Linear Mapping Preserving the Kernel or the Range of Operators*

Mourad Oudghiri
13 Département de Mathématiques et Informatiques, Faculté des Sciences d'Oujda, Oujda, Maroc, Mourad.Oudghiri@math.univ-lille1.fr

Presented by Mostafa Mbekhta
Received April 6, 2009

Abstract: Let X and Y be two infinite dimensional real or complex Banach spaces. In this note we determine the forms of surjective additive maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ preserving the kernel's dimension or the range's codimension. As consequence, we establish that ϕ : $\mathcal{L}(X) \rightarrow \mathcal{L}(X)$ preserves the kernel (respectively, the range) if and only if there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\phi(T)=A T$ (respectively, $\phi(T)=T A$) for all $T \in \mathcal{L}(X)$.

Key words: Additives preservers, kernel operator, range operator.
AMS Subject Class. (2000): 47B48, 47A10, 46H05.

Introduction and statement of main results

Let X be a Banach space, and let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on X. For $T \in \mathcal{L}(X)$, write T^{*} for its adjoint, $\mathrm{N}(T)$ for its kernel and $\mathrm{R}(T)$ for its range. Recall that an operator $T \in \mathcal{L}(X)$ is called semi-Fredholm if $\mathrm{R}(T)$ is closed and either $\operatorname{dim} \mathrm{N}(T)$ or $\operatorname{codim} \mathrm{R}(T)$ is finite. The index of such operator is defined by

$$
\operatorname{ind}(T)=\operatorname{dim} \mathrm{N}(T)-\operatorname{codim} \mathrm{R}(T)
$$

and if $\operatorname{ind}(T)$ is finite then T is said to be Fredholm.
In [9] it is shown that a surjective linear map $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$, where X is an infinite-dimensional complex Banach space, is unital, i.e., $\phi(I)=I$, and preserves injective operators in both direction if and only if there is an invertible operator $A \in \mathcal{L}(X)$ such that $\phi(T)=A T A^{-1}$ for every $T \in \mathcal{L}(X)$. Moreover, if X is assumed to be a Hilbert space, then it is proved that the surjective unital linear maps ϕ preserving surjective operators take the above

[^0]mentioned form. These results are extended to the case of unital surjective additive maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ where X and Y are a complex Banach spaces, see [1].

Let X and Y be an infinite-dimensional Banach space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. The purpose of this note is to determine the forms of all surjective additive maps, non-necessary unital, $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ preserving the kernel's dimension or the range's codimension. We establish also that $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ preserves the kernel (respectively, the range) if and only if there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\phi(T)=A T$ (respectively, $\phi(T)=T A$) for all $T \in \mathcal{L}(X)$.

Theorem 1. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ be an additive surjective mapping. The following assertions are equivalent.
(i) $\operatorname{dim} \mathrm{N}(\phi(T))=\operatorname{dim} \mathrm{N}(T)$ for all $T \in \mathcal{L}(X)$;
(ii) there is two bijective bounded linear, or conjugate linear, mappings $U: X \rightarrow Y$ and $V: Y \rightarrow X$ such that $\phi(T)=U T V$ for all $T \in \mathcal{L}(X)$.

Theorem 2. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ be an additive surjective mapping such that $\operatorname{codim} \mathrm{R}(\phi(T))=\operatorname{codim} \mathrm{R}(T)$ for all $T \in \mathcal{L}(X)$. Then one of the following assertions holds:
(i) There exist a bijective linear or conjugate linear mappings $U: X \rightarrow Y$ and $V: Y \rightarrow X$ such that $\phi(T)=U T V$ for all $T \in \mathcal{L}(X)$.
(ii) There exist a bijective linear or conjugate linear mappings $U^{\prime}: X^{*} \rightarrow Y$ and $V^{\prime}: Y \rightarrow X^{*}$ such that $\phi(T)=U^{\prime} T^{*} V^{\prime}$ for all $T \in \mathcal{L}(X)$. In this case, X and Y are reflexive.

Notice that the case (ii) in the above theorem can occur in some special Banach spaces. More precisely, it is shown in $[2,3,4]$ that there exists an infinite-dimensional complex reflexive Banach space X such that every bounded operator $T \in \mathcal{L}(X)$ is of the form $T=\lambda I+S$ where $\lambda \in \mathbb{C}$ and S is strictly singular; the essential spectrum of such operator is $\sigma_{\mathrm{e}}(T)=\{\lambda\}$. Consider the linear map $\phi(T)=T^{*}$ for all $T \in \mathcal{L}(X)$. Then ϕ preserves the range's codimension. In fact, for Fredholm operators T, we have $\operatorname{ind}(T)=0$ and so $\operatorname{codim} \mathrm{R}(T)=\operatorname{codim} \mathrm{R}(\phi(T))$. If T is not Fredholm, then it is strictly singular and $\sigma_{\mathrm{e}}(T)=\{0\}$. Hence, the continuity of the index implies that T and T^{*} are not semi-Fredholm, and consequently $\operatorname{codim} \mathrm{R}(T)=\operatorname{codim} \mathrm{R}(\phi(T)=\infty$.

