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Abstract
One of the main challenges in synthetic biology lies in maximizing the expression 
levels of a protein by encoding it with multiple copies of the same gene. This task is 
often conducted under conflicting evaluation criteria, which motivates the formula-
tion of protein encoding as a multi-objective optimization problem. Recent research 
reported significant results when adapting the artificial bee colony algorithm to 
address this problem. However, the length of proteins and the number of copies have 
a noticeable impact in the computational costs required to attain satisfying solutions. 
This work is aimed at proposing parallel bioinspired designs to tackle protein encod-
ing in multiprocessor systems, considering different thread orchestration schemes to 
accelerate the optimization process while preserving the quality of results. Compari-
sons of solution quality with other approaches under three multi-objective quality 
metrics show that the proposed parallel method reaches significant quality in the 
encoded proteins. In addition, experimentation on six real-world proteins gives 
account of the benefits of applying asynchronous shared-memory schemes, attaining 
efficiencies of 92.11% in the most difficult stages of the algorithm and mean speed-
ups of 33.28x on a 64-core server-grade system.
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1  Introduction

Maximizing the expression levels of a protein is one of the most critical tasks in 
synthetic biology. A commonly adopted approach to deal with this problem involves 
the integration of multiple genes encoding the same protein into a host organism. 
This strategy makes use of alternative protein-coding sequences (also known as 
CDS), which contain nucleotide triplets (codons) codifying every particular amino 
acid of the target protein. By integrating multiple genes into the host, the expression 
levels tend to increase proportionally to the number of integrated copies [25]. This 
behaviour is not verified in all the cases, as shown in [8], but appears in many cases. 
Therefore, this technique represents one of the main approaches to maximize the 
expression levels of a protein [6].

Encoding proteins through the integration of multiple genes is a challenging 
research topic from both biological and computational perspectives. In order to 
reduce cost and time burdens, many research works [6, 19, 24] address the problem 
by integrating the gene copies very close to each other within the host genome. This 
approach has a drawback in the fact that they can induce homologous recombina-
tion, a critical issue that implies the loss of some of the integrated copies when iden-
tical or very similar sub-sequences are used [2]. As an illustration, given six concat-
enated genes ( g1, g2, g3, g4, g5, g6 ), an homologous recombination between g1 and g4 
will motivate the loss of g2 and g3 , thus reducing the number of integrated copies to 
( g1, g4, g5, g6 ) and, consequently, the expected expression level.

As a result, each one of the CDSs involved in the protein encoding task must be 
as different as possible in order to avoid homologous recombination between CDSs 
or sub-sequences within the same CDS. Furthermore, the length of the repeated 
sub-sequences must be minimized. Several works in the literature discussed the 
minimum length that tends to induce homologous recombination, yet this value is 
strongly related to the characteristics of the host organism. For example, an experi-
mental study in Saccharomyces cerevisiae established in 30 bp (base pairs) the 
sub-sequence length that increases the likelihood of homologous recombination 
[13]. On the other side, another research [10] reported that identical sub-sequences 
with 70 bp in length induce homologous recombination in Bacillus subtilis. Finally, 
[20] verified that this recombination occurs in sequences with 23 bp in the case of 
Escherichia coli. Despite these differences, all the studies agree on the same condi-
tion: the likelihood of inducing homologous recombination can be minimized by 
reducing the length of identical sub-sequences as much as possible. Therefore, the 
protein encoding task must be conducted according to these two initial optimization 
criteria: maximize the differences among CDSs and minimize the length of identical 
sub-sequences.

Designing different CDSs that encode the same protein is possible due to the 
fact that each amino acid can be encoded by using multiple synonymous codons. 
Each amino acid has between one to six different codifications, but some of them 
are better adapted to the target host organism than others. This implies that the 
codons with better adaptation properties will likely promote a higher expression 
level of the protein [1]. Therefore, the selection of accurate codon synonyms is 
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important to satisfactorily tackle the problem. This optimization criterion is com-
monly designated as codon adaptation index (CAI) and tries to define CDSs with 
the most adapted synonymous codons. Consequently, protein encoding can be 
tackled as a multi-objective optimization problem that deals with the codifica-
tion of CDSs as different as possible among them but by using the best-adapted 
codons, being conflicting objectives. More precisely, these optimization goals can 
be formulated by using three objective functions: (1) CAI, (2) hamming distance 
between CDSs, and (3) length of repeated or common substring.

Related works on protein encoding optimization are mostly focused on defin-
ing procedures based on single-objective formulations [23, 26, 27]. In this 
context, the use of CAI is common, within separated CDSs, as the objective 
employed to find solutions that result in higher expression levels. Some key bio-
logical methods commonly applied under this kind of formulations are COOL 
[3], OPTIMIZER [18], and D-Taylor [7]. However, the need to consider multiple 
optimization criteria simultaneously gave rise to the proposal of novel methods 
that apply multi-objective optimization strategies. Examples of multi-objective 
metaheuristics that have been applied in this context are the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [4], as in [22], and the multi-objective artifi-
cial bee colony algorithm (MOABC) devised in [5].

From a computational perspective, multi-objective protein encoding introduces 
new layers of complexity to the optimization process, as a result of the considera-
tion of three quality criteria. On top of this, the lengths of the considered pro-
teins and the number of copies to be encoded also have a significant impact in 
execution times. In fact, [22] reported an increase in runtime of order O(t log t) , 
where t is the total length of the CDSs, which effectively imposes limitations in 
the characteristics of the CDSs that can be synthetically designed. Therefore, this 
problem demands the application of parallel computing techniques to achieve sat-
isfying time-to-solution properties [21]. Multiple research works have pointed out 
the benefits of applying high-performance computing to bioinformatics problems, 
as in the case of epistasis detection [12], RNA sequence alignment [11], cellular 
model tuning [17], and others [15]. However, to the best of our knowledge, no 
previous works have properly addressed the parallelization of the multi-objective 
protein encoding problem.

This work is aimed at proposing parallel solutions, based on our MOABC 
approach, to efficiently tackle multi-objective protein encoding optimizations. The 
devised methods are oriented towards execution in shared-memory multiproces-
sor systems, which are widely spread and commonly adopted in bioinformatics 
research, using the OpenMP standard [16]. Taking into account the characteristics of 
the baseline MOABC code, two different orchestration schemes are defined to allow 
the cooperation of threads under synchronous and asynchronous execution models. 
Using the information provided by their time profiles, the proposed designs are thor-
oughly analysed under different parallel and multi-objective quality metrics, in order 
to identify the most efficient and effective strategies to tackle this problem. Com-
parisons with alternative methods are also presented to examine potential impacts in 
solution quality and validate the relevance of the proposal.

The main contributions of this work can be summarized as:
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•	 Identification of parallelism opportunities when using MOABC to conduct pro-
tein encoding tasks, examining which stages of the algorithm are suitable for 
parallelization in shared-memory multicore platforms.

