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A B S T R A C T

Automatic voice condition analysis systems have been developed to automatically

discriminate pathological voices from healthy ones in the context of two disorders related

to exudative lesions of Reinke’s space: nodules and Reinke’s edema. The systems are based

on acoustic features, extracted from sustained vowel recordings. Reduced subsets of fea-

tures have been obtained from a larger set by a feature selection algorithm based on Whale

Optimization in combination with Support Vector Machine classification. Robustness of the

proposed systems is assessed by adding noise of two different types (synthetic white noise

and actual noise recorded in a clinical environment) to corrupt the speech signals. Two

speech databases were used for this investigation: the Massachusetts Eye and Ear Infirmary

(MEEI) database and a second one specifically collected in Hospital San Pedro de Alcántara

(Cáceres, Spain) for the scope of this work (UEX-Voice database). The results show that the

prediction performance of the detection systems appreciably decrease when moving from

MEEI to a database recorded in more realistic conditions. For both pathologies, the predic-

tion performance declines under noisy conditions, being the effect of white noise more

pronounced than the effect of noise recorded in the clinical environment.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics
and Biomedical Engineering of the Polish Academy of Sciences. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Voice is a person’s main communication tool and, therefore,

the impact of voice disorders on quality of life can be substan-

tial. For people involved in certain professions, such as teach-

ers, singers, and many others, voice is also the main working

tool and, as an immediate consequence, they are in a high risk
of developing voice disorders due to excessive and/or incorrect

use of their voices. Voice professionals are prone to suffer

from organic diseases and will eventually need some kind of

medical diagnosis and care [1]. Some of those voice disorders

are exudative lesions of Reinke’s space and aremanifestations

of different etiologic factors like voice abuse leading to nod-

ules, or tobacco use linked to Reinke’s Edema [2].
ineering of
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The main methods used by otolaryngologists to diagnose

laryngeal diseases are direct inspection of the larynx through

the use of invasive techniques such as laryngoscopy and

videostroboscopy [3], and/or evaluation of voice quality by

hearing. The first group of diagnosis techniques causes dis-

comfort to the patient and requires sophisticated equipment

like endoscopic instruments or specialized video cameras,

whereas the second group is subjective and strongly depends

on the experience of the specialist [4].

In recent years, computer aided diagnosis (CAD) of voice

disorders has attracted considerable scientific interest with

the aim of providing an effective screening method for

pathologies in an early stage. Using automatic voice condition

analysis (AVCA) helps the physicians providing useful infor-

mation in the differential diagnostic process [5]. These tech-

niques usually consist of an acoustic feature extraction step

followed by the application of machine learning algorithms

under the assumption that voice quality is correlated with

voice pathology [5]. Compared to the previously mentioned

diagnosis methods, these techniques show the advantages

that they are non-invasive, fast, objective, and low-cost. Also,

acoustic analysis have been proved to be a sensitive, objec-

tive, and quantitative tool, being more accurate than percep-

tual assessment [6]. For example, they can be applied in

preventive medicine to professionals at high risk of suffering

from voice disorders [7]. Other contribution in the field of

automatic detection of structural vocal-fold pathologies is

[8], which offers experimental results of binary discrimina-

tion between normal and pathological voices, where the

pathological voice class is composed of a variety of disorders.

A recent scientific review on AVCA systems is provided by [9].

This paper focuses on laryngeal diseases, in particular,

nodules and Reinke’s edema. In this application context, the

most usual vocal task is sustained phonation of /a/ vowels,

where the speakers are asked to pronounce a vowel sound

as steady as possible in terms of amplitude and fundamental

frequency [10]. This vocal task has several advantages. First, it

requires continuous motion of the vocal folds, which consti-

tute the main structure involved in these pathologies. Also,

this vocal task is quick and easy to perform and it is a com-

mon sound across different languages and accents. Sustained

phonation of other vowel sounds or production of sentences

have also been used [8].

Based on sustained vowel recordings, the studies in the lit-

erature consider many different characteristics of speech

including perturbation measurements (such as jitter or shim-

mer), noise measures (such as harmonic-to-noise ratio (HNR)

or glottal-to-noise excitation (GNE) ratio), Mel frequency cep-

stral coefficients (MFCCs), among others [5]. More recent stud-

ies show that nonlinear time series analysis methods may be

more appropriate for pathological voices than classical mea-

surements. Those methods, including Lyapunov exponents

and correlation dimension, have been applied to classification

of disordered voice samples [5].

There is also a variety of pattern recognition techniques

based on supervised learning applied in this context in the

scientific literature. Among the many different classification

techniques that have been used, [5] highlights Support Vector

Machines (SVM) and Gaussian Mixture Models as the most

widely employed, although [9] compiles a much wider range
of alternatives which have been used in this particular field.

In general, when a large feature set size is used, the model

becomes less comprehensible and there is a high risk of over-

fitting [11]. Therefore, for a reliable classification, it is impor-

tant to use a small number of measurements, containing an

optimal amount of information. Feature selection for classifi-

cation is an active research area on its own, whose main

objective is to reduce the dimension of the original feature

set. Wrapper algorithms based on meta-heuristic optimiza-

tion techniques allow to obtain a global optimum of the pre-

dictive accuracy achieved for a certain classification

algorithm by using a simple and easy to implement concept.

Among the different meta-heuristic approaches, the Whale

Optimization Algorithm (WOA) is a recently proposed

approach which mimics the hunting behavior of humpback

whales. It was originally created as an optimization algorithm

[12] and later adapted as a feature selection operator [13,14].

An important aspect to take into account regarding AVCA

systems for speech disorder detection is robustness. When

the recordings have been obtained under a controlled acous-

tic environment, the performance of these systems in real-life

conditions remains unknown. A clear example is the Mas-

sachusetts Eye and Ear Infirmary (MEEI) database [15], whose

recordings were taken in Kay Elemetrics and MEEI Voice and

Speech Lab [16], being these conditions very difficult to repro-

duce in everyday situations. In order to be useful, it is

required that these systems remain robust even when the

recordings are captured in a non-controlled environment.

Experiments have been carried on in order to assess different

channels in remote disease monitoring [17,18]. Even mobile

healthcare applications have been tested in controlled acous-

tical environments, like [19], which mentions that experi-

ments are carried out in an as low as 30 dB background

noise room. However, noise robustness is very seldom present

in the scientific literature about automatic detection systems

of organic voice disorders. [20] presents assumable noise

levels of 25 dBA, 36 dBA, 30 dB, 40 dB and 50 dB for different

studies, remarking that the maximum acceptable noise level

was not investigated. [21] presents a study about the adverse

effects of noise on voice quality measurement. This study

focuses on fundamental frequency and perturbation mea-

surements with no particular pathology addressed. [22] stud-

ies the numerical effects of noise on the computation of

different acoustical features, although it does not test their

classifying capabilities. [23] performs a preliminary study on

the impact of noise on the automatic detection of a particular

voice pathology: Reinke’s edema. In the context of Parkinson’s

disease, [24] shows the impact of noise on an automatic

detection system based on acoustic features. Finally, [25] pro-

poses a technique to mitigate the possible differences in

recording environments, characterized by different noise

conditions.