Let $x \in X$ and let f be in the dual space X^{*} of X, we denote, as usual, by $x \otimes f$ the rank one operator given by $(x \otimes f) z=f(z) x$ for $z \in X$. The spectrum of such operator is $\sigma(x \otimes f)=\{0, f(x)\}$.

As consequence of Theorem 1 and Theorem 2, we derive the following two results.

Theorem 3. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective additive map. Then the following assertions are equivalent:
(i) $\mathrm{N}(\phi(T))=\mathrm{N}(T)$ for all $T \in \mathcal{L}(X)$;
(ii) there is an invertible operator $A \in \mathcal{L}(X)$ such that $\phi(T)=A T$ for all $T \in \mathcal{L}(X)$.

Proof. Assume that ϕ preserves the kernel, then, obviously, it preserves the kernel's dimension, and by Theorem 1, it takes the form $\phi(T)=U T V$ for all $T \in \mathcal{L}(X)$. Let us show that $V=\lambda I$. Suppose, on the contrary, that there exists $x \in X$ such that x and $V x$ are linearly independent, and let $f \in X^{*}$ satisfy $f(x)=1$ and $f(V x)=0$. It follows that

$$
x \in \mathrm{~N}(I-x \otimes f)=\mathrm{N}(U(I-x \otimes f) V)=\mathrm{N}(V-x \otimes f V)
$$

and hence $V x=0$, a contradiction. Thus $\phi(T)=A T$ for all $T \in \mathcal{L}(X)$, where $A=\lambda U=\phi(I) \in \mathcal{L}(Y)$. This completes the proof.

Theorem 4. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective additive map. Then the following assertions are equivalent:
(i) $\mathrm{R}(\phi(T))=\mathrm{R}(T)$ for all $T \in \mathcal{L}(X)$;
(ii) there exists an invertible operator $B \in \mathcal{L}(X)$ such that $\phi(T)=T B$ for all $T \in \mathcal{L}(X)$.

Proof. Assume that ϕ preserves the range. Then ϕ preserves the range's dimension. Observe that ϕ can not take the second form in Theorem 1, because otherwise, for $T=x \otimes f$ such that $U^{\prime}(f)$ and x are linearly independent, we will get

$$
\operatorname{Vect}\{x\}=\mathrm{R}(T)=\mathrm{R}(\phi(T))=\operatorname{Vect}\left\{U^{\prime}(f)\right\}
$$

a contradiction. Hence, ϕ takes the form $\phi(T)=U T V$ for all $T \in \mathcal{L}(X)$. Now, for an arbitrary $a \in X$ and $g \in X^{*}$ such that $g(a) \neq 0$, we have

$$
\mathrm{R}(a \otimes g)=\mathrm{R}(U(a \otimes g) V)=\mathrm{R}(U a \otimes g)
$$

and so $\{a, U a\}$ is linearly dependent. This shows that $\phi(T)=T B$ for all $T \in \mathcal{L}(X)$, where $B=\lambda V=\phi(I) \in \mathcal{L}(X)$, as desired.

Before giving the proof of Theorem 1 and Theorem 2, some lemmas are to be established first.

It is well known that the set of semi-Fredholm operators remains invariant under perturbation by finite rank operators.

Lemma 5. Let T be a non-zero operator in $\mathcal{L}(X)$. Then the following assertions are equivalent:
(i) $\operatorname{rg}(T)=1$;
(ii) If $S \in \mathcal{L}(X)$, then the map $\lambda \rightarrow \operatorname{dim} \mathrm{N}(S+\lambda T)$ is constant on \mathbb{Q} minus at most one point;
(iii) If $S \in \mathcal{L}(X)$, then the map $\lambda \rightarrow \operatorname{codim} \mathrm{R}(S+\lambda T)$ is constant on \mathbb{Q} minus at most one point.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and $f \in X^{*}$ be such that $T=x \otimes f$, and $S \in \mathcal{L}(X)$. Suppose that there exists a scalar μ such that $\mathrm{N}(S+\mu T) \backslash \mathrm{N}(S) \neq \emptyset$. Then we get easily that $x=S a$ for some $a \in X$, and so $S+\lambda T=S(I+\lambda a \otimes f)$ for all λ. Therefore, if $\operatorname{dim} \mathrm{N}(S+\lambda T) \neq \operatorname{dim} \mathrm{N}(S), I+\lambda a \otimes f$ is not invertible, and consequently $\lambda f(a)=-1$. This shows that the map $\lambda \rightarrow \operatorname{dim} \mathrm{N}(S+\lambda T)$ is constant on $\mathbb{Q} \backslash\left\{-f(a)^{-1}\right\}$.

