
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:5118–5148
https://doi.org/10.1007/s11227-021-04073-z

1 3

Parallel multi‑objective optimization approaches
for protein encoding

Belen Gonzalez‑Sanchez1 · Miguel A. Vega‑Rodríguez1 ·
Sergio Santander‑Jiménez1

Accepted: 4 September 2021 / Published online: 17 September 2021
© The Author(s) 2021

Abstract
One of the main challenges in synthetic biology lies in maximizing the expression
levels of a protein by encoding it with multiple copies of the same gene. This task is
often conducted under conflicting evaluation criteria, which motivates the formula-
tion of protein encoding as a multi-objective optimization problem. Recent research
reported significant results when adapting the artificial bee colony algorithm to
address this problem. However, the length of proteins and the number of copies have
a noticeable impact in the computational costs required to attain satisfying solutions.
This work is aimed at proposing parallel bioinspired designs to tackle protein encod-
ing in multiprocessor systems, considering different thread orchestration schemes to
accelerate the optimization process while preserving the quality of results. Compari-
sons of solution quality with other approaches under three multi-objective quality
metrics show that the proposed parallel method reaches significant quality in the
encoded proteins. In addition, experimentation on six real-world proteins gives
account of the benefits of applying asynchronous shared-memory schemes, attaining
efficiencies of 92.11% in the most difficult stages of the algorithm and mean speed-
ups of 33.28x on a 64-core server-grade system.

Keywords Parallel multi-objective optimization approach · Protein encoding ·
Synchronous and asynchronous parallelism · Design of multiple genes

 * Miguel A. Vega-Rodríguez
 mavega@unex.es

 Belen Gonzalez-Sanchez
 belengs@unex.es

 Sergio Santander-Jiménez
 sesaji@unex.es

1 Escuela Politécnica, University of Extremadura, Campus Universitario s/n, 10003 Cáceres,
Spain

http://orcid.org/0000-0002-3003-758X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04073-z&domain=pdf

5119

1 3

Parallel multi‑objective optimization approaches for protein…

1 Introduction

Maximizing the expression levels of a protein is one of the most critical tasks in
synthetic biology. A commonly adopted approach to deal with this problem involves
the integration of multiple genes encoding the same protein into a host organism.
This strategy makes use of alternative protein-coding sequences (also known as
CDS), which contain nucleotide triplets (codons) codifying every particular amino
acid of the target protein. By integrating multiple genes into the host, the expression
levels tend to increase proportionally to the number of integrated copies [25]. This
behaviour is not verified in all the cases, as shown in [8], but appears in many cases.
Therefore, this technique represents one of the main approaches to maximize the
expression levels of a protein [6].

Encoding proteins through the integration of multiple genes is a challenging
research topic from both biological and computational perspectives. In order to
reduce cost and time burdens, many research works [6, 19, 24] address the problem
by integrating the gene copies very close to each other within the host genome. This
approach has a drawback in the fact that they can induce homologous recombina-
tion, a critical issue that implies the loss of some of the integrated copies when iden-
tical or very similar sub-sequences are used [2]. As an illustration, given six concat-
enated genes (g1, g2, g3, g4, g5, g6), an homologous recombination between g1 and g4
will motivate the loss of g2 and g3 , thus reducing the number of integrated copies to
(g1, g4, g5, g6) and, consequently, the expected expression level.

As a result, each one of the CDSs involved in the protein encoding task must be
as different as possible in order to avoid homologous recombination between CDSs
or sub-sequences within the same CDS. Furthermore, the length of the repeated
sub-sequences must be minimized. Several works in the literature discussed the
minimum length that tends to induce homologous recombination, yet this value is
strongly related to the characteristics of the host organism. For example, an experi-
mental study in Saccharomyces cerevisiae established in 30 bp (base pairs) the
sub-sequence length that increases the likelihood of homologous recombination
[13]. On the other side, another research [10] reported that identical sub-sequences
with 70 bp in length induce homologous recombination in Bacillus subtilis. Finally,
[20] verified that this recombination occurs in sequences with 23 bp in the case of
Escherichia coli. Despite these differences, all the studies agree on the same condi-
tion: the likelihood of inducing homologous recombination can be minimized by
reducing the length of identical sub-sequences as much as possible. Therefore, the
protein encoding task must be conducted according to these two initial optimization
criteria: maximize the differences among CDSs and minimize the length of identical
sub-sequences.

Designing different CDSs that encode the same protein is possible due to the
fact that each amino acid can be encoded by using multiple synonymous codons.
Each amino acid has between one to six different codifications, but some of them
are better adapted to the target host organism than others. This implies that the
codons with better adaptation properties will likely promote a higher expression
level of the protein [1]. Therefore, the selection of accurate codon synonyms is

5120 B. Gonzalez-Sanchez et al.

1 3

important to satisfactorily tackle the problem. This optimization criterion is com-
monly designated as codon adaptation index (CAI) and tries to define CDSs with
the most adapted synonymous codons. Consequently, protein encoding can be
tackled as a multi-objective optimization problem that deals with the codifica-
tion of CDSs as different as possible among them but by using the best-adapted
codons, being conflicting objectives. More precisely, these optimization goals can
be formulated by using three objective functions: (1) CAI, (2) hamming distance
between CDSs, and (3) length of repeated or common substring.

Related works on protein encoding optimization are mostly focused on defin-
ing procedures based on single-objective formulations [23, 26, 27]. In this
context, the use of CAI is common, within separated CDSs, as the objective
employed to find solutions that result in higher expression levels. Some key bio-
logical methods commonly applied under this kind of formulations are COOL
[3], OPTIMIZER [18], and D-Taylor [7]. However, the need to consider multiple
optimization criteria simultaneously gave rise to the proposal of novel methods
that apply multi-objective optimization strategies. Examples of multi-objective
metaheuristics that have been applied in this context are the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [4], as in [22], and the multi-objective artifi-
cial bee colony algorithm (MOABC) devised in [5].

From a computational perspective, multi-objective protein encoding introduces
new layers of complexity to the optimization process, as a result of the considera-
tion of three quality criteria. On top of this, the lengths of the considered pro-
teins and the number of copies to be encoded also have a significant impact in
execution times. In fact, [22] reported an increase in runtime of order O(t log t) ,
where t is the total length of the CDSs, which effectively imposes limitations in
the characteristics of the CDSs that can be synthetically designed. Therefore, this
problem demands the application of parallel computing techniques to achieve sat-
isfying time-to-solution properties [21]. Multiple research works have pointed out
the benefits of applying high-performance computing to bioinformatics problems,
as in the case of epistasis detection [12], RNA sequence alignment [11], cellular
model tuning [17], and others [15]. However, to the best of our knowledge, no
previous works have properly addressed the parallelization of the multi-objective
protein encoding problem.

This work is aimed at proposing parallel solutions, based on our MOABC
approach, to efficiently tackle multi-objective protein encoding optimizations. The
devised methods are oriented towards execution in shared-memory multiproces-
sor systems, which are widely spread and commonly adopted in bioinformatics
research, using the OpenMP standard [16]. Taking into account the characteristics of
the baseline MOABC code, two different orchestration schemes are defined to allow
the cooperation of threads under synchronous and asynchronous execution models.
Using the information provided by their time profiles, the proposed designs are thor-
oughly analysed under different parallel and multi-objective quality metrics, in order
to identify the most efficient and effective strategies to tackle this problem. Com-
parisons with alternative methods are also presented to examine potential impacts in
solution quality and validate the relevance of the proposal.

The main contributions of this work can be summarized as:

5121

1 3

Parallel multi‑objective optimization approaches for protein…

• Identification of parallelism opportunities when using MOABC to conduct pro-
tein encoding tasks, examining which stages of the algorithm are suitable for
parallelization in shared-memory multicore platforms.

• Proposal of parallel bioinspired designs for MOABC following two different par-
allelization approaches, based on the orchestration of OpenMP execution threads
under synchronous and asynchronous schemes.

• Analysis and discussion of parallel performance (speedups and efficiencies) in
a 64-core hardware infrastructure to identify the opportunities brought by the
devised parallel approaches, using for experimentation purposes six problem
instances belonging to real-world proteins.

