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Jesús M. F. Castillo∗, Marilda A. Simões
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Abstract : We show the identity Ext(lim←Xα,R) = lim→ Ext(Xα,R) for projective limits
of quasi-Banach spaces Xα. The proof is derived from a pull-back lemma asserting that a
topologically exact sequence 0 → R → E → Z → 0 of locally pseudoconvex spaces is the
pull-back of an exact sequence of quasi-Banach spaces. Among the consequences we show
that exact sequences 0 → R→ E → Z → 0 of locally pseudoconvex spaces come induced by
quasi-linear maps, which extends a result of Kalton for Fréchet spaces; and that projective
limits of K-spaces are K-spaces.
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1. Introduction

The purpose of this paper is to obtain the identity

Ext(lim← Xα,R) = lim→ Ext(Xα,R)

for projective limits of quasi-Banach spaces Xα. This is interesting since it
shows that the Ext functor behaves, in the category of quasi-Banach spaces,
in a similar way as the L functor in the following sense: for each fixed A the
contravariant functor L(·, A) is right-adjoint of itself and therefore transforms
inverse limits into direct limits. The functor Ext(·,R) does the same with
respect to projective limits.

We will base our proof in a pull-back lemma of independent interest:

Theorem 1.1. A topologically exact sequence

0 → R→ E → Z → 0
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of topological vector spaces in which Z is locally pseudoconvex (in the termi-
nology of [6]) comes induced by a single quasi-linear map F : Z → R.

This extends a result of Kalton [7, Thm. 10.1] who proved the analogous
result when Z is a Fréchet space. We think that what could deserve some
interest is the method of proof, homological approach based on a pull-back
lemma plus a suitable extension of the 3-lemma to the category of topological
vector spaces. More precisely:

Pull-back lemma. A topologically exact sequence 0 → R→ E → Z → 0
of locally pseudoconvex spaces is the pull-back sequence of an exact sequence
of quasi-Banach spaces.

The homological approach to the result we present consists of two steps:
1) To obtain a version of the 3-lemma suitable to work with topological vector
spaces (where the open mapping can fail); from this we can derive an answer
to a problem posed in [4, pag. 186]; namely, that a topological vector space
Q such that every topologically exact sequence 0 → R→ E → Q → 0 splits is
such that every twisted sum with a locally convex space is locally convex. In
turn, this result is the natural extension of a theorem of Dierolf [2] for quasi-
Banach spaces. 2) To prove a ”pull-back lemma” asserting that if one has a
topologically exact sequence 0 → R → E → Q → 0 in which Q verifies some
minimal assumption (to be pseudo-convex, in the language of Jarchow [6])
then no essential information is lost when one simply considers the sequence
localized around a neighborhood of zero.

2. Preliminaries

General background on homology can be found in [5]. A background on
exact sequences of quasi-Banach spaces sufficient for our purposes can be seen
in [1]. An exact sequence in a suitable category (vector spaces and linear
maps, topological vector spaces and linear continuous maps, etc) is a diagram
0 → Y → X → Z → 0 in the category with the property that the kernel of
each arrow coincides with the image of the preceding. When an open mapping
theorem exists (e.g., in quasi-Banach or Fréchet spaces) then it guarantees that
Y is a subspace of X and the corresponding quotient X/Y is isomorphic to
Z. Since we shall work in categories where no open mapping theorem exists
we shall say that an exact sequence 0 → Y

j→ X
q→ Z → 0 is topologically

exact when j is an into embedding and q is a continuous open map. For a
more general background about twisted sums of quasi-Banach spaces and the
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theory of quasi-linear maps the reader is addressed to the monograph [1]. Here
we are interested in the following facts:

Two exact sequences 0 → Y → X → Z → 0 and 0 → Y → X1 → Z →
0 are said to be equivalent if there exists an arrow T : X → X1 making
commutative the diagram

0 → Y → X → Z → 0
‖ ↓ T ‖

0 → Y → X1 → Z → 0.

This definition makes sense in the categories of quasi-Banach or Fréchet spaces
where the open map theorem works,making T an isomorphism. An exact
sequence is said to split if it is equivalent to the trivial sequence 0 → Y →
Y ⊕ Z → Z → 0.

