On Extreme Points of the Dual Ball of a Polyhedral Space

Roi Livni
Department of Mathematics, Ben Gurion University of the Negev, P.O.B 653, Beer-Sheva 84105, Israel, RLivni@gmail.com

Presented by Pier L. Papini
Received February 3, 2009
Abstract: We prove that every separable polyhedral Banach space X is isomorphic to a polyhedral Banach space Y such that, the set ext $B_{Y^{*}}$ cannot be covered by a sequence of balls $B\left(y_{i}, \epsilon_{i}\right)$ with $0<\epsilon_{i}<1$ and $\epsilon_{i} \rightarrow 0$. In particular ext $B_{Y^{*}}$ cannot be covered by a sequence of norm compact sets. This generalizes a result from [7] where an equivalent polyhedral norm $\|\|\cdot\|\|$ on c_{0} was constructed such that ext $B_{\left(c_{0},\||\cdot \||)^{*}\right.}$ is uncountable but can be covered by a sequence of norm compact sets.
Key words: Polyhedral Banach space, boundary, extreme points.
AMS Subject Class. (2000): 46B20.

In [8] V. Klee introduced the following definition of a polyhedral Banach space.

Definition 1. A Banach space X is called polyhedral if the unit ball of every finite dimensional subspace of X is a polytope.

Recall that a subset $B \subseteq S_{X^{*}}$ of the unit sphere of the dual Banach space X^{*} is called a boundary of X if for any $x \in X$ there is $f \in B$ with $f(x)=\|x\|$. In [3] (see also [5] and [10]), it was proved that any separable polyhedral space has a countable boundary. The converse is true under a suitable renorming (see [2]).

By the Krein-Milman Theorem, the set ext $B_{X^{*}}$ is a boundary for any Banach space X. In [7], a separable polyhedral Banach space X was constructed (actually X is isomorphic to c_{0}) such that ext $B_{X^{*}}$ is uncountable. Of course, being separable polyhedral, X admits a countable boundary. However, it is easily seen from the construction in [7] that the set ext $B_{X^{*}}$ can be covered by a sequence of norm compact sets, i.e. although ext $B_{X^{*}}$ is uncountable it is in a sense "close" to a countable set.

Definition 2. Let L be a Banach space and $C \subset E$. We say that C has property (A) if for each sequence $\epsilon_{i} \rightarrow 0,0<\epsilon_{i}<1$ and any sequence of balls $B\left(z_{i}, \epsilon_{i}\right)=\left\{x \in L:\left\|x-z_{i}\right\| \leq \epsilon_{i}\right\}$, we have $C \nsubseteq \bigcup_{i=1}^{\infty} B\left(z_{i}, \epsilon_{i}\right)$.

Clearly, if C has (A) then C cannot be covered by a sequence of norm compact sets.

The main result of this paper is the following
Theorem 1. Let Y be a separable polyhedral Banach space. Then Y is isomorphic to a polyhedral Banach space Z such that the set ext $B_{Z^{*}}$ has property (A).

Remark. It follows from Theorem 3 [4], that if a Banach space Y is not isomorphic to a polyhedral space then ext $B_{Y^{*}}$ has property (A) in any equivalent norm on Y.

We prove Theorem 1 in two steps. First we prove Theorem 1 for $Y=c_{o}$. Here we use some ideas from [7]. Then, by using that any polyhedral space contains an isomorphic copy of c_{0} (see [3]) we finish the proof.

Theorem 2. There exists a separable polyhedral Banach space X, isomorphic to c_{0}, such that the set ext $B_{X^{*}}$ has property (A).