• Analysis of the quality of the results reported by the proposal under three differ-
ent multi-objective quality metrics, compared with other tools from the literature
to examine the impact of parallelism in the outcome of the algorithm.

The rest of this paper is organized as follows: the next section provides insight into
the formulation of the tackled problem and the objective functions under consid-
eration. Section 3 details the alternative designs devised to parallelize the MOABC
algorithm. Then, Sect. 4 summarizes the datasets and metrics used for evaluation
purposes, while Sect. 5 discusses the experimental results obtained by the proposed
approaches and the comparisons with other tools. Finally, Sect. 6 includes conclu-
sions and defines future research directions.

2 Problem definition

In the problem addressed in this work, a solution is defined by a set of m CDSs
encoding a single protein with m copies. Each CDS provides a set of codons that
translate into the amino acids of the target protein, being all the CDSs of equal
length. A solution is therefore codified by m strings of characters, where each char-
acter represents one of the four main RNA bases: A, C, G, U (Adenine, Cytosine,
Guanine, and Uracil respectively). Figure 1 presents an example for a simplified
protein.

CDS1 UCU CUU GUA CCU UAC CGA

CDS2 UCC CUA GUG CCA UAU AGA

CDS3 UCA CUG GUU CCC UAC AGG

Amino acids
sequence S L V P Y R

Fig. 1 An example of a solution with 3 CDSs for encoding a simplified protein with 6 amino acids. Each
amino acid is coded with a codon (different synonymous codons exist for each amino acid), which is
a triplet of three nucleotides (A, C, G or U). This example also illustrates the computation of MLRCS.
CDS

1
 contains UACC as a repeated substring within the same CDS (in red), but the MLRCS is found

between the pair CDS
2
 and CDS

3
 , which have UCC CUA (in blue) as a common substring

5122 B. Gonzalez-Sanchez et al.

1 3

With the aim of guiding the search towards optimal solutions, we have consid-
ered three objective functions to determine the fitness of each solution. The first
one determines if the best-adapted codons have been used in each CDS, since these
codons should be used preferably. The second and third objective functions try to
avoid homologous recombination issues. For this purpose, the second objective
examines the differences between pairs of CDSs using the Hamming distance, while
the third objective evaluates repeated or common substrings found in the CDSs. The
following subsections describe in detail each objective.

2.1 Codon adaptation index (CAI)

This objective function assesses the CDSs in a solution in accordance with their
potential adaptation to the host organism. These adaptation values are calculated
for each CDS based on the synonymous codons used for encoding the protein. Due
to the fact that some synonymous codons are better adapted than others, the idea
behind the CAI criterion is to use codons with a higher usage frequency. The calcu-
lation of CAI for a single CDS can be expressed as shown in Eq. 1:

where i refers to the i-th CDS in the evaluated solution, N the number of codons
in a CDS, n the position of the codon within the sequence, and W the adaptation
weight assigned to the n-th codon from the i-th CDS. This weight is set as the usage
frequency of the selected synonymous codon over the usage frequency of the most
common synonymous codon. In order to calculate these weights, we employed as a
reference the codon usage frequencies from [22].

Since each solution comprises multiple CDSs (as defined by the expert), the CAI
objective function must evaluate the minimum Codon Adaptation Index (mCAI)
value found among the CDSs. Given a solution with I CDSs, the mCAI score can be
computed as expressed in Eq. 2:

The main goal is to maximize the mCAI value within a solution so that all CDSs try
to reach high values. It is worth remarking that the use of the average CAI is not a
representative measurement of adaptation in this context, since poor adaptation val-
ues can be hidden among all the other CAI values.

2.2 Hamming distance between CDSs (HD)

The second objective function is aimed at examining the similarities between pairs
of CDSs. For this purpose, the Hamming distance (HD) is adopted to calculate the
differences between nucleotides, at the same positions, from each pair of CDSs. HD
can be calculated as shown in Eq. 3:

(1)CAI(CDSi) =
N

√√√√
N∏

n=1

W(codoni,n),

(2)mCAI = min
1≤i≤I

CAI(CDSi).

5123

1 3

Parallel multi‑objective optimization approaches for protein…

where CDSi and CDSj are the i-th and j-th CDSs in the evaluated solution, L the
sequence length (which is equal for all CDSs), k the currently processed position in
the sequence, and � a function that measures if the compared nucleotides are equal
(� = 0) or not (� = 1).

In order to generate CDSs as different as possible, the HD is calculated for all
the paired combinations of CDSs within a solution. In this way, the objective func-
tion will give preference to the solution that maximizes the minimum value of HD
(mHD) found among the comprised I CDSs, as expressed in Eq. 4:

Similarly to the CAI function, the use of average HD value is not a representative
fitness measurement because it can hide pairs of CDSs with poor HD values. There-
fore, the optimization goal is to maximize the mHD score.

2.3 Length of repeated or common substring (LRCS)

The third objective function is focused on detecting repeated substrings that appear
within the same CDS or common substrings that appear between pairs of CDSs.
Given a CDS with a nucleotide substring S of length l, a common substring is found
when another CDS in the solution contains exactly the same nucleotide substring S.
In the case of finding a common substring between two CDSs, the starting positions
p and q of the common substring in each CDS can be equal or different. Otherwise,
if there is a repeated substring within a single CDS, the starting positions p and q
will be different. The first step is to identify the length of repeated or common sub-
strings (LRCS), as shown in Eq. 5:

In Eq. 5, if the two substrings Si,p,l and Sj,q,l are found between the pair CDSi and
CDSj , being i ≠ j , the substring starting positions p and q can be any within each
CDS. On the other side, if CDSi and CDSj are the same (i = j), the starting positions
have to be different (p ≠ q).

The final goal is to find the maximum length of repeated or common substring
(MLRCS), among all the I CDSs, as expressed in Eq. 6:

(3)HD(CDSi, CDSj) =
∑

1≤k≤L

�(CDSi,k, CDSj,k),

(4)mHD = min
1≤i<j≤I

HD(CDSi,CDSj)

L
.

(5)LRCS(CDSi,CDSj) = length(Si,p,l)
1≤p,q,l≤L

when (Si,p,l = Sj,q,l).

5124 B. Gonzalez-Sanchez et al.

1 3

Remember that every CDS has a length of L nucleotides. Figure 1 depicts the identi-
fication of MLRCS in an example with three CDSs.

Under this objective function, the optimization is aimed at finding the solution
that minimizes the MLRCS score.

3 Parallel strategies for multi‑objective protein encoding

This section is devoted to outline first the serial metaheuristic employed in this
research. Afterwards, it proceeds with the description of the parallel designs herein
devised to accelerate protein encoding in multiprocessor systems.

3.1 Baseline metaheuristic: MOABC

Finding highly adapted CDSs that encode the same protein, while avoiding homol-
ogous recombination, is a complex optimization task. Previous research showed
the relevance of applying metaheuristics in this context. In particular, MOABC
is a highly promising proposal that attained significant results for this problem in
previous work [5]. Moreover, MOABC is based on ABC (artificial bee colony)
metaheuristic, which has been used in many different problems since its develop-
ment, achieving very good results [9]. Therefore, MOABC will be the baseline algo-
rithm targeted in this work.

MOABC is a population-based metaheuristic based on swarm intelligence that
undertakes complex optimization tasks by mimicking the behaviour of bee colonies.
This algorithm is built upon an exploitation-exploration algorithmic scheme, involv-
ing three main search strategies, to evolve the population:

1. Employed bees step In this stage, new candidate solutions are generated by pro-
cessing the neighbourhood of the solutions handled by the algorithm in the cur-
rent generation.

2. Onlooker bees step This procedure carries out the exploitation of the fittest solu-
tions found in the previous step, assigning a higher selection probability to the
most promising solutions.

3. Scout bees step This stage is aimed at processing unexplored regions of the search
space, by means of replacing stagnated solutions that have not been successfully
improved in a limit number of generations.

(6)MLRCS = max
1≤i≤j≤I

LRCS(CDSi,CDSj)

L
.