Push-out construction. Let A : K → Y and B : K → X be two
arrows in a given category. The push-out of {A,B} is an object Λ and two
arrows u : Y → Λ and v : Y → Λ in the category such that uA = vB; and
with the property that given another object Γ and two arrows α : Y → Γ
and β : X → Γ in the category verifying αA = βB then there exists a unique
arrow γ : Λ → Γ such that β = γv and α = γu.

In the category of Hausdorff topological vector spaces push-outs exist. The
push-out of two arrows A : Y → M and B : Y → X is the quotient space
Λ = M ⊕X/∆, where ∆ is the closure of {(Ay,−y) : y ∈ Y }, together with
the restriction of the canonical quotient map M ⊕X → Λ to, respectively, M
and X.

We are interested in the following property of the push-out construction

Lemma 2.1. Given a topologically exact sequence 0 → Y
j→ X

p→ Z → 0
of topological vector spaces and a linear continuous map T : Y → M and if
PO denotes the push-out of the couple {j, T} then there is a commutative
diagram

0 → Y
j→ X

p→ Z → 0
T ↓ ↓ u ‖

0 → M
J→ PO

Q→ Z → 0

with topologically exact (lower) row.

Proof. Observe that since 0 → Y
j→ X

p→ Z → 0 is topologically exact,
∆ is closed, and the sequence 0 → Y → M ⊕ X → PO → 0, with injection
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i(y) = (Ty, y) and quotient map q(m, x) = (m,x) + ∆ is topologically exact
and PO is Hausdorff. The only undefined arrow is Q : PO → Z, which is
given by Q((m,x) + ∆) = px. The commutativity of the right square and the
continuity of the induced arrow u : X → PO yield that Q : PO → Z is open:
if V is a neighborhood of 0 in PO then q(u−1(V )) = Q(uu−1(V )) ⊂ Q(V ). So,
we prove that J : M → PO is an into isomorphism. The continuity of J is by
definition, so we prove that it is open. Let thus UM be a neighborhood of zero
in M . We choose VM a neighborhood of zero in M such that VM − VM ⊂ UM

and then UX , a neighborhood of 0 in X, such that UX ∩ Y ⊂ T−1(VM ). Let
us show that q(VM × UX) ∩M ⊂ UM . Since q(VM × UX) ∩M coincides with

{(m,x) + ∆ : m ∈ VM , x ∈ UX ,∃n ∈ M : (m,x)− (n, 0) ∈ ∆}
then m = n + Ty and x = y for some y ∈ UX ∩ Y ; hence Ty ∈ VM , and since
m ∈ VM then m− Ty ∈ VM − VM ⊂ UM and the proof is complete.

Pull-back construction. The dual notion to that of push-out is the
pull-back. Let A : X → Z and B : M → Z be two arrows in a given
category. The pull-back of {A,B} is an object Λ and two arrows u : Λ → X
and v : Λ → M in the category such that Au = Bv; and with the property
that given another object Γ and two arrows α : Γ → X and β : Γ → M in the
category verifying Aα = Bβ then there exists a unique arrow γ : Γ → Λ such
that β = vγ and α = uγ.

In the category of Hausdorff topological vector spaces pull-backs exist. The
pull-back of two arrows A : X → Z and B : M → Z is the subspace PB =
{(x, m) ∈ X×M : Ax = Bm} endowed with the product topology induced by
X ⊕M and the corresponding restrictions of the canonical projections. The
inclusion Y → PB is given by y → (y, 0). We are interested in the following
property of the pull-back contruction; the proof is left to the reader.

Lemma 2.2. Given a topologically exact sequence 0 → Y
j→ X

p→ Z → 0
of topological vector spaces and a linear continuous map T : M → Z and if
PB denotes the pull-back of the couple {q, T} then there is a commutative
diagram

0 → Y → X → Z → 0
‖ ↑ ↑ T

0 → Y → PB → M → 0

in which the lower row is topologically exact.
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2.1. Twisted sums of quasi-Banach spaces. Exact sequences 0 →
Y → X → Z → 0 of quasi-Banach spaces correspond to homogeneous maps
F : Z y Y (we use this notation to stress the fact they are not usually linear)
with the property that there exists a constant K such that for each two points
x, y ∈ Z

‖F (x + y)− F (x)− F (y)‖ ≤ K(‖x‖+ ‖y‖).
Such maps are called quasi-linear.

