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1. Introduction

H. Weyl [23] studied the spectra of all compact perturbations of a self-
adjoint operator defined on a Hilbert space and found that their intersection
consisted precisely of those points of the spectrum where are not isolated
eigenvalues of finite multiplicity. Later, the property established by Weyl for
self-adjoint operators has been observed for several other classes of operators,
for instance hyponormal operators on Hilbert spaces, Toeplitz operators [12],
convolution operators on group algebras [10], and many other classes of oper-
ators defined on Banach spaces. In the literature, a bounded operator defined
on a Banach space which satisfies this property is said to satisfy Weyl’s the-
orem. Weaker variants of Weyl’s theorem have been discussed by Harte and
Lee [15], while two approximate-point spectrum versions of Weyl’s theorem
have been introduced by Rakočević, a-Weyl’s theorem [21], and the so-called
property (w) [20]. Recently, the last property has been studied in several
articles ([9], [4], [3], [8] and [6]). In this paper we investigate the relationship
between property (w) and another variant of Weyl’s theorem, the property
(b) introduced very recently by Berkani and Zariouh [11]. In particular, most
of our results are established in the framework of polaroid or a-polaroid opera-
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tors. We shall also consider operators T for which the single-valued extension
property holds for T , or for its dual T ∗.

Throughout this paper, X will denote an infinite-dimensional complex
Banach space, L(X) the Banach algebra of all bounded linear operators. A
bounded operator T ∈ L(X) is said to be an upper semi-Fredholm operators,
T ∈ Φ+(X), if α(T ) := dimkerT < ∞ and T (X) is closed, while T ∈ L(X)
is said to be lower semi-Fredholm, T ∈ Φ−(X), if β(T ) := codimT (X) < ∞.
The index of a semi-Fredholm operator is defined as indT := α(T ) − β(T ).
T ∈ L(X) is said to be a Fredholm operator if T ∈ Φ+(X) ∩ Φ−(X). A
bounded operator T ∈ L(X) is said to be upper semi-Weyl, T ∈ W+(X),
if T ∈ Φ+(X) and indT ≤ 0. T ∈ L(X) is said to be lower semi-Weyl,
T ∈ W−(X), if T ∈ Φ−(X) and indT ≥ 0. The class of Weyl operators is
defined by W (X) := W+(X) ∩ W−(X) = {T ∈ Φ(X) : indT = 0}. These
classes of operators generate the following spectra: the Weyl spectrum defined
by

σw(T ) :=
{
λ ∈ C : λI − T /∈ W (X)

}
,

the upper semi-Weyl spectrum (in literature called also Weyl essential ap-
proximate point spectrum) defined by

σuw(T ) :=
{
λ ∈ C : λI − T /∈ W+(X)

}
,

and the lower semi-Weyl spectrum (in literature called also Weyl essential
surjectivity spectrum) defined by

σlw(T ) :=
{
λ ∈ C : λI − T /∈ W+(X)

}
.

The approximate point spectrum is canonically defined by

σa(T ) :=
{
λ ∈ C : λI − T is not bounded below

}
,

where an operator is said to be bounded below if it is injective and has
closed range. Note that σs(T ) = σa(T ∗), where σs(T ) denotes the surjectivity
spectrum, and dually σa(T ) = σs(T ∗). Two other important quantities in
Fredholm theory are the ascent of T ∈ L(X), defined as p := p(T ) = inf{n ∈
N : kerTn = kerTn+1}, and the descent of T , defined as let q := q(T ) =
inf{n ∈ N : Tn(X) = Tn+1(X)}, the infimum over the empty set is taken ∞.
It is well-known that if p(T ) and q(T ) are both finite then p(T ) = q(T ) (see
[16, Proposition 38.3]). Moreover, 0 < p(λI − T ) = q(λI − T ) < ∞ precisely
when λ is a pole of the resolvent of T , see [16, Proposition 50.2] of Heuser.
The class of all upper semi-Browder operators is defined B+(X) := {T ∈
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Φ+(X) : p(T ) < ∞}, while the class of all lower semi-Browder operators
is defined B−(X) := {T ∈ Φ−(X) : q(T ) < ∞}. The class of all Browder
operators is defined

B(X) := B+(X) ∩B−(X) =
{
T ∈ Φ(X) : p(T ) = q(T ) < ∞}

.

