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Abstract: We show the identity Ext(lim. Xq,R) = lim_, Ext(X4,R) for projective limits
of quasi-Banach spaces X,. The proof is derived from a pull-back lemma asserting that a
topologically exact sequence 0 — R — E — Z — 0 of locally pseudoconvex spaces is the
pull-back of an exact sequence of quasi-Banach spaces. Among the consequences we show
that exact sequences 0 — R — F — Z — 0 of locally pseudoconvex spaces come induced by
quasi-linear maps, which extends a result of Kalton for Fréchet spaces; and that projective
limits of K-spaces are K-spaces.
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1. INTRODUCTION

The purpose of this paper is to obtain the identity
Ext(lim X,,R) = lim Ext(X,,R)

for projective limits of quasi-Banach spaces X,. This is interesting since it
shows that the Ext functor behaves, in the category of quasi-Banach spaces,
in a similar way as the £ functor in the following sense: for each fixed A the
contravariant functor £(-, A) is right-adjoint of itself and therefore transforms
inverse limits into direct limits. The functor Ext(-,R) does the same with
respect to projective limits.

We will base our proof in a pull-back lemma of independent interest:

THEOREM 1.1. A topologically exact sequence

0O—R—-F—-Z7—0
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of topological vector spaces in which Z is locally pseudoconvex (in the termi-
nology of [6]) comes induced by a single quasi-linear map F : Z — R.

This extends a result of Kalton [7, Thm. 10.1] who proved the analogous
result when Z is a Fréchet space. We think that what could deserve some
interest is the method of proof, homological approach based on a pull-back
lemma plus a suitable extension of the 3-lemma to the category of topological
vector spaces. More precisely:

PULL-BACK LEMMA. A topologically exact sequence 0 = R — E — Z — 0
of locally pseudoconvex spaces is the pull-back sequence of an exact sequence
of quasi-Banach spaces.

The homological approach to the result we present consists of two steps:
1) To obtain a version of the 3-lemma suitable to work with topological vector
spaces (where the open mapping can fail); from this we can derive an answer
to a problem posed in [4, pag. 186]; namely, that a topological vector space
Q such that every topologically exact sequence 0 — R — E — ) — 0 splits is
such that every twisted sum with a locally convex space is locally convex. In
turn, this result is the natural extension of a theorem of Dierolf [2] for quasi-
Banach spaces. 2) To prove a ”"pull-back lemma” asserting that if one has a
topologically exact sequence 0 - R — E — @@ — 0 in which Q verifies some
minimal assumption (to be pseudo-convex, in the language of Jarchow [6])
then no essential information is lost when one simply considers the sequence
localized around a neighborhood of zero.

2. PRELIMINARIES

General background on homology can be found in [5]. A background on
exact sequences of quasi-Banach spaces sufficient for our purposes can be seen
in [1]. An exact sequence in a suitable category (vector spaces and linear
maps, topological vector spaces and linear continuous maps, etc) is a diagram
0 —-Y — X — Z — 0 in the category with the property that the kernel of
each arrow coincides with the image of the preceding. When an open mapping
theorem exists (e.g., in quasi-Banach or Fréchet spaces) then it guarantees that
Y is a subspace of X and the corresponding quotient X/Y is isomorphic to
Z. Since we shall work in categories where no open mapping theorem exists
we shall say that an exact sequence 0 — Y L XL 7 50is topologically
exact when j is an into embedding and ¢ is a continuous open map. For a
more general background about twisted sums of quasi-Banach spaces and the
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theory of quasi-linear maps the reader is addressed to the monograph [1]. Here
we are interested in the following facts:

Two exact sequences 0 - Y - X - 72 —-0and 0 - Y —- X7 - 7 —
0 are said to be equivalent if there exists an arrow T : X — X; making
commutative the diagram

O - Y — X — Z — 0

| v |
0O - Y — X4 — Z — 0.

This definition makes sense in the categories of quasi-Banach or Fréchet spaces
where the open map theorem works,making 7" an isomorphism. An exact
sequence is said to split if it is equivalent to the trivial sequence 0 — Y —
Yo Z—-Z7—0.