•	 Proposal of parallel bioinspired designs for MOABC following two different par-
allelization approaches, based on the orchestration of OpenMP execution threads 
under synchronous and asynchronous schemes.

•	 Analysis and discussion of parallel performance (speedups and efficiencies) in 
a 64-core hardware infrastructure to identify the opportunities brought by the 
devised parallel approaches, using for experimentation purposes six problem 
instances belonging to real-world proteins.

•	 Analysis of the quality of the results reported by the proposal under three differ-
ent multi-objective quality metrics, compared with other tools from the literature 
to examine the impact of parallelism in the outcome of the algorithm.

The rest of this paper is organized as follows: the next section provides insight into 
the formulation of the tackled problem and the objective functions under consid-
eration. Section 3 details the alternative designs devised to parallelize the MOABC 
algorithm. Then, Sect.  4 summarizes the datasets and metrics used for evaluation 
purposes, while Sect. 5 discusses the experimental results obtained by the proposed 
approaches and the comparisons with other tools. Finally, Sect. 6 includes conclu-
sions and defines future research directions.

2 � Problem definition

In the problem addressed in this work, a solution is defined by a set of m CDSs 
encoding a single protein with m copies. Each CDS provides a set of codons that 
translate into the amino acids of the target protein, being all the CDSs of equal 
length. A solution is therefore codified by m strings of characters, where each char-
acter represents one of the four main RNA bases: A, C, G, U (Adenine, Cytosine, 
Guanine, and Uracil respectively). Figure  1 presents an example for a simplified 
protein.

CDS1 UCU CUU GUA CCU UAC CGA

CDS2 UCC CUA GUG CCA UAU AGA

CDS3 UCA CUG GUU CCC UAC AGG

Amino acids
sequence S L V P Y R

Fig. 1   An example of a solution with 3 CDSs for encoding a simplified protein with 6 amino acids. Each 
amino acid is coded with a codon (different synonymous codons exist for each amino acid), which is 
a triplet of three nucleotides (A, C, G or U). This example also illustrates the computation of MLRCS. 
CDS

1
 contains UACC​ as a repeated substring within the same CDS (in red), but the MLRCS is found 

between the pair CDS
2
 and CDS

3
 , which have UCC​CUA​ (in blue) as a common substring



5122	 B. Gonzalez‑Sanchez et al.

1 3

With the aim of guiding the search towards optimal solutions, we have consid-
ered three objective functions to determine the fitness of each solution. The first 
one determines if the best-adapted codons have been used in each CDS, since these 
codons should be used preferably. The second and third objective functions try to 
avoid homologous recombination issues. For this purpose, the second objective 
examines the differences between pairs of CDSs using the Hamming distance, while 
the third objective evaluates repeated or common substrings found in the CDSs. The 
following subsections describe in detail each objective.

2.1 � Codon adaptation index (CAI)

This objective function assesses the CDSs in a solution in accordance with their 
potential adaptation to the host organism. These adaptation values are calculated 
for each CDS based on the synonymous codons used for encoding the protein. Due 
to the fact that some synonymous codons are better adapted than others, the idea 
behind the CAI criterion is to use codons with a higher usage frequency. The calcu-
lation of CAI for a single CDS can be expressed as shown in Eq. 1:

where i refers to the i-th CDS in the evaluated solution, N the number of codons 
in a CDS, n the position of the codon within the sequence, and W the adaptation 
weight assigned to the n-th codon from the i-th CDS. This weight is set as the usage 
frequency of the selected synonymous codon over the usage frequency of the most 
common synonymous codon. In order to calculate these weights, we employed as a 
reference the codon usage frequencies from [22].

Since each solution comprises multiple CDSs (as defined by the expert), the CAI 
objective function must evaluate the minimum Codon Adaptation Index (mCAI) 
value found among the CDSs. Given a solution with I CDSs, the mCAI score can be 
computed as expressed in Eq. 2:

The main goal is to maximize the mCAI value within a solution so that all CDSs try 
to reach high values. It is worth remarking that the use of the average CAI is not a 
representative measurement of adaptation in this context, since poor adaptation val-
ues can be hidden among all the other CAI values.

2.2 � Hamming distance between CDSs (HD)

The second objective function is aimed at examining the similarities between pairs 
of CDSs. For this purpose, the Hamming distance (HD) is adopted to calculate the 
differences between nucleotides, at the same positions, from each pair of CDSs. HD 
can be calculated as shown in Eq. 3:

(1)CAI(CDSi) =
N

√√√√
N∏

n=1

W(codoni,n),

(2)mCAI = min
1≤i≤I

CAI(CDSi).
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where CDSi and CDSj are the i-th and j-th CDSs in the evaluated solution, L the 
sequence length (which is equal for all CDSs), k the currently processed position in 
the sequence, and � a function that measures if the compared nucleotides are equal 
( � = 0 ) or not ( � = 1).

In order to generate CDSs as different as possible, the HD is calculated for all 
the paired combinations of CDSs within a solution. In this way, the objective func-
tion will give preference to the solution that maximizes the minimum value of HD 
(mHD) found among the comprised I CDSs, as expressed in Eq. 4:

Similarly to the CAI function, the use of average HD value is not a representative 
fitness measurement because it can hide pairs of CDSs with poor HD values. There-
fore, the optimization goal is to maximize the mHD score.

2.3 � Length of repeated or common substring (LRCS)

The third objective function is focused on detecting repeated substrings that appear 
within the same CDS or common substrings that appear between pairs of CDSs. 
Given a CDS with a nucleotide substring S of length l, a common substring is found 
when another CDS in the solution contains exactly the same nucleotide substring S. 
In the case of finding a common substring between two CDSs, the starting positions 
p and q of the common substring in each CDS can be equal or different. Otherwise, 
if there is a repeated substring within a single CDS, the starting positions p and q 
will be different. The first step is to identify the length of repeated or common sub-
strings (LRCS), as shown in Eq. 5:

In Eq. 5, if the two substrings Si,p,l and Sj,q,l are found between the pair CDSi and 
CDSj , being i ≠ j , the substring starting positions p and q can be any within each 
CDS. On the other side, if CDSi and CDSj are the same ( i = j ), the starting positions 
have to be different ( p ≠ q).

The final goal is to find the maximum length of repeated or common substring 
(MLRCS), among all the I CDSs, as expressed in Eq. 6:

(3)HD(CDSi, CDSj) =
∑

1≤k≤L

�(CDSi,k, CDSj,k),

(4)mHD = min
1≤i<j≤I

HD(CDSi,CDSj)

L
.

(5)LRCS(CDSi,CDSj) = length(Si,p,l)
1≤p,q,l≤L

when (Si,p,l = Sj,q,l).
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Remember that every CDS has a length of L nucleotides. Figure 1 depicts the identi-
fication of MLRCS in an example with three CDSs.

Under this objective function, the optimization is aimed at finding the solution 
that minimizes the MLRCS score.