Proof. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be the natural basis of c_{0} and $\left\{e_{i}^{*}\right\}_{i=1}^{\infty}$ be its biorthogonal sequence in $l_{1}=c_{0}^{*}$. Fix $\varrho \in\left(0, \frac{1}{2}\right)$ and denote

$$
\lambda_{i}=\frac{1}{2^{i}}, \quad i=1,2, \ldots, \quad a=\frac{1}{\lambda_{1}}, \quad a_{n}=\frac{a \sum_{i=1}^{n} \lambda_{i}}{1-\varrho \sum_{i=n+1}^{\infty} \lambda_{i}}, \quad n=1,2, \ldots
$$

Let \mathcal{G}_{m} be the family of all injective, non-decreasing mappings from $\{1, \ldots, m\}$ to \mathbb{N} and \mathcal{G}_{∞} be the family of all injective, non-decreasing mappings from \mathbb{N} to \mathbb{N}. Next define:

$$
A_{m}=\left\{a_{m}\left(\sum_{i=1}^{m} \lambda_{i}\right)^{-1} \sum_{k=1}^{m} \epsilon_{k} \lambda_{k} e_{g(k)}^{*}: \epsilon_{k}= \pm 1, g \in \mathcal{G}_{m}\right\}
$$

Clearly, each A_{m} is countable. Denote

$$
B=\bigcup_{m=1}^{\infty} A_{m}, \quad U^{*}=\overline{\operatorname{conv}}^{w^{*}} B
$$

and define a new norm on c_{0} as follows

$$
\|\|x\|\|=\sup \left\{f(x): f \in U^{*}\right\}, \quad x \in c_{0}
$$

It is easily seen that the norm $\|\|\cdot\|\|$ on c_{0} is equivalent to the original one (note that $A_{1}=\left\{ \pm a_{1} e_{k}^{*}: k=1,2 \ldots\right\}$). Put $X=\left(c_{0},\| \| \cdot \mid \|\right)$. Also a standard argument shows that $B_{X^{*}}=U^{*}$.

For every subset A of X^{*}, denote A^{\prime} the set of all w^{*}-limit points of the set A.

Claim 1. Every $f \in B^{\prime}$ with $\|\|f\|\|=1$ (if any) does not attain its norm $|||f|||$ at an element of the unit ball of X.

Proof. Take $f \in B^{\prime}, f \neq 0$. We first assume that $f \in A_{m}^{\prime}$ for some $m \geq 2$. Since $e_{n}^{*} \rightarrow w^{*} 0$ we get

$$
f=a_{m}\left(\sum_{i=1}^{m} \lambda_{i}\right)^{-1} \sum_{k=1}^{n} \epsilon_{k} \lambda_{k} e_{g(k)}^{*}
$$

for some $n<m$ and $g \in \mathcal{G}_{n}$.

$$
\begin{aligned}
\|\|f \mid\| & =\left\|\mid a_{m}\left(\sum_{i=1}^{m} \lambda_{i}\right)^{-1} \sum_{k=1}^{n} \epsilon_{k} \lambda_{k} e_{g(k)}^{*}\right\| \| \\
& \left.=\| \| \frac{a_{m}\left(\sum_{i=1}^{m} \lambda_{i}\right)^{-1}}{a_{n}\left(\sum_{i=1}^{n} \lambda_{i}\right)^{-1}} a_{n}\left(\sum_{i=1}^{n} \lambda_{i}\right)^{-1} \sum_{k=1}^{n} \epsilon_{k} \lambda_{k} e_{g(k)}^{*} \right\rvert\, \|<1 .
\end{aligned}
$$

Next assume that $f \in B^{\prime}$ and $f \notin A_{m}^{\prime}, m=1,2, \ldots$ It is easy to see that either f is of the form

$$
\begin{equation*}
f=a \sum_{k=1}^{\infty} \epsilon_{k} \lambda_{k} e_{g(k)}^{*}, \quad \epsilon_{k}= \pm 1, g \in \mathcal{G}_{\infty} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
f=a \sum_{k=1}^{n} \epsilon_{k} \lambda_{k} e_{g(k)}^{*}, \quad \epsilon_{k}= \pm 1, g \in \mathcal{G}_{n} \tag{2}
\end{equation*}
$$