5125

1 3

Parallel multi‑objective optimization approaches for protein…

5126 B. Gonzalez-Sanchez et al.

1 3

Algorithm 1 illustrates the main stages of MOABC. This metaheuristic
requires the following input parameters: (1) the number of solutions in the popu-
lation managed by the algorithm (colony_size), (2) the stop criterion, given by a
maximum number of cycles or generations (max_cycles), (3) the maximum num-
ber of generations that an stagnated solution can remain in the population (limit),
and (4) the mutation probability considered in the generation of new candidate
solutions (Pm). As the outcome of a multi-objective metaheuristic is not a single
solution but a set of Pareto solutions, MOABC additionally manages a file, desig-
nated as nondominated_file , to store the non-dominated solutions found through-
out the execution of the algorithm.

In order to adapt MOABC to protein encoding, the codification of a solution
will be given by a set of CDSs, that is, a set of equal-length character sequences.
Considering this solution encoding, the algorithm initializes the population
(lines 2–5 in Algorithm 1) by generating colony_size − 1 solutions randomly.
The remaining initial solution is generated by selecting for each amino acid the
codon with the highest adaptation, so its mCAI value is equal to 1. This strategy
is employed to boost the optimization of solutions with high CAI values. Further-
more, for every solution, the trial counter (line 4) is also initialized. This counter
is used to count the number of times that the corresponding solution has not been
successfully improved.

Until the stop criterion is satisfied, the main loop of MOABC sequentially
applies the three main search strategies to evolve the population. The first one,
the employed bees step (lines 7–15), operates over the population and generates
colony_size new neighbour solutions by applying mutations with a probability of
Pm . More specifically, four mutation variants are implemented:

1. For each CDS, each codon is randomly replaced by a different synonymous codon.
2. For the CDS with the minimum CAI value, each codon is replaced by a synony-

mous codon with greater adaptation weight.
3. For the pair of CDSs with the minimum HD, each codon is randomly replaced by

a synonymous codon.
4. The codons included in the longest length repeated or common substring (LRCS)

are randomly replaced with synonymous codons.

Once applied the mutations, the new solutions are compared with the original
ones by using Pareto dominance, in order to store the most satisfying ones. Pareto
ranks and crowding distances are then calculated for the solutions kept after the
employed bees step (line 16), sorting them according to their multi-objective
quality (convergence and diversity) [4]. The results of this sorting procedure are
used to calculate the selection probabilities (line 17) required in the onlooker bees
step (lines 18–27). In this step, roulette-wheel selection is performed to choose
the solutions to be exploited, generating colony_size additional solutions through
the mutation operators previously defined. Lastly, the scout bees step (lines
28–35) checks the population for exhausted, stagnated solutions, that is, solutions
that have not been successfully improved in a limit number of generations. The

5127

1 3

Parallel multi‑objective optimization approaches for protein…

identified exhausted solutions are replaced with randomly generated solutions,
which are mutated n times (where n is proportional to the current generation
cycle).

At the end of a generation, the 2 × colony_size solutions in the population
are sorted according to Pareto ranks and crowding distances (line 36). The best
colony_size solutions will be assigned to the employed bees in order to continue
their tasks in the next generation. Furthermore, the non-dominated file is updated at
each generation with the non-dominated solutions found by the algorithm (line 37),
being reported as output when the stop criterion is satisfied.

As discussed in [5], the strengths of MOABC’s optimization engine allow this
algorithm to achieve good results in the task of designing proteins encoded with
multiple CDSs. However, the main weakness of this approach lies in the high execu-
tion times required to deal with large protein instances. With the aim of addressing
this problem, we propose in this research work different parallel designs to improve
the execution time for the multi-objective protein encoding in shared-memory archi-
tectures with MOABC.

3.2 Synchronous parallel MOABC (SP‑MOABC)

The first approach examined in this work follows a synchronous parallelization
scheme. The main goal of this scheme lies in distributing the workload of the search
loops that compose a generation of the metaheuristic, thus preserving the original
algorithmic design. The search loops are suitable for parallelization in multicore
machines, since the processing of a new candidate solution x is independent from
the processing associated to any other new solution y.

Algorithm 2 shows the OpenMP implementation of the synchronous parallel
design proposed for MOABC (explained in detail in the previous subsection, Algo-
rithm 1), designated as SP-MOABC. The first step is the initialization of the file that
will store the non-dominated solutions (line 1 in Algorithm 2). A new input param-
eter (the rest of parameters are the same as in Algorithm 1), num_threads , is added
to define the number of execution threads that are considered for parallel process-
ing, which is set by using the omp_set_num_threads routine. The parallel team
comprising these execution threads will be initialized at the beginning of the algo-
rithm via #pragma omp parallel (lines 2–4 in Algorithm 2). In this moment
(line 3), some variables are declared as private in order to avoid data problems.

5128 B. Gonzalez-Sanchez et al.

1 3

5129

1 3

Parallel multi‑objective optimization approaches for protein…

The main target of parallelization lies in the loops that implement the employed,
onlooker, and scout bees steps, since their computations do not require any shar-
ing of information among solutions. The initialization of the population also veri-
fies this condition and consequently can be also conducted in parallel. Parallel loops
are therefore defined for each step by using #pragma omp for worksharing
directives to distribute independent chunks of iterations among the available threads,
thus accelerating the process of defining new candidate solutions at each step of the
algorithm (lines 5–8 for the initialization, lines 10–14 for the employed bees step,
lines 18–23 for the onlooker bees step, and lines 24–29 for the scout bees step).
The operations that perform the management, update, and sorting of globally shared
structures (e.g. the non-dominated file) will be handled by a single execution thread
defined through #pragma omp single directives (lines 15–17 and 30–32).

The synchronous behaviour of SP-MOABC is attained by using the implicit barri-
ers located at the end of the #pragma omp for loops, which is a simple strategy
to guarantee the correctness and accuracy shown by the original serial algorithm.
The idea herein pursued consists in completing the evolution of the population in a
generation (that is, an iteration of the main loop) before proceeding with the parallel
calculations corresponding to the next generation.

3.3 Asynchronous parallel MOABC (AP‑MOABC)

The second approach herein devised, AP-MOABC, applies an asynchronous execu-
tion model to parallelize MOABC. The main contribution of this approach lies in
introducing bioinspired parallelization strategies to minimize synchronization and
waiting times by mimicking the parallel behaviour of honey bees. In nature, a bee
does not wait for the rest of the colony to continue its tasks, that is, they work in
an asynchronous mode. In practical terms, this behaviour can be translated to the
way execution threads undertake parallel tasks, avoiding implicit barriers at the end
of the parallel loops to improve the exploitation of hardware resources in shared-
memory parallel platforms.

AP-MOABC follows a master-worker parallelization model, where the execution
threads can play two possible roles:

• Master thread: the master is responsible for updating and managing the popula-
tion immediately as new candidate solutions arrive from the workers, performing
rank+crowding sorting and the calculation of selection probabilities upon detec-

5130 B. Gonzalez-Sanchez et al.

1 3

tion of new solutions. It also controls the end of the execution by verifying if the
stop criterion is satisfied.

• Worker threads: while the master thread does not send a signal of termination,
all the other available threads perform worker tasks involving the generation of
new candidate solutions according to employed, onlooker, and scout bees strate-
gies. Each thread is responsible for processing, in an asynchronous way, a chunk
of solutions in the population and for communicating the obtained results to the
master thread.

The main structure of AP-MOABC is shown in Algorithm 3, which applies
OpenMP directives to specify and configure the parallel regions. It can be observed
several changes with regard to previous pseudo-codes. First, the stop criterion is not
given by a maximum number of cycles/generations, since the asynchronous model
implicitly removes the idea of generation from the algorithmic design. That is, the
population evolves immediately as new solutions are generated by a thread, without
waiting for other threads. An equivalent stop criterion, given by a maximum num-
ber of evaluations (max_eval), must be therefore implemented in AP-MOABC. The
master thread will control the stop criterion condition, updating the number of con-
sumed evaluations when new solutions are communicated from the workers. These
communications represent the second main change, as AP-MOABC includes a set of
FIFO (First In, First Out) queues, designated as solQueues, to conduct worker-mas-
ter interactions (line 2 in Algorithm 3). Each worker thread i has associated a queue
solQueues[i], where the solutions generated by the worker are progressively stored
(write operation at the tail of the queue). The master will iteratively check these
queues to identify the arrival of new solutions (read operation at the head of the
queue) and, upon detection, proceed with the update of the population. Therefore,
num_thread − 1 queues are required to implement these interactions. This approach
allows the workers to execute in an asynchronous way, independently from each
other, without sharing data among them.