3 � Parallel strategies for multi‑objective protein encoding

This section is devoted to outline first the serial metaheuristic employed in this 
research. Afterwards, it proceeds with the description of the parallel designs herein 
devised to accelerate protein encoding in multiprocessor systems.

3.1 � Baseline metaheuristic: MOABC

Finding highly adapted CDSs that encode the same protein, while avoiding homol-
ogous recombination, is a complex optimization task. Previous research showed 
the relevance of applying metaheuristics in this context. In particular, MOABC 
is a highly promising proposal that attained significant results for this problem in 
previous work [5]. Moreover, MOABC is based on ABC (artificial bee colony) 
metaheuristic, which has been used in many different problems since its develop-
ment, achieving very good results [9]. Therefore, MOABC will be the baseline algo-
rithm targeted in this work.

MOABC is a population-based metaheuristic based on swarm intelligence that 
undertakes complex optimization tasks by mimicking the behaviour of bee colonies. 
This algorithm is built upon an exploitation-exploration algorithmic scheme, involv-
ing three main search strategies, to evolve the population: 

1.	 Employed bees step In this stage, new candidate solutions are generated by pro-
cessing the neighbourhood of the solutions handled by the algorithm in the cur-
rent generation.

2.	 Onlooker bees step This procedure carries out the exploitation of the fittest solu-
tions found in the previous step, assigning a higher selection probability to the 
most promising solutions.

3.	 Scout bees step This stage is aimed at processing unexplored regions of the search 
space, by means of replacing stagnated solutions that have not been successfully 
improved in a limit number of generations.

(6)MLRCS = max
1≤i≤j≤I

LRCS(CDSi,CDSj)

L
.
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Algorithm  1 illustrates the main stages of MOABC. This metaheuristic 
requires the following input parameters: (1) the number of solutions in the popu-
lation managed by the algorithm ( colony_size ), (2) the stop criterion, given by a 
maximum number of cycles or generations ( max_cycles ), (3) the maximum num-
ber of generations that an stagnated solution can remain in the population (limit), 
and (4) the mutation probability considered in the generation of new candidate 
solutions ( Pm ). As the outcome of a multi-objective metaheuristic is not a single 
solution but a set of Pareto solutions, MOABC additionally manages a file, desig-
nated as nondominated_file , to store the non-dominated solutions found through-
out the execution of the algorithm.

In order to adapt MOABC to protein encoding, the codification of a solution 
will be given by a set of CDSs, that is, a set of equal-length character sequences. 
Considering this solution encoding, the algorithm initializes the population 
(lines 2–5 in Algorithm  1) by generating colony_size − 1 solutions randomly. 
The remaining initial solution is generated by selecting for each amino acid the 
codon with the highest adaptation, so its mCAI value is equal to 1. This strategy 
is employed to boost the optimization of solutions with high CAI values. Further-
more, for every solution, the trial counter (line 4) is also initialized. This counter 
is used to count the number of times that the corresponding solution has not been 
successfully improved.

Until the stop criterion is satisfied, the main loop of MOABC sequentially 
applies the three main search strategies to evolve the population. The first one, 
the employed bees step (lines 7–15), operates over the population and generates 
colony_size new neighbour solutions by applying mutations with a probability of 
Pm . More specifically, four mutation variants are implemented: 

1.	 For each CDS, each codon is randomly replaced by a different synonymous codon.
2.	 For the CDS with the minimum CAI value, each codon is replaced by a synony-

mous codon with greater adaptation weight.
3.	 For the pair of CDSs with the minimum HD, each codon is randomly replaced by 

a synonymous codon.
4.	 The codons included in the longest length repeated or common substring (LRCS) 

are randomly replaced with synonymous codons.

Once applied the mutations, the new solutions are compared with the original 
ones by using Pareto dominance, in order to store the most satisfying ones. Pareto 
ranks and crowding distances are then calculated for the solutions kept after the 
employed bees step (line 16), sorting them according to their multi-objective 
quality (convergence and diversity) [4]. The results of this sorting procedure are 
used to calculate the selection probabilities (line 17) required in the onlooker bees 
step (lines 18–27). In this step, roulette-wheel selection is performed to choose 
the solutions to be exploited, generating colony_size additional solutions through 
the mutation operators previously defined. Lastly, the scout bees step (lines 
28–35) checks the population for exhausted, stagnated solutions, that is, solutions 
that have not been successfully improved in a limit number of generations. The 
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identified exhausted solutions are replaced with randomly generated solutions, 
which are mutated n times (where n is proportional to the current generation 
cycle).

At the end of a generation, the 2 × colony_size solutions in the population 
are sorted according to Pareto ranks and crowding distances (line 36). The best 
colony_size solutions will be assigned to the employed bees in order to continue 
their tasks in the next generation. Furthermore, the non-dominated file is updated at 
each generation with the non-dominated solutions found by the algorithm (line 37), 
being reported as output when the stop criterion is satisfied.

As discussed in [5], the strengths of MOABC’s optimization engine allow this 
algorithm to achieve good results in the task of designing proteins encoded with 
multiple CDSs. However, the main weakness of this approach lies in the high execu-
tion times required to deal with large protein instances. With the aim of addressing 
this problem, we propose in this research work different parallel designs to improve 
the execution time for the multi-objective protein encoding in shared-memory archi-
tectures with MOABC.

3.2 � Synchronous parallel MOABC (SP‑MOABC)

The first approach examined in this work follows a synchronous parallelization 
scheme. The main goal of this scheme lies in distributing the workload of the search 
loops that compose a generation of the metaheuristic, thus preserving the original 
algorithmic design. The search loops are suitable for parallelization in multicore 
machines, since the processing of a new candidate solution x is independent from 
the processing associated to any other new solution y.

Algorithm  2 shows the OpenMP implementation of the synchronous parallel 
design proposed for MOABC (explained in detail in the previous subsection, Algo-
rithm 1), designated as SP-MOABC. The first step is the initialization of the file that 
will store the non-dominated solutions (line 1 in Algorithm 2). A new input param-
eter (the rest of parameters are the same as in Algorithm 1), num_threads , is added 
to define the number of execution threads that are considered for parallel process-
ing, which is set by using the omp_set_num_threads routine. The parallel team 
comprising these execution threads will be initialized at the beginning of the algo-
rithm via #pragma omp parallel (lines 2–4 in Algorithm 2). In this moment 
(line 3), some variables are declared as private in order to avoid data problems. 
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The main target of parallelization lies in the loops that implement the employed, 
onlooker, and scout bees steps, since their computations do not require any shar-
ing of information among solutions. The initialization of the population also veri-
fies this condition and consequently can be also conducted in parallel. Parallel loops 
are therefore defined for each step by using #pragma omp for worksharing 
directives to distribute independent chunks of iterations among the available threads, 
thus accelerating the process of defining new candidate solutions at each step of the 
algorithm (lines 5–8 for the initialization, lines 10–14 for the employed bees step, 
lines 18–23 for the onlooker bees step, and lines 24–29 for the scout bees step). 
The operations that perform the management, update, and sorting of globally shared 
structures (e.g. the non-dominated file) will be handled by a single execution thread 
defined through #pragma omp single directives (lines 15–17 and 30–32).