If f satisfies (2) then $|||f| \|<1$. So we assume that f satisfies (1). Assume to the contrary, that there is $x \in c_{0},\|\mid x\| \|=1$, such that $f(x)=1$. Choose s so large that $a \cdot \max \left\{\left|x_{g(k)}\right|\right\}_{k=s+1}^{\infty}<\frac{\varrho}{2}$. Then the definition of $\||\cdot|| |$ implies

$$
\begin{aligned}
1 & =f(x)=a \sum_{k=1}^{s} \epsilon_{k} \lambda_{k} x_{g(k)}+a \sum_{k=s+1}^{\infty} \epsilon_{k} \lambda_{k} x_{g(k)} \\
& \leq \frac{a}{a_{s}}\left[a_{s}\left(\sum_{i=1}^{s} \lambda_{i}\right)^{-1} \sum_{k=1}^{s} \lambda_{k}\left|x_{g(k)}\right|\right] \sum_{i=1}^{s} \lambda_{i}+\left(a \cdot \max _{k>s}\left|x_{g(k)}\right|\right) \sum_{k=s+1}^{\infty} \lambda_{k} \\
& <\frac{a}{a_{s}} \cdot \sum_{i=1}^{s} \lambda_{i}+\frac{\varrho}{2} \sum_{i=s+1}^{\infty} \lambda_{i}<1
\end{aligned}
$$

The last inequality follows from the following equality:

$$
\frac{a}{a_{s}} \sum_{i=1}^{s} \lambda_{i}+\varrho \sum_{i=s+1}^{\infty} \lambda_{i}=1
$$

Claim 2. B is a countable boundary for X and X is polyhedral.
Proof. Since each A_{m} is countable and $B=\bigcup_{m=1}^{\infty} A_{m}$, it follows that B is countable. The rest of the claim is a direct result of Claim 1 and Proposition 6.11 from [6]. We give a proof for the sake of completeness. Since $U^{*}=\overline{c o n v} w^{*} B, \bar{B}^{w^{*}}=B \cup B^{\prime}$ is a boundary for X. As a result of Claim 1, none of the elements in B^{\prime} attain their norm at B_{X} hence B is a boundary for X. Now let F be a finite dimensional subspace of X and assume F^{*} has infinitely many extreme points, By Milman's theorem, these would be restrictions to F of elements of $\bar{B}^{w^{*}}$. Since F is finite-dimensional, any w^{*}-cluster point of the set of the extreme points of $B_{F^{*}}$ attains its norm at an element of B_{F}. But this contradicts Claim 1. Hence F^{*} has only finitely many extreme points, and F is polyhedral.

Claim 3. For any $g \in \mathcal{G}_{\infty}$ and $\left\{\epsilon_{i}\right\}_{i=1}^{\infty}$ a sequence of signs, we have $f=$ $a \sum_{k=1}^{\infty} \epsilon_{k} \lambda_{k} e_{g(k)}^{*} \in \operatorname{ext} U^{*}$.

Proof. First note that from the definition of the norm |||•||| (the supremum over the set B) follows that

