On the Existence of Constructions on Connections by Gauge Bundle Functors

J. Kurek, W. M. Mikulski
Institute of Mathematics, Maria Curie Sklodowska University, Pl. Marii Curie Sklodowskiej 1, Lublin, Poland, kurek@hektor.umcs.lublin.pl
Institute of Mathematics, Jagiellonian University, Lojasiewicza 6, Kraków, Poland, Wlodzimierz.Mikulski@im.uj.edu.pl

Presented by Manuel de León
Received July 17, 2007
Abstract: We characterize gauge bundle functors $F: \mathcal{P B}_{m}(G) \rightarrow \mathcal{F M}$ which admit a construction of a classical linear connection $A(\Gamma, \nabla)$ on $F P$ from a principal general connection Γ on $P \rightarrow M$ by means of a classical linear connection ∇ on M.
Key words: Principal general connection, classical linear connection, gauge bundle functor, natural (gauge) operator.
AMS Subject Class. (2000): 58A05, 58A20, 58A32.

0. Introduction

By [5], a general connection on a fibred manifold $p: Y \rightarrow M$ is a section $\Gamma: Y \rightarrow J^{1} Y$ of the first jet prolongation $J^{1} Y \rightarrow Y$ of $p: Y \rightarrow M$. If $P \rightarrow M$ is a principal G-bundle, where G is a Lie group, then a general connection $\Gamma: P \rightarrow J^{1} P$ is called principal if it is right G-invariant. Principal connections can be defined equivalently by many ways, e.g. by $A d_{\xi^{-1}}$ right-invariant connection forms $\omega: T P \rightarrow \mathcal{L} i e(G)$, by right invariant horizontal distributions $H^{\Gamma} \subset T P$ complementing $V P$, by horizontal lifting maps $T M \times_{M} P \rightarrow T P$, e.t.c. If $E \rightarrow M$ is a vector bundle then a general connection $\Gamma: E \rightarrow J^{1} E$ is called linear if it is a vector bundle map. It is well-known that if $L(E) \rightarrow M$ is the frame $G L(n)$-bundle corresponding to $E \rightarrow M$ ($n=$ the dimension of the fibres of E), then linear connections on $E \rightarrow M$ correspond bijectively to principal connections on $L(E) \rightarrow M$. In particular if $E=T M$ is the tangent bundle of M, a linear connection $\Gamma: T M \rightarrow J^{1} T M$ is a classical linear connection on M (it can be equivalently defined by its covariant derivative $\nabla_{X} Y$ on vector fields, or equivalently defined as the corresponding section of the affine bundle of connections $\left.Q M=\pi^{-1}\left(i d_{T M}\right) \subset T^{*} M \otimes J^{1} T M\right)$.

The theory of canonical constructions on connections has its origin in the
works of C. Ehresmann, [3]. Some canonical constructions on connections have motivations in quantum mechanics, higher order dynamics, field theories and gauge theories of mathematical physics, [4]. That is why, canonical constructions on connections have been studied in many papers, see e.g. [5]. Roughly speaking, a canonical construction on connections is a rule A transforming given connections $\Gamma_{1}, \ldots, \Gamma_{k}$ on Y (manifold, fibred manifold, vector bundle, principal bundle) into a connection $A\left(\Gamma_{1}, \ldots, \Gamma_{k}\right)$ on a functor bundle $F Y$ of Y, which is well defined (i.e., the definition of $A\left(\Gamma_{1}, \ldots, \Gamma_{k}\right)$ is independent of the choice of local coordinates on Y). Such constructions have reflection in the corresponding natural operators in the sense of Kolář-Michor-Slovák [5]. The theory and precise definitions of bundle functors and natural operators (canonical constructions) can be found in the fundamental monograph [5].

In the third part of [7] the second author solved the following problems.
Problem a. To characterize all gauge bundle functors F on vector bundles $E \rightarrow M$, which admit a canonical construction of a classical linear connection $A(\Gamma, \nabla)$ on $F E$ from a linear general connection Γ on $E \rightarrow M$ by means of a classical linear connection ∇ on M.