5131

1 3

Parallel multi‑objective optimization approaches for protein…

At the initialization stage, the population in AP-MOABC is duplicated by means
of the structure populationswap . The introduction of this structure is aimed at ensur-
ing the integrity and consistency of the population data throughout the asynchronous
execution. More specifically, the population structure represents the consistent copy
of the population that is visible for the worker threads at a particular stage of the
optimization process. On the other side, populationswap is a copy exclusively han-
dled by the master thread to update the data of the population when new solutions

5132 B. Gonzalez-Sanchez et al.

1 3

are detected. It is over populationswap where the master applies the procedures for
sorting and calculating selection probabilities. Since populationswap will then con-
tain the updated population, the population and populationswap pointers must be
swapped to make the current status of the population available to the workers.

Once both copies of the population have been initialized and sorted (with an
initial calculation of selection probabilities, lines 6–17), the assignment of master-
worker roles is performed to begin the asynchronous execution. The last thread in
the parallel team, with thread identifier thread_id = num_threads − 1 , will serve
as the master instantiating the perform master tasks procedure (line 21), while the
remaining threads will operate as workers through the perform worker tasks proce-
dure (line 23). The obtaining of thread identifiers is performed by using the OpenMP
omp_get_thread_num routine.

Algorithm 4 illustrates the master thread tasks. As previously introduced, the
master thread is aimed at keeping updated the status of the optimization process,
accordingly updating the population with the solutions available in the queues of
the worker threads. While the stop criterion is not satisfied, the master iteratively
checks each solQueues[i] in order to detect the arrival of new solutions from
the workers (lines 3–11 in Algorithm 4). When a new solution is available, it is
extracted from the queue and stored in the master-only copy of the population,

5133

1 3

Parallel multi‑objective optimization approaches for protein…

populationswap . In this step, the master also updates the variable eval used to
keep track of the number of evaluations performed by the algorithm. Once all
the queues have been checked, the master proceeds with the calculation of Pareto
ranks and crowding distances over populationswap , sorting them and calculating
afterwards selection probabilities (lines 13 and 14). As at this stage the popula-
tion structure is obsolete, the master exchanges the population and populationswap
structure pointers in order to make available the updated population and selection
probabilities to the worker threads (line 15). These steps are repeated until the
stop criterion is verified (that is, eval = max_eval), finishing the master execution
by sending stop signals to the workers (lines 18 and 19).

The worker thread stages of AP-MOABC are shown in Algorithm 5. These
threads will iteratively perform the generation of new candidate solutions
until receiving the stop signal from the master thread. At the beginning, dif-
ferent chunks of the population are distributed among the worker threads (line
1 in Algorithm 5), so that each worker will operate over the assigned chunk
of solutions. If the thread identifier lies within the first half of the number of
worker threads, the worker will generate new candidate solutions by conduct-
ing employed bee searches (Perform Employed Bee Processing, line 5) over the
currently processed position of the assigned chunk. Otherwise, the worker will
operate following onlooker bee strategies, using the selection probabilities of the

5134 B. Gonzalez-Sanchez et al.

1 3

consistent population structure to choose the most promising solutions (Perform
Onlooker Bee Processing, line 7). The exploration tasks related to the scout bee
searches are implemented in both types of workers, regardless of their basic role
(employed or onlooker). That is, when a solution has been processed, its trial
counter is checked in order to verify if the solution has surpassed the maximum
trial limit. If so, the solution is replaced (Perform Scout Bee Processing, line 10).
The candidate solution resulting from these searches is then introduced into the
queue (line 12), proceeding afterwards with the processing of the next position of
the chunk (lines 13–16). Figure 2 introduces a graphical comparison between the
thread orchestration schemes in SP-MOABC and AP-MOABC.

4 Evaluation methodology

This section provides insight into the evaluation methodology followed to assess
the designed parallel approaches for protein encoding. The characteristics of the
employed datasets and the performance measurements used to evaluate parallel and
multi-objective results are herein described.

4.1 Protein datasets

In this study, we use six representative real-world proteins in FASTA format from
the UniProt1 (Universal Protein Resource) database, which is a database very used
in this field. A protein instance is defined according to two attributes: length (num-
ber of amino acids, AA) and number of CDSs. All the instances herein considered
show a balance between these attributes since both of them contribute to the com-
plexity of the problem. Instances with less CDSs include larger proteins, while
instances with shorter proteins comprise a high number of CDSs. In this way, very
different scenarios will be evaluated. These proteins are from different organisms
(human, mouse, yeast, salmonella, etc.). Table 1 details the protein instances used in
this work.

4.2 Parallel performance metrics

In order to evaluate the performance of each design and analyse the benefits of paral-
lel processing in this context, two widely used parallel metrics are adopted: speedup
and efficiency. First, the speedup metric (Sc) measures the improvement observed in
execution time when a parallel algorithm is employed, in comparison with the serial
version of that algorithm. More specifically, it calculates how many times the paral-
lel execution (using c cores) is faster than the serial execution, as expressed in Eq. 7:

1 https:// www. unipr ot. org/.

https://www.uniprot.org/

5135

1 3

Parallel multi‑objective optimization approaches for protein…

SP
-M

O
A
B
C

A
P
-M

O
A
B
C

(a
)

(b
)

Fi
g.

 2

Re
pr

es
en

ta
tio

n
of

 p
ar

al
le

l M
O

A
B

C
 a

pp
ro

ac
he

s f
or

 p
ro

te
in

 e
nc

od
in

g

5136 B. Gonzalez-Sanchez et al.

1 3

where ET1 is the execution time of the serial algorithm and ETc the execution time of
the parallel version using c cores.

Second, the efficiency metric (Ec) examines how the designed parallel solution
effectively takes advantage of the available parallel resources. It can be calculated
in terms of the observed speedup over the number of cores (c) used for execution
purposes, as indicated in Eq. 8:

4.3 Solution quality metrics

In addition to the parallel metrics previously mentioned, insights into the quality
of solutions will be given to examine if the application of parallel computing tech-
niques has an impact over the output of the algorithm. The goal of the proposed
parallel designs is to improve the execution time without changing the good results
attained by the original serial algorithm (in terms of quality of solution). In order to
determine this, three multi-objective quality metrics are considered: hypervolume,
set coverage, and minimum distance to the ideal point.

The hypervolume (HV) indicator is one of the most commonly adopted met-
rics to assess the quality of the results in multi-objective optimization problems.
This unary quality indicator calculates the volume of the objective space, delim-
ited by the nadir and ideal points established in Table 2, which is covered by

(7)Sc =
ET1

ETc
,

(8)Ec =
Sc

c
× 100.

Table 1 Protein instances used
in the experiments

Code Name CDSs Length (AA) CDSs*Length

Q5VZP5 DUS27_HUMAN 2 1158 2316
A4Y1B6 FADB_SHEPC 3 716 2148
B3LS90 OCA5_YEAS1 4 679 2716
B4TWR7 CAIT_SALSV 5 505 2525
Q91X51 GORS1_MOUSE 6 446 2676
Q89BP2 DAPE_BRADU 7 388 2716

Table 2 Nadir and ideal points
for the calculation of quality
indicators

Objective Nadir value Ideal value

mCAI 0 1
mHD 0 0.40
MLRCS 1 0

5137

1 3

Parallel multi‑objective optimization approaches for protein…

the set of non-dominated solutions found by the evaluated algorithm. Equation 9
shows how hypervolume is calculated:

where Leb denotes the Lebesgue measure, |A| the size of the set of non-dominated
solutions A , and h(ai, r) the volume covered by each solution ai ∈ A taking r as the
reference points.

