
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 4, APRIL 2021 2103

Mutual Coupling of Antennas With Overlapping
Minimum Spheres Based on the Transformation

Between Spherical and Plane Vector Waves
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Abstract— Mutual coupling in finite arrays of antennas with
strongly overlapping minimum spheres is quickly calculated
by computing the general translation matrix between spherical
modes. This matrix is obtained by using the transformation
properties of spherical and plane vector waves. Although this
approach is less efficient than the classical one, which is based on
addition theorems, it allows to overcome the well-known limita-
tion of addition theorems that requires nonintersecting minimum
spheres. Symmetry relations are provided for the translation
coefficients that greatly increase the speed of computation of the
general translation matrix. By computing the reflection and the
transmission submatrices of the generalized scattering matrix of
a finite antenna array, accurate results are obtained for the S-
parameters and the radiation patterns of arrays, in comparison
with commercial software or a purely numerical in-house full-
wave method. For this purpose, different types of antennas with
strongly overlapping hemispheres in an array environment on
a ground plane are used, such as apertures, monopoles, cavity-
backed patch antennas, or dielectric resonator antennas.

Index Terms— Addition theorems, finite arrays, generalized
scattering matrix (GSM), mutual coupling, plane wave expansion,
spherical wave expansion.

I. INTRODUCTION

TRANSLATION of spherical vector waves (spherical
modes) has been widely used for decades for the efficient

study of electromagnetic scattering by particle groups [1], [2]
(and its updates [3] and references therein), in spherical near-
field antenna measurements with probe correction [4] or, more
recently, for the fast analysis of finite antenna arrays [5]–[7].
Most of these works are based on computing this translation
by applying addition theorems for spherical waves [8], [9],
as it is a purely analytical method. However, it is well
known that addition theorems are not strictly valid when the
minimum possible sphere circumscribing the antenna over-
laps the minimum possible sphere circumscribing the other
antenna [4]. Consequently, the method proposed in [5]–[7]
cannot be used directly for the analysis of finite arrays with
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elongated elements that are very close to each other, since
addition theorems are used to couple spherical modes between
elements.

In order to overcome this limitation, a full-wave antenna
modeling method by means of infinitesimal dipoles was pre-
sented in [10] and [11] for planar and volumetric antennas,
respectively. These works took advantage of the ability of
equivalent dipoles to synthesize the field within the mini-
mum sphere of the antenna [12]. Thus, after obtaining the
antenna model, the array response can be calculated by cou-
pling the equivalent dipoles using addition theorems, since
they correspond to lower order spherical modes. However,
the major drawback of this method is that it requires obtain-
ing an accurate model of the antenna through an optimiza-
tion method. In addition, from distances between antenna
edges less than 0.15λ to 0.2λ the method starts to lose
accuracy.

Alternatively to the translation of spherical modes based on
addition theorems of spherical vector waves, it was established
in [13] that such translation could be carried out by using
transformation properties between spherical waves and plane
waves, and translation of the latter. Although this procedure
has no apparent advantages over the use of addition theorems,
since it requires numerical integration, it has been recently
shown in [14] that it can be used for the computation of light
scattering of spheroidal particles with strongly overlapping
minimum spheres.

In this work, the translation procedure based on the transfor-
mation to plane waves proposed in [13] is used for the efficient
analysis of finite arrays of antennas with strongly overlapping
minimum spheres. In addition, symmetry relations for the
translation coefficients, which allow the computation time to
be significantly reduced, are provided. Previously, the analysis
of finite antenna arrays by means of the generalized scattering
matrix (GSM) of a finite array, obtained from the GSM of
isolated elements and translation of spherical modes, is briefly
reviewed. Finally, some results are presented for different types
of array elements that are intended to show the capabilities of
the proposed method.

