕ(I −ATθT
∗
θ )

For any arbitrary but fixed ε ∈ (0, 1), let Lε,θ := {z ∈ D : |θ(z)| ≤ ε} be an
ε-level set of θ. Then

∥∥ϕ− Ñϕ,θ,A

∥∥
L∞(Lε,θ)

≤ ε2ber(A).

In other words,

∥∥ϕ− Ñϕ,θ,A

∥∥
L∞(Lε,θ)

= O
(
ε2

)
as ε → 0

Proof. Let k̂λ(z) = (1−|λ|2)
1
2

1−λz
be the normalized reproducing kernel of the

Hardy space H2. Then we obtain:

Ñϕ,θ,A(λ) =
〈
Nϕ,θ,Ak̂λ, k̂λ

〉
=

〈
Tϕ(I −ATθT

∗
θ )k̂λ, k̂λ

〉

=
〈
Tϕk̂λ, k̂λ

〉
−

〈
TϕATθT

∗
θ k̂λ, k̂λ

〉

=
〈
k̂λ, T ∗ϕk̂λ

〉
−

〈
TϕTθA(θ(λ)k̂λ), k̂λ

〉

=
〈
k̂λ, ϕ(λ)k̂λ

〉
− θ(λ)

〈
Ak̂λ, T ∗ϕθk̂λ

〉

= ϕ(λ)− ϕ(λ)
∣∣θ(λ)

∣∣2
〈
Ak̂λ, k̂λ

〉

= ϕ(λ)
(
1− |θ(λ)|2 Ã(λ)

)

thus
Ñϕ,θ,A(λ) = ϕ(λ)

(
1− |θ(λ)|2 Ã(λ)

)

for all λ ∈ D. From the last formula we obtain that
∣∣ϕ(λ)− Ñϕ,θ,A(λ)

∣∣ =
∣∣Ã(λ)

∣∣ |ϕ(λ)| |θ(λ)|2 ≤ ‖ϕ‖∞ ber(A) |θ(λ)|2

≤ ber(A) |θ(λ)|2

for all λ ∈ D. In particular,
∣∣ϕ(λ)− Ñϕ,θ,A(λ)

∣∣ ≤ ber(A)ε2
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for all λ ∈ Lε,θ, and hence
∥∥ϕ− Ñϕ,θ,A

∥∥
L∞(Lε,θ)

≤ ber(A)ε2, 0 < ε < 1,

which proves the theorem.

In the next section, we give another application of the operator Nϕ,θ,A.

3. On the asymptotic multiplicative property of the Berezin
symbol on the Hardy and Bergman spaces

This section focuses on the asymptotic multiplicative property of the
Berezin symbol Ã of a given operator A on the Hardy and Bergman spaces.

Recall that the Berezin symbol is called asymptotically multiplicative on
B(H (Ω)

)
if limλ→∂Ω

(
ÃB(λ)− Ã(λ)B̃(λ)

)
= 0.

Note that a complete investigation of a multiplicative property of the
Berezin symbol Ã of a given linear operator A : H (Ω) → H (Ω), where H (Ω)
is a functional Hilbert space of analytic functions on a region Ω in Cn, ap-
parently, was started by Kiliç in [17]. Namely, Kiliç showed that (see [17,
Theorem 1]) ÃB = ÃB̃ for all B in B(H (Ω)

)
if and only if A is a multipli-

cation operator Mϕ, where ϕ is a multiplier; moreover, ϕ = Ã. In particular,
Kiliç proved [17, Corollary 2] that if A is a bounded operator on the Hardy
space H2, then ÃB(λ) = Ã(λ)B̃(λ) for all B in B (

H2
)

if and only if A is an
analytic Toeplitz operator Tϕ, ϕ ∈ H∞. Moreover, ϕ = Ã.

Here we will prove that if Tϕ (ϕ ∈ L∞(T)) is any Toeplitz operator on the
Hardy space H2 and B is an arbitrary operator on H2, then limλ→T

(
T̃ϕB(λ)−

ϕ̃(λ)B̃(λ)
)

= 0. A similar result is proved also for the Bergman space opera-
tors. (For practical results on when the Berezin symbol is asymptotic multi-
plicative on B (

L2
a

)
, see Axler and Zheng’s paper [4]). Our argument mainly

is based on the following lemma (see Englís [7, Theorem 6] and Karaev [14,
Lemma 1.1]) which shows that the normalized reproducing kernels k̂λ of H2

are, loosely speaking, asymptotic eigenfunctions for any Toeplitz operator Tϕ,
ϕ ∈ L∞(T).

Lemma 1. Let ϕ ∈ L∞(T) and let ϕ̃ be its harmonic extension (by the
poisson formula) into D. Then Tϕk̂λ − ϕ̃(λ)k̂λ → 0 radially, i.e.,

lim
r→1

∥∥Tϕk̂reit − ϕ̃(reit)k̂reit

∥∥
2

= 0

for almost all t ∈ [0, 2π).
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Theorem 2. Let ϕ ∈ L∞(T), and A ∈ B(H2) be an arbitrary operator.
Then (

T̃ϕA(λ)− T̃ϕ(λ)Ã(λ)
) → 0

as λ → T radially.