The main goal of the present paper is to assess the nega-

tive effects of realistic noisy recording conditions on the out-

come of an AVCA system for voice pathology detection. We

have focused on two specific related diseases which are com-

mon vocal fold lesions, and their etiologies are related. How-

ever, we performed independent experiments with each

disease in order to minimize the number of variables present

in the study since the main goal is not building an automated
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diagnostic system, but to check the potential effects of envi-

ronmental noise on the outcomes of AVCA systems for vocal

fold lesions detection.

We have built AVCA systems to discriminate pathological

voices from healthy ones in the context of two structural

organic speech pathologies: nodules and Reinke’s edema.

This work is a significant extension of the conference paper

[23]. It introduces new case studies in a different pathology

(vocal fold nodules) that allow to improve the generalization

capability of the conclusions and to make a disease compari-

son. Also, it exposes a feature selection algorithm which has

been designed, implemented, and tested for these applica-

tions. Specifically, the systems are built on reduced acoustic

feature subsets, obtained by a feature selection algorithm

based on Whale Optimization in combination with SVM clas-

sification. This algorithm has been implemented using paral-

lel computing libraries and executed on a Beowulf cluster

system. Two voice recording databases are employed: The

first one is MEEI, recorded in the most favorable acoustic con-

ditions; the second one is an own database, recorded in a

more usual clinical environment. Also, system robustness is

evaluated by adding two different types of noise (white Gaus-

sian noise and actual clinical environment noise) to both

databases and studying the impact on the discrimination

capacity of each system.

2. Materials and methods

This section provides the main information on participants,

collection and pre-processing of voice samples and noise

recording. Also, the proposed feature extraction approach is

summarized and the feature selection algorithm is explained.

2.1. Participants

MEEI database, commercialized by KayPentax Corp. [15], is

one of the voice databases used for this work. This database,

widely used for research in pathological voice classification,

has been recorded under very strict acoustical and technical

conditions (sound-proof booth, high-quality recording equip-

ment, type of microphone, distance to the source. . .) [16]. It

includes sustained /a/ recordings of 53 healthy and 657 patho-

logical subjects, 19 and 25 of them suffering from vocal-fold

nodules and Reinke’s edemas, respectively.

Notall thevoicesamples in theMEEIdatabasewererecorded

using the same technical parameters, being the healthy voices

recorded at a sampling rate of 50 kHz, with a total length of 3 s,

whereas the pathological voices were recorded at 25 kHz for

one second. For the purpose of our experiments, all the wave-

formswere resampledwhenneededand trimmedso thewhole

database complieswith the specifications of a sampling rate of

25 kHz and one second length.

An experiment has been conducted to collect a voice

recording database (UEX-Voice) also based on sustained /a/

phonations. This database has been recorded in Hospital

San Pedro de Alcántara (HSPdA), Cáceres, specifically, in an

ordinary diagnostic room, with its door closed, providing only

a certain isolation from the noisy aisles and waiting halls sur-

rounding it.
All the recordings were taken using the same equipment:

an AKG 520 head-worn condenser cardioid microphone

attached to a TASCAM US322 sound card, being the recording

software Audacity 2.0.5. The sampling rate was 44.1 kHz. Four

phonations were recorded for each participant, of variable

lengths depending on the capacity of each individual, so they

were trimmed both at the beginning, ensuring no silence, and

at the end, to obtain a uniform duration of one second. All the

waveforms were downsampled to 25 kHz in order to match

the sampling rate of MEEI database.

Fig. 1 shows the age distribution of the considered subjects

with nodules and Reinke’s edema from the MEEI and UEX-

Voice databases. Summary statistics are provided in Table 1.

2.2. Noise database

A noise database has been specifically collected from the

room where the research study took place. This room was

placed in the external consultation area, on the second floor,

of a hospital in a small town (population < 100:000). Back-

ground noise was recorded using the same equipment previ-

ously defined. The length of the recording was 11 min 50 s

and included noise from different sources: multitalker babble,

cell phone sounds, fluorescent lighting, door closing, and

footsteps, among others. Since post-processing is made alter-

ing recording level, we are more interested in the nature of

sound than in its power. The recordings made include a real-

istic representation of the variety of indoor noise sources that

are present in the outpatient clinic area of any hospital during

consultation hours. Furthermore, national and regional envi-

ronmental noise laws are very strict in hospital surroundings.

Anyway, the impact of external sources on the final record-

ings is negligible, as in free space the received noise power

is inversely proportional to the square of the distance to the

source, given that external sources are farther away than

internal ones, and accounting for the attenuation due to

building walls. For those reasons, considering that the voice

samples are at most 3 s long, and that they are trimmed down

to one second, these noise recordings provided enough vari-

ability to perform all the desired experiments.

The noise waveforms were recorded inside the empty

diagnosis room with door and windows closed while noise

level was being measured using a certified Brüel & Kjaer

2260 sound level meter, what allows us to assert the acousti-

cal environment recreated when using these recordings.

Three one-minute measurements showed an A-weighted

mean Leq of 34.17 dBA.

2.3. Feature extraction

A total of 94 features were extracted from each voice sample.

These features have been previously used in scientific litera-

ture, either for voice disease detection, Parkinson’s disease

detection, or other biomedical signal analysis [5,9]. The

extraction methods were coded in Python by direct imple-

mentation of the formal mathematical definition, by translat-

ing existing code from other authors, or by using available

libraries of proven reliability from Python repositories. A com-

prehensible list is provided in Table 2 including short name,



Fig. 1 – Age distribution of the subjects from MEEI and UEX-Voice databases.

Table 1 – Distribution of subjects by health status, sex and age.

Sex Age

Database Health status Male Female Mean Std. Dev.

MEEI Healthy 21 32 36.00 8.29
Nodules 1 17 29.11 10.45
Reinke’s edema 5 20 48.04 11.97

UEX-Voice Healthy 4 26 40.76 11.18
Nodules 1 23 40.41 11.33
Reinke’s edema 3 27 47.96 11.76
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references to previous work, and variants taken into

consideration.

Age and sex are two features inherent to each subject.

Humans undergo several changes with aging that affect the

voice production system. For example, changes in the larynx

tend to alter the average fundamental frequency and to
produce instability of vocal fold vibrations [34]. The impact

is different for men than for women; in particular, fundamen-

tal frequency tends to increase in men and decrease in

women due to some aging effects [35]. Also, women are more

prone to suffer from organic voice diseases than men [36].