PUSH-OUT CONSTRUCTION. Let A: K — Y and B : K — X be two
arrows in a given category. The push-out of {A, B} is an object A and two
arrows u : Y — A and v : Y — A in the category such that uA = vB; and
with the property that given another object I' and two arrows oo : ¥ — I’
and 3 : X — T in the category verifying A = 3B then there exists a unique
arrow 7 : A — I' such that § = yv and a = ~vu.

In the category of Hausdorff topological vector spaces push-outs exist. The
push-out of two arrows A : Y — M and B : Y — X is the quotient space
A= M @ X/A, where A is the closure of {(Ay, —y) : y € Y}, together with
the restriction of the canonical quotient map M & X — A to, respectively, M
and X.

We are interested in the following property of the push-out construction

LEMMA 2.1. Given a topologically exact sequence 0 — Y Lx2z_0
of topological vector spaces and a linear continuous map T : Y — M and if
PO denotes the push-out of the couple {j, T} then there is a commutative
diagram

o - v L x % z -0
T Lu |

0 - M % ro % 7z 5 o

with topologically exact (lower) row.

Proof. Observe that since 0 — Y L X5 Z-50is topologically exact,
A is closed, and the sequence 0 - Y — M @& X — PO — 0, with injection
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i(y) = (Ty,y) and quotient map g(m,z) = (m,x) + A is topologically exact
and PO is Hausdorff. The only undefined arrow is () : PO — Z, which is
given by Q((m,x)+ A) = px. The commutativity of the right square and the
continuity of the induced arrow u : X — PO yield that Q) : PO — Z is open:
if V is a neighborhood of 0 in PO then q(u=1(V)) = Q(uu=*(V)) C Q(V). So,
we prove that J : M — PO is an into isomorphism. The continuity of J is by
definition, so we prove that it is open. Let thus Ujys be a neighborhood of zero
in M. We choose Vj; a neighborhood of zero in M such that Vi, — Vi C Uy
and then Uy, a neighborhood of 0 in X, such that Ux NY C T~ (Viy). Let
us show that q(Vas x Ux) N M C Upy. Since q(Var x Ux) N M coincides with

{(m,z) + A:me Vy,x €Ux,In€ M : (m,z) — (n,0) € A}

then m = n+ Ty and x = y for some y € Ux NY’; hence Ty € Vjy, and since
m € Vyy then m — Ty € Viy — Vay C Ups and the proof is complete. |1

PULL-BACK CONSTRUCTION. The dual notion to that of push-out is the
pull-back. Let A : X — Z and B : M — Z be two arrows in a given
category. The pull-back of {A, B} is an object A and two arrows u : A — X
and v : A — M in the category such that Au = Bv; and with the property
that given another object I' and two arrows a: I' — X and 8 : ' — M in the
category verifying Aa = B3 then there exists a unique arrow ~ : I' — A such
that § = vy and a = uy.

In the category of Hausdorff topological vector spaces pull-backs exist. The
pull-back of two arrows A : X — Z and B : M — Z is the subspace PB =
{(z,m) € X x M : Az = Bm} endowed with the product topology induced by
X @ M and the corresponding restrictions of the canonical projections. The
inclusion Y — PB is given by y — (y,0). We are interested in the following
property of the pull-back contruction; the proof is left to the reader.

LEMMA 2.2. Given a topologically exact sequence 0 =Y - X 2 Z -0
of topological vector spaces and a linear continuous map T : M — Z and if
PB denotes the pull-back of the couple {q, T} then there is a commutative
diagram

0O — Y — X —- Z — 0

I ) 1T
0O - Y —-— PB —-— M — 0

in which the lower row is topologically exact.
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2.1. TWISTED SUMS OF QUASI-BANACH SPACES. Exact sequences 0 —
Y — X — Z — 0 of quasi-Banach spaces correspond to homogeneous maps
F :Z ~Y (we use this notation to stress the fact they are not usually linear)
with the property that there exists a constant K such that for each two points
x,y €7
1F(z+y) — F(x) = F(y)l| < K(l[=]| + llyll)-

Such maps are called quasi-linear.