It is well-known that

B(X) ⊆ W (X) , B+(X) ⊆ W+(X) , B−(X) ⊆ W−(X) .

The Browder spectrum of T ∈ L(X) is defined by

σb(T ) :=
{
λ ∈ C : λI − T /∈ B(X)

}
,

the upper semi-Browder spectrum and the lower semi-Browder spectrum are
defined, respectively, by

σub(T ) :=
{
λ ∈ C : λI − T /∈ B+(X)

}

and
σlb(T ) :=

{
λ ∈ C : λI − T /∈ B−(X)

}
.

The operator T ∈ L(X) is said to have the single valued extension property
at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D centered at λ0,
the only analytic function f : D → X which satisfies the equation (λI −
T )f(λ) = 0 for all λ ∈ D is the function f ≡ 0. An operator T ∈ L(X) is said
to have SVEP if T has SVEP at every point λ ∈ C. Evidently, every operator
T , as well as its dual T ∗, has SVEP at every point in the boundary of the
spectrum σ(T ), in particular at every isolated point of σ(T ).

The following implications hold:

p(λI − T ) < ∞ =⇒ T has SVEP at λ (1)

and, dually,

q(λI − T ) < ∞ =⇒ T ∗ has SVEP at λ (2)

(see [1, Theorem 3.8]). Furthermore, from definition of SVEP we have

λ accσa(T ) =⇒ T has SVEP at λ , (3)

and dually

λ /∈ accσs(T ) =⇒ T ∗ has SVEP at λ . (4)
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In particular, if the point spectrum σp(T ) (= the set of all eigenvalues of T ) is
empty then T satisfies SVEP. An important subspace in local spectral theory
is the quasi-nilpotent part of T defined by

H0(T ) :=
{

x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0

}
.

Obviously, ker Tn ⊆ H0(T ) for all n ∈ N. We also have [1, Theorem 2.31].

H0(λI − T ) closed =⇒ T has SVEP at λ . (5)

Remark 1.1. All the implications (1), (2), (3), (4) and (5) are actually
equivalences if we assume that λI − T is semi-Fredholm, see [1, Chapter 3].

Another important subspace in local spectral theory is the analytic core
K(T ) defined as the set of all x ∈ X such that there exists a constant c > 0
and a sequence of elements xn ∈ X such that x0 = x, Txn = xn−1, and
‖xn‖ ≤ cn‖x‖ for all n ∈ N. K(T ) is T invariant, precisely T (K(T )) = K(T );
see [1] for further information on K(T ).

2. Weyl type theorems

If T ∈ L(X), define p00(T ) := σ(T ) \ σb(T ) and pa
00(T ) := σa(T ) \ σub(T ).

It is easy to check that p00(T ) ⊆ pa
00(T ) for all T ∈ L(X) and, obviously, every

point of p00(T ) is an isolated point of σ(T ) and σa(T ). According Harte and
W.Y. Lee [15] we say that a bounded operator T ∈ L(X) satisfies Browder’s
theorem if σw(T ) = σb(T ), or equivalently σ(T ) \ σw(T ) = p00(T ), while we
say that T satisfies a-Browder’s theorem if σuw(T ) = σub(T ), or equivalently
σa(T ) \ σuw(T ) = pa

00(T ). We have:

a-Browder’s theorem for T =⇒ Browder’s theorem for T .

Define
π00(T ) :=

{
λ ∈ isoσ(T ) : 0 < α(λI − T ) < ∞}

.

and
πa

00(T ) :=
{
λ ∈ isoσa(T ) : 0 < α(λI − T ) < ∞}

.

It is easily seen that

p00(T ) ⊆ π00(T ) ⊆ πa
00(T ) and pa

00(T ) ⊆ πa
00(T ) . (6)
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Definition 2.1. A bounded operator T ∈ L(X) is said to be left Drazin
invertible if p := p(T ) < ∞ and T p+1(X) is closed. We say that λ is a left
pole if λ ∈ σa(T ) and λI − T is left Drazin invertible. A left pole λ is said to
be of finite rank if α(λI − T ) < ∞.

Theorem 2.2. Let T ∈ L(X). Then λ ∈ pa
00(T ) if and only if λ is a left

pole of finite rank.