II. THEORY

A. Analysis of Finite Arrays Based on Translation of
Spherical Modes

The overall GSM of a finite array of N antennas in terms of
spherical modes, including mutual coupling, can be defined as�

�G RG

TG SG−I

��
v
a

�
=

�
w
b

�
(1)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1424-4714
https://orcid.org/0000-0002-6472-8987


2104 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 4, APRIL 2021

with

v =

⎧⎪⎨
⎪⎩

v1
...

vN

⎫⎪⎬
⎪⎭, w =

⎧⎪⎨
⎪⎩

w1
...

wN

⎫⎪⎬
⎪⎭, a =

⎧⎪⎨
⎪⎩

a1
...

aN

⎫⎪⎬
⎪⎭, b =

⎧⎪⎨
⎪⎩

b1
...

bN

⎫⎪⎬
⎪⎭

(2)

where vi , wi , ai , and bi are column vectors containing, respec-
tively, the complex amplitudes of incident and reflected modes
on the feeding ports, and the incoming and scattered spherical
modes on the spherical ports, for the element i in the array. I is
the identity matrix, and the submatrices �G, TG, RG, and SG,
stand, respectively, for the reflection, reception, transmission,
and scattering matrices of the finite array and are given by [5]

�G = � + RG[I − (S − I)G]−1T

TG = [I−(S − I)G]−1T

RG = R + RG[I−(S − I)G]−1(S − I)

SG − I = [I−(S − I)G]−1(S − I) (3)

with �
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being the overall GSM of a finite array of N externally
uncoupled antennas, in terms of spherical modes [5], [6].
For the usual case in which internal coupling does not exist,
i.e., the feeding ports are uncoupled, �, T, R, and S will be
diagonal block-matrices whose blocks will be the individual
reflection, reception, transmission, and scattering matrices of
each antenna i in isolation [5]. In (3), G is a square matrix that
accounts for mutual coupling between the antennas in the array

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 G21 · · · . . . G1 N

G21 0
. . . Gi j

...
...

. . .
. . .

. . .
...

... G j i
. . . 0 GN−1 N

GN1 · · · . . . GN N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The elements of G are general translation matrices between
each pair of antennas i and j , obtained by rotation and
translation of spherical modes, so that

a j
i = Gi j b j . (6)

In this way, the incoming field in antenna i from antenna j ,
expanded in terms of complex amplitudes of spherical modes
a j

i , is obtained by means of translation of the scattered field
by antenna j , expanded in terms of complex amplitudes of
spherical modes b j .

Reflection matrix �G provides the S-parameters for feeding
ports, i.e., the mutual coupling coefficients between them and
the reflection coefficients taking into account mutual coupling
effects.

By assuming no incident field coming from out of the
array (a = 0), the radiation pattern can be easily calculated
from the transmission matrix TG, given an excitation in terms
of complex amplitudes of feeding modes v, by applying
superposition as

E(û) = �
e(û)e− j kû·u�FTGv (7)

where
�
e(û)e− jkû·u� = �

ee− jkû·u1 , ee− jkû·u2 , . . . ,ee− jkû·uN
�

(8)

k is the wavenumber in free space, û is the unitary vector
in spherical coordinates, and ui is the position vector of the
array element i, ui = xi x̂+yi ŷ. e is a row vector containing
the electric fields of the spherical modes in each element, and
F is a diagonal matrix that takes into account rotation angles
in the case of rotated elements in the array [15].

B. General Translation Matrix Based on the Transformation
Between Spherical and Plane Vector Waves

Alternatively to the translation of spherical modes based on
addition theorems, it was established in [13] that it is possible
to make such translation by means of a spherical to plane
vector wave transformation and translation of the latter. The
sequence of operations is as follows.

1) Express the field scattered by the antenna j in terms of
spherical modes.

2) Expand each previous spherical mode in terms of plane
vector waves in the z-axis direction of the spherical
mode expansion.

3) Translate the plane vector waves from the antenna j to
the antenna i , according to the propagation theory of
plane vector waves, in the z-axis direction.

4) Expand each plane vector wave in terms of incoming
spherical modes in the antenna i , so that the local z-axis
in antenna i be parallel to the local z-axis of antenna j .