These and several other aspects related to the impact of age



Table 2 – Features extracted.

Linear

Short name References Full name and variants

CPP [26] Cepstral peak prominence
GNE_X [27] Glottal-to-noise excitation ratio. Four different statistical features: mean, std, SNR_TKEO,

SNR_SEO
GQ [27] Glottal quotient. Three statistics used: prc5_95, std cycle open, std cycle closed
HNR [27] Harmonic-to-noise ratio
JITTER_X [27] Jitter. Twenty-two different statistics used: abs_dif, diff_percent, PQ3_classical_Schoentgen,

PQ3_classical_Baken, PQ3_generalised_Schoentgen, PQ5_classical_Schoentgen,
PQ5_classical_Baken, PQ5_generalised_Schoentgen, PQ11_classical_Schoentgen,
PQ11_classical_Baken, PQ11_generalised_Schoentgen, abs0th_perturb, DB, CV, TKEO_mean,
TKEO_std, TKEO_prc5, TKEO_prc25, TKEO_prc75, TKEO_prc95, FM, range_5_95_perc

SHIMMER_X [27] Shimmer. Twenty-two different statistics used: abs_dif, diff_percent,
PQ3_classical_Schoentgen, PQ3_classical_Baken, PQ3_generalised_Schoentgen,
PQ5_classical_Schoentgen, PQ5_classical_Baken, PQ5_generalised_Schoentgen,
PQ11_classical_Schoentgen, PQ11_classical_Baken, PQ11_generalised_Schoentgen,
abs0th_perturb, DB, CV, TKEO_mean, TKEO_std, TKEO_prc5, TKEO_prc25, TKEO_prc75,
TKEO_prc95, FM, range_5_95_perc

MFCC-X [28] Mel Frequency Cepstral Coefficient, 13 first coefficients MFCC0 - MFCC12

Non-linear

D2 [10] Correlation dimension
FMMI [29] First minimum in mutual information
FZCF [29] First zero of autocorrelation function
HURST [10] Hurst Exponent
MFSW [30] Multifractal spectrum width
ZCR [31] Zero crossing rate

Entropies and complexities

PERMUTATION [32] Permutation entropy
PPE [27] Pitch period entropy
RPDE [18] Recurrence Period Density Entropy
SHANNON [29] Shannon entropy
LZ-X [33] Lempel–Ziv complexity. 16 features quantifying signal 21 to 216 steps
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and gender on speech have motivated the inclusion of these

two features.

Many diseases affecting vocal production cause pitch-

related alterations, specifically frequency or amplitude modu-

lation, being sustained vocal analysis the most useful tech-

nique to apply [37]. Most studies till recent years focused

their attention on acoustical features such as jitter or shim-

mer, which assume that voice production is a linear system.

Though the definition of jitter seems very simple, i.e., the

mean variation in the fundamental frequency of the phona-

tion process, there is no method considered as standard for

calculating such variation, mainly because the fundamental

frequency calculation is not a trivial task. Most usual methods

are provided by Multi-Dimensional Voice Program [15], the

software tool provided by KayPentax with their database;

and Praat suite. Other algorithms have been proposed, such

as Sun’s algorithm or SWIPE alternatives [38]. In our imple-

mentation jitter and shimmer were translated from MATLAB

code given by [27]. We obtained 22 different measurements

for both jitter and shimmer, each one corresponding to a dif-

ferent mathematical formulation.

Besides jitter and shimmer, other spectrum and funda-

mental frequency related linear features have been studied.

GQ was originally used to monitor Parkinson’s disease [39],

and shortly after for early diagnosis of pathological voice
[40]. GQ takes into account the lengths of time the glottis is

open and closed. CPP was proposed as a measure of breathi-

ness and our version was coded following the definition given

by [26]. HNR is intended to assess voice hoarseness and tries

to estimate the relationship between purely harmonic to tur-

bulent noise in voice production. MFCCs try to describe the

spectral components and do not require a previous pitch esti-

mation [28].

Nonlinear behaviors have been shown to play a role in the

voice production process and, particularly, in the case of voice

pathologies [5]. Therefore, assuming that voice diseases may

induce a chaotic behavior in human voice production, nonlin-

ear analysis has also been taken into consideration in the

search for new accurate features [7]. RPDE considers the

uncertainty in signal cycle estimates using both an embedded

space and entropy, being related to fundamental frequency,

nonlinear, and entropy measurements [18]. ZCR is not prop-

erly a nonlinear measurement, but it is useful in time series

analysis [31], measuring the number of times the signal

crosses zero level. D2 is an estimator of the correlation

dimension, a measure of self-similarity of chaotic systems

[10]. HURSTand MFSWare closely related: HURST, also known

as detrended fluctuation analysis, used in [10], measures a

monofractal local fluctuation of the root-mean-square in a

time series, whereas MFSW [30] analyzes the q-order Hurst
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exponent, or multifractal fluctuation analysis, capable of dis-

tinguish fast and slow fluctuations. FMMI measures the time

lag for which the signal adds a maximum of information

about itself, or for which the information redundancy is min-

imal [29]. FZCF gives the input lag for which the autocorrela-

tion function is minimal [29].

Another aspect that has been considered is the signal

entropy, or the amount of information carried by the signal.

Different approaches can be found in the scientific literature:

SHANNON is a classical communication theory measurement

of the information a signal carries [29]; PERMUTATION adds a

perspective of symbolic dynamics, or the temporal order of

the values in a series [32]; PPE quantifies the lack of control

over pitch beyond natural vibrato and microtremor [27,40].

Finally, LZ measures the regularity or repetitiveness of a

sequence [33].

2.4. Feature selection and classification

We built different systems for each database-disease combi-

nation. Those systemswere created using clean samples from

the databases, and their ability to handle additive noise was

checked by inducing different types of noise at different

SNR levels. The systems creation comprised two steps: fea-

ture selection and recording classification.

Given the number of features considered and datasets

sizes, the risk of overfitting is a relevant issue, whichever clas-

sifier is used. To avoid this inconvenience, the following fea-

ture selection approach has been designed and implemented.

In general, features belonging to the same family, that is,

those which share a common base algorithm, are highly cor-

related within the group [41]. This is shown in Fig. 2, which

represents a heat map of the Pearson correlation coefficient

for each pair of features. It can be observed that jitter, shim-

mer, and LZ features are highly correlatedwithin their groups.

Therefore, prior to any WOA related computation, the feature

set was reduced to keep only one feature per group in the case

of these three families.

The number of features considered after discarding the

highly correlated ones is still high compared to the number

of individuals included in each database, so further feature

selection is performed. We used WOA [12], a bio-inspired evo-

lutionary algorithm properly modified as a wrapper feature

selection operator [14], which has recently started to be tested

as a feature selection method [13]. It mimics the bubble-net

feeding in the hunting behavior of the humpback whales.