Proof. Let λ ∈ pa
00(T ) = σa(T ) \ σub(T ). We may assume λ = 0. Then

p := p(T ) < ∞, T ∈ Φ+(X), so α(T ) < ∞. From classical Fredholm theory
we know that Tn ∈ Φ+(X) for all n ∈ N, so T p+1(X) is closed. Therefore,
0 is a left pole of finite rank. Conversely, suppose that 0 is a left pole of
finite rank. Then, 0 ∈ σa(T ), T is left Drazin invertible, so p(T ) < ∞. The
condition of left Drazin invertibility is equivalent to saying that T is upper
semi B-Browder, i.e., there exists n ∈ N such that Tn(X) is closed and the
restriction Tn := T |Tn(X) is upper semi-Browder [5], in particular upper semi-
Fredholm. Since α(T ) < ∞ then α(Tn) < ∞, hence Tn ∈ Φ+(X), from which
obtain that T ∈ Φ+(X). Since p(T ) < ∞ we then conclude that T ∈ B+(X),
so 0 /∈ σub(T ), and consequently 0 ∈ σa(T ) \ σub(T ) = pa

00(T ).

Following Coburn [12], we say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = π00(T ) .

There is a precise relationship between Browder’s theorem and Weyl’s theo-
rem:

Theorem 2.3. ([2]) If T ∈ L(X) then Weyl’s theorem for T holds pre-
cisely when T satisfies Browder’s theorem and π00(T ) = p00(T ).

The following first two variants of Weyl’s theorem have been introduced
by Rakočević ([20], [21]), while the third variant has been introduced in [11].

Definition 2.4. A bounded operator T ∈ L(X) is said to satisfy a-Weyl’s
theorem if

σa(T ) \ σuw(T ) = πa
00(T ) ,

T ∈ L(X) is said to satisfy property (w) if

σa(T ) \ σuw(T ) = π00(T ) ,

T ∈ L(X) is said to satisfy property (b) if

σa(T ) \ σuw(T ) = p00(T ) .
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The relationships between property (w), a-Weyl’s theorem, property (b)
and a-Browder’s theorem is established by the following theorem.

Theorem 2.5. Suppose that T ∈ L(X). Then we have:

(i) T satisfies a-Weyl’s theorem if and only if a-Browder’s theorem holds
for T and pa

00(T ) = πa
00(T ) ([2]);

(ii) T satisfies property (w) if and only if a-Browder’s theorem holds for T
and pa

00(T ) = π00(T ) ([9]);

(iii) T satisfies property (b) if and only if a-Browder’s theorem holds for T
and pa

00(T ) = p00(T ) ([11]).

The following diagram resume the relationships between Weyl’s theorems,
a-Browder’s theorem and property (w):

Property (w) ⇒ a-Browder’s theorem

⇓ ⇑
Weyl’s theorem ⇐ a-Weyl’s theorem

(see [20] and [9]). Examples of operators satisfying Weyl’s theorem but not
property (w) may be found in [9]. Property (w) is not intermediate between
Weyl’s theorem and a-Weyl’s theorem, see [9] for examples. Note that prop-
erty (w) is satisfied by a certain number of Hilbert space operators, see [9]. By
contrast, propery (b) does not entails Weyl’s theorem and conversely, Weyl’s
theorem does not imply property (b), see the next Example 2.6 and Example
2.14. However, see [11],

property (w) =⇒ property (b) =⇒ a-Browder’s theorem .

The following two examples show that a-Weyl’s theorem and property (b)
for T ∈ L(X) are independent. The first example shows that a-Weyl’s theorem
does not imply property (b).

Example 2.6. Let R be the canonical unilateral right shift on `2(N) and
let P denote the projection defined by

P (x1, x2, . . . ) := (0, x2, . . . ) for all x := (x1, x2, . . . ) ∈ `2(N) .

Consider T := R ⊕ P on `2(N) ⊕ `2(N). Then σ(T ) = D1, where D1 is
the closed unit disc of C, so that σ(T ) has no isolated points and hence
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p00(T ) = ∅. Furthermore, σa(T ) = Γ ∪ {0}, where Γ is the closed unit circle,
and σuw(T ) = Γ. Therefore, T does not satisfies property (b), since

σa(T ) \ σuw(T ) = {0} 6= p00(T ) .

