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Abstract : We characterize gauge bundle functors F : PBm(G) → FM which admit a con-
struction of a classical linear connection A(Γ,∇) on FP from a principal general connection
Γ on P → M by means of a classical linear connection ∇ on M .
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0. Introduction

By [5], a general connection on a fibred manifold p : Y → M is a section
Γ : Y → J1Y of the first jet prolongation J1Y → Y of p : Y → M . If P → M
is a principal G-bundle, where G is a Lie group, then a general connection
Γ : P → J1P is called principal if it is right G-invariant. Principal connections
can be defined equivalently by many ways, e.g. by Adξ−1- right-invariant
connection forms ω : TP → Lie(G), by right invariant horizontal distributions
HΓ ⊂ TP complementing V P , by horizontal lifting maps TM ×M P → TP ,
e.t.c. If E → M is a vector bundle then a general connection Γ : E → J1E is
called linear if it is a vector bundle map. It is well-known that if L(E) → M
is the frame GL(n)-bundle corresponding to E → M (n =the dimension of
the fibres of E), then linear connections on E → M correspond bijectively to
principal connections on L(E) → M . In particular if E = TM is the tangent
bundle of M , a linear connection Γ : TM → J1TM is a classical linear
connection on M (it can be equivalently defined by its covariant derivative
∇XY on vector fields, or equivalently defined as the corresponding section of
the affine bundle of connections QM = π−1(idTM ) ⊂ T ∗M ⊗ J1TM ).

The theory of canonical constructions on connections has its origin in the
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works of C. Ehresmann, [3]. Some canonical constructions on connections have
motivations in quantum mechanics, higher order dynamics, field theories and
gauge theories of mathematical physics, [4]. That is why, canonical construc-
tions on connections have been studied in many papers, see e.g. [5]. Roughly
speaking, a canonical construction on connections is a rule A transforming
given connections Γ1, . . . ,Γk on Y (manifold, fibred manifold, vector bundle,
principal bundle) into a connection A(Γ1, . . . ,Γk) on a functor bundle FY of
Y , which is well defined (i.e., the definition of A(Γ1, . . . ,Γk) is independent
of the choice of local coordinates on Y ). Such constructions have reflection in
the corresponding natural operators in the sense of Kolář-Michor-Slovák [5].
The theory and precise definitions of bundle functors and natural operators
(canonical constructions) can be found in the fundamental monograph [5].

In the third part of [7] the second author solved the following problems.

Problem a. To characterize all gauge bundle functors F on vector bundles
E → M , which admit a canonical construction of a classical linear connection
A(Γ,∇) on FE from a linear general connection Γ on E → M by means of a
classical linear connection ∇ on M .

Problem b. To give an example of a gauge bundle functor F on vector
bundles E → M which does not admit any canonical construction of a classical
linear connection A(Γ,∇) on FE from a linear general connection Γ on E →
M by means of a classical linear connection ∇ on M .

In the present note we study the following problems.

Problem A. To characterize all gauge bundle functors F on principal G-
bundles P → M , which admit a canonical construction of a classical linear
connection A(Γ,∇) on FP from a principal connection Γ on P → M by means
of a classical linear connection ∇ on M .

Problem B. To give an example of a gauge bundle functor F on principal
bundles P → M which does not admit any canonical construction of a classical
linear connection A(Γ,∇) on FP from a principal connection Γ on P → M
by means a classical linear connection ∇ on M .

The problems A and B will be precise formulated in the next sections of
the present note.

Clearly, by the bijection of principal connections on L(E) → M and linear
connections on E → M , Problems A and B for G = GL(n) are exactly
Problems a and b. Thus (roughly speaking) in the present note we extend the
results of the third part of [7] for arbitrary Lie group G instead of the linear
Lie group GL(n).
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We inform that in [6], the second author proved that there is no canonical
construction of a classical linear connection A(Γ) on FP from a principal con-
nection Γ on P → M . So, the using of an auxiliary classical linear connection
∇ on M is unavoidable in Problem A.

All manifolds and maps are assumed to be of class C∞.

1. Some definitions

We fix an arbitrary Lie group G. Let PBm(G) be the category of all
principal G-bundles with m-dimensional bases and their local principal bundle
isomorphisms. Let B′ : PBm(G) → Mf and B : FM → Mf be the base
functors, where Mf is the category of all manifolds and all maps and FM is
the category of all fibred manifolds and all fibred maps.

Definition 1. A gauge bundle functor on PBm(G) is a covariant functor
F : PBm(G) → FM satisfying B ◦ F = B′ and the localization property: for
every PBm(G)-object p : P → M and every inclusion of an open sub-bundle
iU : P |U → P , F (P |U) is the restriction p−1

P (U) of pP : FP → M over U and
FiU is the inclusion p−1

P (U) → FP .