These whales hunt close to the surface by creating a net of

bubbles where the prey is trapped. The algorithm mimics this

behavior in two phases: one of them is called exploitation,

when a whale herd tries to encircle a prey (solution or, in this

case, set of features) in a spiral bubble-net attack; the other

phase, called exploration, searches randomly for a new prey.

In each iteration, the algorithm selects a prey, a local opti-

mum point. WOA selection algorithm relies on the fitness

function from Eq. (1)

f ¼ a� ð1� accuracyÞ þ b� number of selected features
number of features

ð1Þ

based on the accuracy of a given classifier and the number of

features selected to train such classifier. In this case, the objec-
tive is to maximize the accuracy, that is, minimize the error

rate through the a parameter while minimizing the relative

number of features using the b parameter, thus decreasing

the risk of overfitting due to an excessive number of features

involved. Both accuracy and relative number of features are

in the range ½0;1�, and a and b also range ½0;1� being b ¼ 1� a.

Exploitation or prey encircling is done by taking the local

optimum point obtained in the previous iteration, or a ran-

dom point at the beginning of the execution, and then each

search agent or ‘‘whale” describes a spiral around that point.

To create such spiral thewhale alters the optimum point, con-

sisting of a feature set, and modifies it by adding or removing

features, ensuring a lower euclidean distance to the optimal

point in each iteration, so the new candidate obtained by each

search agent is always closer to the local optimum point at

each iteration.

At this point, as suggested by [42], we changed the updat-

ing mechanisms. Feature addition or subtraction in the solu-

tions is performed using Eq. (2),

~Xðtþ 1Þ ¼ D0 � ebl � cosð2plÞ þ ~X�ðtÞ; ð2Þ

where b defines the spiral shape, l is a random number in

½�1;1�, D0 is the euclidean distance to the best available solu-

tion and ~X� is the best solution so far, as depicted in [12]. In

this case, since the solutions space is discrete (a feature is

either present or not) the updated leading position is trans-

formed into a binary vector whose positions indicate whether

the whale position in a given dimension or feature is above

0.5 or not (e.g. 4-dimensional solution [0.7, 0.3, 0.8, 0.9] would

turn into [1, 0, 1, 1]).

In order to extend search to a wider portion of the solu-

tions space, some of the whales will move randomly to

another unrelated point in the space, what constitutes the

exploration mechanism. Eventually, one or more whales will

find a better solution than the temporary optimal one given

by the last iteration, and then, all the search agents will turn

to the best solution in terms of accuracy and feature number,

and will start encircling it. The algorithm ends when it finds a

solution with a fitness function lower than a given threshold,

or when it has computed a maximum number of iterations.

The algorithm can be fine tuned by using tournament and

roulette wheel selection mechanisms instead of a random

operator to enhance the exploration phase, as well as cross-

over and mutation to optimize the exploitation phase [14].

In this case we have implemented the algorithm based on

tournament selection as selection mechanism, and mutation

as subset search.

Tournament selection randomly chooses two challengers

within the search agents population and, according to a ran-

dom number being greater than a given threshold, selects

either the best or worst fitted candidate as new individual.

Mutation provides a tool for generating new possible solu-

tions from actual solutions being considered in the current

state. It randomly changes the state of some features from

selected to un-selected or vice versa. The number of altered

selections decreases as the algorithm reaches the hard limit

of iterations, making it more prone to mutations at the begin-

ning of the execution and more unlikely to mutate towards

the end.



Fig. 2 – Correlation heat map for all the extracted features.
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The algorithm also makes use of crossover, where two

candidate solutions are mixed, or ‘‘bred”, in order to create

a new candidate solution with mixed characteristics of the

two original ones.

The overall procedure is shown as Algorithm 1. It begins

initializing candidates in the search field. In every iteration,

until it reaches the hard limit imposed or achieves a fitness

function above a desired threshold, it performs the following

actions. First, an update of the a, A, C, l, p parameters is per-

formed for each whale. a decreases linearly from 2 to 0 as the

number of iterations get closer to the hard limit; A and C

define the whale position update along with a: A is a coeffi-

cients vector built using the value of a and a random vector

in [0, 1] and C is built using the same random vector; l is a ran-

dom number in ½�1;1� which defines the spiral shape as seen

in Eq. 2; and p is a random number in [0, 1] whose value deter-

mines whether the whale is going to encircle the best solution

(exploit) or it is going to explore, and how. Then, if it chooses

to explore, it either explores the solutions space by perform-

ing a tournament selection or mutation of the best solution,

creating a new candidate by crossover. If it chooses to exploit

the current best solution, the process is completed by encir-

cling in a spiral shaped curve the best solution.

Algorithm 1. Whale Optimization Algorithm

leaderScore ¼ 1
candidates ¼ randomðsearchagents; featuresÞ
while leaderScore < threshold doanditerations < maxIterations
do

for all candidates do
Update a; A; C; l; p following [14]
if p > 0:5 then

if Aj j > 1 then
Xrand ( tournament selection
RA ( mutateðXrandÞ
RE ( mutateðcandidateÞ
candidateLeftarrowcrossoverðRA;REÞ

else
D ( mutateðleaderPositionÞ
candidate ( crossoverðD; candidateÞ

end if
else

Encircle LeaderPosition using Eq: (2)
end if

end for
for all candidates do
if fitnessðcandidateÞ < leaderScore then

leaderScore ( fitnessðcandidateÞ
leaderPosition ( candidate

end if
end for
iterations ( iterationsþ 1

end while

For the classifier, SVM is considered. Prior to any computa-

tion a grid search is performed to find the best parameters for

each database, and only for the case without additional noise

(called ‘‘clean” case) as we intend to show the effects of noise

on classification accuracy. The search space includes the
kernel function used, among the four implemented ones in

Python scikit library (linear, poly, rbf, and sigmoid) as well

as their specific parameters.

Given the database sizes, one single run of WOA algorithm

could yield a feature set fitted to the training set and the ini-

tial random conditions used for that particular run, reaching

a local optimal point not suitable for most work settings, thus

the need of multiple runs in order to generalize performance.

Stratified shuffle and split was performed, all the selected fea-

ture sets were collected, and the most repeated features were

compiled as the optimal feature set for each database and

condition.
3. Results

Experiments were carried out to check the performance and

robustness of different detection systems for two databases

of voice disorders: nodules and Reinke’s edema. This section

describes the experimental setting and the main results

obtained.
3.1. Experimental setting

The experiments consisted of two steps: first, classification

systems were built minimizing the number of features used

in each case (each database and each disease); then, those

features were used to classify the same subjects from the

databases they were created from, with and without added

noise in the voice recordings, under a stratified repeated ran-

dom subsampling validation framework.