The synchronous behaviour of SP-MOABC is attained by using the implicit barri-
ers located at the end of the #pragma omp for loops, which is a simple strategy 
to guarantee the correctness and accuracy shown by the original serial algorithm. 
The idea herein pursued consists in completing the evolution of the population in a 
generation (that is, an iteration of the main loop) before proceeding with the parallel 
calculations corresponding to the next generation.

3.3 � Asynchronous parallel MOABC (AP‑MOABC)

The second approach herein devised, AP-MOABC, applies an asynchronous execu-
tion model to parallelize MOABC. The main contribution of this approach lies in 
introducing bioinspired parallelization strategies to minimize synchronization and 
waiting times by mimicking the parallel behaviour of honey bees. In nature, a bee 
does not wait for the rest of the colony to continue its tasks, that is, they work in 
an asynchronous mode. In practical terms, this behaviour can be translated to the 
way execution threads undertake parallel tasks, avoiding implicit barriers at the end 
of the parallel loops to improve the exploitation of hardware resources in shared-
memory parallel platforms.

AP-MOABC follows a master-worker parallelization model, where the execution 
threads can play two possible roles:

•	 Master thread: the master is responsible for updating and managing the popula-
tion immediately as new candidate solutions arrive from the workers, performing 
rank+crowding sorting and the calculation of selection probabilities upon detec-
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tion of new solutions. It also controls the end of the execution by verifying if the 
stop criterion is satisfied.

•	 Worker threads: while the master thread does not send a signal of termination, 
all the other available threads perform worker tasks involving the generation of 
new candidate solutions according to employed, onlooker, and scout bees strate-
gies. Each thread is responsible for processing, in an asynchronous way, a chunk 
of solutions in the population and for communicating the obtained results to the 
master thread.

The main structure of AP-MOABC is shown in Algorithm  3, which applies 
OpenMP directives to specify and configure the parallel regions. It can be observed 
several changes with regard to previous pseudo-codes. First, the stop criterion is not 
given by a maximum number of cycles/generations, since the asynchronous model 
implicitly removes the idea of generation from the algorithmic design. That is, the 
population evolves immediately as new solutions are generated by a thread, without 
waiting for other threads. An equivalent stop criterion, given by a maximum num-
ber of evaluations ( max_eval ), must be therefore implemented in AP-MOABC. The 
master thread will control the stop criterion condition, updating the number of con-
sumed evaluations when new solutions are communicated from the workers. These 
communications represent the second main change, as AP-MOABC includes a set of 
FIFO (First In, First Out) queues, designated as solQueues, to conduct worker-mas-
ter interactions (line 2 in Algorithm 3). Each worker thread i has associated a queue 
solQueues[i], where the solutions generated by the worker are progressively stored 
(write operation at the tail of the queue). The master will iteratively check these 
queues to identify the arrival of new solutions (read operation at the head of the 
queue) and, upon detection, proceed with the update of the population. Therefore, 
num_thread − 1 queues are required to implement these interactions. This approach 
allows the workers to execute in an asynchronous way, independently from each 
other, without sharing data among them. 
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At the initialization stage, the population in AP-MOABC is duplicated by means 
of the structure populationswap . The introduction of this structure is aimed at ensur-
ing the integrity and consistency of the population data throughout the asynchronous 
execution. More specifically, the population structure represents the consistent copy 
of the population that is visible for the worker threads at a particular stage of the 
optimization process. On the other side, populationswap is a copy exclusively han-
dled by the master thread to update the data of the population when new solutions 
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are detected. It is over populationswap where the master applies the procedures for 
sorting and calculating selection probabilities. Since populationswap will then con-
tain the updated population, the population and populationswap pointers must be 
swapped to make the current status of the population available to the workers.

Once both copies of the population have been initialized and sorted (with an 
initial calculation of selection probabilities, lines 6–17), the assignment of master-
worker roles is performed to begin the asynchronous execution. The last thread in 
the parallel team, with thread identifier thread_id = num_threads − 1 , will serve 
as the master instantiating the perform master tasks procedure (line 21), while the 
remaining threads will operate as workers through the perform worker tasks proce-
dure (line 23). The obtaining of thread identifiers is performed by using the OpenMP 
omp_get_thread_num routine. 

Algorithm 4 illustrates the master thread tasks. As previously introduced, the 
master thread is aimed at keeping updated the status of the optimization process, 
accordingly updating the population with the solutions available in the queues of 
the worker threads. While the stop criterion is not satisfied, the master iteratively 
checks each solQueues[i] in order to detect the arrival of new solutions from 
the workers (lines 3–11 in Algorithm 4). When a new solution is available, it is 
extracted from the queue and stored in the master-only copy of the population, 
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populationswap . In this step, the master also updates the variable eval used to 
keep track of the number of evaluations performed by the algorithm. Once all 
the queues have been checked, the master proceeds with the calculation of Pareto 
ranks and crowding distances over populationswap , sorting them and calculating 
afterwards selection probabilities (lines 13 and 14). As at this stage the popula-
tion structure is obsolete, the master exchanges the population and populationswap 
structure pointers in order to make available the updated population and selection 
probabilities to the worker threads (line 15). These steps are repeated until the 
stop criterion is verified (that is, eval = max_eval ), finishing the master execution 
by sending stop signals to the workers (lines 18 and 19). 

The worker thread stages of AP-MOABC are shown in Algorithm  5. These 
threads will iteratively perform the generation of new candidate solutions 
until receiving the stop signal from the master thread. At the beginning, dif-
ferent chunks of the population are distributed among the worker threads (line 
1 in Algorithm  5), so that each worker will operate over the assigned chunk 
of solutions. If the thread identifier lies within the first half of the number of 
worker threads, the worker will generate new candidate solutions by conduct-
ing employed bee searches (Perform Employed Bee Processing, line 5) over the 
currently processed position of the assigned chunk. Otherwise, the worker will 
operate following onlooker bee strategies, using the selection probabilities of the 
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consistent population structure to choose the most promising solutions (Perform 
Onlooker Bee Processing, line 7). The exploration tasks related to the scout bee 
searches are implemented in both types of workers, regardless of their basic role 
(employed or onlooker). That is, when a solution has been processed, its trial 
counter is checked in order to verify if the solution has surpassed the maximum 
trial limit. If so, the solution is replaced (Perform Scout Bee Processing, line 10). 
The candidate solution resulting from these searches is then introduced into the 
queue (line 12), proceeding afterwards with the processing of the next position of 
the chunk (lines 13–16). Figure 2 introduces a graphical comparison between the 
thread orchestration schemes in SP-MOABC and AP-MOABC.