Proof. Since T̃ϕ = ϕ̃, by applying Lemma 1, we have:
∣∣∣T̃ϕA(λ)− T̃ϕ(λ)Ã(λ)

∣∣∣ =
∣∣∣
〈
TϕAk̂λ, k̂λ

〉
− ϕ̃(λ)

〈
Ak̂λ, k̂λ

〉∣∣∣

=
∣∣∣
〈
Ak̂λ, T ∗ϕk̂λ

〉
−

〈
Ak̂λ, ϕ̃(λ)k̂λ

〉∣∣∣

=
∣∣∣
〈
Ak̂λ, Tϕk̂λ − ϕ̃(λ)k̂λ

〉∣∣∣

≤
∥∥∥Ak̂λ

∥∥∥
∥∥∥Tϕk̂λ − ϕ̃(λ)k̂λ

∥∥∥
2

≤ ‖A‖
∥∥∥Tϕk̂λ − ϕ̃(λ)k̂λ

∥∥∥
2
→ 0

as λ → T radially, which proves the theorem.

It is not difficult to see that in case A = PE , where E ⊂ H2 is an arbitrary
closed subspace, Theorem 2 essentially improves Proposition 2.3 of [15]. Before
stating our results in the Bergman space, we will begin by recalling some
notations and well known facts.

Let dA denote Lebesgue area measure of D, normalized so that the measure
of D equal 1. Recall that the Bergman space L2

a = L2
a(D) is the Hilbert space

consisting of the analytic functions on D that are also in L2(D, dA). For
z ∈ D, the Bergman reproducing kernel is the function kλ(z) = (1 − λz)−2.
The normalized reproducing kernel for the Bergman space L2

a is denoted by
k̂λ(z) = kλ(z)

‖kλ‖L2
a

. For A ∈ B(L2
a), its Berezin symbol (transform) is the function

Ã on D defined by Ã(λ) =
〈
Ak̂λ, k̂λ

〉
. For u ∈ L∞(D, dA), the Toeplitz

operator Tu with symbol u is the operator on L2
a defined by Tuf = P (uf),

where P is the orthogonal projection from L2(D, dA) onto L2
a.

The Berezin transform ũ of a function u ∈ L∞(D, dA) is defined to be the
Berezin transform of the Toeplitz operator Tu, i.e., ũ = T̃u, and hence

ũ(λ) =
∫

D
u(z)

∣∣k̂λ(z)
∣∣2dA(z).

The Berezin transform of a function in L∞ = L∞(D, dA) often plays the same
important role in the theory of Bergman spaces as the harmonic extension of
a function in L∞(T) does in the theory of Hardy spaces.
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Following by Axler and Zheng [4], note that the Toeplitz algebra T is
the C∗-subalgebra of B(L2

a) generated by {Tg : g ∈ H∞}. We let U denote
the C∗-subalgebra of L∞(D, dA) generated H∞. It is well known (see [4,
Proposition 4.5]) that U equals the closed subalgebra of L∞ generated by the
set of bounded harmonic functions on D. Although the map u → Tu is not
multiplicative on L∞(D, dA), the identities T ∗u = Tu, TgTuTf = Tguf hold for
all u ∈ L∞ and g, f ∈ H∞. This implies that T equals the closed subalgebra of
B(L2

a) generated by Toeplitz operators with bounded harmonic symbols, and
that T also equals the closed subalgebra of B(L2

a) generated by {Tu : u ∈ U}.
It is well known that (see Ahern, Floers and Rudin [1] and Englís [7]) a

function in L∞(D, dA) equals its Berezin transform if and only if it is harmonic.
The following two results are due to Axler and Zheng (see [3, Corollary 3.4

and Corollary 3.7]).

Lemma 2. If u ∈ U , then ũ− u has nontangential limit 0 at almost every
point of ∂D.

Lemma 3. If u ∈ U , then the function λ 7−→ ∥∥Tu−u(λ)k̂λ

∥∥
L2

a
has nontan-

gential limit 0 at almost every point of ∂D.

Now we are ready to state our results concerning Bergman space operators.

Theorem 3. Let u be a bounded harmonic function on D, and A : L2
a →

L2
a be an arbitrary bounded operator. Then the function

T̃uA(λ)− T̃u(λ)Ã(λ)

has nontangential limit 0 at almost every point of ∂D.

Proof. As mentioned above, T̃u = ũ = u. Then, by using Lemma 3, we
obtain:

∣∣∣T̃uA(λ)− T̃u(λ)Ã(λ)
∣∣∣ =

∣∣∣
〈
TuAk̂λ, k̂λ

〉
− u(λ)

〈
Ak̂λ, k̂λ

〉∣∣∣
=

∣∣∣
〈
Ak̂λ, T

u−u(λ)
k̂λ

〉∣∣∣ ≤ ‖A‖
∥∥∥T

u−u(λ)
k̂λ

∥∥∥
L2

a

→ 0

as λ approaches to ∂D nontangentially for almost all points of ∂D, which
proves the theorem.