As there are two heterogeneous databases to work with,

some previous steps were taken in order to ensure a reliable

results comparison. Most of them, concerning technical

recording characteristics like sampling rate or recording

length are summarized in Section 2.1. However, UEX-Voice

database consists in four recordings per participant in the

experiment. In this case, considered features were extracted

for each recording, and mean value for each one was used

in the following experiments.

In order to minimize the feature set, for each voice data-

base (without artificially-added noise) the collection of results

was obtained as follows. 640 instances of the WOA algorithm

were launched, each one consisting of 640 whales, and amax-

imum of 25000 iterations to find the optimum features set.

Preliminary studies were carried out to get values for a and

b that both yield good accuracy and low feature set size.

The values chosen for this specific problem were

a ¼ 0:99;b ¼ 0:01. The execution provided 640 different sets,

represented by binary vectors of length 35, where 1 represents

the presence of a feature, and 0 the absence of the feature in

the set. By adding all the vectors as if they were natural vec-

tors we end up with a total appearances vector.

The most useful features were used to train a set of classi-

fiers, one set per disease, using an increasing number of fea-

tures. They were incrementally added in the most repeated
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order obtained by the WOA algorithm, and classifier perfor-

mance was computed until no improvement was found for

at least three feature additions. At this point, the feature set

yielding the local maximum was chosen, so it was possible

to check the evolution of the classifier F1 score with respect

to the number of features used. Validation of results was per-

formed by stratified repeated random subsampling, by repeat-

ing this procedure 1000 times and averaging the results.

Training and test sets were selected using a stratified shuffle

and split schema, so in each repetition the ratio of healthy

and pathological individuals remained constant and identical

to the ratio present for the database and disease being consid-

ered in each experiment. 2/3 of randomly chosen subjects

from the database were used as training set and 1/3 as testing

set.

In order to check the robustness of these systems, two dif-

ferent sources of additive noise were used: artificially gener-

ated Gaussian white noise and an actual recording of noise

taken inside HSPdA. Two different scenarios were considered

within each case: taking a random sample within noise

recording by randomly selecting a starting point from the

noise vector for every single voice recording in each database,

and adding both noise sample and voice recording, what

inherently introduces more variability in the process; and tak-

ing a random sample by randomly selecting a starting point

within the noise vector and adding this unique sample to

every recording in the database.

This processwas repeated fromasignal tonoisepower ratio

(SNR) ranging from0 dB to 30 dB in steps of 6 dB. Since theUEX-

Voicedatabaserecordingconditionsareknown,wecanassume

that the noise level present in the recording session is propor-

tional to the value provided in Section 2.2, although we have

nomeanstoquantify thevoicesignalpower.Ontheotherhand,

weareconsidering that theMEEIdatabasewas recorded insuch

good acoustical and technical conditions that the noise con-

tained in the recordings is negligible, and as such will not alter

significantly the induced SNR. For each SNR level considered,

thesametrainingandtestsets foreachrunof theclassifierwere

considered, so we can avoid the variability that random sets

would induce in the different classifiers, so differences in the

results obtained are a consequence only of the induced noise

in each case.
3.2. Experimental results

The next subsections summarize the results obtained for

each disease, once applied the different levels of noise and

trained the set of classifiers. For each database and disease,

four experiments were considered, which relate to a particu-

lar combination of noise nature (white synthetic noise, or

actual recorded noise) and randomness (same noise clip

added to every sample in the database, or one randomly gen-

erated or selected clip per sample).

We have used confusion matrix analytics to measure the

performance of the final classifiers. True positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

were computed for each iteration, and accuracy, precision,

recall, and F1 score (Eqs. (3)–(6)) were derived from them,

and were later averaged:
accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð3Þ

precision ¼ TP
TPþ FP

; ð4Þ

recall ¼ TP
TPþ FN

; ð5Þ

F1 score ¼2 � precision � recall
precisionþ recall

: ð6Þ

In each of the four plots in Figs. 3–6, the X-axis shows

which features have been selected and, as we move to the

right, we add the features to the subset being considered, so

the curve represents at a given point the mean F1 score on

Y-axis, obtained after stratified repeated random subsampling

validation. The upper limit for the number of features has

been selected taking in consideration the shape of the clean

curve in each case as stated in Section 3.1.

Each plot shows seven curves, one obtained after training

the classifiers using the original recordings, no noise added,

called clean, and six graphs labeled after SNR levels ranging

from 0 dB to 30 dB in steps of 6 dB.

3.2.1. Nodules
Figs. 3, 4 and Tables 3, 4 show the mean F1 scores using an

increasing number of features for voices affected with nod-

ules in MEEI and UEX-Voice, respectively. In the case without

noise addition, the results show that the classification F1

scores decrease from 0.91 to 0.61 when moving from MEEI

database (Fig. 3)) to UEX-Voice database (Fig. 4). In this case,

the implemented procedure has allowed to identify a reduced

feature subset (4 or 5 features, depending on the database)

that allows to achieve a saturation behavior in the prediction

performance. In the case of UEX-Voice database, these fea-

tures are CPP and three MFCCs, that is, cepstral and spectral

features. For MEEI the most useful features resulted to be:

MFCC1, CPP, HURST, AGE, and MFSW, which is a mixture of

features based on linear and non-linear analysis, and the age.

F1 scores for MEEI database when adding 0 dB SNR noise

are not even computable as we can not compute precision

as well. This shows that the classifier marks every subject

as healthy: Eq. (4) shows that, if there are neither TP nor FP

(all the subjects classified as pathological), precision is not

computable; also, by Eq. (5), recall equals 0. Looking at recall,

which for binary classification shows the ability to detect

pathological voices, for MEEI database we get values over 0.9

only for SNRs above 24 dB, and even then precision does not

get over 0.9. In the case of UEX-Voice database F1 score, pre-

cision, and recall are lower, specially the latter.

The overall behavior results as expected, with higher SNR

levels yielding better results, closer to the clean samples clas-

sifications. However, that behavior varies as we change the

nature of the noise: Actual noise (subplots (a) and (b) in Figs. 3

and 4) tends to be less problematic when taking into consid-

eration a few features, staying closer to the clean samples

classifiers than synthetic noise (subplots (c) and (d) in Figs. 3

and 4).
3.2.2. Reinke’s edema
Figs. 5, 6 and Tables 5, 6 show the discrimination results

obtained in the case of Reinke’s edema. The comparison

between both databases in the case without additional noise



Fig. 3 – Mean F1 scores using cumulative features for nodules disease, MEEI database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC1, 2-CPP, 3-HURST, 4-AGE, 5-MFSW. Noise characteristics: (a) realistic noise, fixed

sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.