4 � Evaluation methodology

This section provides insight into the evaluation methodology followed to assess 
the designed parallel approaches for protein encoding. The characteristics of the 
employed datasets and the performance measurements used to evaluate parallel and 
multi-objective results are herein described.

4.1 � Protein datasets

In this study, we use six representative real-world proteins in FASTA format from 
the UniProt1 (Universal Protein Resource) database, which is a database very used 
in this field. A protein instance is defined according to two attributes: length (num-
ber of amino acids, AA) and number of CDSs. All the instances herein considered 
show a balance between these attributes since both of them contribute to the com-
plexity of the problem. Instances with less CDSs include larger proteins, while 
instances with shorter proteins comprise a high number of CDSs. In this way, very 
different scenarios will be evaluated. These proteins are from different organisms 
(human, mouse, yeast, salmonella, etc.). Table 1 details the protein instances used in 
this work.

4.2 � Parallel performance metrics

In order to evaluate the performance of each design and analyse the benefits of paral-
lel processing in this context, two widely used parallel metrics are adopted: speedup 
and efficiency. First, the speedup metric ( Sc ) measures the improvement observed in 
execution time when a parallel algorithm is employed, in comparison with the serial 
version of that algorithm. More specifically, it calculates how many times the paral-
lel execution (using c cores) is faster than the serial execution, as expressed in Eq. 7:

1  https://​www.​unipr​ot.​org/.

https://www.uniprot.org/
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where ET1 is the execution time of the serial algorithm and ETc the execution time of 
the parallel version using c cores.

Second, the efficiency metric ( Ec ) examines how the designed parallel solution 
effectively takes advantage of the available parallel resources. It can be calculated 
in terms of the observed speedup over the number of cores (c) used for execution 
purposes, as indicated in Eq. 8:

4.3 � Solution quality metrics

In addition to the parallel metrics previously mentioned, insights into the quality 
of solutions will be given to examine if the application of parallel computing tech-
niques has an impact over the output of the algorithm. The goal of the proposed 
parallel designs is to improve the execution time without changing the good results 
attained by the original serial algorithm (in terms of quality of solution). In order to 
determine this, three multi-objective quality metrics are considered: hypervolume, 
set coverage, and minimum distance to the ideal point.

The hypervolume (HV) indicator is one of the most commonly adopted met-
rics to assess the quality of the results in multi-objective optimization problems. 
This unary quality indicator calculates the volume of the objective space, delim-
ited by the nadir and ideal points established in Table  2, which is covered by 

(7)Sc =
ET1

ETc
,

(8)Ec =
Sc

c
× 100.

Table 1   Protein instances used 
in the experiments

Code Name CDSs Length (AA) CDSs*Length

Q5VZP5 DUS27_HUMAN 2 1158 2316
A4Y1B6 FADB_SHEPC 3 716 2148
B3LS90 OCA5_YEAS1 4 679 2716
B4TWR7 CAIT_SALSV 5 505 2525
Q91X51 GORS1_MOUSE 6 446 2676
Q89BP2 DAPE_BRADU 7 388 2716

Table 2   Nadir and ideal points 
for the calculation of quality 
indicators

Objective Nadir value Ideal value

mCAI 0 1
mHD 0 0.40
MLRCS 1 0
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the set of non-dominated solutions found by the evaluated algorithm. Equation 9 
shows how hypervolume is calculated:

where Leb denotes the Lebesgue measure, |A| the size of the set of non-dominated 
solutions A , and h(ai, r) the volume covered by each solution ai ∈ A taking r as the 
reference points.

The second multi-objective metric herein considered is the set coverage (SC). 
This binary quality indicator is based on the weak Pareto dominance concept. In 
the original Pareto dominance, we say that a solution bj is dominated by another 
solution ai iff ai is not worse than bj in all the considered objectives and is bet-
ter at least in one of them. In the case of weak Pareto dominance, we say that ai 
weakly dominates ( ⪰ ) bj iff ai is simply not worse than bj in each objective. The 
set coverage therefore compares two solution sets A and B and calculates the 
percentage of solutions from B that are weakly dominated by at least one solu-
tion from A . The set coverage of A over B can be expressed as shown in Eq. 10:

where |B| indicates the size of the solution set B.
The third metric calculates the minimum distance to the ideal point for each 

set of solutions. The ideal point represents the most optimistic point in the 
objective space, a theoretically unreachable solution that optimizes all the con-
sidered objective functions simultaneously. However, it is not possible to reach 
it due to the conflicts among objectives. Even so, solutions as close as possible 
to the ideal values are the goal. Despite the outcome of a multi-objective optimi-
zation algorithm being a set of solutions, sometimes the expert can be interested 
in a single solution: the closest one to the ideal point. Under this metric, the best 
proposed approach will be the one containing the solution that minimizes the 
Euclidean distance to the ideal point.

5 � Experimental evaluation and results

This section discusses the experimental results obtained by the proposed parallel 
approaches for multi-objective protein encoding. In a first step, the experimental 
settings and time profiling of MOABC are presented. Afterwards, the parallel 
results reported by the synchronous and asynchronous designs are comparatively 
evaluated. Finally, the assessment of solution quality with regard to state-of-the-
art approaches is undertaken.

(9)HV(A, r) = Leb

( |A|⋃

i=1

h(ai, r)

)
,

(10)SC(A,B) =

|||{bj ∈ B;∃ ai ∈ A ∶ ai ⪰ bj}
|||

|B|
,
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5.1 � Experimental settings

The hardware platform used to perform the experiments in this work is a multi-
processor computing node composed of four 16-core AMD Opteron Abu Dhabi 
6376 processors (a total of 64 physical cores, 2.3GHz) with 96GB DDR3 RAM, 
running Ubuntu 18.04LTS. The MOABC algorithm has been implemented in C/
C++ language, using OpenMP for multithreading processing purposes. The C/
C++ compiler version was GCC 8.4.0 with OpenMP 4.5. The experimental cam-
paign involved 11 independent runs of the tested methods per experiment, with 
the aim of ensuring statistical reliability in the performance analysis.

Regarding the configuration of parameters of the MOABC algorithm, we 
took as a reference the parametric studies performed in previous research [5]. 
Table  3 shows the parameter settings that allow MOABC to maximize its opti-
mization capabilities in the tackled problem and to achieve a better mapping to 
the characteristics of the targeted hardware platform. It is also worth remark-
ing that the algorithmic design of AP-MOABC required a change in the stop 
criterion (from max_cycles to max_eval ). The max_eval value was set to 12800 
in order to make it equivalent to the original stop criterion (that is, max_eval = 
colony_size × max_cycles).

5.2 � MOABC time profiling

In order to better understand the benefits of applying parallel approaches, we first 
focus on analysing the time profile of the baseline MOABC, detailing the execu-
tion times of the serial version. Table  4 presents the median times in seconds 
together with the quartile deviation ( median±quartile_deviation ) observed for each stage 
in MOABC, as well as the total execution time per analysed protein instance. This 
table identifies each step of the algorithm according to the following notation:

•	 initialize_solutions refers to the initialization of solutions in the population (lines 
1–5 in Algorithm 1).