90 m. t. karaev, m. gürdal

Theorem 4. Let u ∈ U , and A ∈ B(L2
a) be an arbitrary operator. Then

the function

T̃uA(λ)− T̃u(λ)Ã(λ)

has nontagential limit 0 at almost every point of ∂D.

Proof. Since T̃u(λ) = ũ(λ), using Lemmas 2 and 3, we have:
∣∣∣T̃uA(λ)− T̃u(λ)Ã(λ)

∣∣∣ =
∣∣∣
〈
TuAk̂λ, k̂λ

〉
− ũ(λ)

〈
Ak̂λ, k̂λ

〉∣∣∣
=

∣∣∣
〈
Ak̂λ, Tu−ũ(λ)k̂λ

〉∣∣∣ ≤ ‖A‖
∥∥∥Tu−ũ(λ)k̂λ

∥∥∥
L2

a

= ‖A‖
∥∥∥T

u−u(λ)+(u(λ)−ũ(λ))
k̂λ

∥∥∥
L2

a

≤ ‖A‖
(∥∥∥T

u−u(λ)
k̂λ

∥∥∥
L2

a

+
∥∥∥
(
u(λ)− ũ(λ)

)
k̂λ

∥∥∥
L2

a

)

= ‖A‖
(∥∥∥T

u−u(λ)
k̂λ

∥∥∥
L2

a

+ |u(λ)− ũ(λ)|
)
→ 0

as λ tends to ∂D at almost every point of ∂D, which proves the theorem.

4. On solvability of the Riccati equations

The present section is devoted to the solvability of Riccati equations on
the Toeplitz algebra T defined previously in Section 3.

We will consider Riccati equations of the form

XAX + XB − CX −D = 0 (1)

with bounded operators A, B,C, D on the Bergman space L2
a(D).

We recall that the solvability of Riccati equations in concrete operator
classes is one of the important problems in operator theory. Namely, if PH

denotes the set of all orthogonal projections from a Hilbert space H onto its
closed subspaces and A ∈ B(H) is an arbitrary operator, then the existence
of a nontrivial solution of the Riccati equation

XAX = AX

in PH is equivalent to the solution of the well-known invariant subspace prob-
lem in the Hilbert space H.

The main result of this section is the following theorem.
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Theorem 5. Let B = T ∗u , C = Tv be Toeplitz operators on L2
a, where

u, v ∈ H∞ are nonconstant functions, and let A and D be linear bounded
operators on the Bergman space L2

a. Let Tϕ ∈ B(L2
a) be a Toeplitz operator

with ϕ ∈ U .

(a) If Tϕ is a solution of the Riccati equation (1), then the function

Ã(λ)
(
ϕ̃(λ)

)2 +
(
u(λ)− v(λ)

)
ϕ̃(λ)− D̃(λ)

has nontangential limit 0 at almost every point of T =∂D.

(b) Assume that the following two nonzero nontangential limits Ãnt(ζ) :=
limλ→ζ∈T Ã(λ) and D̃nt(ζ) := limλ→ζ∈T D̃(λ) for almost all ζ ∈ T exist and
verify (

u(ζ)− v(ζ)
)2 + 4Ãnt(ζ)D̃nt(ζ) = 0 (2)

for almost all ζ ∈ T. If Tϕ satisfies the Riccati equation (1), then

ϕ(ζ) = ±i

(
D̃nt(ζ)

Ãnt(ζ)

) 1
2

for almost all ζ ∈ T.

Proof. (a) If Tϕ ∈ B(L2
a) is a solution of equation (1), then considering

that the Berezin symbol uniquely determines the operator on the Bergman
space L2

a, for every λ ∈ D we have:

0 =
〈(

TϕATϕ + TϕT ∗u − TvTϕ −D
)
k̂λ, k̂λ

〉

=
〈
TϕATϕk̂λ, k̂λ

〉
+

〈
TϕT ∗u k̂λ, k̂λ

〉
−

〈
TvTϕk̂λ, k̂λ

〉
−

〈
Dk̂λ, k̂λ

〉

=
〈
ATϕk̂λ, Tϕk̂λ

〉
+ u(λ)

〈
Tϕk̂λ, k̂λ

〉
− v(λ)

〈
Tϕk̂λ, k̂λ

〉
−

〈
Dk̂λ, k̂λ

〉

=
〈
A

(
(Tϕ − ϕ̃(λ))k̂λ + ϕ̃(λ)k̂λ

)
, Tϕk̂λ

〉
+

(
u(λ)− v(λ)

)
T̃ϕ(λ)− D̃(λ)

=
〈
A

(
Tϕ−ϕ̃(λ)k̂λ

)
, Tϕk̂λ

〉
+ ϕ̃(λ)

〈
Ak̂λ, Tϕk̂λ − ϕ̃(λ)k̂λ + ϕ̃(λ)k̂λ

〉

+
(
u(λ)− v(λ)

)
ϕ̃(λ)− D̃(λ)

=
〈
A

(
Tϕ−ϕ̃(λ)