The most important example of a gauge bundle functor on PBm(G) is
the r-th order principal prolongation functor W r

m : PBm(G) → PBm(W r
mG)

sending any PBm(G)-object P → M into its r-th order principal prolongation
W r

mP = {jr
0ϕ | ϕ : Rm×G → P is a PBm(G)−map} over M and any PBm(G)-

map ψ : P1 → P2 into the induced map W r
mψ : W r

mP1 → W r
mP2 defined via

composition of jets. It is clear that W r
mP → M is a principal W r

mG-bundle,
where W r

mG=the fiber of W r
m(Rm × G) over 0 ∈ Rm is the so called r-th

order principal prolongation of G. There is a canonical identification W r
mP =

P r(M)×M JrP and W r
mG = Gr

m × T r
mG (semi-direct product), where Gr

m =
invJr

0 (Rm,Rm)0, T r
mG = Jr

0 (Rm, G), see [5]. One can show that for any
gauge bundle functor F : PBm(G) → FM of order r it is FP =̃W r

mP×W r
mGF0,

where F0 is the fiber of F (Rm ×G) over 0 ∈ Rm with the induced left action
of W r

mG, see [5].
Let F : PBm(G) → FM be a gauge bundle functor.

Definition 2. A PBm(G)-natural gauge operator transforming principal
connections Γ on PBm(G)-objects P → M and classical linear connections ∇
on M into classical linear connections A(Γ,∇) on FP is a family of PBm(G)-
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invariant regular operators

A : Conprinc(P → M)× Conclas−lin(M) → Conclas−lin(FP )

for any PBm(G)-object p : P → M , where Conprinc(P → M) is the set
of principal general connections on P → M and Conclas−lin(M) is the set
of all classical linear connections on M . The invariance means that for any
principal general connections Γ and Γ1 on PBm(G)-objects p : P → M and
p1 : P1 → M1 (respectively) and classical linear connections ∇ and ∇1 on M
and M1 (respectively), if Γ and Γ1 are f -related and ∇ and ∇1 are f -related
for some PBm(G)-map f : P → P1 covering f : M → M1, then A(Γ,∇) and
A(Γ1,∇1) are Ff -related. The regularity means that A transforms smoothly
parametrized families of pairs of connections into smoothly parametrized fam-
ilies of connections.

We have an interesting and very important example of a PBm(G)-gauge
natural operator in the sense of Definition 2 for F = idPBm(G).

Example 1. ([5]) Let Γ be a principal connection on a PBm(G)-object
p : P → M and ∇ : TM → J1TM be a classical linear connection on M . Let
vA be the vertical component of a vector A ∈ TyP and bA be its projection to
the base manifold M . Consider a vector field X on M such that j1

xX = ∇(bA),
x = p(y). Construct the lift XΓ of X and the fundamental vector field ϕ(vA)
determined by vA. An easy calculation shows that the rule

A → j1
y(XΓ + ϕ(vA))

determines a classical linear connection NP (Γ,∇) : TP → J1(TP → P ) on
P . One can easily see that this connection NP (Γ,∇) is p-related with ∇ and
G-invariant.

2. Adapted trivialization

In this section, for a reader convenience, we cite from [2] some special
trivialization on a principal G-bundle P → M which we need in the sequel.

Lemma 1. ([2]) Let Γ be a principal connection on a principal G-bundle
π : P → M and ∇ be a classical linear connection on M . If p ∈ Px, x ∈ M ,
then on some neighborhood of x we can define a local section p̃ : M → P such
that for all ξ ∈ G

(1) p̃.ξ = p̃.ξ .
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Proof. ([2]) Let NP (Γ,∇) be the classical linear connection on P from
Example 1. Denote by exp

NP (Γ,∇)
p : TpP → P the locally defined exponent of

NP (Γ,∇) at p and exp∇x : TxM → M the exponent of ∇ at x. Since NP (Γ,∇)
is G-invariant and π-related with ∇ we have

(2) exp
NP (Γ,∇)
p.ξ ◦ TpRξ = Rξ ◦ expNP (Γ,∇)

p

and

(3) π ◦ expNP (Γ,∇)
p = exp∇x ◦ Tpπ .

We define
p̃(y) = expNP (Γ,∇)

p (Γ(p, (exp∇x )−1(y))) ,

where Γ : P ×M TM → TP is the lifting map (denoted by the same symbol)
of Γ. By (3), p̃ is a section near x. Finally, (1) follows from (2).

Definition 3. ([2]) The local section p̃ defined above is called the (Γ,∇)-
horizontal extension of the point p.

Now let P → M be a PBm(G)-object. Let ∇ be a classical linear connec-
tion M and Γ be a principal connection on P → M . Given a point p ∈ Px and a
frame l ∈ P 1

xM , x ∈ M , we can define a local PBm(G)-map Φp,l : P → Rm×G
as follows. Choose a unique (more precisely a unique germ at x) ∇-normal co-
ordinate system ϕ on M with center x sending the given frame l into the frame
lo = ( ∂

∂xi ) ∈ P 1
0 Rm. We define Φp,l to be the unique PBm(G)-map covering ϕ

such that Φp,l ◦ p̃ ◦ ϕ−1 is the constant section x → (x, e) of Rm ×G → Rm,
where e ∈ G is the neutral element and p̃ is the (Γ,∇)-horizontal extension of
the point p.