Now, if $\mathrm{N}(S+\lambda T) \subseteq \mathrm{N}(S)$ for all λ, then $\mathrm{N}(S+\lambda T) \subseteq \mathrm{N}(S) \cap \mathrm{N}(f)$ for $\lambda \neq$ 0. But, since $\mathrm{N}(S) \cap \mathrm{N}(f) \subseteq \mathrm{N}(S+\lambda T)$, we get that $\mathrm{N}(S+\lambda T)=\mathrm{N}(S) \cap \mathrm{N}(f)$ for all $\lambda \neq 0$, as desired.
(i) \Rightarrow (iii) : Let $S \in \mathcal{L}(X)$. Without loss of generality we can suppose the existence of some $\mu \in \mathbb{Q}$ for which $\operatorname{codim} \mathrm{R}(S+\mu T)$ is finite, and it follows in this case that $S+\mu T$ is semi-Fredholm. Hence $S+\lambda T$ is semi-Fredholm for all λ. Consequently, $S^{*}+\lambda T^{*}$ is semi-Fredholm and so $\operatorname{codim} \mathrm{R}(S+\lambda T)=$ $\operatorname{dim} \mathrm{N}\left(S^{*}+\lambda T^{*}\right)$ for all λ. Finally, since T^{*} is rank one, the first implication implies that the map $\lambda \rightarrow \operatorname{dim} \mathrm{N}\left(S^{*}+\lambda T^{*}\right)=\operatorname{codim} \mathrm{R}(S+\lambda T)$ is constant on \mathbb{Q} minus at most one point.
$[(i i)$ or (iii)] \Rightarrow (i): Let δ denote the kernel's dimension or the range's codimension. Assume, on the contrary, that $\mathrm{R}(T)$ contains two linearly independent vectors $u=T x$ and $v=T y$, and let N be a closed subspace such that $X=\operatorname{Vect}\{u, v\} \oplus N$. Then it follows easily that $X=\operatorname{Vect}\{x, y\} \oplus M$ where $M=T^{-1} N$. Now, let S be a bounded operator satisfying $S x=T x$,
$S y=-T y$ and $S: M \mapsto N$ is invertible. Then S is invertible, and

$$
\delta(S-\lambda T)=\delta\left(I-\lambda S^{-1} T\right)=0 \quad \text { for } \lambda^{-1} \notin \sigma\left(S^{-1} T\right)
$$

Hence, $\delta(S-\lambda T)=0$ for all λ in \mathbb{Q} minus at most one point. This contradicts the fact that $S-T$ and $S+T$ are neither injective nor surjective because $(S-T) x=(S+T) y=0, u \notin \mathrm{R}(S-T)$ and $v \notin \mathrm{R}(S+T)$. Thus, T is rank one operator.

Lemma 6. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ be a surjective additive map preserving the kernel's dimension or the range's codimension. Then ϕ is injective.

Proof. Let $T \in \mathcal{L}(X)$ be such that $\phi(T)=0$. Then, by Lemma $5, T$ is of rank less than one. Assume that $T x=y \neq 0$ for some $x, y \in X$, and let S be an invertible operator such that $S x=y$. It follows that $\phi(S-T)=\phi(S)$ is either injective or surjective. But, since $x \in \mathrm{~N}(S-T)$ and $y \notin \mathrm{R}(S-T)$, $\operatorname{dim} \mathrm{N}(S-T)$ and $\operatorname{codim} \mathrm{R}(T-S)$ are non-zero, a contradiction.

Let τ be a ring automorphism of \mathbb{K}. An additive map $A: X \rightarrow Y$ will be called τ-quasilinear if $A(\lambda x)=\tau(\lambda) A x$ holds for all numbers $\lambda \in \mathbb{C}$ and $x \in X$. Notice that in the real case all the quasilinear maps are linear because the identity is the only ring automorphism of \mathbb{R}, while in the complex case the ring continuous automorphisms are the identity and the complex conjugation.