A priori, this approach has no advantages over the use
of addition theorems, since step 2 results in a numerical
integration of the plane wave spectrum, whereas the use of
them only involves fully analytical calculations. However,
as stated in [16], the plane vector wave expansion converges
in the region where z > zmin, with zmin being the largest z-
coordinate of the antenna. This region is different from the
convergence region of the expansion in spherical modes, given
by r > rmin, with rmin being the radius of the minimum sphere
(or the hemisphere on a ground plane) that circumscribes
the antenna. It should also be noted that |zmin| ≤ rmin.
Consequently, translation of spherical modes through a plane
vector wave transformation can be carried out between two
antennas, even if their minimum spheres overlap, when they
are separated by a plane that does not intersect them. Such a
plane will be perpendicular to the direction of propagation of
plane vector waves.

This work is focused on planar arrays on a ground plane,
so that we will assume that the separation plane is also
orthogonal to the ground plane, which covers the vast majority
of cases of this type of antenna arrays. Fig. 1 shows the
geometric starting point for the general translation of spherical
modes, where the local z-axes of the antennas (z’ and z”)
are parallel. However, as mentioned above, translation based
on the propagation of plane vector waves requires the z-axis
to be perpendicular to the direction of propagation, which is
defined by the separation plane. For this reason, a succession
of rotations of spherical modes needs to be additionally carried
out, to obtain the general translation matrix of spherical modes
based on plane vector wave transformation. In this way, this
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Fig. 1. Geometric approach for the general translation of spherical modes
between two antennas on a ground plane based on plane vector wave
transformation. Top view: ground plane is at z = 0.

matrix can be calculated as a product of matrices

Gi j =
�
R j

�−ϕr j
�
R j

�
ϕ j

�
D j

�π

2

�
Cp(k, dz, ρ, φ)

×Di

�
−π

2

�
Ri (−ϕi)Ri(ϕri)

�T
. (9)

In (9), R j (ϕ j) is a diagonal matrix that performs a ϕ-rotation
of the local coordinate system for antenna j (x’,y’,z’), so that
the new x-axis points in the direction of propagation of
plane vector waves. D j(π/2) is a matrix that, starting from
ϕ j -rotated coordinate system for antenna j , performs a
θ -rotation equal to π/2, so that the new z-axis points in the
direction of propagation of plane vector waves. Cp(k, dz, ρ, φ)
is the translation matrix of spherical modes, based on the
transformation to plane vector waves and their propagation.
On the other hand, Di(−π/2) and Ri(−ϕi) perform the
inverse rotations of coordinate systems for antenna i , so that
the spherical modes refer to the local coordinate system
for antenna i (x”, y”, z”) after these rotations. R j (−ϕr j)
and Ri(ϕri ) are diagonal matrices that account for the local
ϕ-rotations of antennas j and i , respectively, when their local
coordinate systems, (x’, y’, z’) and (x”, y”, z”), are not parallel
to the global coordinate system of the array (x, y, z).

Additional details on this procedure, as well as the elements
of matrices D and R, can be found in [4] and [5].

The elements of Cp(k, dz, ρ, φ) can be computed by
using the following expression, obtained after the sequence
of operations 1)–4) described at the beginning of this
section [13], [14]

Cp
s j μ j n j
si μi ni (k, dz, ρ, φ)

= 4(−j)|μi −μ j |e jφ(μi −μ j)

×
2�

p=1

�
dκ

κ

kkz
B j p

�−kz

k

�
B†

i p

�−kz

k

�
e
− jkzdz

J|μi −μ j |(κρ).

(10)

In (10), j = √−1, κ is the in-plane wavenumber (the radial
cylindrical coordinate of the wave propagation vector k),
kz = √

k2 − κ2, J|μi −μ j |(κρ) is the Bessel function of the
first kind and its order is the absolute value of μi − μ j .

Fig. 2. Cylindrical coordinates of the center of antenna i , in the local
coordinate systems of antennas j and i that allow the translation of spherical
modes based on plane vector wave transformation. Top view.

Bmp (m = j , i) is the transformation operator given by

Bmp(cos ϑ)

=
−�

jδp1 + δp2
��

δsm p
∂ Pμm

nm (cos ϑ)
∂ϑ

+ �
1 − δsm p

�
μm

Pμm
nm (cos ϑ)

sin ϑ

�
j(nm+1)

√
(2nm + 1)

(11)

where Pμm
nm (cos ϑ) is the normalized associated Legendre

function. In the “daggered” version (†), all explicit j are set
to (−j). Index sm (m = j , i) distinguishes with sm = 1
and sm = 2 between TE and TM spherical modes. Indices
μm and nm (m = j , i) are the order and the degree of the
spherical modes in the local coordinate systems of antennas j
(xpj , ypj , zpj) and i (xpi , ypi , zpi), respectively, obtained after
performing rotations. (dz, ρ, φ) are the cylindrical coordinates
of the antenna i center oi , in the antenna j (xpj , ypj , zpj) local
coordinate system, as shown in Fig. 2.