Fig. 4 – Mean F1 scores using cumulative features for nodules disease, UEX-Voice database. SNRs ranging from 0 dB to 30 dB

in steps of 6 dB. The features are: 1-CPP, 2-MFCC7, 3-MFCC3, 4-MFCC2. Noise characteristics: (a) realistic noise, fixed sample,

(b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.
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allows to extract similar conclusions than in the case of nod-

ules. Again, the detection F1 score obtained with MEEI data-

base is higher than in the case of UEX-Voice (0.98 versus

0.83). The number of features needed to reach a saturation

behavior is 5 or 6, depending on the database. Cepstral and
spectral features play again a relevant role, however an

entropy feature is required in both feature subsets. In the case

of MEEI, shimmer is also selected.

In the presence of additive noise, the detection perfor-

mance decreases, and the impact is again higher in the case



Fig. 5 – Mean F1 scores using cumulative features for Reinke’s edema, MEEI database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC1, 2-PERMUTATION, 3-Shimmer, 4-MFCC3, 5-CPP. Noise characteristics: (a) realistic

noise, fixed sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.

Fig. 6 – Mean F1 scores using cumulative features for Reinke’s edema, UEX-Voice database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC7, 2-CPP, 3-MFCC2, 4-SHANNON, 5-MFCC10, 6-MFCC4. Noise characteristics: (a)

realistic noise, fixed sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random

sample.
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of synthetic white Gaussian noise than in the case of realistic

noise. Also, as it happens in the experiment about nodules,

the effect of noise addition is more pronounced on UEX-

Voice database than in the case of MEEI.
F1 scores for MEEI database along with accuracy show that

the classifier is reliable for SNRs as low as 18 dB, where both

values reach over 0.9 in the case of realistic noise. For UEX-

Voice database, the minimum SNR to show acceptable perfor-



Table 3 – Accuracy, precision, recall and, F1 score values computed for MEEI database, nodules disease, SNRs ranging from
0 dB to 30 dB in 6 dB steps, using 5 features: MFCC1, CPP, HURST, AGE, and MFSW.

Real fixed Real random White fixed White random

Clean Accuracy 0.95 0.95 0.95 0.95
Precision 0.88 0.88 0.88 0.88
Recall 0.95 0.95 0.95 0.95
F1 score 0.91 0.91 0.91 0.91

30 dB Accuracy 0.95 0.95 0.95 0.95
Precision 0.87 0.88 0.86 0.87
Recall 0.95 0.95 0.94 0.95
F1 score 0.91 0.91 0.90 0.90

24 dB Accuracy 0.95 0.94 0.94 0.94
Precision 0.86 0.85 0.85 0.86
Recall 0.94 0.92 0.91 0.91
F1 score 0.90 0.88 0.88 0.89

18 dB Accuracy 0.93 0.92 0.92 0.93
Precision 0.85 0.81 0.87 0.88
Recall 0.89 0.88 0.83 0.83
F1 score 0.87 0.85 0.85 0.85

12 dB Accuracy 0.88 0.87 0.88 0.88
Precision 0.84 0.83 0.91 0.90
Recall 0.68 0.64 0.59 0.58
F1 score 0.75 0.72 0.71 0.70

6 dB Accuracy 0.75 0.76 0.75 0.75
Precision 0.85 0.94 0.98 0.98
Recall 0.04 0.05 0.01 0.01
F1 score 0.07 0.10 0.01 0.02

0 dB Accuracy 0.74 0.74 0.74 0.74
Precision – – – –
Recall 0.00 0.00 0.00 0.00
F1 score – – – –

1050 b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 1 ( 2 0 2 1 ) 1 0 3 9 –1 0 5 6
mance is 24 dB, where F1 score drops from 0.83 to 0.71 and

accuracy, precision and recall score show a similar

degradation.

4. Discussion

The results involve two diseases, two different databases and

four kinds of noise. This allows to perform a comparative

analysis from different perspectives. In spite of the fact that

we have studied the effects of noise addition in the perfor-

mance of a classifier using F1 score as the reference metric,

most studies use accuracy as the main performance indicator

[9]. However, since we have also computed accuracy, and the

best results are obtained using all the features selected in

each case, we can compare our system performance with

prior research in the field.

Comparing clean case performance allows us to analyze

the differences from a database point of view, with MEEI data-

base the detection accuracies reach 0.95, while the systems

reach 0.71 for nodules and 0.84 for Reinke’s edema with

UEX-Voice database. This difference in performance between

MEEI and a database obtained in more realistic conditions is

in line with the scientific literature. Whereas most reported

detection accuracies for MEEI data are in excess of 0.9, in [8]

best accuracies of 0.784 and 0.762 were achieved after carry-
ing out voice pathology detection experiments using the

Hospital Universitario Prı́ncipe de Asturias database (HUPA)

and the Saarbrücken Voice Disorder database (SVD), respec-

tively. [43] computed accuracy, recall, and other metrics when

classifying recordings from MEEI (0.91–0.97 accuracy, 0.93–

0.98 recall) and HUPA databases (0.68–0.82 accuracy, 0.77–

0.85 recall). Moreover, [10] achieves 0.95/0.97 accuracy/recall

for MEEI database using spectral-cepstral features, while the

results with HUPA database using the same features only

reach 0.78/0.74.

Some studies have taken into consideration noise corrup-

tion. For example, [24] studies environmental noise and white

Gaussian noise effects on Parkinson’s disease detection using

a variety of vocal tasks including a phonation model based on

sustained vowels. Both disease and noise are not directly

comparable since Parkinson’s disease is a neurological dis-

ease and different diseases require different analysis tech-

niques which depend on the specific effects on voice [10].

Moreover, noise was recorded in 8 different scenarios. How-

ever, it shows that with clean training the accuracy for the

phonation model drops from about 0.7 to 0.5 when SNR is

equal to 0 dB, much like the results obtained here. Further-

more, some research has been made in order to alleviate

the effects of different recording conditions on disease detec-

tion performance [25].



Table 4 – Accuracy, precision, recall and, F1 score values computed for UEX-Voice database, nodules disease, SNRs ranging
from 0 dB to 30 dB in 6 dB steps, using 4 features: CPP, MFCC7, MFCC3, and MFCC2.