Indeed, if one has an exact sequence 0 — ¥ — X — Z — 0 then a
quasi-linear map F' : Z — Y can be obtained by considering a homogenous
bounded selection B : Z — Y for the quotient map, then a linear (non-
continuous) selection L : Z — Y for the quotient map, and making their
difference F' = B — L. Conversely, if one has a quasi-linear map F : Z — Y
then endowing the product space Y x Z with the quasi-norm

1y, 2)ll = lly — F=z]l + =]

one obtains a quasi-Banach space denoted Y ®r Z for which there exists
an exact sequence 0 — Y —- Y ®rp Z — Z — 0. The quasi-Banach space
Y ®F Z is called a twisted sum of Y and Z. Of course, the two processes are,
in a very specific sense, inverse one of the other. This is the theory created by
Kalton [7] and Kalton and Peck [9]. The reason to consider non-locally convex
spaces is that twisted sums of locally convex spaces are not necessarily locally
convex: Ribe [11] and Kalton [8] showed the existence of an exact sequence
0 - R — F — I; — 0 that does not split. Since R is uncomplemented, the
space E cannot be locally convex.

Working with topological vector spaces, efforts have been made to mimicry
this part of the theory in a non-locally bounded ambient (see [4]). Never-
theless, when ¥ = R Kalton [7] defines quasi-linear map F' : @ ~ R as a
homogeneous map so that for some continuous seminorm n(-) on @ one has:

|[F(z +y) — F(z) = f(y)| < C(n(z) +n(y)).

With a quasi-linear map F' : @ ~ R one can construct an exact sequence
0 >R —>RPrQ — Q@ — 0 endowing the product space R x @) with the
family of quasi-seminorms

Ga(r, ) = [r = Fz| + pa(z)

where {p,} runs through the gauge functionals of a fundamental system of
neighborhoods of (). The inclusion map r — (r,0) is clearly continuous while
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the surjective map ¢(r,x) = z is continuous and open. Hence R ®p Q is a
topological vector space which is complete when so is ().

Nonetheless, it is by no means clear that a topologically exact sequence
0 —R — F — @ — 0 can be defined by a single quasi-linear map F': Q ~ R.
Nevertheless, Kalton [7] succeeds in showing that a sequence 0 — R — F —
@ — 0 can be defined by a single quasi-linear map when @) and E are Fréchet
spaces. Given a topological vector space E then U(FE) denotes a fundamental
system of closed balanced neighborhoods of zero. If the topology of E comes
defined by a family of semi-quasi-norms, then given such a semi-quasi-norm
p with unit ball U we denote by Ey the quotient vector space FE/kerpy
endowed with the quasi-norm ||¢y(x)||lv = pu(x); obviously, ¢y : E — Ey is
the quotient map.

3. TWO ALGEBRAIC LEMMATA

3.1. THE 3-LEMMA FOR TOPOLOGICAL VECTOR SPACES. In the quasi-
Banach or Fréchet space setting a simple consequence of the open mapping
theorem and the 3-lemma is that twisted sums giving equivalent exact se-
quences are isomorphic. In topological vector spaces no open mapping exists,
in general; nevertheless, the 3-lemma still works.

PROPOSITION 3.1. (THE 3-LEMMA FOR TOPOLOGICAL VECTOR SPACES)
Assume that one has a commutative diagram

0O — Y — X — Z — 0

| v |
0O - Y - X4 - Z — 0

in the category TVS of topological vector spaces and linear continuous maps,
with topologically exact rows. Then T is a topological isomorphism.