Problem b. To give an example of a gauge bundle functor F on vector bundles $E \rightarrow M$ which does not admit any canonical construction of a classical linear connection $A(\Gamma, \nabla)$ on $F E$ from a linear general connection Γ on $E \rightarrow$ M by means of a classical linear connection ∇ on M.

In the present note we study the following problems.
Problem A. To characterize all gauge bundle functors F on principal G bundles $P \rightarrow M$, which admit a canonical construction of a classical linear connection $A(\Gamma, \nabla)$ on $F P$ from a principal connection Γ on $P \rightarrow M$ by means of a classical linear connection ∇ on M.

Problem B. To give an example of a gauge bundle functor F on principal bundles $P \rightarrow M$ which does not admit any canonical construction of a classical linear connection $A(\Gamma, \nabla)$ on $F P$ from a principal connection Γ on $P \rightarrow M$ by means a classical linear connection ∇ on M.

The problems A and B will be precise formulated in the next sections of the present note.

Clearly, by the bijection of principal connections on $L(E) \rightarrow M$ and linear connections on $E \rightarrow M$, Problems A and B for $G=G L(n)$ are exactly Problems a and b. Thus (roughly speaking) in the present note we extend the results of the third part of [7] for arbitrary Lie group G instead of the linear Lie group $G L(n)$.

We inform that in [6], the second author proved that there is no canonical construction of a classical linear connection $A(\Gamma)$ on $F P$ from a principal connection Γ on $P \rightarrow M$. So, the using of an auxiliary classical linear connection ∇ on M is unavoidable in Problem A.

All manifolds and maps are assumed to be of class \mathbf{C}^{∞}.

1. Some definitions

We fix an arbitrary Lie group G. Let $\mathcal{P} \mathcal{B}_{m}(G)$ be the category of all principal G-bundles with m-dimensional bases and their local principal bundle isomorphisms. Let $B^{\prime}: \mathcal{P B}_{m}(G) \rightarrow \mathcal{M} f$ and $B: \mathcal{F} \mathcal{M} \rightarrow \mathcal{M} f$ be the base functors, where $\mathcal{M} f$ is the category of all manifolds and all maps and $\mathcal{F} \mathcal{M}$ is the category of all fibred manifolds and all fibred maps.

Definition 1. A gauge bundle functor on $\mathcal{P B}_{m}(G)$ is a covariant functor $F: \mathcal{P} \mathcal{B}_{m}(G) \rightarrow \mathcal{F} \mathcal{M}$ satisfying $B \circ F=B^{\prime}$ and the localization property: for every $\mathcal{P B}_{m}(G)$-object $p: P \rightarrow M$ and every inclusion of an open sub-bundle $i_{U}: P \mid U \rightarrow P, F(P \mid U)$ is the restriction $p_{P}^{-1}(U)$ of $p_{P}: F P \rightarrow M$ over U and $F i_{U}$ is the inclusion $p_{P}^{-1}(U) \rightarrow F P$.