The second multi-objective metric herein considered is the set coverage (SC).
This binary quality indicator is based on the weak Pareto dominance concept. In
the original Pareto dominance, we say that a solution bj is dominated by another
solution ai iff ai is not worse than bj in all the considered objectives and is bet-
ter at least in one of them. In the case of weak Pareto dominance, we say that ai
weakly dominates (⪰) bj iff ai is simply not worse than bj in each objective. The
set coverage therefore compares two solution sets A and B and calculates the
percentage of solutions from B that are weakly dominated by at least one solu-
tion from A . The set coverage of A over B can be expressed as shown in Eq. 10:

where |B| indicates the size of the solution set B.
The third metric calculates the minimum distance to the ideal point for each

set of solutions. The ideal point represents the most optimistic point in the
objective space, a theoretically unreachable solution that optimizes all the con-
sidered objective functions simultaneously. However, it is not possible to reach
it due to the conflicts among objectives. Even so, solutions as close as possible
to the ideal values are the goal. Despite the outcome of a multi-objective optimi-
zation algorithm being a set of solutions, sometimes the expert can be interested
in a single solution: the closest one to the ideal point. Under this metric, the best
proposed approach will be the one containing the solution that minimizes the
Euclidean distance to the ideal point.

5 Experimental evaluation and results

This section discusses the experimental results obtained by the proposed parallel
approaches for multi-objective protein encoding. In a first step, the experimental
settings and time profiling of MOABC are presented. Afterwards, the parallel
results reported by the synchronous and asynchronous designs are comparatively
evaluated. Finally, the assessment of solution quality with regard to state-of-the-
art approaches is undertaken.

(9)HV(A, r) = Leb

(|A|⋃

i=1

h(ai, r)

)
,

(10)SC(A,B) =

|||{bj ∈ B;∃ ai ∈ A ∶ ai ⪰ bj}
|||

|B|
,

5138 B. Gonzalez-Sanchez et al.

1 3

5.1 Experimental settings

The hardware platform used to perform the experiments in this work is a multi-
processor computing node composed of four 16-core AMD Opteron Abu Dhabi
6376 processors (a total of 64 physical cores, 2.3GHz) with 96GB DDR3 RAM,
running Ubuntu 18.04LTS. The MOABC algorithm has been implemented in C/
C++ language, using OpenMP for multithreading processing purposes. The C/
C++ compiler version was GCC 8.4.0 with OpenMP 4.5. The experimental cam-
paign involved 11 independent runs of the tested methods per experiment, with
the aim of ensuring statistical reliability in the performance analysis.

Regarding the configuration of parameters of the MOABC algorithm, we
took as a reference the parametric studies performed in previous research [5].
Table 3 shows the parameter settings that allow MOABC to maximize its opti-
mization capabilities in the tackled problem and to achieve a better mapping to
the characteristics of the targeted hardware platform. It is also worth remark-
ing that the algorithmic design of AP-MOABC required a change in the stop
criterion (from max_cycles to max_eval). The max_eval value was set to 12800
in order to make it equivalent to the original stop criterion (that is, max_eval =
colony_size × max_cycles).

5.2 MOABC time profiling

In order to better understand the benefits of applying parallel approaches, we first
focus on analysing the time profile of the baseline MOABC, detailing the execu-
tion times of the serial version. Table 4 presents the median times in seconds
together with the quartile deviation (median±quartile_deviation) observed for each stage
in MOABC, as well as the total execution time per analysed protein instance. This
table identifies each step of the algorithm according to the following notation:

• initialize_solutions refers to the initialization of solutions in the population (lines
1–5 in Algorithm 1).

• employed_bee_processing identifies the employed bee search step (lines 7–15 in
Algorithm 1).

• rank-crowding_sorting_1 refers to the sorting of employed bee solutions, accord-
ing to Pareto ranks and crowding distances (line 16 in Algorithm 1).

Table 3 List of parameter
settings and configured values

Parameter Description Value

colony_size Number of solutions in the population 128
max_cycles Number of cycles/generations (SP-MOABC) 100
max_eval Number of evaluations (AP-MOABC) 12800
limit Attempts to improve a solution 10
Pm Mutation probability 5%

5139

1 3

Parallel multi‑objective optimization approaches for protein…

• selection_probabilities corresponds to the calculation of selection probabili-
ties prior to the onlooker bee step (line 17 in Algorithm 1).

• onlooker_bee_processing identifies the onlooker bee search step (lines 18–27
in Algorithm 1).

• scout_bee_processing refers to the scout bee search step (lines 28–35 in Algo-
rithm 1).

• rank-crowding_sorting_2 identifies the sorting of the overall solutions
(employed + onlooker), according to Pareto ranks and crowding distances, for
the next generation (line 36 in Algorithm 1).

• update_nondominated_file denotes the update of the file containing non-domi-
nated solutions (line 37 in Algorithm 1).

Table 5 summarizes the percentage of the total time spent on each stage, aver-
aged for all the protein instances under evaluation. Focusing on the stages
involving global data management (with data dependencies), it can be observed
that, on the one hand, selection_probabilities and update_nondominated_file
do not have a significant impact in the execution time, showing time percent-
ages ≤ 0.01 . On the other hand, the sorting operations rank-crowding_sorting_1

Table 4 Execution time profile (in seconds, median±quartile_deviation) for each stage of the serial version of
MOABC

The ‘Total’ rows show the overall time per protein instance

MOABC Stage Q5VZP5 A4Y1B6 B3LS90

initialize_solutions 15.52±0.07 13.59±0.30 18.11±0.26
employed_bee_processing 1279.55±27.84 1147.53±7.87 1443.95±8.79
rank-crowding_sorting_1 47.12±1.63 64.11±0.78 66.97±0.48
selection_probabilities 0.002±0.00 0.002±0.00 0.002±0.00
onlooker_bee_processing 1281.74±26.70 1134.25±7.89 1426.35±4.94
scout_bee_processing 111.85±8.52 112.86±3.44 144.13±12.51
rank-crowding_sorting_2 190.52±9.61 253.82±3.23 261.09±2.68
update_nondominated_file 0.224±0.01 0.273±0.01 0.304±0.01
Total 2926.53 2726.44 3360.91

 MOABC Stage B4TWR7 Q91X51 Q89BP2

initialize_solutions 16.26±1.42 16.50±0.35 10.30±1.36
employed_bee_processing 1233.54±43.73 1288.94±6.73 1168.34±41.58
rank-crowding_sorting_1 64.41±2.41 69.24±0.80 61.15±2.98
selection_probabilities 0.002±0.00 0.002±0.00 0.002±0.00
onlooker_bee_processing 1246.42±45.50 1295.96±7.78 1168.24±45.16
scout_bee_processing 122.78±6.73 143.60±7.10 195.79±17.78
rank-crowding_sorting_2 251.97±9.17 265.49±2.77 243.54±1.17
update_nondominated_file 0.284±0.02 0.315±0.01 0.319±0.01
Total 2935.67 3080.05 2847.68

5140 B. Gonzalez-Sanchez et al.

1 3

and rank-crowding_sorting_2 contribute with more noticeable time percent-
ages. Nevertheless, the three key stages with inherent parallel processing oppor-
tunities, which are employed_bee_processing , onlooker_bee_processing , and
scout_bee_processing , represent all together a percentage of almost 90% of the
total execution time. This percentage illustrates the intrinsically parallel nature of
MOABC and the potential benefits of applying parallel versions in the context of
multi-objective protein encoding.

5.3 Parallel performance evaluation: SP‑MOABC versus AP‑MOABC

We now analyse the parallel performance results achieved by the synchronous
and asynchronous strategies devised to parallelize MOABC (Sect. 3). Taking into
account the specifications of the hardware platform, experimentation was performed
considering configurations of 4, 8, 16, 32, and 64 execution threads. In this sense, it
is worth remarking that the asynchronous approach in AP-MOABC requires at least
three threads to work: a master thread, an employed worker thread, and an onlooker
worker thread. In the case of the synchronous model SP-MOABC, an important
issue to take into account is the scheduling policy applied to distribute iterations in
the #pragma omp for loops among the available threads. By default, OpenMP
applies a static scheduling that can imply load imbalance issues in this context. In
order to ensure the execution of parallel loops according to the most efficient sched-
uling policy, we examined the different strategies available in the OpenMP standard
and verified that the guided policy led to the most satisfying results. Consequently,
the experiments with SP-MOABC employed this scheduling policy, progressively
decreasing the chunk size, to attain a guided distribution of iterations while reducing
the impact of the thread management overhead.