From Lemmas 5 and 6 it follows that ϕ preserves in both direction the set of operators of rank one, and consequently it takes one of the following forms:

$$
\begin{equation*}
\phi(x \otimes f)=G x \otimes H f \quad \text { for all } x \in X \text { and } f \in X^{*} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(x \otimes f)=K f \otimes L x \quad \text { for all } x \in X \text { and } f \in X^{*}, \tag{2}
\end{equation*}
$$

where $G: X \rightarrow Y, H: X^{*} \rightarrow Y^{*}, K: X^{*} \rightarrow Y$ and $L: X \rightarrow Y^{*}$ are τ-quasilinear bijective maps, and $\tau: \mathbb{K} \rightarrow \mathbb{K}$ is a ring automorphism, see [8].

Lemma 7. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ be a surjective additive map preserving the kernel's dimension or the range's codimension. Then $\phi(I)$ is invertible.

Proof. Let $S=\phi(I)$. Suppose that ϕ preserves the kernel's dimension, then in particular S is injective. To show that S is surjective, let y be a nonzero vector in Y. By (1) and (2) we obtain the existence of $x \in X, f \in X^{*}$ and $g \in Y^{*}$ such that $f(x)=1$ and $\phi(x \otimes f)=y \otimes g$. Since

$$
\operatorname{dim} \mathrm{N}(S-y \otimes g)=\operatorname{dim} \mathrm{N}(I-x \otimes f)=1
$$

$S-y \otimes g$ is not injective, and hence $y \in \mathrm{R}(S)$ because S is injective.
Now assume that ϕ preserves the range's codimension, then S is surjective. Suppose that $\mathrm{N}(S)$ contains a non-zero vector y, and using (1) or (2) one can find $x \in X, f \in X^{*}$ and $y \in Y$ such that $f(x)=1, g(y) \neq 0$ and $\phi(x \otimes f)=y \otimes g$. Hence, $\operatorname{codim}(S-y \otimes g)=\operatorname{codim}(I-x \otimes f)=1$. But, since

$$
S=(S-y \otimes g)\left(I-g(y)^{-1} y \otimes g\right)
$$

$S-y \otimes g$ is surjective, a contradiction.
Lemma 8. Let S, T be two bounded invertible operators on X, and denote by δ and δ^{*} the dimension of the kernel or the codimension of the range. If $\delta(T+F)=\delta^{*}(S+F)$ for all rank one operator F, then $S=T$.

Proof. Let $x \in X$, and consider an arbitrary $f \in X^{*}$ such that $f\left(T^{-1} x\right)=$ 1. It follows that $\delta\left(I-T^{-1} x \otimes f\right)=1$, and

$$
\begin{aligned}
\delta^{*}\left(I-S^{-1} x \otimes f\right) & =\delta^{*}(S-x \otimes f)=\delta(T-x \otimes f) \\
& =\delta\left(I-T^{-1} x \otimes f\right)=1
\end{aligned}
$$

Therefore, $I-S^{-1} x \otimes f$ is not invertible, and so $f\left(S^{-1} x\right)=1$. This shows that $T^{-1} x=S^{-1} x$ for all x. Consequently, $T=S$.

Proof of Theorem 1 and Theorem 2. Let δ denote the kernel's dimension or the range's codimension, and suppose that ϕ preserves δ. Then, by Lemma 7, $\phi(I)$ is invertible, and the unital map $\tilde{\phi}=\phi(I)^{-1} \phi$ preserves δ.

We first treat the case when $\tilde{\phi}$ takes the form (1), i.e., $\tilde{\phi}(x \otimes f)=G x \otimes H f$ for all $x \in X$ and $f \in X^{*}$. Observe that for every non-zero scalar $\lambda, x \in X$ and $f \in X^{*}$, we have $\delta(I-\lambda x \otimes f)=\delta(I-\tau(\lambda) G x \otimes H f)$, and so $I-\lambda x \otimes f$ is invertible if and only if $I-\tau(\lambda) G x \otimes H f$ is invertible. This shows that $H(f)(G x)=\tau(f(x))=\left(\tau \circ f \circ G^{-1}\right)(G x)$ for all x and f. Hence $H(f)=$ $\tau \circ f \circ G^{-1}$, and consequently $\tilde{\phi}(x \otimes f)=G(x \otimes f) G^{-1}$ for all x and f. Arguing as in $[1,8]$ we get that τ and G are bounded, and so τ is either an identity or the complex conjugation.