The most important example of a gauge bundle functor on $\mathcal{P} \mathcal{B}_{m}(G)$ is the r-th order principal prolongation functor $W_{m}^{r}: \mathcal{P} \mathcal{B}_{m}(G) \rightarrow \mathcal{P} \mathcal{B}_{m}\left(W_{m}^{r} G\right)$ sending any $\mathcal{P} \mathcal{B}_{m}(G)$-object $P \rightarrow M$ into its r-th order principal prolongation $W_{m}^{r} P=\left\{j_{0}^{r} \varphi \mid \varphi: \mathbf{R}^{m} \times G \rightarrow P\right.$ is a $\left.\mathcal{P} \mathcal{B}_{m}(G)-\operatorname{map}\right\}$ over M and any $\mathcal{P} \mathcal{B}_{m}(G)-$ $\operatorname{map} \psi: P_{1} \rightarrow P_{2}$ into the induced map $W_{m}^{r} \psi: W_{m}^{r} P_{1} \rightarrow W_{m}^{r} P_{2}$ defined via composition of jets. It is clear that $W_{m}^{r} P \rightarrow M$ is a principal $W_{m}^{r} G$-bundle, where $W_{m}^{r} G=$ the fiber of $W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$ over $0 \in \mathbf{R}^{m}$ is the so called r-th order principal prolongation of G. There is a canonical identification $W_{m}^{r} P=$ $P^{r}(M) \times_{M} J^{r} P$ and $W_{m}^{r} G=G_{m}^{r} \times T_{m}^{r} G$ (semi-direct product), where $G_{m}^{r}=$ $\operatorname{inv} J_{0}^{r}\left(\mathbf{R}^{m}, \mathbf{R}^{m}\right)_{0}, T_{m}^{r} G=J_{0}^{r}\left(\mathbf{R}^{m}, G\right)$, see [5]. One can show that for any gauge bundle functor $F: \mathcal{P} \mathcal{B}_{m}(G) \rightarrow \mathcal{F} \mathcal{M}$ of order r it is $F P \tilde{=} W_{m}^{r} P \times_{W_{m}^{r} G} F_{0}$, where F_{0} is the fiber of $F\left(\mathbf{R}^{m} \times G\right)$ over $0 \in \mathbf{R}^{m}$ with the induced left action of $W_{m}^{r} G$, see [5].

Let $F: \mathcal{P B}_{m}(G) \rightarrow \mathcal{F} \mathcal{M}$ be a gauge bundle functor.

Definition 2. A $\mathcal{P} \mathcal{B}_{m}(G)$-natural gauge operator transforming principal connections Γ on $\mathcal{P} \mathcal{B}_{m}(G)$-objects $P \rightarrow M$ and classical linear connections ∇ on M into classical linear connections $A(\Gamma, \nabla)$ on $F P$ is a family of $\mathcal{P} \mathcal{B}_{m}(G)$ -
invariant regular operators

$$
A: \operatorname{Con}_{\text {princ }}(P \rightarrow M) \times \operatorname{Con}_{\text {clas-lin }}(M) \rightarrow \operatorname{Con}_{\text {clas-lin }}(F P)
$$

for any $\mathcal{P B}_{m}(G)$-object $p: P \rightarrow M$, where $\operatorname{Con}_{\text {princ }}(P \rightarrow M)$ is the set of principal general connections on $P \rightarrow M$ and $\operatorname{Con}_{\text {clas-lin }}(M)$ is the set of all classical linear connections on M. The invariance means that for any principal general connections Γ and Γ_{1} on $\mathcal{P}_{m}(G)$-objects $p: P \rightarrow M$ and $p_{1}: P_{1} \rightarrow M_{1}$ (respectively) and classical linear connections ∇ and ∇_{1} on M and M_{1} (respectively), if Γ and Γ_{1} are f-related and ∇ and ∇_{1} are f-related for some $\mathcal{P B}_{m}(G)$-map $f: P \rightarrow P_{1}$ covering $f: M \rightarrow M_{1}$, then $A(\Gamma, \nabla)$ and $A\left(\Gamma_{1}, \nabla_{1}\right)$ are $F f$-related. The regularity means that A transforms smoothly parametrized families of pairs of connections into smoothly parametrized families of connections.

We have an interesting and very important example of a $\mathcal{P} \mathcal{B}_{m}(G)$-gauge natural operator in the sense of Definition 2 for $F=i d_{\mathcal{P B}_{m}(G)}$.