On the other hand, T satisfies a-Weyl’s theorem, since πa
00(T ) = {0}. Note

that T satisfies Weyl’s theorem.

The second example shows that property (b) does not imply a-Weyl’s the-
orem.

Example 2.7. Let R ∈ L(`2(N)) be right shift and let L be the weighted
unilateral left shift defined by

L(x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all x = (x1, x2, . . . ) ∈ `2(N) ,

If T := R ⊕ L, then σ(T ) = D1, hence there is no isolated point in σ(T ) and
consequently p00(T ) = ∅. Moreover, σa(T ) = σuw(T ) = Γ ∪ {0}, thus

σa(T ) \ σuw(T ) = ∅ = p00(T ) ,

hence T satisfies property (b). On the other hand, πa
00(T ) = {0} so T does

not satisfy a-Weyl’s theorem.

Definition 2.8. An operator T ∈ L(X) is said to be polaroid if iso σ(T )
is empty or every isolated point of σ(T ) is a pole of the resolvent.

The next result shows that the polaroid condition, as well as the equality
p00(T ) = π00(T ), may be described in terms of quasi-nilpotent part.

Theorem 2.9. Let T ∈ L(X). Then we have:

(i) T is polaroid if and only if there exists p := p(λ) ∈ N such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ iso σ(T ) ; (7)

(ii) p00(T ) = π00(T ) if and only if there exists p := p(λ) ∈ N such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ π00(T ) . (8)
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Proof. (i) Suppose T satisfies (7) and that λ is an isolated point of σ(T ).
Then there exists p ∈ N such that H0(λI − T ) = ker (λI − T )p. Since λ is
isolated in σ(T ) then, by [1, Theorem 3.74],

X = H0(λI − T )⊕K(λI − T ) = ker (λI − T )p ⊕K(λI − T ) ,

from which we obtain

(λI − T )p(X) = (λI − T )p(K(λI − T )) = K(λI − T ) ,

so
X = ker (λI − T )p ⊕ (λI − T )p(X) ,

which implies, by [1, Theorem 3.6], that p(λI − T ) = q(λI − T ) ≤ p, hence λ
is a pole of the resolvent, so that T is polaroid.

Conversely, suppose that T is polaroid and λ is an isolated point of σ(T ).
Then λ is a pole, and if p is its order then H0(λI − T ) = ker(λI − T )p, see
[1, Theorem 3.74].

(ii) Suppose T satisfies (8) and that λ ∈ π00(T ). Since π00(T ) ⊆ isoσ(T )
then from the proof of part (i) we know that p(λI − T ) = q(λI − T ) ≤ p.
By definition of π00(T ) we also know that α(λI − T ) < ∞ and this implies
by [1, Theorem 3.4] that β(λI − T ) is also finite. Therefore λ ∈ p00(T ) and
hence π00(T ) ⊆ p00(T ). Since the opposite inclusion holds for every operator
we then conclude that p00(T ) = π00(T ).

Conversely, if p00(T ) = π00(T ) and λ ∈ π00(T ) then p := p(λI − T ) =
q(λI − T ) < ∞. By [1, Theorem 3.16] it then follows that H0(λI − T ) =
ker(λI − T )p.

Theorem 2.10. Suppose that T ∈ L(X) is polaroid. Then T satisfies
property (b) if and only if T satisfies property (w). Analogously, T ∗ satisfies
property (b) if and only if T ∗ satisfies property (w).

Proof. The implication “ (w) ⇒ (b) ” holds for every T ∈ L(X), so we
have only to show that “ (b) ⇒ (w) ”. Let T satisfy property (b). Then
σa(T ) \ σuw(T ) = p00(T ). Now, let λ ∈ π00(T ). Then λ is an isolated point of
σ(T ), so that λ is a pole and consequently, p(λI−T ) = q(λI−T ) < ∞. Since
α(λI−T ) < ∞ by [1, Theorem 3.4] it then follows that β(λI−T ) < ∞, hence
λI − T is Browder and consequently λ ∈ p00(T ) = σ(T ) \ σb(T ). Therefore,
π00(T ) ⊆ p00(T ). The opposite inclusion holds for every operator, so π00(T ) =
p00(T ) and hence σa(T ) \ σuw(T ) = π00(T ), i.e., T satisfies property (w). The
second statement is clear: if T is polaroid then T ∗ is polaroid ([8]), so the first
part applies.
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Definition 2.11. T ∈ L(X) is said to be a-polaroid if isoσa(T ) is empty
or every isolated point of σa(T ) is a pole of the resolvent.