It should be noted that, since the antenna centers are
in the same plane (xpi = xpj), φ can only be equal
to ±π/2.

The procedure just described in this section to compute the
general translation matrix will be used only between pairs of
antennas with minimal overlapping spheres. For the rest of
pairs, the method proposed in [5] will be used, since it is
more efficient as explained below.

C. Symmetry Properties of the Translation Coefficients

Computation of the general transmission matrix coefficients
is more intensive when using a spherical modes translation
based on plane vector waves propagation instead of addition
theorems. The reason for this is that, in the latter case,
calculations are analytical, the z-translation is always axial (z-
axes are coaligned) and there are recurrence and symmetry
relations that speed the computation [4], [5], [1]. In this
sense, it should be noted that, for an axial translation, all the
coefficients with μi �= μ j vanish. This property can be also
used in the case of plane vector waves propagation but it is
only a particular case, although very usual in finite arrays,
where the separation plane is orthogonal to the axial direction
defined by the antenna centers (ρ = 0).

Despite this, computation of (10) can be significantly
speeded-up by using symmetry properties. In this sense, we
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have found the following relations:
Cpsi μi ni

s j μ j n j
(k, dz, ρ, φ) = ej2φ(μ j −μi)(−1)(ni +n j)

× Cp
s j μ j n j
si μi ni (k, dz, ρ, φ) (12)

Cp
2μ j n j

2μi ni
(k, dz, ρ, φ) = Cp

1μ j n j

1μi ni
(k, dz, ρ, φ) (13a)

Cp
1μ j n j

2μi ni
(k, dz, ρ, φ) = Cp

2μ j n j

1μi ni
(k, dz, ρ, φ) (13b)

and

Cpsi μi ni
s j μ j n j

(k, dz, ρ, φ) = ej2φ(μi −μ j )(−1)(μi −μ j )(−1)(si +s j )

×Cp
s j −μ j n j

si −μi ni
(k, dz, ρ, φ). (14)

Equation (12) allows to obtain the matrix Cp coefficients
located above its diagonal from those below its diagonal or
vice versa. Equation (13a) and (13b) provides the coefficients
with si = 2 from the coefficients with si = 1. Finally,
the coefficients with μi > 0 can be computed from the
coefficients with μi < 0 by means of (14). In addition, since
φ can only be equal to ±π/2 in a planar array, (12) and (14)
can be simplified

Cpsi μi ni
s j μ j n j

(k, dz, ρ, φ) = (−1)(μ j −μi)(−1)(ni +n j)

× Cp
s j μ j n j
si μi ni (k, dz, ρ, φ) (15)

Cpsi μi ni
s j μ j n j

(k, dz, ρ, φ) = (−1)(si +s j)Cp
s j −μ j n j

si −μi ni
(k, dz, ρ, φ).

(16)

As an example, for a maximum value of ni and n j equal to
10 it is only necessary to compute 7700 coefficients. The rest
up to 57 600 are quickly obtained from the previous ones using
these symmetry relations. Moreover, in the particular case of
an axial translation where the separation plane is orthogonal
to the axial direction (ρ = 0), it is only necessary to compute
550 coefficients.