Proof. Consider on X the initial vector space topology 7x induced by T
(namely, the vector space topology in which a typical basic neighborhood of
0 has he form T-1(U) for some neighborhood of zero U in X7). Since T is
continuous, 7 < 7y. Since T'|Y = idy it turns out that 7x|Y < 7]Y. And
since the right square is commutative and the arrows X — Z and X; — Z
are quotient maps, 7x/Y < 7/Y. Thus, using the following result of Dierolf
and Schwanengel [3] Let G be a group and H C G be a subgroup. Let 1,71 be
group topologies on G such that y C 7. If T|H = 7|H and 7/H = 11 /H then
T =171, we get 7 = 7x, which makes T open. |I
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As we have already said, examples of Ribe and Kalton [11, 8] show that
a twisted sum of locally convex spaces can be non-locally convex. A theorem
of Dierolf [2] ensures that if all twisted sums of R and X are locally convex
then all twisted sum of any Banach space Y and X are locally convex as well.
As a consequence we give the following result that extends Dierolf’s theorem
(the question of whether such extension was possible was posed in [4] under
the form: do locally convex K-spaces coincide with TSC-spaces?

THEOREM 3.1. Let Q be a locally convex space such that every topologi-
cally exact sequence 0 — R — E — @ — 0 splits if and only if every twisted
sum of a locally convex space Y and Q is locally convex.

Proof. Assume that @Q is a locally convex topological vector space such
that every topologically exact sequence 0 — R — F — @ — 0 splits. Let Y
be a locally convex space and let 0 - Y — G — @ — 0 be a topologically
exact sequence. If f : Y — R is a linear continuosu functional then the
push-out diagram

Lf ! |
0 - R —- PO — @ — 0

and the fact that the lower sequence splits show that f can be extended to a
linear continuous functional on G. Thus Y is a topological vector subspace of
G endowed with its Mackey (G, G*)-topology. It is a simple matter to verify
that the induced quotient topology on @) is the original topology of Q). So the
Mackey and the starting topology must coincide on G since they induce the
same topologies in both Y and G/Y. 1

3.2. A PULL-BACK LEMMA.

LEMMA 3.1. Let 0 = R — E — @ — 0 be a topologically exact sequence
of topological vector spaces in which the topology of Q comes defined by a
family of semi-quasi-norms. Then there exists a neighborhood U € U(Q), a
quasi-Banach space X and an operator 7 : X — QU such that

0 - R - FE %L @ —= 0

| ! L ou
0 - R —- X

1A
O
c

!
o

is a pull-back diagram.
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Proof. Assume that R =< u >. Let U € U(FE) such that py(u) = 1.
Since ¢ is open, ¢(U) is a neighborhood of zero in Q. Let (U,) be a chain of
neighborhoods of zero in F starting with U; i.e., a sequence of neighorhoods of
zero such that Uy 11+ Up41 C U, for all n € N. Let N = NpenU,. It is easy to
see that N is a vector space. Moreover, the application q;; : E/N — Qqu given
by Gy (z +N) = ¢quq(x) is well defined and gives the commutative diagram

0 — R - F - Q — 0
Jl 1 én | ¢qu

0 — kergy — E/N 4, Qu — 0.

If we endow E/N with the quotient topology induced by the chain {U,, }niny
then the diagram can be considered in the category of Hausdorff topological
vector spaces. The lower row is topologically exact and the map j : R — kerqy
is an into isomorphism since py(u) # 0. To simplify notation let us call V- = Uy
and W = Us. Observe that the diagram

0 — R — E — Q — 0
il N
0 — kergy — E/N % Qp — 0
l l lgqu,qU

0 — kergy, — E/n X Qu — 0.

Observe now that the points x such that x4+ N € ker Gy are those satisfying
that for all € > 0 there exists some A > 0 and some v € V such that zev + Au.
If a point x can be written in two different forms

T =ev1 + AMu = evy + Aau
then e(v1 — v2) = (A2 — A1)u and thus
X2 — M| = pu((A2 — A)u) = py(e(vr — v2)) < epy(vr —v2) <e.

This implies that if A(e,x) is a family of scalars such that x = ev. +
A(e, z)u then lim._,o A\(e, x) exists for = + N € ker gy. Moreover, such limit is
independent of the choice of the neighborhood W C V (as long as  + N €
ker Gy, ). We can define a linear projection L : ker gy —< p > by the formula

L(z) = lim A(e, x)u.

e—0

The map L is continuous restricted to ker gy —< p > since for small
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(Lx)u = (Lz)u — A, z)u+ e,z
= (Lz — Me,2))u+ (Me,z)u —2) + =
€ e1Un+2 +€Unta + pu, .y (2)Unt1
C eUnt1 +pU, i (2)Unsa
C 2pU, 41 (2)Un;

and thus py, (L(z)u) < 2py,.,(z) and L is continuous.