•	 employed_bee_processing identifies the employed bee search step (lines 7–15 in 
Algorithm 1).

•	 rank-crowding_sorting_1 refers to the sorting of employed bee solutions, accord-
ing to Pareto ranks and crowding distances (line 16 in Algorithm 1).

Table 3   List of parameter 
settings and configured values

Parameter Description Value

colony_size Number of solutions in the population 128
max_cycles Number of cycles/generations (SP-MOABC) 100
max_eval Number of evaluations (AP-MOABC) 12800
limit Attempts to improve a solution 10
Pm Mutation probability 5%
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•	 selection_probabilities corresponds to the calculation of selection probabili-
ties prior to the onlooker bee step (line 17 in Algorithm 1).

•	 onlooker_bee_processing identifies the onlooker bee search step (lines 18–27 
in Algorithm 1).

•	 scout_bee_processing refers to the scout bee search step (lines 28–35 in Algo-
rithm 1).

•	 rank-crowding_sorting_2 identifies the sorting of the overall solutions 
(employed + onlooker), according to Pareto ranks and crowding distances, for 
the next generation (line 36 in Algorithm 1).

•	 update_nondominated_file denotes the update of the file containing non-domi-
nated solutions (line 37 in Algorithm 1).

Table  5 summarizes the percentage of the total time spent on each stage, aver-
aged for all the protein instances under evaluation. Focusing on the stages 
involving global data management (with data dependencies), it can be observed 
that, on the one hand, selection_probabilities and update_nondominated_file 
do not have a significant impact in the execution time, showing time percent-
ages ≤ 0.01 . On the other hand, the sorting operations rank-crowding_sorting_1 

Table 4   Execution time profile (in seconds, median±quartile_deviation ) for each stage of the serial version of 
MOABC

The ‘Total’ rows show the overall time per protein instance

MOABC Stage Q5VZP5 A4Y1B6 B3LS90

initialize_solutions 15.52±0.07 13.59±0.30 18.11±0.26
employed_bee_processing 1279.55±27.84 1147.53±7.87 1443.95±8.79
rank-crowding_sorting_1 47.12±1.63 64.11±0.78 66.97±0.48
selection_probabilities 0.002±0.00 0.002±0.00 0.002±0.00
onlooker_bee_processing 1281.74±26.70 1134.25±7.89 1426.35±4.94
scout_bee_processing 111.85±8.52 112.86±3.44 144.13±12.51
rank-crowding_sorting_2 190.52±9.61 253.82±3.23 261.09±2.68
update_nondominated_file 0.224±0.01 0.273±0.01 0.304±0.01
Total 2926.53 2726.44 3360.91

 MOABC Stage B4TWR7 Q91X51 Q89BP2

initialize_solutions 16.26±1.42 16.50±0.35 10.30±1.36
employed_bee_processing 1233.54±43.73 1288.94±6.73 1168.34±41.58
rank-crowding_sorting_1 64.41±2.41 69.24±0.80 61.15±2.98
selection_probabilities 0.002±0.00 0.002±0.00 0.002±0.00
onlooker_bee_processing 1246.42±45.50 1295.96±7.78 1168.24±45.16
scout_bee_processing 122.78±6.73 143.60±7.10 195.79±17.78
rank-crowding_sorting_2 251.97±9.17 265.49±2.77 243.54±1.17
update_nondominated_file 0.284±0.02 0.315±0.01 0.319±0.01
Total 2935.67 3080.05 2847.68
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and rank-crowding_sorting_2 contribute with more noticeable time percent-
ages. Nevertheless, the three key stages with inherent parallel processing oppor-
tunities, which are employed_bee_processing , onlooker_bee_processing , and 
scout_bee_processing , represent all together a percentage of almost 90% of the 
total execution time. This percentage illustrates the intrinsically parallel nature of 
MOABC and the potential benefits of applying parallel versions in the context of 
multi-objective protein encoding.

5.3 � Parallel performance evaluation: SP‑MOABC versus AP‑MOABC

We now analyse the parallel performance results achieved by the synchronous 
and asynchronous strategies devised to parallelize MOABC (Sect.  3). Taking into 
account the specifications of the hardware platform, experimentation was performed 
considering configurations of 4, 8, 16, 32, and 64 execution threads. In this sense, it 
is worth remarking that the asynchronous approach in AP-MOABC requires at least 
three threads to work: a master thread, an employed worker thread, and an onlooker 
worker thread. In the case of the synchronous model SP-MOABC, an important 
issue to take into account is the scheduling policy applied to distribute iterations in 
the #pragma omp for loops among the available threads. By default, OpenMP 
applies a static scheduling that can imply load imbalance issues in this context. In 
order to ensure the execution of parallel loops according to the most efficient sched-
uling policy, we examined the different strategies available in the OpenMP standard 
and verified that the guided policy led to the most satisfying results. Consequently, 
the experiments with SP-MOABC employed this scheduling policy, progressively 
decreasing the chunk size, to attain a guided distribution of iterations while reducing 
the impact of the thread management overhead.

Figure  3 introduces the comparison between AP-MOABC and SP-MOABC, 
illustrating the evolution of speedups for each parallel model when the num-
ber of threads is increased (scalability study). The presented results are averaged 

Table 5   Average time 
percentages from the baseline 
serial MOABC

The italic rows highlight the stages considered for parallelization 
purposes

MOABC stages Average time (%) Standard 
deviation 
(%)

initialize_solutions 0.50 0.001
employed_bee_processing 42.28 0.009
rank-crowding_sorting_1 2.09 0.002
selection_probabilities 0.00 0.000
onlooker_bee_processing 42.23 0.009
scout_bee_processing 4.67 0.010
rank-crowding_sorting_2 8.22 0.009
update_nondominated_file 0.01 0.000



5141

1 3

Parallel multi‑objective optimization approaches for protein…

considering all the protein instances and repetitions per experiment. Along with the 
overall speedups of the application, this figure also details the speedups observed in 
the three main search stages of the algorithm, namely the employed, onlooker, and 
scout bee processing. A more detailed comparison is presented in Table 6, following 
the parallel performance metrics introduced in Sect. 4.2 and considering execution 
scenarios from 4 to 64 threads. The upper side of Table 6 provides insight into the 
average speedups achieved in the experimentation, while the bottom side details the 
evaluation of efficiency values.

In overall terms, it can be observed that AP-MOABC attains better parallel per-
formance than SP-MOABC in all the execution scenarios herein considered (from 
4 to 64 cores). In fact, the differences between the two approaches under evaluation 
become more noticeable for larger system sizes. For 32 cores, AP-MOABC reports a 
speedup of 20.7x with regard to the baseline serial MOABC, which implies an effi-
ciency around 65%. On the other side, SP-MOABC leads to a speedup of 13.5x and 
consequently an efficiency below the 50% threshold. Furthermore, the differences 
become more noticeable for 64 cores, where AP-MOABC is able to attain a speedup 
of 33.3x, in comparison with the 17.5x reported by SP-MOABC.