)
k̂λ, Tϕk̂λ

〉
+ ϕ̃(λ)

〈
Ak̂λ, Tϕ−ϕ̃(λ)k̂λ

〉

+
(
ϕ̃(λ)

)2
Ã(λ) +

(
u(λ)− v(λ)

)
ϕ̃(λ)− D̃(λ)
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Thus,

Ã(λ)
(
ϕ̃(λ)

)2 +
(
u(λ)− v(λ)

)
ϕ̃(λ)− D̃(λ) =

〈
A

(
Tϕ̃(λ)−ϕk̂λ

)
, Tϕk̂λ

〉

+ ϕ̃(λ)
〈
Ak̂λ, Tϕ̃(λ)−ϕk̂λ

〉 (4.1)

for all λ ∈ D. It is easy to see that Lemma 2 and Lemma 3 imply that the
function λ 7→ ∥∥Tϕ−ϕ̃(λ)k̂λ

∥∥
L2

a
has nontangential limit 0 at almost every point

of T. Then we have from equality (3) that
∣∣∣Ã(λ)

(
ϕ̃(λ)

)2 +
(
u(λ)− v(λ)

)
ϕ̃(λ)− D̃(λ)

∣∣∣
≤ ‖A‖‖Tϕ‖

∥∥Tϕ−ϕ̃(λ)k̂λ

∥∥
L2

a
+ ‖A‖ber(Tϕ)

∥∥Tϕ−ϕ̃(λ)k̂λ

∥∥
L2

a
→ 0

at almost every point of T, which proves (a).

(b) If Tϕ is a solution of the Riccati equation (1), then by Lemma 2 and
item (a), we obtain that ϕ̃(ζ) = ϕ(ζ) exists at almost every point ζ ∈ T and
satisfies

Ãnt(ζ)ϕ2(ζ) +
(
u(ζ)− v(ζ)

)
ϕ(ζ)− D̃nt(ζ) = 0

for almost all ζ ∈ T. This equality can be written as

Ãnt(ζ)

(
ϕ(ζ) +

u(ζ)− v(ζ)

2Ãnt(ζ)

)2

=

(
u(ζ)− v(ζ)

)2 + 4Ãnt(ζ)D̃nt(ζ)

4Ãnt(ζ)
,

which gives by virtue of condition (2) that

ϕ(ζ) =
v(ζ)− u(ζ)

2Ãnt(ζ)

or

ϕ2(ζ) = −D̃nt(ζ)

Ãnt(ζ)

which implies that ϕ(ζ) = ±i
(

D̃nt(ζ)

Ãnt(ζ)

) 1
2

for almost all ζ ∈ T. This proves (b).
The theorem is proved.

Now we will consider the solvability of the following equation in the set of
Toeplitz operators on the Bergman space L2

a:

X1Tϕ1 + X2Tϕ2 + · · ·+ XnTϕn = I,
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where Tϕi , i = 1, 2, . . . , n, are given Toeplitz operators on the Bergman space
L2

a. Again, by applying Lemmas 2 and 3, we will prove here the following
theorem.

Theorem 6. Let ϕ1, ϕ2, . . . , ϕn ∈ U . If there exists functions ψ1, ψ2, . . . ,
ψn ∈ U such that

Tψ1Tϕ1 + · · ·+ TψnTϕn = I,

where Tψi , Tϕi(i = 1, 2, . . . , n) are Toeplitz operators on L2
a, then

ess
T

inf (|ϕ1|+ · · ·+ |ϕn|) > 0

Proof. Since
Tψ1Tϕ1 + · · ·+ TψnTϕn = I,

we have:

1 = T̃ψ1Tϕ1(λ) + · · ·+ T̃ψnTϕn(λ) =
〈
Tψ1Tϕ1 k̂λ, k̂λ

〉
+ · · ·+

〈
TψnTϕn k̂λ, k̂λ

〉

=
〈
Tϕ1 k̂λ, Tψ1

k̂λ

〉
+ · · ·+

〈
Tϕn k̂λ, Tψn

k̂λ

〉

=
〈
Tϕ1 k̂λ, ψ̃1(λ)k̂λ

〉
+ · · ·+

〈
Tϕn k̂λ, ψ̃n(λ)k̂λ

〉
+

〈
Tϕ1 k̂λ, Tψ1

k̂λ − ψ̃1(λ)k̂λ

〉

+ · · ·+
〈
Tϕn k̂λ, Tψn

k̂λ − ψ̃n(λ)k̂λ

〉

= ψ̃1(λ)T̃ϕ1(λ) + · · ·+ ψ̃n(λ)T̃ϕn(λ) +
〈
Tϕ1 k̂λ, T

ψ1−ψ̃1(λ)
k̂λ

〉

+ · · ·+
〈
Tϕn k̂λ, T

ψn−ψ̃n(λ)
k̂λ

〉

= ψ̃1(λ)ϕ̃1(λ) + · · ·+ ψ̃n(λ)ϕ̃n(λ) +
〈
Tϕ1 k̂λ, T

ψ1−ψ̃1(λ)
k̂λ

〉

+ · · ·+
〈
Tϕn k̂λ, T

ψn−ψ̃n(λ)
k̂λ

〉

Therefore

1 ≤ ∣∣ψ̃1(λ)
∣∣∣∣ϕ̃1(λ)