Clearly,
T a-polaroid =⇒ T polaroid .

Observe that if T ∗ has SVEP then σ(T ) = σa(T ), see [1, Corollary 2.45],
so that

T ∗ has SVEP and T polaroid =⇒ T a-polaroid . (9)

If T is polaroid then T ∗ is polaroid [8]. Moreover, if T has SVEP then σ(T ) =
σs(T ) = σa(T ∗), see [1, Corollary 2.45], hence

T has SVEP and T polaroid =⇒ T ∗ a-polaroid . (10)

The equivalences of Theorem 2.10 cannot be extended to a-Weyl’s theorem,
i.e., for polaroid operators property (b) and property (w) are not equivalent For
instance, the operator T defined in Example 2.6 is polaroid, since isoσ(T ) = ∅,
T satisfies a-Weyl’s theorem but not property (b). Also the operator T defined
in Example 2.7 is polaroid, T satisfies (b) but not a-Weyl’s theorem. However,
the next result shows that under the stronger assumption that T is a-polaroid,
properties (b) and (w) are equivalent to a-Weyl’s theorem.

Theorem 2.12. Let T ∈ L(X). If T is a-polaroid then the following
statements are equivalent:

(i) T satisfies property (w);

(ii) T satisfies a-Weyl’s theorem;

(iii) T satisfies property (b).

Proof. We show first that if T is a-polaroid then p00(T ) = π00(T ) =
πa

00(T ). The inclusions p00(T ) ⊆ π00(T ) ⊆ πa
00(T ) have been already ob-

served for all operators. We show that πa
00(T ) ⊆ p00(T ). Let λ ∈ πa

00(T ).
Then λ is isolated in σa(T ) and hence the a-polaroid condition entails that
p(λI − T ) = q(λI − T ) < ∞. Moreover, α(λI − T ) < ∞, so by [1, Theorem
3.4] we have β(λI − T ) < ∞, hence λ ∈ p00(T ).

(i) ⇒ (ii) If T satisfies property (w) then σa(T ) \ σuw(T ) = π00(T ) =
πa

00(T ), thus T satisfies a-Weyl’s theorem.
(ii) ⇒ (iii) Suppose that T satisfies a-Weyl’s theorem. Then σa(T ) \

σuw(T ) = πa
00(T ) = p00(T ), so T satisfies property (b).

(iii)⇒ (i) This follows from Theorem 2.10, since every a-polaroid operator
is polaroid.
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The following result has been proved in [9].

Theorem 2.13. Let T ∈ L(X).

(i) If T ∗ has SVEP, then property (w), Weyl’s theorem and a-Weyl’s the-
orem for T are equivalent.

(ii) If T has SVEP, then property (w), Weyl’s theorem and a-Weyl’s theo-
rem for T ∗ are equivalent.

It has some sense to ask if property (w) for T , (or, equivalently, a-Weyl’s
theorem) is equivalent to property (b) for T whenever T ∗ has SVEP. The
following example shows that in general this is not true.

Example 2.14. Let L ∈ L(`2(N)) be the weighted unilateral left shift
defined in Example 2.7. L is quasi-nilpotent, hence the dual L∗ has SVEP.
On the other hand, the property (b) holds for L, since σa(L) = σuw(L) = {0}
and p00(L) = ∅, while property (w) does not hold for L since π00(L) = {0}.

It should be noted that the operator L provides an example of operator
satisfying property (b), but not Weyl’s theorem. In fact, L does not satisfies
property (w) and hence, by Theorem 2.13, L does not satisfy Weyl’s theorem
since L∗ has SVEP.

Lemma 2.15. If T ∈ L(X) and T ∗ has SVEP then σw(T ) = σuw(T ) and
σ(T ) = σa(T ).