$$
\left\|\left|\sum_{i=1}^{n} \epsilon_{i} e_{g(i)}\right|\right\| \leq 2
$$

Next the series $\sum_{i=1}^{\infty} \epsilon_{i} e_{g(i)}$ converges in the w^{*}-topology of $X^{* *} \cong \ell_{\infty}$ and it follows that $\left|\left\|\sum_{i=1}^{\infty} \epsilon_{i} e_{g(i)}\right\|\right| \leq 2$. Moreover, setting $z^{* *}=\sum_{i=1}^{\infty} \epsilon_{i} e_{g(i)}$ and $b^{*}=a \sum_{i=1}^{\infty} \epsilon_{i} \lambda_{i} e_{g(i)}^{*}$ we see that $b^{*} \in B_{X^{*}}$ and $z^{* *}\left(b^{*}\right)=2$. Therefore $z^{* *}$ attains its norm at the element $b^{*} \in B_{X^{*}}$ and $\left|\left|\left|z^{* *}\right|\right|=2\right.$. By a classical result [1], since X^{*} is separable, $z^{* *}$ attains its norm at an extreme point of $B_{X^{*}}$ too. The latter set of points, in view of Milman's theorem, is contained in $\bar{B}^{w^{*}}$. It is easy to check that $z^{* *}$ does not attain its norm at a finitely supported (with respect to $\left.\left(e_{i}^{*}\right)\right)$ element of $\bar{B}^{w^{*}}$. Among the infinitely supported members of $\bar{B}^{\omega^{*}}$, it is clear that only b^{*} satisfies $z^{* *}\left(b^{*}\right)=2$, hence b^{*} is an extreme point of $B_{X^{*}}$.

Claim 4. The set ext U^{*} has property (A).
Proof. Denote $E=\left\{a \sum_{i=1}^{\infty} \lambda_{i} e_{g(i)}^{*}: g \in \mathcal{G}_{\infty}\right\}$. By Claim 3, $E \subseteq \operatorname{ext} U^{*}$. So it is enough to prove that E has property (A). Our proof relies on the following easily verified fact.

Fact 1. For each two elements $u, v \in E$, if $u=a \sum_{i=1}^{\infty} \lambda_{i} e_{g_{u}(i)}^{*}, v=$ $a \sum_{i=1}^{\infty} \lambda_{i} e_{g_{v}(i)}^{*}$ and $g_{u}(j) \neq g_{v}(j)$ then $\|u-v\|>\frac{1}{2^{j}}$.
Assume to the contrary that

$$
E \subseteq \bigcup_{i=1}^{\infty} B_{X^{*}}\left(x_{i}, \epsilon_{i}\right), \quad \epsilon_{i} \rightarrow 0
$$

Since $B_{X^{*}} \subseteq 2 B_{\ell_{1}}$ it follows that

$$
E \subseteq \bigcup_{i=1}^{\infty} B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right) .
$$

Obviously, we can suppose that each $B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right)$ intersects E. For each i choose a representative $y_{i} \in B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right) \cap E$.

Choose m_{0} sufficiently large so that for $m>m_{0}$ it holds that $2 \epsilon_{m}<\frac{1}{4}$. Choose n_{0} sufficiently large so that if $y \in E$ and $g_{y}(1)>n_{0}$ then

$$
\max \left\{4 \epsilon_{1}, \ldots, 4 \epsilon_{m_{0}}\right\}<\left\|y-y_{j}\right\|,
$$

for each $j \leq m_{0}$ (this is possible since $4 \epsilon_{i}<4$ and $E \subseteq 2 S_{\ell_{1}}$). Denote by G_{0} the set $\left\{1,2, \ldots, n_{0}\right\}$. Choose $m_{1}>m_{0}$ sufficiently large such that if $m>m_{1}$
then $2 \epsilon_{m}<\frac{1}{8}$. Denote by G_{1} the set $\left\{g_{y_{m_{0}+1}}(1), \ldots, g_{y_{m_{1}}}(1)\right\}$. By Fact 1 if $x \in E$ and $g_{x}(1) \notin G_{1}$ then $\left\|x-y_{j}\right\|>\frac{1}{2}$ for $m_{0}<j \leq m_{1}$. Hence, $x \notin \cup_{i=m_{0}+1}^{m_{1}} B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right)$. Next we define inductively m_{n} and G_{n} such that

1) For every $m>m_{n}, 2 \epsilon_{m}<\frac{1}{2^{n+2}}$.
2) G_{n} is finite.
3) If $g_{x}(n) \notin G_{n}$ then $x \notin \cup_{i=m_{n-1}+1}^{m_{n}} B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right)$.