∣∣ + · · ·+ ∣∣ψ̃n(λ)
∣∣∣∣ϕ̃n(λ)

∣∣ +
∥∥Tϕ1 k̂λ

∥∥
L2

a

∥∥∥T
ψ1−ψ̃1(λ)

k̂λ

∥∥∥
L2

a

+ · · ·

+
∥∥Tϕn k̂λ

∥∥
L2

a

∥∥∥T
ψn−ψ̃n(λ)

k̂λ

∥∥∥
L2

a

≤ ∣∣ψ̃1(λ)
∣∣∣∣ϕ̃1(λ)

∣∣ + · · ·+ ∣∣ψ̃n(λ)
∣∣∣∣ϕ̃n(λ)

∣∣ + ‖ϕ1‖L∞

∥∥∥T
ψ1−ψ̃1(λ)

k̂λ

∥∥∥
L2

a

+ · · ·

+ ‖ϕn‖L∞

∥∥∥T
ψn−ψ̃n(λ)

k̂λ

∥∥∥
L2

a

.
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By applying Lemmas 2 and 3, we have that the functions λ 7→ ∥∥T
ψi−ψ̃i(λ)

k̂λ

∥∥
L2

a

(i = 1, . . . , n) have nontangential limits 0 at almost every point of T (this claim
can be considered as the Bergman space analog of Englís’s result [7, Theo-
rem 6]). Then we have from the last inequality that

1 ≤ ∣∣ψ1(ζ)
∣∣∣∣ϕ1(ζ)

∣∣ + · · ·+ ∣∣ψn(ζ)
∣∣∣∣ϕn(ζ)

∣∣
≤ ‖ψ1‖L∞(T)

∣∣ϕ1(ζ)
∣∣ + · · ·+ ‖ψn‖L∞(T)

∣∣ϕn(ζ)
∣∣

for almost all ζ ∈ T, which shows that

ess inf
T

(∣∣ϕ1(ζ)
∣∣ + · · ·+ ∣∣ϕn(ζ)

∣∣
)
≥ 1

max
{ ‖ψi‖L∞(T) : 1 ≤ i ≤ n

} > 0

which proves the theorem.

5. A characterization of compact truncated Toeplitz operators

In this section we characterize compact truncated Toeplitz operators in
terms of Berezin symbols. Namely, we will prove the following theorem.

Theorem 7. For ϕ ∈ L∞(T), let Tϕ : H2 → H2 be a Toeplitz operator
and Aϕ := PθTϕ | Kθ be a truncated Toeplitz operator, where Pθ := PKθ

=
I − TθTθ is the orthogonal projection of H2 onto Kθ. Then Aϕ is a compact
operator if and only if

lim
λ→T

(
P̃U−1Kθ

˜U−1AϕU
U−1Kθ

)
(λ) = 0

for all unitary operators U ∈ B(H2).

Proof. Let us set B := AϕPθ. Clearly B ∈ B(H2). For every unitary
operator U ∈ B(H2), we have that

U−1BU = U−1AϕPθU =
(
U−1AϕU

) (
U−1PθU

)
= U−1AϕUPU−1Kθ

By considering that PU−1Kθ
kλ = kU−1Kθ,λ for every λ ∈ D, where kλ(z) =

(1 − λz)−1 is the reproducing kernel of the Hardy space H2 and kU−1Kθ,λ is
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the reproducing kernel of U−1Kθ, we have:

Ũ−1BU(λ) =
〈
U−1BUk̂λ, k̂λ

〉
=

〈
U−1AϕUPU−1Kθ

k̂λ, k̂λ

〉

=
1

‖kλ‖2
2

〈
U−1AϕUPU−1Kθ

kλ, kλ

〉

=
(
1− |λ|2 ) 〈

U−1AϕUkU−1Kθ,λ, PU−1Kθ
kλ + (I − PU−1Kθ

)kλ

〉

=
(
1− |λ|2 )[ 〈

U−1AϕUkU−1Kθ,λ, kU−1Kθ,λ

〉

+
〈
U−1AϕUkU−1Kθ,λ, (I − PU−1Kθ

)kλ

〉 ]
.

It is not difficult to see that
〈
U−1AϕUkU−1Kθ,λ, (I − PU−1Kθ

)kλ

〉
= 0.