D. Number of Spherical Modes and Integral Truncation

The overall accuracy of translation matrix coefficients can
be significantly degraded if the integral in (10) is truncated
with a too large value, as shown in [17]. In that paper, a phe-
nomenological formula that provides a conservative estimation
of the maximum value of κ (κtr ) was provided in the range
of 0.5 ≤ |krmin| ≤ 10 and n j ≤ 20 [17]

κtr = k
��

0.38n jmax + 1
�
(krmin)

−1 + 0.03(krmin)
�

(17)

which implies that it can be used for antennas with a diameter
of up to 3λ. The maximum value for the degree of the spherical
mode expansion, n jmax in (17), should be chosen to provide
the desired accuracy. The criterion given in [18] can be applied
to obtain this value

n jmax =
�
krmin + 0.045 3

�
krmin(−Ptr)

�
(18)

where Ptr is the relative truncated (i.e., excluded) power
in decibel with respect to the total radiated power due to
the series truncation. Since very close interactions take place
when the minimum spheres overlap, a larger degree should
be retained in the spherical wave expansion, compared to
the case of nonoverlapping minimum spheres. In this work,
we have verified that very good results are obtained by choos-
ing Ptr equal to −130 dB, which provides an intermediate

Fig. 3. Coupling magnitude between rectangular slots in terms of the distance
between axes. Slot dimensions are specified in the text. The inset shows a top
scaled view of the coupled slot antennas and the parameter definitions for
the geometry. At this drawing scale, d = 0.2λ and the working frequency is
10 GHz.

value between those suggested in [19] and in [16]. However,
the accuracy of the results obtained by using the value of κtr

provided by (17) can be improved in some cases by using a
higher value, as it will be shown in Section III.

On the other hand, it should be noted that, in the range
of application discussed in [17] and given at the beginning
of this section, it is true that κtr > k. Therefore, within
these limits of use, the entire spectrum of propagating plane
waves (where the propagation constant of plane waves jkz
is imaginary and then κ < k) is always taken into account,
and the spectrum of evanescent plane waves is truncated.
Consequently, only evanescent plane waves that are attenuated
more rapidly are no longer considered. This truncation avoids
contributions from the diverging spherical wave expansion in
the near-field zone [17].

III. RESULTS

In this section, some antenna array examples analyzed with
strongly overlapped spheres will be shown.

A. Study of Two Slots

The first example consists of two rectangular slots with
dimensions a = 2.286 cm, b = 0.508 cm, filled with air,
on an infinite ground plane and analyzed at 10 GHz. This
example was previously proposed in [10], where an analysis
method based on the calculation of the GSM of an antenna
in terms of equivalent dipoles was presented. As mentioned
above, that method also allowed the study of antennas with
overlapped spheres.

Fig. 3 shows the magnitude of mutual coupling, obtained
with the method proposed in this work, compared with
the results obtained by using an in-house finite element
method (FEM) [20], CST, and the previous result from [10].
In this case, the truncated value for the integral κtr = 3k
was used, with nmax = 10. The proposed method provides a
coupling magnitude that agrees with the value obtained with
FEM and CST, whereas the value from [10] deviates starting
from a distance between centers of 0.4λ. Specifically, for a
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TABLE I

COUPLING MAGNITUDES FOR SLOTS OF FIG. 3

Fig. 4. Gain pattern at ϕ = 0◦ for the two rectangular slots shown in the
inset of Fig. 3, calculated with d = 0.2λ at 10 GHz.

TABLE II

S-PARAMETERS FOR THE ARRAY OF FIG. 5(A) (CENTRAL ELEMENT IS #2)

separation distance equal to 0.2λ (see the inset of Fig. 3),
values for S11 and S21 are shown in Table I.

For this same case, Fig. 4 shows the calculated gain in
the plane of the array (ϕ = 0◦), feeding just one antenna.
The maximum difference between our method and FEM is
0.03 dB for κtr = 3k and 0.13 dB for κtr = 2k. As shown
in Table I, S-parameters are accurately obtained also with
κtr = 2k, the value calculated with (17) given in [17]. How-
ever, the radiation pattern slightly deviates from the reference
pattern.

B. Study of Three Coupled Monopoles on an Infinite Ground
Plane

The following example consists of three monopoles 15 mm
long (λ/4), with diameter 1.5 mm, and separated 0.2λ between
centers, as shown in Fig. 5. The monopoles are fed with a 50 

coaxial connector and analyzed at 5 GHz.

This case was also studied previously with the equiva-
lent dipole model in [11]. Table II shows a comparison of
S-parameters calculated with several methods for a separation
of 0.2λ between monopoles. As can be observed, our results
agree well with FEM and CST simulation, but the method used
in [11] shows a small error mainly in reflection S-parameters
and provides also different values for S12 and S21.