Proof. Evidently, the inclusion σuw(T ) ⊆ σw(T ) holds for all T ∈ L(X).
To see the opposite inclusion, suppose that λ /∈ σuw(T ). Then λI−T is upper
semi-Fredholm with ind(λI − T ) ≤ 0, and by Remark 1.1 the SVEP of T ∗

implies that q(λI − T ) < ∞. By [1, Theorem 3.4] then ind(λI − T ) ≥ 0,
hence ind(λI − T ) = 0 and, consequently, λ /∈ σw(T ). A proof of the equality
σ(T ) = σa(T ) may be found in [1, Corollary 2.45].

Theorem 2.16. Let T ∈ L(X) such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ πa
00(T ) . (11)

If T ∗ satisfies SVEP then property (b) holds for T .

Proof. Since π00(T ) ⊆ πa
00(T ), by part (i) of Theorem 2.9 it then follows

that p00(T ) = π00(T ). The SVEP for T ∗ implies that Browder’s theorem
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holds for T and from the equality p00(T ) = π00(T ) it then follows that Weyl’s
theorem holds for T , see [2]. By Lemma 2.15 then we have

σa(T ) \ σuw(T ) = σ(T ) \ σw(T ) = π00(T ) = p00(T ) ,

thus T satisfies property (b).

Theorem 2.17. Suppose that T ∈ L(X) is polaroid. Then we have:

(i) If T ∗ has SVEP then property (b), (or equivalently property (w), Weyl’s
theorem, a-Weyl’s theorem) holds for T .

(ii) If T has SVEP then property (b), (or equivalently property (w), Weyl’s
theorem, a-Weyl’s theorem) holds for T ∗.

Proof. (i) If T ∗ has SVEP and T is polaroid, by [9, Theorem 2.24] then T
satisfies property (w), or equivalently, by Theorem 2.10, T satisfies property
(b). Moreover, by Theorem 2.13, the SVEP for T ∗ entails that a-Weyl’s and
Weyl’s theorem for T are equivalent to property (w).

(ii) Suppose that T has SVEP and T is polaroid. By [9, Theorem 2.24]
then T ∗ satisfies property (w) and this is equivalent, by Theorem 2.13, to
saying that Weyl’s theorem T , or a-Weyl’s theorem holds for T ∗. Since T ∗ is
polaroid, see [8], by Theorem 2.10 then property (b) and property (w) for T ∗

are equivalent.

An operator U ∈ L(X, Y ) between the Banach spaces X and Y is said
to be a quasi-affinity if U is injective and has dense range. The operator
S ∈ L(Y ) is said to be a quasi-affine transform of T ∈ L(X), notation S ≺ T ,
if there is a quasi-affinity U ∈ L(Y, X) such that TU = US. If both S ≺ T
and T ≺ S hold, then S, T are said quasi-similar.

Theorem 2.18. Suppose that T ∈ L(X) and S ≺ T . If T is polaroid and
T has SVEP, then property (b), or equivalently property (w), holds for S.

Proof. The SVEP for S is inherited by the SVEP for T . Indeed, f :
U → Y be an analytic function defined on an open disc U of λ0 such that
(µI − S)f(µ) = 0 for all µ ∈ U . Then

U(λI − S)f(µ) = (µI − T )Uf(µ) = 0 ,

and the SVEP of T at λ0 entails that

Uf(µ) = 0 for all µ ∈ U .
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Since U is injective then f(µ) = 0 for all µ ∈ U , hence S has the SVEP at λ0.
We show now that S is polaroid. Let λ ∈ isoσ(S). Then there exists p ∈ N

such that H0(λI − T ) = ker (λI − T )p. Let x ∈ H0(λI − S). Then

lim
n→∞ ‖(λI − T )nUx‖1/n = lim

n→∞ ‖U(λI − T )nUx‖1/n

≤ lim
n→∞ ‖(λI − S)x‖1/n = 0

so Ux ∈ H0(λI − T ) = ker (λI − T )p. Therefore,

U(λI − S)px = (λI − S)pUx = 0 ,

and since U is injective it then follows that x ∈ ker (λI−S)p. This shows that
H0(λI − S) ⊆ ker (λI − S)p and since the opposite inclusion is true we then
conclude that H0(λI−S) = ker (λI−S)p. By Theorem 2.9 then S is polaroid.
Property (b), or equivalently property (w) then follows from Theorem 2.17.