Figure 3 introduces the comparison between AP-MOABC and SP-MOABC,
illustrating the evolution of speedups for each parallel model when the num-
ber of threads is increased (scalability study). The presented results are averaged

Table 5 Average time
percentages from the baseline
serial MOABC

The italic rows highlight the stages considered for parallelization
purposes

MOABC stages Average time (%) Standard
deviation
(%)

initialize_solutions 0.50 0.001
employed_bee_processing 42.28 0.009
rank-crowding_sorting_1 2.09 0.002
selection_probabilities 0.00 0.000
onlooker_bee_processing 42.23 0.009
scout_bee_processing 4.67 0.010
rank-crowding_sorting_2 8.22 0.009
update_nondominated_file 0.01 0.000

5141

1 3

Parallel multi‑objective optimization approaches for protein…

considering all the protein instances and repetitions per experiment. Along with the
overall speedups of the application, this figure also details the speedups observed in
the three main search stages of the algorithm, namely the employed, onlooker, and
scout bee processing. A more detailed comparison is presented in Table 6, following
the parallel performance metrics introduced in Sect. 4.2 and considering execution
scenarios from 4 to 64 threads. The upper side of Table 6 provides insight into the
average speedups achieved in the experimentation, while the bottom side details the
evaluation of efficiency values.

In overall terms, it can be observed that AP-MOABC attains better parallel per-
formance than SP-MOABC in all the execution scenarios herein considered (from
4 to 64 cores). In fact, the differences between the two approaches under evaluation
become more noticeable for larger system sizes. For 32 cores, AP-MOABC reports a
speedup of 20.7x with regard to the baseline serial MOABC, which implies an effi-
ciency around 65%. On the other side, SP-MOABC leads to a speedup of 13.5x and
consequently an efficiency below the 50% threshold. Furthermore, the differences
become more noticeable for 64 cores, where AP-MOABC is able to attain a speedup
of 33.3x, in comparison with the 17.5x reported by SP-MOABC.

The analysis of each parallel stage of the algorithm gives account of the reasons
that justify the performance gains achieved when asynchronous parallel designs
are adopted in this problem. In the simplest step, the initialization of solutions

Overall execution Employed Bee Processing

Onlooker Bee Processing Scout Bee Processing

(a) (b)

(c) (d)

Fig. 3 Evaluation of AP-MOABC and SP-MOABC: evolution of speedups for the whole execution and
for each search step separately. The presented results are averaged considering all the protein instances

5142 B. Gonzalez-Sanchez et al.

1 3

initialize_solutions , both approaches have a similar behaviour in terms of scal-
ability. This is mostly motivated by the low demanding workload of the initializa-
tion loop, which contributes only a 0.5% of the execution time of the metaheuris-
tic (as introduced in Table 5). The results for the employed_bee_processing and
onlooker_bee_processing , shown in Fig. 3b and c, denote that these stages bene-
fit more from the use of asynchronous strategies when a larger number of cores is
employed, as the execution threads in AP-MOABC do not have any synchronization
dependence imposed by the idea of generation in evolutionary algorithms. Finally,
the scout_bee_processing step represents the stage with the most noticeable differ-
ences in performance between AP-MOABC and SP-MOABC. On the one hand,
SP-MOABC barely reaches speedups of only 1.9x (4 cores), 3.0x (8 cores), 3.7x
(16 cores), 4.6x (32 cores), and 5.4x (64 cores). On the other hand, the adoption of
asynchronous strategies represents a satisfying solution to parallelize this step, with
efficiencies of 92% when all the available parallel resources are used.

The scout bee step in MOABC is characterized by the fact that the number of
solutions to be processed strongly depends on the degree of stagnation of the

Table 6 Parallel evaluation of SP-MOABC and AP-MOABC, detailing the results observed in each stage
as well as the overall results

The columns S
c
 and E

c
 refer to the speedups and efficiencies observed when using c cores. The presented

results are averaged considering all the protein instances

Average speedup S
4

S
8

S
16

S
32

S
64

SP-MOABC initialize_solutions 3.40 6.52 10.19 8.57 2.92
employed_bee_processing 3.72 6.45 11.58 19.97 30.45
onlooker_bee_processing 3.86 6.67 11.87 20.65 31.19
scout_bee_processing 1.87 3.02 3.72 4.64 5.42
Overall 3.21 5.67 9.34 13.46 17.49

AP-MOABC initialize_solutions 3.64 6.80 11.01 12.36 5.06
employed_bee_processing 3.69 7.24 12.08 21.72 34.40
onlooker_bee_processing 3.82 7.14 12.10 21.98 34.69
scout_bee_processing 3.92 7.21 14.19 26.63 58.95
Overall 3.77 7.12 12.35 20.67 33.28
Average efficiency E

4
(%) E

8
(%) E

16
(%) E

32
(%) E

64
(%)

SP-MOABC initialize_solutions 85.05 81.55 63.71 26.79 4.56
employed_bee_processing 99.07 80.59 72.37 62.40 47.57
onlooker_bee_processing 96.49 83.34 74.22 64.53 48.73
scout_bee_processing 46.71 37.80 23.24 14.49 8.46
Overall 80.25 70.88 58.38 42.06 27.33

AP-MOABC initialize_solutions 90.96 86.27 68.81 38.63 7.91
employed_bee_processing 92.18 90.52 75.53 67.88 53.75
onlooker_bee_processing 95.61 89.19 75.60 68.69 54.20
scout_bee_processing 97.94 90.13 88.72 83.21 92.11
Overall 94.25 89.00 77.19 64.59 52.00

5143

1 3

Parallel multi‑objective optimization approaches for protein…

population. That is, the number of parallel tasks to be processed is governed by the
number of exhausted solutions detected by the limit condition. As a result, the num-
ber of scout bee searches to be conducted varies and can range from 0 (no exhausted
solutions detected) to 2 ∗ colony_size (the whole population is exhausted). When
the number of scout searches to be performed is less than the number of execution
threads, a synchronous approach leads to a poor utilization of hardware resources
due to the presence of idle threads waiting for the termination of the parallel loop. In
the worst case scenario (only one stagnated solution), the scout bee search contrib-
utes to the serial percentage of the algorithm, thus negatively affecting the achiev-
able parallelism in accordance with Amdahl’s law. By adopting the asynchronous
approach in AP-MOABC, the threads are able to continue their execution when
another thread is processing a scout bee search, consequently minimizing the impact
in parallel performance introduced by the variable nature of this step.

In order to better depict the benefits of AP-MOABC with regard to SP-MOABC,
Fig. 4 graphically represents the performance improvements attained in our experi-
mentation for 4, 8, 16, 32, and 64 cores. It can be observed how the improvements
progressively increase from 4 to 16 cores (17.5% to 32.2%). When larger system
sizes are considered, the performance gains verified by AP-MOABC become even
more noticeable (53.6% for 32 cores), reaching peak gains when all the resources in
the parallel platform are employed (90.3% for 64 cores). Therefore, it can be con-
cluded that the design of asynchronous strategies represents a satisfying solution
to parallelize multi-objective protein encoding tasks on multicore, multiprocessor
architectures.

5.4 Comparisons with other authors’ proposals

After examining parallel performance, the next step in this study involves the assess-
ment of the quality of solutions for AP-MOABC, in order to determine if the adop-
tion of asynchronous strategies is able to preserve the search capabilities of the
serial baseline MOABC [5]. For this purpose, we compare the results obtained by
AP-MOABC with other methods from the literature, namely COOL [3] and Terai’s

Fig. 4 Performance gains (%) obtained by AP-MOABC over SP-MOABC. It can be observed how AP-
MOABC leads to significant improvements on system sizes involving a larger number of cores

5144 B. Gonzalez-Sanchez et al.

1 3

approach [22]. COOL is a biological tool that undertakes protein encoding optimi-
zations by putting priority on the CAI objective function, while Terai’s approach
is a multi-objective evolutionary algorithm inspired by NSGA-II that optimizes the
same three objective functions considered in this work.