Fig. 5. Gain pattern (cut at ϕ = 0◦) for three monopoles separated (a) 0.2λ
and (b) 0.07λ when feeding the leftmost monopole only. The insets at the
left show the array geometries including the overlapping hemispheres for
each case. Drawings are provided at scale in order to stand out the strong
overlapping of case (b) when compared to (a).

TABLE III

S-PARAMETERS FOR THE ARRAY OF FIG. 5(B)
(CENTRAL ELEMENT IS #2)

Fig. 5(a) shows the array gain when one lateral antenna is
fed. As can be seen, results obtained with the present method
fit very well to CST and FEM results, whereas those of [11]
separate from them at angles near the ground plane, where the
gain reaches a relative maximum.

The array of three monopoles of Fig. 5(a) solved in [11]
implies only overlapping between contiguous monopoles.
In order to show the capabilities of the present method,
the array of Fig. 5(b) has been studied, where the distance
between the monopoles axes is just 0.07λ, which considers
also a strong overlap between lateral spheres. This can be
observed in Fig. 5(b), where the distance between the closest
edges of coax feeders is 0.0125λ approximately. For this case,
the results shown in Table III have been obtained, that still
compare very well with those of CST and FEM.

Fig. 5(b) also shows the gain pattern for the array of three
monopoles for 0.07λ. The results of FEM simulations agree
very well with the proposed method, whereas CST simulations
deviate only slightly.

Finally, Fig. 6 shows the rms function error of S-parameters
in terms of κ̄tr = κtr/k and the maximum n used, taking the
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Fig. 6. RMS error as a function of the integral truncated value (κ̄tr ) and
the maximum n used (nmax ). The array analyzed was the three monopoles of
Fig. 5 with elements separated 0.07λ.

Fig. 7. Top view of an antenna array with nine cavity-backed patch
antennas. Dielectric is shown in red. Every feeding point is depicted for
each patch. Separation between elements is 0.05λ at the working frequency.
Antenna dimensions can be found in [10].

FEM results as a reference

RMSE =
��3

i=1

�3
j=1 |ST W

i j − SF E M
i j |2

3
. (19)

This kind of convergence for these variables agrees well
with the one reported in [17] for the calculation of spher-
oidal particles scattering with minimum overlapping spheres.
Although the previous results have been obtained with
κtr = 3k and nmax = 8, it can be observed that an optimum
value is roughly achieved with κtr = 3.5k and nmax near
to 9, respectively, very close to κtr = 3k used in the present
example. For this case, the formula provided in [17] given
by (17) leads to κtr values of approximately 2.6 and 2.8, for
nmax values of 8 and 9, respectively, which are slightly below
the one used in this work.

C. Array of Nine Cavity-Backed Patch Antennas

In the following example, an array of nine cavity-backed
patch antennas tightly packed is analyzed with the proposed

Fig. 8. Gain pattern simulated with the proposed method and FEM for the
array of Fig. 7 when only antenna 1 is fed. Two cuts are represented for Eθ

and Eϕ .

Fig. 9. Gain pattern simulated with the proposed method and FEM for the
array of Fig. 7 when only antenna 6 is fed. Two cuts are represented for Eθ

and Eϕ .

methodology of this work. Geometrical data for the patch
antenna can be found in [10]. This array arrangement is shown
in Fig. 7, where the separation between parallel sides of each
patch antenna is 0.49 cm, equivalent to 0.05λ at the working
frequency. In this case, adjacent antennas whose centers have a
different y-coordinate cannot be separated with an orthogonal
plane to the axial direction, so that propagation of plane waves
will be in the direction of y-axis.

Figs. 8 and 9 show Eθ and Eϕ gains for ϕ = 0◦ and
ϕ = 90◦, when antenna 1 and 6 are respectively fed. A good
agreement between results obtained with the present method
and FEM simulations can be observed, with maximum dif-
ferences of 0.04 dB in copolar and 0.25 dB in cross-polar
components.

Tables IV and V show the magnitudes of reflection and cou-
pling S-parameters of antennas 1 and 6. As can be observed,
results fit well when compared to FEM simulations. They
were obtained for κtr = 3k and nmax = 10. If κtr = 2.1k
is used, instead of the previous value, as predicted by (17)
given in [17], the results are very similar.