Choose m_{n+1} so that for $m>m_{n+1}$ it holds that $2 \epsilon_{m}<\frac{1}{2^{n+3}}$. Denote by G_{n+1} the set $\left\{g_{y_{m_{n}+1}}(n+1), \ldots, g_{y_{m_{n+1}}}(n+1)\right\}$. For every $x \in E$ and $m_{n}<j \leq m_{n+1}$ if $g_{x}(n+1) \notin G_{n+1}$ then by Fact $1\left\|x-y_{j}\right\|>\frac{1}{2^{n+1}}>$ $4 \epsilon_{j}$ and $x \notin \cup_{m_{n}+1}^{m_{n+1}} B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right)$. Define $b_{1}=\max \left(G_{0} \cup G_{1}\right)+1$ and b_{n} to be $\max \left(\cup_{i=0}^{n} G_{n} \cup\left\{b_{1}, \ldots, b_{n-1}\right\}\right)+1$. Next define $g \in \mathcal{G}_{\infty}$ to be $g(n)=$ $b_{n}, n=1,2, \ldots$, and $x=\sum_{i=1}^{\infty} \lambda_{i} e_{g(i)}^{*}$. From our construction follows that $x \notin \bigcup_{i=1}^{\infty} B_{\ell_{1}}\left(x_{i}, 2 \epsilon_{i}\right)$, a contradiction.

The proof of Theorem 2 is complete.

Proof of Theorem 1. By [3] Y contains c_{0} (actually Y is c_{0}-saturated). Since Y is separable it follows [9] that c_{0} is complemented in Y. Hence Y is isomorphic to the direct sum of Y_{1} and c_{0}, where Y_{1} is isometric to some subspace of Y and hence polyhedral. By Theorem 2, c_{0} is isomorphic to a polyhedral Banach space X with the set ext $B_{X^{*}}$ having property (A). Put $Z=\left(Y_{1} \oplus_{\infty} X\right)$. Clearly, Z is polyhedral and $Y \cong Z$. Since ext $B_{Z^{*}}=$ ext $B_{Y_{1}^{*}} \cup \operatorname{ext} B_{X^{*}}$ it follows that the set ext $B_{Z^{*}}$ has property (A). The proof is complete.

Acknowledgements

This article is a part of the author's MS thesis under the supervision of Professor V. P. Fonf. The author wishes to thank Professor Fonf for his encouragement and useful comments. He would also like to thank the referees for their valuable suggestions which improved the paper.

References

[1] C. Bessaga, A. Peeczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264.
[2] V. P. Fonf,, Some properties of polyhedral Banach spaces, Funktsional Anal. i Prilozhen, 14 (4) (1980), 89-90, (English trans. in Funct. Anal. Appl. 14 (1980)).
[3] V. P. Fonf, Polyhedral Banach spaces, Mat. Zametki. 30 (4) (1981), 627-634, (English translation in Math. Notes Acad. Sci. USSR 30 (1981), 809-813).
[4] V. P. Fonf, Three characterizations of polyhedral Banach spaces, Ukrainian Math. J. 42 (9) (1990), 1145-1148.
[5] V. P. Fonf, On the boundary of a polyhedral Banach Space, Extracta Math. 15 (1) (2000), $145-154$.
[6] V. P. Fonf, J. Lindenstrauss, R. R. Phelps, Infinite dimensional convexity, in "Handbook of the Geometry of Banach Spaces, Vol. I", NorthHolland, Amsterdam, 2001, 599-670.
[7] V. P. Fonf, L. Vesely, Infinite dimensional polyhedrality, Canad. J. Math. 56 (3) (2004), 472-494.
[8] V. Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243 267.
[9] A. SobcZyk, Projections of the space m on its subspace c_{0}, Bull. Amer. Math. Soc. 47 (1941), 937-947.
[10] L. Veselý, Boundary of polyhedral spaces: an alternative proof, Extracta Math. 15 (1) (2000), 213-217.