Indeed,
〈
U−1AϕUkU−1Kθ,λ, (I − PU−1Kθ

)kλ

〉

=
〈
AϕU

(
U−1PθU

)
kλ, U − U

(
U−1PθU

)
kλ

〉

=
〈
AϕPθUkλ, (I − Pθ)Ukλ

〉
= 0

because AϕPθUkλ ∈ Kθ and (I − Pθ)Ukλ ∈ θH2. Thus

Ũ−1BU(λ) =
(
1− |λ|2 ) 〈

U−1AϕUkU−1Kθ,λ, kU−1Kθ,λ

〉

=
(
1− |λ|2 ) ∥∥kU−1Kθ,λ

∥∥2

2

〈
U−1AϕUk̂U−1Kθ,λ, k̂U−1Kθ,λ

〉

=
(
1− |λ|2 ) ∥∥kU−1Kθ,λ

∥∥2

2
˜U−1AϕU

U−1Kθ

(λ),

or

Ũ−1BU(λ) =
(
1− |λ|2 ) ∥∥kU−1Kθ,λ

∥∥2

2
˜U−1AϕU

U−1Kθ

(λ)

for all λ ∈ D. On the other hand,
∥∥kU−1Kθ,λ

∥∥2

2
=

∥∥PU−1Kθ
kλ

∥∥2

2
=

〈
PU−1Kθ

kλ, kλ

〉

= ‖kλ‖2
2

〈
PU−1Kθ

k̂λ, k̂λ

〉

=
1

1− |λ|2 P̃U−1Kθ
(λ)

and hence
(1− |λ|2) ∥∥kU−1Kθ,λ

∥∥2

2
= P̃U−1Kθ

(λ), λ ∈ D
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Therefore

˜U−1BU (λ) = P̃U−1Kθ
(λ) ˜U−1AϕU

U−1Kθ

(λ) , (λ ∈ D) (4)

for all unitary operators U ∈ B(H2). It is clear that B ∈ σ∞(H2) (the
Schatten-Neumann ideal of compact operators on H2) if and only if Aϕ ∈
σ∞(Kθ). Then, by virtue of a well known theorem due to Nordgren and Rosen-
thal [19, Theorem 2.7] and equality (4), we assert that Aϕ is compact in Kθ

if and only if

lim
λ→T

(
P̃U−1Kθ

(λ). ˜U−1AϕU (λ)
)

= 0

for every unitary operator U ∈ B(H2), which proves the theorem.

6. Some results for the spectra of model operators
ϕ(Mθ) and Toeplitz operators

One of important subclass of truncated Toeplitz operators is the class of
model operators ϕ(Mθ) of Sz-Nagy and Foias [22] defined by

ϕ(Mθ)f = Pθ(ϕf), f ∈ Kθ,

for every function ϕ ∈ H∞.

In this section, we give in terms of the Berezin set some localizations of
spectrums of model operators ϕ(Mθ). Namely, we will prove that σ

(
ϕ(Mθ)

) ⊂
Ber

(
ϕ(Mθ)

)
. We also localize the numerical range of Toeplitz operators on

the Bergman space L2
a.

Before giving our results, let us give some necessary definitions, notations
and auxiliary results, which can be found, for example, in the book [18, Chap-
ter 3] of Nikolski.

Let θ be an inner function. By the spectrum σ(θ) of θ we mean the
complement (with respect to the whole closed disc D) of the set of all points
λ, λ ∈ D, such that the function 1

θ can be continued analytically into a (full)
neighborhood of λ.

Furthermore,
Z(θ) := {λ ∈ D : θ(λ) = 0}

is the set of all zeros of θ and supp µ denotes the support of the measure (any
measure) µ.
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If θ = B. exp
(− ∫ ζ+z

ζ−z dµs(ζ)
)

is the canonical factorization of θ, then

σ(θ) = Z(θ) ∪ supp µs =
{

λ ∈ D : lim
ζ→λ, ζ∈D

|θ(ζ)| = 0
}

and
σ(Mθ) = σ(θ), σp(Mθ) = σ(θ) ∩ D = Z(θ),

where Mθ = Pθz | Kθ is the model operator.
Spectral mapping theorem for ϕ(Mθ) says that if θ is an inner function

and ϕ ∈ H∞, then

σ
(
ϕ(Mθ)

)
=

{
ζ ∈ C : inf

D

( |θ(z)|+ |ϕ(z)− ζ1| ) = 0
}

(5)

Theorem 8. For every ϕ ∈ H∞ and inner function θ we have σ
(
ϕ(Mθ)

) ⊂
Ber

(
ϕ(Mθ)

)
and σp

(
ϕ(Mθ)

) ⊂ Ber
(
ϕ(Mθ)

)
.

Proof. Since the reproducing kernel of the subspace Kθ = H2ªθH2 is the
function

kθ,λ(z) :=
1− θ(λ)θ(z)

1− λz

and T̃ψ = ψ̃ for every function ψ ∈ L∞(T), where Tψ is the Toeplitz operators
on the Hardy space H2, it is not difficult to prove that (see, Karaev [14])

ϕ̃(Mθ)(λ) :=
〈

ϕ(Mθ)
kθ,λ

‖kθ,λ‖2

,
kθ,λ

‖kθ,λ‖2

〉
=

1
1− |θ(λ)|2

(
ϕ(λ)−θ(λ)ϕ̃θ(λ)

)
(6)

for all λ ∈ D, which shows that

Ber
(
ϕ(Mθ)

)
= Range

(
1

1− |θ|2
(
ϕ− θϕ̃θ

))
.