Definition 4. ([2]) The map Φp,l : P → Rm × G is called the (∇, Γ)-
adapted trivialization corresponding to p ∈ Px and l ∈ P 1

xM .

Clearly, given A ∈ GL(m) and ξ ∈ G we have

(4) Φp.ξ,l.A = (A−1 × Lξ−1) ◦ Φp,l .

3. Solution of Problems A and B

Let F : PBm(G) → FM be a gauge bundle functor. On the standard fiber
F0(Rm × G), 0 ∈ Rm, we have the left action of GL(m) × G by (B, ξ).f =
F (B × Lξ)(f), f ∈ F0(Rm × G). The following theorem is a solution of
Problem A.
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Theorem 1. Let F : PBm(G) → FM be a gauge bundle functor. The
following conditions are equivalent:

(a) There exists a canonical construction (a PBm(G)-natural gauge oper-
ator) of a classical linear connection A(Γ,∇) from a principal general
connection Γ on P → M by means of a classical linear connection ∇ on
M .

(b) There exists a GL(m)×G-invariant classical linear connection ∇̃ on the
standard fibre F0(Rm ×G) of F .

Proof. Suppose we have a GL(m)×G-invariant classical linear connection
∇̃ on F0(Rm × G). Let Γ be a principal general connection on an PBm(G)-
object p : P → M and let ∇ be a classical linear connection on M . We are
going to construct a classical linear connection A(Γ,∇) on FP . Let f ∈ FxP ,
x ∈ M . We choose p ∈ Px and l ∈ P 1

xM . Let Φp,l over ϕl be be the (∇, Γ)-
adapted trivialization corresponding to p and l (see Definition 4). We have
classical linear connection ϕl∗∇ × ∇̃ on some neighborhood of the fibre over
zero of F (Rm ×G)=̃Rm × F0(Rm ×G). We put

A(Γ,∇)f = (QFΦp,l)−1((ϕl)∗∇× ∇̃)FΦp,l(f)) ,

where Q is the bundle functor of classical linear connections. Because of (4)
and the GL(m) ×G-invariance of ∇̃, the definition of A(Γ,∇)f is correct (it
is independent of the choice of (p, l)).

Conversely, suppose we have a canonical construction (PBm(G)-natural
gauge operator) A transforming principal general connections Γ on P → M
and classical linear connections ∇ on M into classical linear connections
A(Γ,∇) on FP . Let ∇o be the flat classical linear connection on Rm and Γo

be the trivial principal general connection on Rm ×G → Rm. Then we have
the classical linear connection A(Γo,∇o) on F (Rm×G) = Rm×F0(Rm×G).
Thus (by the Gauss formula) we have the classical linear connection ∇̃ on
F0(Rm × G). Since Γo is GL(m) × G-invariant and ∇o is GL(m)-invariant
and A is invariant, then ∇̃ is GL(m)×G-invariant.

Example 2. In the case of a vector gauge bundle functor F : PBm(G) →
VB (where VB is the category of all vector bundles and all vector bundle maps)
we have the linear action of GL(m) × G on the vector space F0(Rm × G).
Let ∇̃ = ∇F be the usual flat connection on F0(Rm × G). It is GL(m) ×
G-invariant. Therefore (because of Theorem 1) we have a PBm(G)-natural
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gauge operator AF transforming principal general connections Γ on PBm(G)-
objects P → M and classical linear connections ∇ on M into classical linear
connections AF (Γ,∇) on FP .

Example 3. Let F = W r
m : PBm(G) → FM be the r-th order principal

prolongation functor. The fiber W r
mG over 0 of W r

m(Rm ×G) is a Lie group
and therefore there exists left W r

mG-invariant classical linear connection ∇̃ on
W r

mG. Since Gl(m)×G is a subgroup of W r
mG, then this connection ∇̃ is also

GL(m)×G invariant. Consequently, by Theorem 1 we have a PBm(G)-natural
gauge operator A transforming principal general connections Γ on P → M and
classical linear connections ∇ on M into classical linear connections A(Γ,∇)
on W r

mP .

Remark 1. In [1], M. Doupovec and the second author classified all
PBm(G)-natural gauge operators A transforming principal connections Γ on
P → M and r-th order linear connections Λ : TM → JrTM on M into
classical linear connections A(Γ, Λ) on W r

mP .

Example 4. (A solution of Problem B) Let P̃(T ) : PBm(G) → FM be
the gauge bundle functor

P̃(T )(P ) =
⋃

x∈M

P(TxM) , P̃(T )(f) =
⋃

x∈M

P(Txf) ,

where P(V ) is the projective space determined by a vector space V . By
Lemma 5 in [7] for n = 0 we have that there is no GL(m)-invariant classical
linear connection on P(Rm) for m ≥ 2. That is why, there is no GL(m)×G-
invariant classical linear connection on P̃(T )0(Rm × G)=̃P(Rm). By The-
orem 1, there is no canonical construction of a classical linear connection
A(Γ,∇) on P̃(T )(P ) from a principal general connection Γ on P → M by
means of a classical linear connection ∇ on M .
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