Let $T \in \mathcal{L}(X)$ and $\lambda \in \mathbb{R} \backslash(\sigma(T) \cup \sigma(\tilde{\phi}(T)))$. For an arbitrary rank one operator F we have

$$
\begin{aligned}
\delta(T-\lambda I+F) & =\delta\left(\tilde{\phi}(T)-\lambda I+G F G^{-1}\right) \\
& =\delta\left(G^{-1}(\tilde{\phi}(T)-\lambda I) G+F\right)
\end{aligned}
$$

Hence, according to Lemma $8, \tilde{\phi}(T)=G T G^{-1}$. Therefore $\phi(T)=U T V$ for all $T \in \mathcal{L}(X)$ where $U=\phi(I) G$ and $V=G^{-1}$.

Now assume that $\tilde{\phi}$ is of the second form $\tilde{\phi}(x \otimes f)=K f \otimes L x$. By an argument similar to the previous case one can establish that K and L are a bounded linear, or conjugate linear, operators and that $\tilde{\phi}(F)=K F^{*} K^{-1}$ for every rank one operator F. Moreover, in this case, the spaces X and Y are reflexive, see [1]. Let $T \in \mathcal{L}(X)$ and $\lambda \in \mathbb{R} \backslash(\sigma(T) \cup \sigma(\tilde{\phi}(T)))$. Consider an arbitrary rank one operator F, then it follows that

$$
\begin{aligned}
\delta(T-\lambda I+F) & =\delta\left(\tilde{\phi}(T)-\lambda I+K F^{*} K^{-1}\right) \\
& =\delta\left(K^{-1}(\tilde{\phi}(T)-\lambda I) K+F^{*}\right)
\end{aligned}
$$

But, since $K^{-1}(\tilde{\phi}(T)-\lambda I) K$ is invertible, $K^{-1}(\tilde{\phi}(T)-\lambda I) K+F^{*}$ is semiFredholm and hence it has a closed range. Then, using Lemma 8 we get that $T=K^{-1} \tilde{\phi}(T) K$. Therefore, $\phi(T)=U^{\prime} T^{*} V^{\prime}$ for all $T \in \mathcal{L}(X)$ where $U^{\prime}=\phi(I) K$ and $V^{\prime}=K^{-1}$.

To complete the proof it remains to show that ϕ cannot take the second form when ϕ preserves the kernel's dimension. Assume on the contrary that $\phi(T)=U^{\prime} T^{*} V^{\prime}$ for all $T \in \mathcal{L}(X)$. Since Y is reflexive, there exists a noninvertible injective operator $S \in \mathcal{L}(Y)$, see [9, 1]. As ϕ is surjective, $S=\phi(T)$ where $T \in \mathcal{L}(X)$ is injective. Consider a nonzero vector $y \in Y$, and let $f=U^{\prime-1} y$ and $x \in X$ be such that $f(x)=1$. It follows that

$$
\operatorname{dim} \mathrm{N}\left(S-U^{\prime}(T x \otimes f)^{*} V^{\prime}\right)=\operatorname{dim} \mathrm{N}(T-T x \otimes f)=1
$$

Consequently, $S-U^{\prime}(T x \otimes f)^{*} V^{\prime}$ is not injective, and since S is injective, we obtain that

$$
\operatorname{Vect}\left\{U^{\prime} f\right\}=\mathrm{R}\left(U^{\prime}(T x \otimes f)^{*} V^{\prime}\right) \subseteq \mathrm{R}(S)
$$

Thus, $y \in \mathrm{R}(S)$ and so S is surjective, a contradiction.

Acknowledgements

The author would like to thank professors Mostafa Mbekhta for several discussions concerning the improvement of this paper.

References

[1] J. Cui, J. Hou, Additive maps on standard operator algebras preserving invertibilities or zero divisors, Linear Algebra Appl. 359 (2003), 219-233.
[2] M. Gonzalez, Banach spaces with small Calkin algebras, in "Perspectives in Operator Theory ", Banach Center Publ., 75, Polish Acad. Sci., Warsaw, 2007, 159-170.
[3] W.T. Gowers, B. Maurey, Banach spaces with small spaces of operators, Math. Ann. 307 (1997), 543-568.
[4] W.T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
[5] A. Jafarian, A.R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
[6] M. Mbekhta, L. Rodman, P. Šemrl, Linear maps preserving generalized invertibility, Integral Equations Operator Theory 55 (2006), 93-109.
[7] M. Mbekhta, Linear maps preserving a set of Fredholm operators, Proc. Amer. Math. Soc. 135 (2007), 3613-3619.
[8] M. Omladic, P. ŠEmRL, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182 (1993), 239-256.
[9] P. ŠEMRL, Two characterizations of automorphisms on $B(X)$, Studia Math. 150 (1993), $143-149$.

[^0]: * This note were written while the author was visiting the University of Lille1. He would like to thank all the members of mathematic's U.F.R for their beneficial hospitality.