It follows from formula (6) that

ϕ(z) =
(
1− |θ (z)|2 )

ϕ̃(Mθ)(z) + θ(z)ϕ̃θ(z). (7)

Formula (5) means that

σ
(
ϕ(Mθ)

)
=

{
ζ ∈ C : lim

z→λ
ϕ(z) = ζ, λ ∈ σ(θ)

}
.
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Then it follows from (7) that

lim
z→λ, λ∈σ(θ)

ϕ(z) = ζ

if and only if
lim

z→λ, λ∈σ(θ)

ϕ̃(Mθ)(λ) = ζ,

which clearly means that for every ζ ∈ σ
(
ϕ(Mθ)

)
, ζ ∈ Ber

(
ϕ(Mθ)

)
, that

is σ
(
ϕ(Mθ)

) ⊂ Ber
(
ϕ(Mθ)

)
. Since ϕ(λ) = ˜(

ϕ(Mθ)
)
(λ) for every λ ∈ Z(θ)

(see formula (7)) and σp

(
ϕ(Mθ)

)
= ϕ

(
Z(θ)

)
, we obtain that σp

(
ϕ(Mθ)

)
=

ϕ̃(Mθ)
(
Z(θ)

)
, and hence σp

(
ϕ(Mθ)

) ⊂ Ber(ϕ
(
Mθ)

)
, which completes the

proof of theorem.

Theorem 9. Let Tϕ, ϕ ∈ L∞(D), be any Toeplitz operator acting on the
Bergman space L2

a, and let W (Tϕ) denote the numerical range of Tϕ. Then

W (Tϕ) ⊂ clos
⋃

g∈(L2
a)1∩H∞

Range
(|̃g|2 ϕ

)
, (8)

where
(
L2

a

)
1

:=
{
f ∈ L2

a : ‖f‖L2
a

= 1
}

is the unit sphere of the space L2
a and

|̃g|2 ϕ is the Berezin transform of the function |g|2 ϕ ∈ L∞(D).

Proof. Let k̂λ(z) =
(
1 − |λ|2 )

(1 − λz)−2 be the normalized reproducing
kernel of the Bergman space L2

a(D). Then for every f ∈ (L2
a)1 ∩H∞ we have:

〈Tϕf, f〉 =
〈
P (ϕf), f

〉
= 〈ϕf, f〉 =

∫

D
ϕ(z) |f(z)|2 dA(z)

=
∫

D
ϕ(z) |f(z)|2 ∣∣k̂0(z)

∣∣2dA(z) =
〈
Tϕ|f |2 k̂0, k̂0

〉

= ϕ̃ |f |2(0) ∈ Range
(
ϕ̃ |f |2),

and therefore, 〈Tϕf, f〉 ∈ ⋃
g∈(L2

a)1∩H∞ Range
(
ϕ̃ |g|2), and thus 〈Tϕh, h〉 ∈

clos
⋃

g∈(L2
a)1∩H∞ Range

(
ϕ̃ |g|2) for every h ∈ (L2

a)1, because H∞ is dense in
L2

a. This gives inclusion (8). The theorem is proved.

Since σ(Tϕ) ⊂ W (Tϕ), the following is an immediate corollary of inclu-
sion (8).
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Corollary 1. σ(Tϕ) ⊂ clos
⋃

g∈(L2
a)1∩H∞ Range

(
ϕ̃ |g|2) for every Toep-

litz operator Tϕ, with ϕ ∈ L∞(D), on the Bergman space L2
a.

7. On the reducing subspaces for n-tuple of
invertible operators

Let H be a separable complex Hilbert space and A be a bounded linear
operator on H. We recall that a reducing subspace of A is a common invariant
subspace E ⊂ H for A and A∗, that is AE ⊂ E and A∗E ⊂ E, or equivalently,
AE ⊂ E and AE⊥ ⊂ E⊥, where E⊥ := H ªE.

In the present section, we will consider the n-tuples of invertible operators
(A1, A2, . . . , An) and describe in terms of normal operators their reducing
subspaces.

Note that the study of common invariant subspace of pairs (N1, N2) of
nilpotent operators N1, N2 of index 2 on H plays a key role in the problem
of the existence of nontrivial invariant subspace for Hilbert space operators.
Namely, one of the equivalent forms of the invariant subspace problem for
Hilbert spaces is the following (see [21, Theorem 1]): any operator on a Hilbert
space H has a nontrivial closed invariant subspace if and if only every pair
of nilpotent operators of index two on H has a common nontrivial invariant
subspace. In [2], the reader can find many results concerning the existence of
common invariant subspace of some quadratic operators (see [2, Theorem 3
and Corollary 9]. For more related results see also [16]).

Before giving our results, we recall that every invertible operator A ∈ B(H)
induces an inner automorphism αA of B(H) defined by

αA(X) := AXA−1, X ∈ B(H).