Real fixed Real random White fixed White random

Clean Accuracy 0.71 0.71 0.71 0.71
Precision 0.74 0.74 0.74 0.74
Recall 0.52 0.52 0.52 0.52
F1 score 0.61 0.61 0.61 0.61

30 dB Accuracy 0.67 0.67 0.59 0.59
Precision 0.74 0.73 0.59 0.59
Recall 0.41 0.40 0.24 0.25
F1 score 0.53 0.52 0.34 0.35

24 dB Accuracy 0.64 0.63 0.53 0.53
Precision 0.70 0.68 0.43 0.43
Recall 0.33 0.32 0.14 0.14
F1 score 0.45 0.44 0.21 0.21

18 dB Accuracy 0.60 0.59 0.51 0.51
Precision 0.63 0.59 0.35 0.35
Recall 0.26 0.25 0.11 0.11
F1 score 0.37 0.36 0.16 0.16

12 dB Accuracy 0.55 0.54 0.51 0.50
Precision 0.48 0.45 0.32 0.32
Recall 0.16 0.17 0.10 0.10
F1 score 0.24 0.24 0.15 0.15

6 dB Accuracy 0.54 0.53 0.50 0.50
Precision 0.46 0.40 0.30 0.30
Recall 0.16 0.12 0.09 0.09
F1 score 0.24 0.19 0.14 0.14

0 dB Accuracy 0.54 0.53 0.49 0.49
Precision 0.43 0.41 0.28 0.27
Recall 0.11 0.12 0.08 0.08
F1 score 0.17 0.18 0.13 0.13
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On the other side, when noise is added with a low SNR,

MEEI database gets much higher results for all metrics than

UEX-Voice. Apart from the fact that MEEI database was col-

lected in a more controlled acoustic environment, some

authors have pointed out that this database contains no

lightly pathological speakers [29], and that the normal and

dysphonic voices present in the database are easily separable

[44], which makes the classification task easy.

Given the proportions of healthy and pathological samples

present in the databases, shown in Table 1, MEEI test set con-

tains roughly 70% of healthy patients whereas in UEX-Voice

50% of test samples are healthy. Those ratios match the accu-

racies obtained for the worst SNR ratios for all the classifiers

for both databases. Precision and recall values support the

fact that the classifier is unable to distinguish pathological

subjects and marks most of them as healthy. That explains

the differences in the lower accuracy levels shown between

Tables 3, 5 and 4, 6.

Considering the different kinds of noise it seems that real-

istic noise is less intrusive than white synthetic noise. This

trend is specially pronounced for UEX-Voice database. A pos-

sible explanation for this is that the spectral compositions of

both types of noise are different. White noise (Fig. 7a) is char-

acterized by an even spectral power density, thus all the fre-

quencies in the full bandwidth are interfered in the same
way. However, realistic noise coming from several sources in

the hospital environment concentrates most energy in a

lower part of the spectrum. A spectrogram of an example of

realistic noise segment is shown in Fig. 7b, where it is easy

to see the spectral contributions of the noise sources taken

in consideration, and how realistic noise most prominent fre-

quencies lie in the lower half of spectrum, and even consider-

ing that bandwidth, frequencies below 4 kHz stand out.

Regarding noise randomness, the variability introduced by

random noise sampling in all cases has little impact in the

overall capacity of the resulting classifiers. Although some

differences exist in the results, there is no consistency in

any advantage of fixed over random sampling or vice versa,

as we can see, for example, in Fig. 5, subplots (a) versus (b)

or Fig. 5, subplots (c) versus (d).

The comparative analysis of the results from a disease per-

spective is more challenging. Vocal fold nodules are smooth,

benign masses involving anterior or middle vocal folds and

located superficially to the free edge of the fold. Reinke’s

edema (also known as polypoid degeneration) is character-

ized by an accumulation of fluid, usually in both vocal folds

[45]. Since both pathologies share some histological charac-

teristics, [2] even proposed to use the term ‘‘exudative lesions

on the Reinke’s space” to refer to nodules, polyps, and Rein-

ke’s edema. These histological characteristics affect the vibra-



Table 5 – Accuracy, precision, recall and, F1 score values computed for MEEI database, Reinke’s edema disease, SNRs ranging
from 0 dB to 30 dB in 6 dB steps, using 5 features: MFCC1, PERMUTATION, Shimmer, MFCC3, and CPP.

Real fixed Real random White fixed White random

Clean Accuracy 0.99 0.99 0.99 0.99
Precision 1.00 1.00 1.00 1.00
Recall 0.96 0.96 0.96 0.96
F1 score 0.98 0.98 0.98 0.98

30 dB Accuracy 0.98 0.98 0.98 0.97
Precision 1.00 1.00 1.00 1.00
Recall 0.94 0.93 0.92 0.91
F1 score 0.97 0.96 0.96 0.96

24 dB Accuracy 0.98 0.97 0.93 0.94
Precision 1.00 1.00 1.00 1.00
Recall 0.93 0.91 0.80 0.81
F1 score 0.96 0.96 0.89 0.90

18 dB Accuracy 0.94 0.95 0.84 0.84
Precision 1.00 1.00 0.99 0.97
Recall 0.83 0.84 0.50 0.52
F1 score 0.91 0.91 0.66 0.67

12 dB Accuracy 0.84 0.81 0.81 0.82
Precision 1.00 1.00 1.00 1.00
Recall 0.50 0.41 0.39 0.43
F1 score 0.67 0.58 0.56 0.61

6 dB Accuracy 0.78 0.76 0.77 0.81
Precision 0.94 0.93 0.82 0.88
Recall 0.32 0.26 0.37 0.46
F1 score 0.47 0.41 0.51 0.60

0 dB Accuracy 0.69 0.69 0.71 0.69
Precision 0.87 0.72 0.88 0.77
Recall 0.03 0.03 0.12 0.06
F1 score 0.06 0.06 0.20 0.11
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tory patterns of the vocal folds (increase in mass of the folds,

reduction in the pliability of the overlying cover. . .), and may

produce some common perceptual consequences, such as

hoareseness and breathiness. Nevertheless, it can be

observed that Reinke’s edema is detected with higher accu-

racy and F1 score (0.99 and 0.98 respectively in the case of

MEEI; 0.84 and 0.83 respectively in the case of UEX-Voice) than

nodules (0.95 and 0.91 respectively in the case of MEEI; 0.71

and 0.61 respectively in the case of UEX-Voice), which may

be the consequence of its inflammatory character producing

a more severe impact on voice quality in comparison to a sim-

ple mass lesion.

The overall structure of the system is in line with most of

previous work, with the common steps of preprocessing, fea-

ture extraction, dimensionality reduction, machine learning

training, and system evaluation [5]. Regarding dimensionality

reduction, prior work in the field include techniques such

principal component analysis, linear discriminant analysis,

or minimum redundancy maximum relevance among others.

The four experimental settings have led to four different fea-

ture subsets. The composition of these feature subsets is

important as they may provide some clues not only on which

features are more important when building a new detection

system, but also which ones show a certain noise robustness.

Although the feature selection process is applied on the

original databases, without noise addition, UEX-Voice is
recorded in amore realistic acoustic environment, so it is pos-

sible to conclude that, if there are features that are selected

using both databases, they may have a reliable discrimination

potential across different databases under moderately con-

trolled acoustic conditions. This is the case of CPP andMFCCs.