Remark 2.19. Recall that T ∈ L(X) is said to be a Riesz operator if
λI − T ∈ Φ(X) for all λ ∈ C \ {0}. Evidently, every quasi-nilpotent operator
is a Riesz operator. It is well-known that if Q is a quasi-nilpotent operator
commuting with T then

σ(T + Q) = σ(T ) and σa(T + Q) = σa(T ) .

Moreover, if R is a Riesz operator commuting with T then T ∈ W+(X) if and
only if T + R ∈ W+(X), see [18, Lemma 2.2], and this obviously implies the
equality σuw(T+Q) = σuw(T ) for every operator quasi-nilpotent Q commuting
with T . A similar result holds for σb(T ), i.e., σb(T + Q) = σb(T ) for every
quasi-nilpotent operator Q commuting with T (see [18, Proposition 4]).

Generally, property (w) is not transmitted from T to a quasi-nilpotent
perturbation T + Q. In fact, if Q ∈ L(`2(N)) is defined by

Q(x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all (xn) ∈ `2(N) ,

Then Q is quasi-nilpotent and

{0} = π00(Q) 6= σa(Q) \ σuw(Q) = ∅ .

Take T = 0. Clearly, T satisfies property (w) but T+Q = Q fails this property.
The next result shows that property (b) is invariant under commuting quasi-
nilpotent perturbations.
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Theorem 2.20. Let T ∈ L(X) and let Q ∈ L(X) be a quasi-nilpotent
operator such that TQ = QT . If T satisfies property (b) then T + Q satisfies
property (b).

Proof. From Remark 2.19 we have

p00(T + Q) = σ(T + Q) \ σb(T + Q) = σ(T ) \ σb(T ) = p00(T ) .

Hence, if T satisfies property (b) then

σa(T + Q) \ σuw(T + Q) = σa(T ) \ σuw(T ) = p00(T ) = p00(T + Q) ,

thus T + Q satisfies property (b).

Generally, property (w), as well as Weyl’s theorem and a-Weyl’s theorem,
is not preserved under a commuting finite-rank perturbation K. Precisely,
Weyl’s theorem is preserved if T isoloid (i.e., every isolated point in σ(T ) is
an eigenvalue of T ), a-Weyl’s theorem is preserved if we assume that T is
a-isoloid (i.e., every isolated point in σa(T ) is an eigenvalue of T ). Property
(w) is preserved if we assume that T is a-isoloid and that σa(T ) = σa(T + K)
[4]. The preservation of property (b) does not require that T is a-isoloid.

Theorem 2.21. Let T ∈ L(X) and let K ∈ L(X) be a finite-rank opera-
tor such that TK = KT . If T satisfies property (b) and σa(T ) = σa(T + K)
then T + K satisfies property (b).

Proof. Since K is a Riesz operator, from Remark 2.19 we have

p00(T + K) = σ(T + K) \ σb(T + K) = σ(T ) \ σb(T ) = p00(T ) .

Hence, if T satisfies property (b) then

σa(T + K) \ σuw(T + K) = σa(T ) \ σuw(T ) = p00(T ) = p00(T + K) ,

thus T + K satisfies property (b).

The condition σa(T + K) = σa(T ), K of finite rank commuting with T ,
is satisfied in some special cases, for instance if isoσa (T ) = ∅, see [3]. The
condition isoσa (T ) = ∅ is satisfied by every not quasi-nilpotent unilateral
right shift T on `p(N), with 1 ≤ p < ∞, see [17, Proposition 1.6.15].
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Theorem 2.22. Suppose that T ∈ L(X) is polaroid, and let K ∈ L(X)
be a finite-rank operator such that TK = KT . If T ∗ has SVEP and T satisfies
property (b) then T + K satisfies property (b).

Proof. Observe first that the SVEP for T ∗ entails that T is a-polaroid, and
hence a-isoloid. By Theorem 2.12 the assumption that T is a-polaroid entails
that a-Weyl’s theorem holds for T . a-Weyl’s theorem for a-isoloid operators
is transmitted by commuting finite rank perturbations, see [13], so a-Weyl’s
theorem holds for T + K. Since T ∗ + K∗ = (T + K)∗ has SVEP, see [3],
a-Weyl’s theorem for T + K is equivalent to property (w), and consequently
T + K satisfies property (b).