Theorem 10. Let (A1, A2, . . . , An) be a n-tuple of invertible operators
Ai ∈ B(H), i = 1, 2, . . . , n and E ⊂ H be a closed nontrivial subspace (i.e.,
{0} 6= E 6= H). Then E is a reducing subspace for the n-tuple (A1, A2, . . . , An)
if and only if there exist an integer k ≥ 2 and a nonzero operator T ∈ B(H)
such that:

(a) αAi(T ) = T k (i = 1, 2, . . . , n) ;

(b) T is a normal operator with R(T ) = E and σ(T ) ⊆ {
z ∈ C : zk = z

}
.

Proof. If E ⊂ H reduces A1, A2, . . . , An, then PEAi = AiPE (i = 1, 2,
. . . , n), where PE is an orthogonal projection onto E, that is, P 2

EAi = AiPE ,
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or αAi(PE) = P 2
E (i = 1, 2, . . . , n). From this, by setting k = 2 and T = PE ,

immediately follows the necessity of the theorem.
Conversely, from the equalities αAi(T ) = T k (i = 1, 2, . . . , n) (see con-

dition (a)) it is easy to obtain that σ(T k) = σ(T ). Then, by using condi-
tion (b), we have that σ(T k) =

{
zk : z ∈ σ(T )

}
, and hence σ(T k − T ) ={

zk − z : z ∈ σ(T )
}

= {0} . Since T k − T is a normal operator, this means
that T k − T = 0 (because for the normal operator its norm and spectral
radius coincide), that is T k = T. By considering this, from (a) we have

TAi = AiT, (i = 1, 2, . . . , n) (9)

Then, by Fuglede-Putnam theorem we have

TA∗i = A∗i T, (i = 1, 2, . . . , n) (10)

The equalities (9) and (10) imply that R(T ) is a reducing subspace for the set
(A1, A2, . . . , An) , and thus by condition (b) E is a reducing subspace for the
n-tuple (A1, A2, . . . , An) . The theorem is proved.

Corollary 2. Let θ be an inner function other than a linear fractional
transformation, Tϕi◦θ, i = 1, 2, . . . , n, be the invertible Toeplitz operators on
H2 with ϕi ∈ L∞(T), i = 1, 2, . . . , n, and E ⊂ H2 be a nontrivial closed
subspace. Then E is a reducing subspace for the n-tuple (Tϕ1◦θ, . . . , Tϕn◦θ) if
and only if there exist an integer k ≥ 2 and a nonzero operator T ∈ B(H2)
satisfying

(a) αTϕi◦θ
(T ) = T k (i = 1, 2, . . . , n);

(b) T is a normal operator with R(T ) = E and σ(T ) ⊆ {
z ∈ C : zk = z

}
.

We recall that the existence of nontrivial reducing subspaces of Toeplitz
operators Tϕ◦θ is proved by Nordgren for ϕ ∈ H∞ [20, Theorem 2] and by
Karaev for ϕ ∈ L∞(T) [15, Theorem 1].

Corollary 3. Let N1, N2, . . . , Nn ∈ B(H) be nilpotent operators and
E ⊂ H be a nontrivial closed subspace. Then E is a reducing subspace for
the n-tuple (N1, N2, . . . , Nn) if and only if there exist an integer k ≥ 2 and a
nonzero operator T ∈ B(H) such that:

(a) αI+Ni(T ) = T k (i = 1, 2, . . . , n);

(b) T is a normal operator with R(T ) = E and σ(T ) ⊆ {
z ∈ C : zk = z

}
.
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In conclusion, we recall that in [10] Halmos has shown that if H is finite-
dimensional, then every invariant subspace of nilpotent operator N on H is
the range of an operator from the commutant of N , i.e., E ∈ Lat(N ) if and
only if E = XH for some X ∈ {N}′ . For infinite dimensional H the finite
dimensional invariant subspace of nilpotent operator N is described by Barraa
and Charles in [6]. Namely, they have shown that every finite-dimensional
E ∈ Lat(N ) is the range of an operator from the commutant {N}′ of N . The
hyperinvariant subspaces of nilpotent operators in Banach space are described
in [5].
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[12] K. Hoffman, “Banach Spaces of Analytic Functions”, Prentice-Hall Series in
Modern Analysis, Prentice Hall, Englewood Cliffs, N.J., 1962.

[13] M.T. Karaev, Expectation operators, reducing subspaces and cyclic sets,
Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 19 (5) (1999), 81 – 85.

[14] M.T. Karaev, Berezin symbols and Schatten-von Neumann classes, Math.
Notes 72 (1-2) (2002), 185 – 192; translation from Mat. Zametki 72 (2002),
207 – 215.

[15] M.T. Karaev, On the Riccati equations, Monatsh. Math. 155 (2) (2008),
161 – 166.

[16] M.T. Karaev, S. Pehlivan, Some results for quadratic elements of a Ba-
nach algebra, Glasg. Math. J. 46 (3) (2004), 431 – 441.
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[22] B. Szökefalvi-Nagy, C. Foias, “Harmonic Analysis of Operators on
Hilbert Space”, North Holland, New York, 1970.

[23] R. Yang, Beurling’s phenomenon in two variables, Integ. Equat. Oper. Theory
48 (3) (2004), 411 – 423.

[24] K. Zhu, “Operator Theory in Function Spaces”, Marcel Dekker, New York,
1990.