They play a very important role, as CPP and at least one MFCC

have been selectedwithin the most useful features in the four

cases, to the point that for nodules disease in UEX-Voice data-

base all the selected features are MFCCs and CPP. Both share

the advantage that, unlike traditional acoustic measures such

as jitter or shimmer, they do not require a pitch estimation

which may be difficult due to the absence of periodicity in

severely dysphonic voices. This is in line with results

obtained by [28], where it is shown that advanced multi-

band cepstral analysis might be useful in disease detection

and even in disease discrimination, and [10] which shows

the ability of spectral-cepstral features to classify disphonic

voices based on a sustained vowel analysis.

The rest of selected features is heterogeneous among the

four studied cases: Non-linear analysis features are found in

Fig. 3 with HURSTand MFSW, but no other case shows nonlin-

ear features. Entropies make their appearance in both Rein-

ke’s edema cases, Figs. 5 and 6, with permutation and

Shannon entropies, but not in nodules cases. From the classi-

cal perturbation measurements only shimmer is selected for

MEEI Reinke’s edema case, but not for UEX-Voice. The reason



Table 6 – Accuracy, precision, recall and, F1 score values computed for UEX-Voice database, Reinke’s edema disease, SNRs
ranging from 0 dB to 30 dB in 6 dB steps, using 6 features: MFCC7, CPP, MFCC2, SHANNON, MFCC10, and MFCC4.

Real fixed Real random White fixed White random

Clean Accuracy 0.84 0.84 0.84 0.84
Precision 0.84 0.84 0.84 0.84
Recall 0.83 0.83 0.83 0.83
F1 score 0.83 0.83 0.83 0.83

30 dB Accuracy 0.76 0.76 0.68 0.69
Precision 0.79 0.79 0.68 0.69
Recall 0.71 0.70 0.68 0.68
F1 score 0.75 0.74 0.68 0.69

24 dB Accuracy 0.71 0.71 0.55 0.55
Precision 0.72 0.71 0.55 0.55
Recall 0.70 0.70 0.57 0.57
F1 score 0.71 0.71 0.56 0.56

18 dB Accuracy 0.56 0.56 0.47 0.47
Precision 0.56 0.56 0.48 0.48
Recall 0.58 0.57 0.51 0.51
F1 score 0.57 0.57 0.49 0.49

12 dB Accuracy 0.48 0.48 0.47 0.47
Precision 0.48 0.48 0.47 0.47
Recall 0.51 0.51 0.52 0.52
F1 score 0.50 0.50 0.49 0.49

6 dB Accuracy 0.48 0.48 0.48 0.48
Precision 0.48 0.48 0.48 0.48
Recall 0.51 0.51 0.52 0.52
F1 score 0.50 0.50 0.50 0.50

0 dB Accuracy 0.47 0.47 0.48 0.48
Precision 0.47 0.47 0.48 0.48
Recall 0.47 0.49 0.49 0.49
F1 score 0.47 0.48 0.48 0.49

Fig. 7 – Spectrograms for white noise and an example of realistic noise segment from the hospital environment. Both noise

recordings were used on the same voice recording.
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might be that, as an amplitude perturbation measure, shim-

mer is very sensitive to noise, performing better in a more

controlled acoustic environment.

On the classifier side, we chose SVM for its simplicity and

execution speed since WOA feature selection is computation-

ally expensive. Many alternatives have been used, line Hidden
Markov Models, Gaussian Mixture Models, K-nearest neigh-

bors or decision trees to name a few of them [9]. Most of the

alternatives found in previous work uses that kind of algo-

rithms, although in recent years artificial neural networks

have gained popularity and we start to see studies using such

techniques.
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Deep learning methods have seldom been used in this

specific application until recent times. [9] mentions artificial

neural networks but only shows multilayer perceptron, which

barely can be classified as a deep learning method. [46] pre-

sents 2 out of 45 studies using deep learning techniques,

which date from 2019. The most plausible reason is database

size. Looking at the numbers shown in Table 1, the number of

samples is very low, and a small multilayer neural network

comprises thousands of coefficients. DenseNet has been used

on cepstrum features [47] with good results although it cites

the low number of pathological samples as a limitation. Other

classical deep learning approaches like VGG16 and CaffeNet

have been used [48], with the particularity that those algo-

rithms are used for image recognition and classification. Con-

sequently, raw waveforms are feed into the network (in the

form of spectrograms) since it will infer features, and transfer

learning techniques (neural network partially trained with

examples from other fields) are used to overcome the long

training times and small dataset size limitations.

Research on robust pathology detectors has not been

addressed until recent times. [49] performs experiments

using four different databases, aiming at robustness against

different recording conditions, but does not focus on specific

differences between them. Little work has been done around

noise robustness in voice quality assessment, so thorough

comparisons can not be made, although this research is nec-

essary. For example, [20,47] point towards differences in

recording environment (e.g. background noise) as a limitation

for different studies results comparison. [50] points out the

difficulties to extrapolate the results obtained with different

databases due their recording differences. However, [21] pro-

poses a SNR level of 42 dB for perturbation measurements (jit-

ter and shimmer) to be reliable, and estimates 30 dB as the

lowest limit of SNR level for reliable usage of classifiers. This

seems to match the results for MEEI database in Figs. 3 and 5,

where the F1 score is almost identical for the clean and the

30 dB SNR cases, for all the numbers of features considered,

specially when realistic noise is added.

Considering the impact of noise can benefit other research

work focused on mobile health tools to detect vocal fold dis-

orders. There is currently a high interest in the development

of mobile-aided systems to manage a wide variety of diseases

and, in particular, disorders affecting voice [17–19]. A critical

aspect is to check if the approaches proposed for controlled

conditions are robust or have to be modified when used in

increasingly realistic environments.
5. Conclusion

The results of this paper highlight the importance of perform-

ing experiments on more realistic voice pathology databases,

alternative to MEEI, since the achievable prediction accuracies

are not expected to be comparable. The feature subsets

obtained by feature selection with MEEI and with a more real-

istic database collected in the scope of this work emphasize

the role of CPP and MFCCs as useful and robust features to

discriminate pathological from healthy voices.
Also, the degrading impact of additive noise on AVCA sys-

tems based on acoustic features for detection of nodules and

Reinke’s edema has been demonstrated and quantified.

Although the effect of real-world noise recorded in a clinical

environment has been shown to be lower than that of white

noise, the effect is sufficiently detrimental to motivate further

research into noise-robust prediction systems.

In the future, it will be interesting to increase UEX-Voice

database by including new organic pathologies. Also, explor-

ing new techniques in the field like deep learning and looking

for solutions to overcome the voice databases limitations are

of research interest.
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Bonilla JF, Nöth E. Effect of acoustic conditions on algorithms
to detect Parkinson’s disease from speech. In 2017 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP); 2017.

[25] Madruga M, Campos-Roca Y, Pérez C. Multicondition training
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