Indeed, if one has an exact sequence 0 → Y → X → Z → 0 then a
quasi-linear map F : Z → Y can be obtained by considering a homogenous
bounded selection B : Z → Y for the quotient map, then a linear (non-
continuous) selection L : Z → Y for the quotient map, and making their
difference F = B − L. Conversely, if one has a quasi-linear map F : Z → Y
then endowing the product space Y × Z with the quasi-norm

‖(y, z)‖ = ‖y − Fz‖+ ‖z‖
one obtains a quasi-Banach space denoted Y ⊕F Z for which there exists
an exact sequence 0 → Y → Y ⊕F Z → Z → 0. The quasi-Banach space
Y ⊕F Z is called a twisted sum of Y and Z. Of course, the two processes are,
in a very specific sense, inverse one of the other. This is the theory created by
Kalton [7] and Kalton and Peck [9]. The reason to consider non-locally convex
spaces is that twisted sums of locally convex spaces are not necessarily locally
convex: Ribe [11] and Kalton [8] showed the existence of an exact sequence
0 → R → E → l1 → 0 that does not split. Since R is uncomplemented, the
space E cannot be locally convex.

Working with topological vector spaces, efforts have been made to mimicry
this part of the theory in a non-locally bounded ambient (see [4]). Never-
theless, when Y = R Kalton [7] defines quasi-linear map F : Q y R as a
homogeneous map so that for some continuous seminorm n(·) on Q one has:

|F (x + y)− F (x)− f(y)| ≤ C(n(x) + n(y)).

With a quasi-linear map F : Q y R one can construct an exact sequence
0 → R → R ⊕F Q → Q → 0 endowing the product space R × Q with the
family of quasi-seminorms

qα(r, x) = |r − Fx|+ pα(x)

where {pα} runs through the gauge functionals of a fundamental system of
neighborhoods of Q. The inclusion map r → (r, 0) is clearly continuous while
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the surjective map q(r, x) = x is continuous and open. Hence R ⊕F Q is a
topological vector space which is complete when so is Q.

Nonetheless, it is by no means clear that a topologically exact sequence
0 → R→ E → Q → 0 can be defined by a single quasi-linear map F : Qy R.
Nevertheless, Kalton [7] succeeds in showing that a sequence 0 → R → E →
Q → 0 can be defined by a single quasi-linear map when Q and E are Fréchet
spaces. Given a topological vector space E then U(E) denotes a fundamental
system of closed balanced neighborhoods of zero. If the topology of E comes
defined by a family of semi-quasi-norms, then given such a semi-quasi-norm
p with unit ball U we denote by EU the quotient vector space E/ ker pU

endowed with the quasi-norm ‖φU (x)‖U = pU (x); obviously, φU : E → EU is
the quotient map.

3. Two algebraic lemmata

3.1. The 3-lemma for topological vector spaces. In the quasi-
Banach or Fréchet space setting a simple consequence of the open mapping
theorem and the 3-lemma is that twisted sums giving equivalent exact se-
quences are isomorphic. In topological vector spaces no open mapping exists,
in general; nevertheless, the 3-lemma still works.

Proposition 3.1. (The 3-lemma for topological vector spaces)
Assume that one has a commutative diagram

0 → Y → X → Z → 0
‖ ↓ T ‖

0 → Y → X1 → Z → 0

in the category TVS of topological vector spaces and linear continuous maps,
with topologically exact rows. Then T is a topological isomorphism.

Proof. Consider on X the initial vector space topology τX induced by T
(namely, the vector space topology in which a typical basic neighborhood of
0 has he form T−1(U) for some neighborhood of zero U in X1). Since T is
continuous, τ ≤ τX . Since T |Y = idY it turns out that τX |Y ≤ τ |Y . And
since the right square is commutative and the arrows X → Z and X1 → Z
are quotient maps, τX/Y ≤ τ/Y . Thus, using the following result of Dierolf
and Schwanengel [3] Let G be a group and H ⊂ G be a subgroup. Let τ, τ1 be
group topologies on G such that τ1 ⊂ τ . If τ |H = τ1|H and τ/H = τ1/H then
τ = τ1; we get τ = τX , which makes T open.
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As we have already said, examples of Ribe and Kalton [11, 8] show that
a twisted sum of locally convex spaces can be non-locally convex. A theorem
of Dierolf [2] ensures that if all twisted sums of R and X are locally convex
then all twisted sum of any Banach space Y and X are locally convex as well.
As a consequence we give the following result that extends Dierolf’s theorem
(the question of whether such extension was possible was posed in [4] under
the form: do locally convex K-spaces coincide with TSC-spaces?