Consider now the commutative diagram

0O - R —- E - @@ — 0

il L Léaw
0 — kergw — E/N ELL¢ Qw — 0
L] l |
0 — R — PO — Quw — 0
| | l

—

0—>R—>PO—>@qW—>O.

The exactness of the last sequence (completion of the previous line) is a
rather standard consequence of the open mapping theorem (see [9]; or else
[1]). Thus, if ¢,W is understood as a map Q — CQq/\W, one can construct the
pull-back diagram

0 - R - PB — Q — 0.

It only remains to prove that this last sequence is topologically equiva-
lent to the starting one. But the universal property of the pull-back gives a
connecting map £ — PB making commutative the diagram

0 - R - PB — Q@ — 0

I T |
0 - R - FEF — @ — 0

Now, the 3-lemma we obtained at 3.1 shows that the two sequences are
topologically equivalent. 1
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4. USING THE PULL-BACK LEMMA
From here we obtain the result we wanted.

THEOREM 4.1. A topologically exact sequence 0 — R — F — @ — 0
of topological vector spaces in which the topology of (Q comes induced by a
family of semi-quasi-norms is defined by a quasi-linear map F : Q — R

Proof. By the standard theory of exact sequences of quasi-Banach spaces,
the sequence -
0—=R—PO—Qqw —0

is equivalent to some sequence

0—R—>R&r Qv — Qv — 0

defined by some quasi-linear map F' : qu; — R. It only remains to observe
that in a pull-back square

0 - R — E - Q@ - 0

0 - R - R&rQw — Qw — 0

the pull-back sequence is defined by the quasi-linear map Foq,. We state
this in a separate lemma:

LEMMA 4.1. Let 0 - R — E — Q — 0 be a topologically exact sequence
of topological vector spaces defined by a quasi-linear map G : @ ~ R and
let T : V — @ be a linear continuous map. Then the pull-back sequence is
equivalent to the sequence defined by the quasi-linear map GT .

Proof. One only has to appeal to the 3-lemma for topological vector spaces
once observed that there exists a linear continuous map u making commutative
the diagram

0 - R - RegQ — @ — 0
| Tu 1T
0 - R - RegprV —- V. — 0.

The definition of w is u(r,v) = (r,Tv). It clearly makes the diagram
commutative. As for the continuity, if A is a neighborhood in F' and B is a
neighborhood in V' so that pa(Tv) < ¢(A4, B)pp(v) then

|r — GTv| + pa(Tv) < |r — GTv| 4 cappp(v) < ¢(A, B)(|7“ — GTv| —|—pB(U)).
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This completes the proof of the lemma and the theorem. |

A topological vector space X is said to be a K-space when every exact
sequence 0 — R — F — X — 0 splits (i.e., every quasi Banach space E such
that £/R = X is locally convex). We have:

PROPOSITION 4.1. A projective limit of quasi-Banach K-spaces is a K-
space.

Proof. If ) is a projective limit of quasi-Banach K-spaces then every topo-
logically exact sequence 0 - R — FE — @ — 0 of topological vector spaces
is the pull-back sequence of some sequence 0 - R — X — é;] — 0 of quasi-
Banach spaces. One can also choose U C V with @; a K-space. Hence
O—>R—>X—>C§?]—>Osplits, andsodoes0 - R—FE —Q — 0. |

From this and the pull back it immediately follows

THEOREM 4.2. Let lim._ X, be a projective limit of quasi-Banach spaces.
Then

Ext(lim X,,R) = lim Ext(X,,R).

Proof. The pull-back lemma yields for every element F' € Ext(lim. X,,R)
an inductive family (F,) with F,, € Ext(X,,R). The converse is clear. [
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