These state-of-the-art methods are not focused on the parallelization of protein
encoding. Therefore, we will employ these tools as a reference to evaluate the opti-
mization capabilities (solution quality) of the proposed AP-MOABC. Nevertheless,
it is worth remarking that, in the worst case scenario, our proposal is able to finish
protein encoding tasks with execution time around 100 seconds, thus representing
a significant step further over other methods that imply runtimes from many min-
utes to more than one hour. To the best of our knowledge, AP-MOABC represents
the first attempt to parallelize the protein encoding task, and more specifically, a
multi-objective search engine aimed at maximizing protein expression with multiple
CDSs.

In order to perform these comparisons, we consider three different quality
metrics: hypervolume, set coverage, and the minimum distance to the ideal point
(detailed in Sect. 4.3). For the sake of fairness in the comparisons, all the meth-
ods were configured using the same parameter settings. Table 7 reports the

Table 7 Hypervolume results
(median±quartile_deviation)

The best values are in bold for each instance. The last row shows the
average of the six protein instances

Protein AP-MOABC COOL[3] Terai’s method[22]

Q5VZP5 59.27%±0.004% 0.21%±0.000% 59.92%±0.180%

A4Y1B6 52.71%±0.001% 0.31%±0.000% 52.53%±0.060%

B3LS90 55.59%±0.001% 0.28%±0.000% 54.62%±0.150%

B4TWR7 49.79%±0.001% 0.36%±0.000% 48.91%±0.210%

Q91X51 52.02%±0.001% 0.18%±0.000% 50.47%±0.230%

Q89BP2 50.09%±0.001% 0.17%±0.000% 48.61%±0.220%

Average 53.25% 0.25% 52.51%

Table 8 Set Coverage results

The best values are in bold, and the last row represents the average of the six protein instances

SC(COOL[3], SC(AP-MOABC, SC(Terai[22], SC(AP-MOABC,
Protein AP-MOABC) COOL[3]) AP-MOABC) Terai[22])

Q5VZP5 0.00% 100.00% 64.04% 95.00%
A4Y1B6 0.00% 100.00% 62.75% 84.00%
B3LS90 0.00% 100.00% 43.92% 88.00%
B4TWR7 0.00% 100.00% 62.69% 74.00%
Q91X51 0.00% 100.00% 56.90% 93.00%
Q89BP2 0.00% 100.00% 49.37% 82.00%
Average 0.00% 100.00% 56.61% 86.00%

5145

1 3

Parallel multi‑objective optimization approaches for protein…

median values for the hypervolume indicator together with the quartile deviation
(median±quartile_deviation), while Table 8 shows the set coverage results. For the set
coverage, we consider the percentage of solutions from AP-MOABC covered by
the other methods, SC(COOL,AP-MOABC) and SC(Terai,AP-MOABC), and the
percentages covered by AP-MOABC over the other tools, SC(AP-MOABC,COOL)
and SC(AP-MOABC, Terai). For both hypervolume and set coverage, higher scores
denote better results. Finally, Table 9 shows the minimum distance from, at least,
one solution of the median Pareto front to the ideal or utopian solution. Lower dis-
tances imply a better approximation to the ideal solution.

On examining the scores in these tables, it can be observed that AP-MOABC pro-
vides more satisfying results than the ones reported by the reference works. This is
especially noticeable in the case of the set coverage metric (Table 8), which indicates
that our approach is able to dominate or cover a significant percentage of solutions
from the other tools (in average, 100% over COOL and 86% over Terai’s method),
while the other tools do not cover many of the solutions generated by our approach.
AP-MOABC also reports the best hypervolume scores (Table 7) in almost all the
protein instances, along with better approximations (minimum distances, Table 9)
to the ideal solution in all the cases. These successful comparisons confirm the rel-
evance of MOABC, and more specifically, of AP-MOABC in the multi-objective
protein encoding problem.

6 Conclusions and future work

This work proposed parallel multi-objective approaches to undertake protein
encoding optimization tasks, boosting expression levels through the integration
of multiple CDSs. This problem was tackled according to a multi-objective for-
mulation targeted at minimizing the effect of homologous recombination while
maximizing codon adaptation levels. The length of the proteins and the number of
copies to be encoded represent two key complexity factors, which turn this prob-
lem into a computationally demanding task in real-world scenarios. Two parallel
designs, based on the MOABC algorithm, were devised to provide an efficient,
accurate solver for protein encoding on shared-memory multicore platforms. The

Table 9 Minimum distances to
the ideal point/solution

The best values for each instance are in bold, and the last row pro-
vides the average for the six instances

Protein AP-MOABC COOL[3] Terai’s method[22]

Q5VZP5 0.489408 1.028865 0.503676
A4Y1B6 0.542613 1.050567 0.551986
B3LS90 0.512751 1.081525 0.512885
B4TWR7 0.563227 1.093655 0.574876
Q91X51 0.574168 1.166339 0.589626
Q89BP2 0.565618 1.121477 0.569445
Average 0.541298 1.090405 0.550416

5146 B. Gonzalez-Sanchez et al.

1 3

first approach herein proposed, SP-MOABC, follows a synchronous generational
scheme to orchestrate execution threads. The second approach, designated as AP-
MOABC, adopts asynchronous strategies, combined with a master-worker design,
to improve the utilization of hardware resources and minimize idle times in the
most difficult stages of the algorithm.

Six real-world protein instances were used to evaluate the performance of the
proposed parallel strategies in a 64-core multiprocessor machine. This experi-
mental evaluation was performed attending to two different perspectives: (1) par-
allel performance (speedup and efficiency) and (2) quality of solutions (hyper-
volume, set coverage, and minimum distance to the ideal point). The profiling
of MOABC revealed the impact of the three main search steps of the baseline
algorithm (employed, onlooker, and scout bee searches), accounting for almost
90% of the execution time. Taking into account this information, the evaluation
of parallel performance showed the bottleneck introduced by the scout bee step
and how AP-MOABC was able to successfully deal with it, obtaining efficiencies
of 92% in this difficult stage for 64 cores (along with additional improvements in
the rest of steps). As a result, performance gains of 90% over SP-MOABC were
attained by AP-MOABC when using the whole hardware infrastructure. Further-
more, the comparison of solution quality with other methods from the literature
(the biological tool COOL [3] and the Terai’s multi-objective approach [22])
indicated that AP-MOABC was able to achieve very good results from the quality
viewpoint, dominating or covering 100% of the COOL solutions and 86% of the
Terai solutions, also offering better approximations to the ideal solution in all the
cases.

Two main directions of future research work can be established. Due to the
parallel potential exhibited by AP-MOABC, the adaptation of this scheme to
other hardware platforms beyond shared-memory scenarios will be investigated.
In this work, multicore systems were considered because they are widely spread
and commonly adopted in bioinformatics research, but as the problem addressed
does not have significant memory requirements, other hardware platforms (such
as GPUs) will be investigated. Emphasis will be put to the orchestration of het-
erogeneous resources in distributed-memory environments, studying strategies
to balance performance and power consumption. The second direction will deal
with the inclusion of other optimality goals for protein encoding. Particularly, the
GC content measures the stability of sequences and has significantly contributed
to the enhancement of protein expression levels in real-world studies [14]. Fur-
thermore, the number of multi-objective metaheuristic methods applied to solve
the protein encoding is still very reduced. For this reason, the development of
other new multi-objective metaheuristic methods for this problem and their paral-
lelization is also a topic of future research. This will imply their design for this
specific problem, their implementation, their parallelization, their execution, and
finally, their comparison.