Theorem 3.1. Let Q be a locally convex space such that every topologi-
cally exact sequence 0 → R→ E → Q → 0 splits if and only if every twisted
sum of a locally convex space Y and Q is locally convex.

Proof. Assume that Q is a locally convex topological vector space such
that every topologically exact sequence 0 → R → E → Q → 0 splits. Let Y
be a locally convex space and let 0 → Y → G → Q → 0 be a topologically
exact sequence. If f : Y → R is a linear continuosu functional then the
push-out diagram

0 → Y → G → Q → 0
↓ f ↓ ‖

0 → R → PO → Q → 0

and the fact that the lower sequence splits show that f can be extended to a
linear continuous functional on G. Thus Y is a topological vector subspace of
G endowed with its Mackey (G,G∗)-topology. It is a simple matter to verify
that the induced quotient topology on Q is the original topology of Q. So the
Mackey and the starting topology must coincide on G since they induce the
same topologies in both Y and G/Y .

3.2. A pull-back lemma.

Lemma 3.1. Let 0 → R→ E → Q → 0 be a topologically exact sequence
of topological vector spaces in which the topology of Q comes defined by a
family of semi-quasi-norms. Then there exists a neighborhood U ∈ U(Q), a
quasi-Banach space X and an operator τ : X → Q̂U such that

0 → R → E
q→ Q → 0

‖ ↓ ↓ φU

0 → R → X
τ→ Q̂U → 0

is a pull-back diagram.
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Proof. Assume that R =< u >. Let U ∈ U(E) such that pU (u) = 1.
Since q is open, q(U) is a neighborhood of zero in Q. Let (Un) be a chain of
neighborhoods of zero in E starting with U ; i.e., a sequence of neigborhoods of
zero such that Un+1 +Un+1 ⊂ Un for all n ∈ N. Let ∩ = ∩n∈NUn. It is easy to
see that ∩ is a vector space. Moreover, the application qU : E/∩ → QqU given
by qU (x + ∩) = φqUq(x) is well defined and gives the commutative diagram

0 → R → E → Q → 0
j ↓ ↓ φ∩ ↓ φqU

0 → ker qU → E/∩ q→ QqU → 0.

If we endow E/∩ with the quotient topology induced by the chain {Un}ninN
then the diagram can be considered in the category of Hausdorff topological
vector spaces. The lower row is topologically exact and the map j : R→ ker qU

is an into isomorphism since pU (u) 6= 0. To simplify notation let us call V = U2

and W = U3. Observe that the diagram

0 → R → E → Q → 0
j ↓ ↓ ↓ φqV

0 → ker qV → E/∩ qV→ QqV → 0
↓ ↓ ↓ φqV,qU

0 → ker qU → E/∩ qU→ QqU → 0.

Observe now that the points x such that x+∩ ∈ ker qV are those satisfying
that for all ε > 0 there exists some λ > 0 and some v ∈ V such that xεv +λu.
If a point x can be written in two different forms

x = εv1 + λ1u = εv2 + λ2u

then ε(v1 − v2) = (λ2 − λ1)u and thus

|λ2 − λ1| = pU

(
(λ2 − λ1)u

)
= pU

(
ε(v1 − v2)

) ≤ εpU (v1 − v2) ≤ ε.

This implies that if λ(ε, x) is a family of scalars such that x = εvε +
λ(ε, x)u then limε→0 λ(ε, x) exists for x + ∩ ∈ ker qV . Moreover, such limit is
independent of the choice of the neighborhood W ⊂ V (as long as x + ∩ ∈
ker qW ). We can define a linear projection L : ker qV →< p > by the formula

L(x) = lim
ε→0

λ(ε, x)u.