The class of polaroid operators is rather large. In the sequel we list some
classes of polaroid operators and a-polaroid operators.

(a) A bounded operator is said to belong to the class H(p) if there exists
a natural p := p(λ) such that:

H0(λI − T ) = ker (λI − T )p for all λ ∈ C . (12)

The class H(p) has been introduced in [19] and in [10] this class of operators
has been studied for p := p(λ) = 1 for all λ ∈ C. Property H(p) is satisfied
by every generalized scalar operator, and in particular for p-hyponormal, log-
hyponormal, M-hyponormal operators on Hilbert spaces, see [19]. From the
implication (5) we see that every operator T which belongs to the class H(p)
has SVEP. By Theorem 2.9 we have

T ∈ H(p) =⇒ T polaroid =⇒ p00(T ) = π00(T ) .

Consequently, by Theorem 2.10, T ∈ H(p) satisfies property (w) if and only
if T satisfies property (b). It should be noted that every generalized scalar
operator T is decomposable [17], so both T and T ∗ have SVEP and hence
every generalized scalar operator T , as well as its dual T ∗, satisfies property
(b). Of course, a generalized scalar operator is a-polaroid.

(b) A bounded operator T ∈ L(X) on a Banach space X is said to be
paranormal if

‖Tx‖2 ≤ ‖T 2x‖‖x‖ holds for all x ∈ X .

An operator T ∈ L(X) for which there exists a complex nonconstant polyno-
mial h such that h(T ) is paranormal is said to be algebraically paranormal.
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Every algebraic paranormal operator defined on a Hilbert space is polaroid
and has SVEP, see [7].

(c) Every multiplier T of a semi-simple commutative Banach algebra is
polaroid, in particular every convolution Tµ operator of L1(G), L1(G) the
group algebra of a locally compact Abelian group G, see [1, Theorem 4.36].
Every multiplier has property H(1), hence has SVEP and is polaroid [10]. If
L1(G) is regular and Tauberian then σ(T ) = σa(T ), see [1, Corollary 5.88],
so T is a-polaroid. In particular, a convolution operator Tµ on L1(G) is a-
polaroid whenever G is compact. Another example of a-polaroid operator is
given by the multipliers of a Banach algebra with an orthogonal basis. In fact,
by [1, Theorem 4.46] for these operators we have σ(T ) = σa(T ).

(d) A bounded operator is said to be meromorphic if every λ ∈ C \ {0} is
a pole. The spectrum of a meromorphic operator is finite or a countable set
which clusters at 0 [16]. Every meromorphic operator T is polaroid and both
T and T ∗ have SVEP, so T is a-polaroid.

(e) Let H be a Hilbert space and denote by dA,B ∈ L(L(H)) either the
generalized derivation defined by

δA,B(S) := AS − SB for all S ∈ L(H) ,

or the elementary operator defined by

∆A,B(S) := ASB − S for all S ∈ L(H) .

If A and B∗ are hyponormal then p(λI − dA,B) < ∞ for all λ ∈ C, so dA,B is
polaroid, see [14].
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[13] D.S. Djordjević, Operators obeying a-Weyl’s theorem, Publ. Math. Debre-

cen 55 (1999), 283 – 298.
[14] B.P. Duggal, Weyl’s theorem for a generalized derivation and an elementary

operator, Mat. Vesnik 54 (2002), 71 – 81.
[15] R. Harte, Woo Young Lee, Another note on Weyl’s theorem, Trans.

Amer. Math. Soc. 349 (1997), 2115 – 2124.
[16] H. Heuser, “Functional Analysis ”, John Wiley & Sons, Ltd., Chichester,

1982.
[17] K.B. Laursen, M.M. Neumann, “An Introduction to Local Spectral The-

ory ”, The Clarendon Press, Oxford University Press, New York, 2000.
[18] K.K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine

Math. Pures Appl. 25 (3) (1980), 365 – 373.
[19] M. Oudghiri, Weyl’s and Browder’s theorems for operators satysfying the

SVEP, Studia Math. 163 (1) (2004), 85 – 101.
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