The analysis of each parallel stage of the algorithm gives account of the reasons 
that justify the performance gains achieved when asynchronous parallel designs 
are adopted in this problem. In the simplest step, the initialization of solutions 

Overall execution Employed Bee Processing

Onlooker Bee Processing Scout Bee Processing

(a) (b)

(c) (d)

Fig. 3   Evaluation of AP-MOABC and SP-MOABC: evolution of speedups for the whole execution and 
for each search step separately. The presented results are averaged considering all the protein instances



5142	 B. Gonzalez‑Sanchez et al.

1 3

initialize_solutions , both approaches have a similar behaviour in terms of scal-
ability. This is mostly motivated by the low demanding workload of the initializa-
tion loop, which contributes only a 0.5% of the execution time of the metaheuris-
tic (as introduced in Table  5). The results for the employed_bee_processing and 
onlooker_bee_processing , shown in Fig.  3b and c, denote that these stages bene-
fit more from the use of asynchronous strategies when a larger number of cores is 
employed, as the execution threads in AP-MOABC do not have any synchronization 
dependence imposed by the idea of generation in evolutionary algorithms. Finally, 
the scout_bee_processing step represents the stage with the most noticeable differ-
ences in performance between AP-MOABC and SP-MOABC. On the one hand, 
SP-MOABC barely reaches speedups of only 1.9x (4 cores), 3.0x (8 cores), 3.7x 
(16 cores), 4.6x (32 cores), and 5.4x (64 cores). On the other hand, the adoption of 
asynchronous strategies represents a satisfying solution to parallelize this step, with 
efficiencies of 92% when all the available parallel resources are used.

The scout bee step in MOABC is characterized by the fact that the number of 
solutions to be processed strongly depends on the degree of stagnation of the 

Table 6   Parallel evaluation of SP-MOABC and AP-MOABC, detailing the results observed in each stage 
as well as the overall results

The columns S
c
 and E

c
 refer to the speedups and efficiencies observed when using c cores. The presented 

results are averaged considering all the protein instances

Average speedup S
4

S
8

S
16

S
32

S
64

SP-MOABC initialize_solutions 3.40 6.52 10.19 8.57 2.92
employed_bee_processing 3.72 6.45 11.58 19.97 30.45
onlooker_bee_processing 3.86 6.67 11.87 20.65 31.19
scout_bee_processing 1.87 3.02 3.72 4.64 5.42
Overall 3.21 5.67 9.34 13.46 17.49

AP-MOABC initialize_solutions 3.64 6.80 11.01 12.36 5.06
employed_bee_processing 3.69 7.24 12.08 21.72 34.40
onlooker_bee_processing 3.82 7.14 12.10 21.98 34.69
scout_bee_processing 3.92 7.21 14.19 26.63 58.95
Overall 3.77 7.12 12.35 20.67 33.28
Average efficiency E

4
(%) E

8
(%) E

16
(%) E

32
(%) E

64
(%)

SP-MOABC initialize_solutions 85.05 81.55 63.71 26.79 4.56
employed_bee_processing 99.07 80.59 72.37 62.40 47.57
onlooker_bee_processing 96.49 83.34 74.22 64.53 48.73
scout_bee_processing 46.71 37.80 23.24 14.49 8.46
Overall 80.25 70.88 58.38 42.06 27.33

AP-MOABC initialize_solutions 90.96 86.27 68.81 38.63 7.91
employed_bee_processing 92.18 90.52 75.53 67.88 53.75
onlooker_bee_processing 95.61 89.19 75.60 68.69 54.20
scout_bee_processing 97.94 90.13 88.72 83.21 92.11
Overall 94.25 89.00 77.19 64.59 52.00
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population. That is, the number of parallel tasks to be processed is governed by the 
number of exhausted solutions detected by the limit condition. As a result, the num-
ber of scout bee searches to be conducted varies and can range from 0 (no exhausted 
solutions detected) to 2 ∗ colony_size (the whole population is exhausted). When 
the number of scout searches to be performed is less than the number of execution 
threads, a synchronous approach leads to a poor utilization of hardware resources 
due to the presence of idle threads waiting for the termination of the parallel loop. In 
the worst case scenario (only one stagnated solution), the scout bee search contrib-
utes to the serial percentage of the algorithm, thus negatively affecting the achiev-
able parallelism in accordance with Amdahl’s law. By adopting the asynchronous 
approach in AP-MOABC, the threads are able to continue their execution when 
another thread is processing a scout bee search, consequently minimizing the impact 
in parallel performance introduced by the variable nature of this step.

In order to better depict the benefits of AP-MOABC with regard to SP-MOABC, 
Fig. 4 graphically represents the performance improvements attained in our experi-
mentation for 4, 8, 16, 32, and 64 cores. It can be observed how the improvements 
progressively increase from 4 to 16 cores (17.5% to 32.2%). When larger system 
sizes are considered, the performance gains verified by AP-MOABC become even 
more noticeable (53.6% for 32 cores), reaching peak gains when all the resources in 
the parallel platform are employed (90.3% for 64 cores). Therefore, it can be con-
cluded that the design of asynchronous strategies represents a satisfying solution 
to parallelize multi-objective protein encoding tasks on multicore, multiprocessor 
architectures.

5.4 � Comparisons with other authors’ proposals

After examining parallel performance, the next step in this study involves the assess-
ment of the quality of solutions for AP-MOABC, in order to determine if the adop-
tion of asynchronous strategies is able to preserve the search capabilities of the 
serial baseline MOABC [5]. For this purpose, we compare the results obtained by 
AP-MOABC with other methods from the literature, namely COOL [3] and Terai’s 

Fig. 4   Performance gains (%) obtained by AP-MOABC over SP-MOABC. It can be observed how AP-
MOABC leads to significant improvements on system sizes involving a larger number of cores
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approach [22]. COOL is a biological tool that undertakes protein encoding optimi-
zations by putting priority on the CAI objective function, while Terai’s approach 
is a multi-objective evolutionary algorithm inspired by NSGA-II that optimizes the 
same three objective functions considered in this work.

These state-of-the-art methods are not focused on the parallelization of protein 
encoding. Therefore, we will employ these tools as a reference to evaluate the opti-
mization capabilities (solution quality) of the proposed AP-MOABC. Nevertheless, 
it is worth remarking that, in the worst case scenario, our proposal is able to finish 
protein encoding tasks with execution time around 100 seconds, thus representing 
a significant step further over other methods that imply runtimes from many min-
utes to more than one hour. To the best of our knowledge, AP-MOABC represents 
the first attempt to parallelize the protein encoding task, and more specifically, a 
multi-objective search engine aimed at maximizing protein expression with multiple 
CDSs.