The map L is continuous restricted to ker qW →< p > since for small ε
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(Lx)u = (Lx)u− λ(ε, x)u + λ(ε, x)u− x + x

=
(
Lx− λ(ε, x)

)
u +

(
λ(ε, x)u− x

)
+ x

∈ ε1Un+2 + εUn+2 + pUn+1(x)Un+1

⊂ εUn+1 + pUn+1(x)Un+1

⊂ 2pUn+1(x)Un;

and thus pUn(L(x)u) ≤ 2pUn+1(x) and L is continuous.

Consider now the commutative diagram

0 → R → E → Q → 0
j ↓ ↓ ↓ φqW

0 → ker qW → E/∩ qW→ QqW → 0
L ↓ ↓ ‖

0 → R → PO → QqW → 0
‖ ↓ ↓

0 → R → P̂O → Q̂qW → 0.

The exactness of the last sequence (completion of the previous line) is a
rather standard consequence of the open mapping theorem (see [9]; or else
[1]). Thus, if φqW is understood as a map Q → Q̂qW , one can construct the
pull-back diagram

0 → R → P̂O → Q̂qW → 0
‖ ↑ ↑ φqW

0 → R → PB → Q → 0.

It only remains to prove that this last sequence is topologically equiva-
lent to the starting one. But the universal property of the pull-back gives a
connecting map E → PB making commutative the diagram

0 → R → PB → Q → 0
‖ ↑ ‖

0 → R → E → Q → 0.

Now, the 3-lemma we obtained at 3.1 shows that the two sequences are
topologically equivalent.
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4. Using the pull-back lemma

From here we obtain the result we wanted.

Theorem 4.1. A topologically exact sequence 0 → R → E → Q → 0
of topological vector spaces in which the topology of Q comes induced by a
family of semi-quasi-norms is defined by a quasi-linear map F : Q → R

Proof. By the standard theory of exact sequences of quasi-Banach spaces,
the sequence

0 → R→ P̂O → Q̂qW → 0

is equivalent to some sequence

0 → R→ R⊕F Q̂qW → Q̂qW → 0

defined by some quasi-linear map F : Q̂qW → R. It only remains to observe
that in a pull-back square

0 → R → E → Q → 0
‖ ↓ ↓ φqW

0 → R → R⊕F QqW → QqW → 0

the pull-back sequence is defined by the quasi-linear map FφqW . We state
this in a separate lemma:

Lemma 4.1. Let 0 → R→ E → Q → 0 be a topologically exact sequence
of topological vector spaces defined by a quasi-linear map G : Q y R and
let T : V → Q be a linear continuous map. Then the pull-back sequence is
equivalent to the sequence defined by the quasi-linear map GT .

Proof. One only has to appeal to the 3-lemma for topological vector spaces
once observed that there exists a linear continuous map u making commutative
the diagram

0 → R → R⊕G Q → Q → 0
‖ ↑ u ↑ T

0 → R → R⊕GT V → V → 0.

The definition of u is u(r, v) = (r, Tv). It clearly makes the diagram
commutative. As for the continuity, if A is a neighborhood in F and B is a
neighborhood in V so that pA(Tv) ≤ c(A,B)pB(v) then

|r −GTv|+ pA(Tv) ≤ |r −GTv|+ cABpB(v) ≤ c(A,B)
(|r −GTv|+ pB(v)

)
.
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This completes the proof of the lemma and the theorem.

A topological vector space X is said to be a K-space when every exact
sequence 0 → R→ E → X → 0 splits (i.e., every quasi Banach space E such
that E/R = X is locally convex). We have:

Proposition 4.1. A projective limit of quasi-Banach K-spaces is a K-
space.

Proof. If Q is a projective limit of quasi-Banach K-spaces then every topo-
logically exact sequence 0 → R → E → Q → 0 of topological vector spaces
is the pull-back sequence of some sequence 0 → R → X → Q̂U → 0 of quasi-
Banach spaces. One can also choose U ⊂ V with Q̂V a K-space. Hence
0 → R→ X → Q̂U → 0 splits, and so does 0 → R→ E → Q → 0.

From this and the pull back it immediately follows

Theorem 4.2. Let lim←Xα be a projective limit of quasi-Banach spaces.
Then

Ext(lim← Xα,R) = lim→ Ext(Xα,R) .

Proof. The pull-back lemma yields for every element F ∈ Ext(lim←Xα,R)
an inductive family (Fα) with Fα ∈ Ext(Xα,R). The converse is clear.
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