D. Array of Thirty-Six Dielectric Resonator Antennas
This last example consists of an array of thirty-six dielectric

resonator antennas and linear polarization, with sequential
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TABLE IV

S-PARAMETERS FOR ANTENNA 1 OF FIG. 7

TABLE V

S-PARAMETERS FOR ANTENNA 6 OF FIG. 7

Fig. 10. Top view of a thirty-six dielectric resonator antenna array. The
array has three rings where elements are placed. Array dimensions are given
in the text. Element dimensions are specified in [21], for the highest resonator
case. Minimum separation is 0.1λ at the working frequency. Dashed circles
represent the basis of minimum hemispheres surrounding several elements.

rotation at 60◦ steps by sectors in order to obtain circular
polarization, located in three circular rings. Rings radii are
0.96429, 1.92858, and 2.89287 cm. Simulations were done at
9.835 GHz, the resonant frequency obtained with FEM for an
isolated antenna. At this frequency and the above dimensions,
the minimum horizontal spacing between adjacent elements is
just 0.1λ.

The resonant dielectric antenna with the highest height
analyzed in [21] has been chosen as the element of the array.
Fig. 10 shows the array geometry as well as the corresponding
circle of the minimum hemisphere surrounding an antenna of
each ring. As shown, each element has a strong overlapping
with several other elements.

In Fig. 11, the gain pattern obtained for ϕ = 0◦ and
ϕ = 90◦ is shown, when antennas of the inner ring are fed
with the same amplitude and phase equal to the rotation angle.

Fig. 11. Gain patterns for the array of Fig. 10 when the inner antennas are
fed with unitary amplitude and phase the rotation angle. Results for cross-
and copolar components are shown for ϕ = 0◦ and ϕ = 90◦ .

Fig. 12. Radiation patterns for the same conditions of Fig. 11, without
the effect of coupling between elements. Results for cross- and copolar
components are shown for ϕ = 0◦ and ϕ = 90◦ .

Fig. 13. S j1 parameter magnitudes for the array of Fig. 10.

The results are compared to FEM simulations, showing a good
agreement, just differing 0.2 dB, except at levels less than
−10 dB, where they deviate as much as 0.7 dB. The influ-
ence of mutual coupling on the array performance is shown
in Fig. 12, where the same cuts of Fig. 11 are considered
without mutual coupling.

Reflection (Sj j) and coupling (Si j ) magnitudes are shown
in Figs. 13–15 for the array of Fig. 10. As previously found,
results agree well with FEM simulations. Maximum differ-
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Fig. 14. S j9 parameter magnitudes for the array of Fig. 10.

Fig. 15. S j34 parameter magnitudes for the array of Fig. 10.

ences below 0.5 dB were obtained, except for small coupling
magnitudes. Simulations were carried out with κtr = 3k and
nmax = 10. If the value κtr = 2k, as predicted by (17) given
in [17], was used, then differences with FEM simulations
would grow up to 1.7 dB. For this case, radiation pattern
results deviate from FEM simulations by 0.4 dB except for
levels below −10 dB, where differences reach 1 dB.

For this array, with the greatest number of elements of
all the examples presented in this work, it is worth to
compare simulation times. FEM simulation took 2 h and
24 min with a 4 606 400 elements mesh for the whole array,
whereas the proposed method in this work required only
1 min and 31 s for an isolated antenna simulated with a
154 000 elements mesh. The response of the whole array
was obtained in 31 s by computing (3a) and (3b) using
MATLAB 2019b.

IV. CONCLUSION

In this article, we have proposed a fast method for the full-
wave analysis of antenna arrays, which is capable of dealing
with tight-packed antennas since it is based on transformation
between spherical and plane vector waves. In this way, the use
of the GSM finite array formulation has been extended to the
case of elements with strongly overlapping minimum spheres,
which was a limitation of that method. In addition, properties
of the translation coefficients have been provided that strongly
speed up their computation.

The method is fast and reliable when compared with full
FEM simulations or commercial software. Convergence is
guaranteed by using established criteria.
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