In order to perform these comparisons, we consider three different quality 
metrics: hypervolume, set coverage, and the minimum distance to the ideal point 
(detailed in Sect.  4.3). For the sake of fairness in the comparisons, all the meth-
ods were configured using the same parameter settings. Table  7 reports the 

Table 7   Hypervolume results 
( median±quartile_deviation)

The best values are in bold for each instance. The last row shows the 
average of the six protein instances

Protein AP-MOABC COOL[3] Terai’s method[22]

Q5VZP5 59.27%±0.004% 0.21%±0.000% 59.92%±0.180%

A4Y1B6 52.71%±0.001% 0.31%±0.000% 52.53%±0.060%

B3LS90 55.59%±0.001% 0.28%±0.000% 54.62%±0.150%

B4TWR7 49.79%±0.001% 0.36%±0.000% 48.91%±0.210%

Q91X51 52.02%±0.001% 0.18%±0.000% 50.47%±0.230%

Q89BP2 50.09%±0.001% 0.17%±0.000% 48.61%±0.220%

Average 53.25% 0.25% 52.51%

Table 8   Set Coverage results

The best values are in bold, and the last row represents the average of the six protein instances

SC(COOL[3], SC(AP-MOABC, SC(Terai[22], SC(AP-MOABC,
Protein AP-MOABC) COOL[3]) AP-MOABC) Terai[22])

Q5VZP5 0.00% 100.00% 64.04% 95.00%
A4Y1B6 0.00% 100.00% 62.75% 84.00%
B3LS90 0.00% 100.00% 43.92% 88.00%
B4TWR7 0.00% 100.00% 62.69% 74.00%
Q91X51 0.00% 100.00% 56.90% 93.00%
Q89BP2 0.00% 100.00% 49.37% 82.00%
Average 0.00% 100.00% 56.61% 86.00%
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median values for the hypervolume indicator together with the quartile deviation 
( median±quartile_deviation ), while Table  8 shows the set coverage results. For the set 
coverage, we consider the percentage of solutions from AP-MOABC covered by 
the other methods, SC(COOL,AP-MOABC) and SC(Terai,AP-MOABC), and the 
percentages covered by AP-MOABC over the other tools, SC(AP-MOABC,COOL) 
and SC(AP-MOABC, Terai). For both hypervolume and set coverage, higher scores 
denote better results. Finally, Table 9 shows the minimum distance from, at least, 
one solution of the median Pareto front to the ideal or utopian solution. Lower dis-
tances imply a better approximation to the ideal solution.

On examining the scores in these tables, it can be observed that AP-MOABC pro-
vides more satisfying results than the ones reported by the reference works. This is 
especially noticeable in the case of the set coverage metric (Table 8), which indicates 
that our approach is able to dominate or cover a significant percentage of solutions 
from the other tools (in average, 100% over COOL and 86% over Terai’s method), 
while the other tools do not cover many of the solutions generated by our approach. 
AP-MOABC also reports the best hypervolume scores (Table 7) in almost all the 
protein instances, along with better approximations (minimum distances, Table 9) 
to the ideal solution in all the cases. These successful comparisons confirm the rel-
evance of MOABC, and more specifically, of AP-MOABC in the multi-objective 
protein encoding problem.

6 � Conclusions and future work

This work proposed parallel multi-objective approaches to undertake protein 
encoding optimization tasks, boosting expression levels through the integration 
of multiple CDSs. This problem was tackled according to a multi-objective for-
mulation targeted at minimizing the effect of homologous recombination while 
maximizing codon adaptation levels. The length of the proteins and the number of 
copies to be encoded represent two key complexity factors, which turn this prob-
lem into a computationally demanding task in real-world scenarios. Two parallel 
designs, based on the MOABC algorithm, were devised to provide an efficient, 
accurate solver for protein encoding on shared-memory multicore platforms. The 

Table 9   Minimum distances to 
the ideal point/solution

The best values for each instance are in bold, and the last row pro-
vides the average for the six instances

Protein AP-MOABC COOL[3] Terai’s method[22]

Q5VZP5 0.489408 1.028865 0.503676
A4Y1B6 0.542613 1.050567 0.551986
B3LS90 0.512751 1.081525 0.512885
B4TWR7 0.563227 1.093655 0.574876
Q91X51 0.574168 1.166339 0.589626
Q89BP2 0.565618 1.121477 0.569445
Average 0.541298 1.090405 0.550416
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first approach herein proposed, SP-MOABC, follows a synchronous generational 
scheme to orchestrate execution threads. The second approach, designated as AP-
MOABC, adopts asynchronous strategies, combined with a master-worker design, 
to improve the utilization of hardware resources and minimize idle times in the 
most difficult stages of the algorithm.

Six real-world protein instances were used to evaluate the performance of the 
proposed parallel strategies in a 64-core multiprocessor machine. This experi-
mental evaluation was performed attending to two different perspectives: (1) par-
allel performance (speedup and efficiency) and (2) quality of solutions (hyper-
volume, set coverage, and minimum distance to the ideal point). The profiling 
of MOABC revealed the impact of the three main search steps of the baseline 
algorithm (employed, onlooker, and scout bee searches), accounting for almost 
90% of the execution time. Taking into account this information, the evaluation 
of parallel performance showed the bottleneck introduced by the scout bee step 
and how AP-MOABC was able to successfully deal with it, obtaining efficiencies 
of 92% in this difficult stage for 64 cores (along with additional improvements in 
the rest of steps). As a result, performance gains of 90% over SP-MOABC were 
attained by AP-MOABC when using the whole hardware infrastructure. Further-
more, the comparison of solution quality with other methods from the literature 
(the biological tool COOL [3] and the Terai’s multi-objective approach [22]) 
indicated that AP-MOABC was able to achieve very good results from the quality 
viewpoint, dominating or covering 100% of the COOL solutions and 86% of the 
Terai solutions, also offering better approximations to the ideal solution in all the 
cases.

Two main directions of future research work can be established. Due to the 
parallel potential exhibited by AP-MOABC, the adaptation of this scheme to 
other hardware platforms beyond shared-memory scenarios will be investigated. 
In this work, multicore systems were considered because they are widely spread 
and commonly adopted in bioinformatics research, but as the problem addressed 
does not have significant memory requirements, other hardware platforms (such 
as GPUs) will be investigated. Emphasis will be put to the orchestration of het-
erogeneous resources in distributed-memory environments, studying strategies 
to balance performance and power consumption. The second direction will deal 
with the inclusion of other optimality goals for protein encoding. Particularly, the 
GC content measures the stability of sequences and has significantly contributed 
to the enhancement of protein expression levels in real-world studies [14]. Fur-
thermore, the number of multi-objective metaheuristic methods applied to solve 
the protein encoding is still very reduced. For this reason, the development of 
other new multi-objective metaheuristic methods for this problem and their paral-
lelization is also a topic of future research. This will imply their design for this 
specific problem, their implementation, their parallelization, their execution, and 
finally, their comparison.
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