Acknowledgements This work was partially funded by the MCIU (Ministry of Science, Innovation
and Universities, Spain), the AEI (State Research Agency, Spain), and the ERDF (European Regional
Development Fund, EU), under the contract PID2019-107299GB-I00/AEI/10.13039/501100011033

5147

1 3

Parallel multi‑objective optimization approaches for protein…

(Multi-HPC-Bio project). This research was also partially funded by the Government of Extremadura
(Spain) and the ERDF (European Regional Development Fund, EU) under the project IB16002.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declaration

Conflict of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, Simonyan V, Kim-
chi-Sarfaty C (2017) A new and updated resource for codon usage tables. BMC Bioinf 18(1):1–10
(Article number: 391). https:// doi. org/ 10. 1186/ s12859- 017- 1793-7

 2. Aw R, Polizzi KM (2013) Can too many copies spoil the broth? Microbial Cell Fact 12(1):1–9
(Article number: 128). https:// doi. org/ 10. 1186/ 1475- 2859- 12- 128

 3. Chin JX, Chung BKS, Lee DY (2014) Codon optimization OnLine (COOL): a web-based multi-
objective optimization platform for synthetic gene design. Bioinformatics 30(15):2210–2212.
https:// doi. org/ 10. 1093/ bioin forma tics/ btu192

 4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https:// doi. org/ 10. 1109/ 4235. 996017

 5. Gonzalez-Sanchez B, Vega-Rodríguez MA, Santander-Jiménez S, Granado-Criado JM (2019)
Multi-objective artificial bee colony for designing multiple genes encoding the same protein. Appl
Soft Comput 74:90–98. https:// doi. org/ 10. 1016/j. asoc. 2018. 10. 023

 6. Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q (2015) A rapid and reliable strategy for chromosomal
integration of gene(s) with multiple copies. Sci Rep 5:1–9 (Article number 9684). https:// doi. org/ 10.
1038/ srep0 9684

 7. Guimaraes JC, Rocha M, Arkin AP, Cambray G (2014) D-Tailor: automated analysis and design of
DNA sequences. Bioinformatics 30(8):1087–1094. https:// doi. org/ 10. 1093/ bioin forma tics/ btt742

 8. Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, pro-
moters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng
85(4):367–375. https:// doi. org/ 10. 1002/ bit. 10904

 9. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee
colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https:// doi. org/ 10. 1007/
s10462- 012- 9328-0

 10. Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI (1992) Homologous recom-
bination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp
of homology. Mol Gen Genet 234(3):494–497. https:// doi. org/ 10. 1007/ BF005 38711

 11. Lalwani S, Sharma H (2019) Multi-objective three level parallel PSO algorithm for structural align-
ment of complex RNA sequences. Evolut Intell pp 1–9, https:// doi. org/ 10. 1007/ s12065- 018- 00198-y

 12. Li X (2017) A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-
objective optimization. Bioinformatics 33(18):2829–2836. https:// doi. org/ 10. 1093/ bioin forma tics/
btx339

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12859-017-1793-7
https://doi.org/10.1186/1475-2859-12-128
https://doi.org/10.1093/bioinformatics/btu192
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.asoc.2018.10.023
https://doi.org/10.1038/srep09684
https://doi.org/10.1038/srep09684
https://doi.org/10.1093/bioinformatics/btt742
https://doi.org/10.1002/bit.10904
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1007/BF00538711
https://doi.org/10.1007/s12065-018-00198-y
https://doi.org/10.1093/bioinformatics/btx339
https://doi.org/10.1093/bioinformatics/btx339

5148 B. Gonzalez-Sanchez et al.

1 3

 13. Manivasakam P, Weber SC, McElver J, Schiestl RH (1995) Micro-homology mediated PCR target-
ing in Saccharomyces cerevisiae. Nucleic Acids Res 23(14):2799–2800. https:// doi. org/ 10. 1093/ nar/
23. 14. 2799

 14. Newman ZR, Young JM, Ingolia NT, Barton GM (2016) Differences in codon bias and GC content
contribute to the balanced expression of TLR7 and TLR9. Proceedings of the National Academy of
Sciences 113(10):E1362–E1371. https:// doi. org/ 10. 1073/ pnas. 15189 76113

 15. Ocaña K, Oliveira D (2015) Parallel computing in genomic research: advances and applications.
Adv Appl Bioinform Chem 8:23–35. https:// doi. org/ 10. 2147/ AABC. S64482

 16. van der Pas R, Stotzer E, Terboven C (2017) Using OpenMP - The Next Step. The MIT Press,
Cambridge

 17. Pouranbarani E, Weber dos Santos R, Nygren A (2019) A robust multi-objective optimization
framework to capture both cellular and intercellular properties in cardiac cellular model tuning: ana-
lyzing different regions of membrane resistance profile in parameter fitting. PLoS ONE 14(11):1–
19. https:// doi. org/ 10. 1371/ journ al. pone. 02252 45

 18. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: a web server for optimizing
the codon usage of DNA sequences. Nucleic Acids Res 35(suppl 2):W126–W131. https:// doi. org/
10. 1093/ nar/ gkm219

 19. Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using
G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression.
Bio Technol 12:181–184. https:// doi. org/ 10. 1038/ nbt02 94- 181

 20. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate
length and homology. Genetics 112(3):441–457

 21. Talbi EG (2015) Parallel Evolutionary Combinatorial Optimization. In: Springer handbook of com-
putational intelligence, Springer, pp 1107–1125. https:// doi. org/ 10. 1007/ 978-3- 662- 43505-2_ 55

 22. Terai G, Kamegai S, Taneda A, Asai K (2017) Evolutionary design of multiple genes encoding the
same protein. Bioinformatics 33(11):1613–1620. https:// doi. org/ 10. 1093/ bioin forma tics/ btx030

 23. Tran TA, Vo NT, Nguyen HD, Pham BT (2015) A novel method to predict highly expressed genes
based on radius clustering and relative synonymous codon usage. J Comput Biol 22(12):1086–1096.
https:// doi. org/ 10. 1089/ cmb. 2015. 0121

 24. Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term
selection-free heterologous pathway expression. Nat Biotechnol 27:760–765. https:// doi. org/ 10.
1038/ nbt. 1555

 25. Vassileva A, Chugh DA, Swaminathan S, Khanna N (2001) Expression of hepatitis B surface anti-
gen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol 88(1):21–35.
https:// doi. org/ 10. 1016/ S0168- 1656(01) 00254-1

 26. Webster GR, Teh AYH, Ma JKC (2017) Synthetic gene design: the rationale for codon optimization
and implications for molecular pharming in plants. Biotechnol Bioeng 114(3):492–502. https:// doi.
org/ 10. 1002/ bit. 26183

 27. Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, Liu Y (2015) Codon usage influences the local
rate of translation elongation to regulate co-translational protein folding. Mol Cell 59(5):744–754.
https:// doi. org/ 10. 1016/j. molcel. 2015. 07. 018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1093/nar/23.14.2799
https://doi.org/10.1093/nar/23.14.2799
https://doi.org/10.1073/pnas.1518976113
https://doi.org/10.2147/AABC.S64482
https://doi.org/10.1371/journal.pone.0225245
https://doi.org/10.1093/nar/gkm219
https://doi.org/10.1093/nar/gkm219
https://doi.org/10.1038/nbt0294-181
https://doi.org/10.1007/978-3-662-43505-2_55
https://doi.org/10.1093/bioinformatics/btx030
https://doi.org/10.1089/cmb.2015.0121
https://doi.org/10.1038/nbt.1555
https://doi.org/10.1038/nbt.1555
https://doi.org/10.1016/S0168-1656(01)00254-1
https://doi.org/10.1002/bit.26183
https://doi.org/10.1002/bit.26183
https://doi.org/10.1016/j.molcel.2015.07.018

	Parallel multi-objective optimization approaches for protein encoding
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Codon adaptation index (CAI)
	2.2 Hamming distance between CDSs (HD)
	2.3 Length of repeated or common substring (LRCS)

	3 Parallel strategies for multi-objective protein encoding
	3.1 Baseline metaheuristic: MOABC
	3.2 Synchronous parallel MOABC (SP-MOABC)
	3.3 Asynchronous parallel MOABC (AP-MOABC)

	4 Evaluation methodology
	4.1 Protein datasets
	4.2 Parallel performance metrics
	4.3 Solution quality metrics

	5 Experimental evaluation and results
	5.1 Experimental settings
	5.2 MOABC time profiling
	5.3 Parallel performance evaluation: SP-MOABC versus AP-MOABC
	5.4 Comparisons with other authors’ proposals

	6 Conclusions and future work
	Acknowledgements
	References