Example 1. ([5]) Let Γ be a principal connection on a $\mathcal{P} \mathcal{B}_{m}(G)$-object $p: P \rightarrow M$ and $\nabla: T M \rightarrow J^{1} T M$ be a classical linear connection on M. Let $v A$ be the vertical component of a vector $A \in T_{y} P$ and $b A$ be its projection to the base manifold M. Consider a vector field X on M such that $j_{x}^{1} X=\nabla(b A)$, $x=p(y)$. Construct the lift X^{Γ} of X and the fundamental vector field $\varphi(v A)$ determined by $v A$. An easy calculation shows that the rule

$$
A \rightarrow j_{y}^{1}\left(X^{\Gamma}+\varphi(v A)\right)
$$

determines a classical linear connection $N_{P}(\Gamma, \nabla): T P \rightarrow J^{1}(T P \rightarrow P)$ on P. One can easily see that this connection $N_{P}(\Gamma, \nabla)$ is p-related with ∇ and G-invariant.

2. Adapted trivialization

In this section, for a reader convenience, we cite from [2] some special trivialization on a principal G-bundle $P \rightarrow M$ which we need in the sequel.

Lemma 1. ([2]) Let Γ be a principal connection on a principal G-bundle $\pi: P \rightarrow M$ and ∇ be a classical linear connection on M. If $p \in P_{x}, x \in M$, then on some neighborhood of x we can define a local section $\tilde{p}: M \rightarrow P$ such that for all $\xi \in G$

$$
\begin{equation*}
\tilde{p} . \xi=\tilde{p} . \xi \tag{1}
\end{equation*}
$$

Proof. ([2]) Let $N_{P}(\Gamma, \nabla)$ be the classical linear connection on P from Example 1. Denote by $\exp _{p}^{N_{P}(\Gamma, \nabla)}: T_{p} P \rightarrow P$ the locally defined exponent of $N_{P}(\Gamma, \nabla)$ at p and $\exp _{x}^{\nabla}: T_{x} M \rightarrow M$ the exponent of ∇ at x. Since $N_{P}(\Gamma, \nabla)$ is G-invariant and π-related with ∇ we have

$$
\begin{equation*}
\exp _{p . \xi}^{N_{P}(\Gamma, \nabla)} \circ T_{p} R_{\xi}=R_{\xi} \circ \exp _{p}^{N_{P}(\Gamma, \nabla)} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi \circ \exp _{p}^{N_{P}(\Gamma, \nabla)}=\exp _{x}^{\nabla} \circ T_{p} \pi . \tag{3}
\end{equation*}
$$

We define

$$
\tilde{p}(y)=\exp _{p}^{N_{P}(\Gamma, \nabla)}\left(\Gamma\left(p,\left(\exp _{x}^{\nabla}\right)^{-1}(y)\right)\right),
$$

where $\Gamma: P \times_{M} T M \rightarrow T P$ is the lifting map (denoted by the same symbol) of Γ. By (3), \tilde{p} is a section near x. Finally, (1) follows from (2).

Definition 3. ([2]) The local section \tilde{p} defined above is called the (Γ, ∇)horizontal extension of the point p.

Now let $P \rightarrow M$ be a $\mathcal{P B}_{m}(G)$-object. Let ∇ be a classical linear connection M and Γ be a principal connection on $P \rightarrow M$. Given a point $p \in P_{x}$ and a frame $l \in P_{x}^{1} M, x \in M$, we can define a local $\mathcal{P} \mathcal{B}_{m}(G)$-map $\Phi^{p, l}: P \rightarrow \mathbf{R}^{m} \times G$ as follows. Choose a unique (more precisely a unique germ at x) ∇-normal coordinate system φ on M with center x sending the given frame l into the frame $l_{o}=\left(\frac{\partial}{\partial x^{i}}\right) \in P_{0}^{1} \mathbf{R}^{m}$. We define $\Phi^{p, l}$ to be the unique $\mathcal{P} \mathcal{B}_{m}(G)$-map covering φ such that $\Phi^{p, l} \circ \tilde{p} \circ \varphi^{-1}$ is the constant section $x \rightarrow(x, e)$ of $\mathbf{R}^{m} \times G \rightarrow \mathbf{R}^{m}$, where $e \in G$ is the neutral element and \tilde{p} is the (Γ, ∇)-horizontal extension of the point p.

Definition 4. ([2]) The map $\Phi^{p, l}: P \rightarrow \mathbf{R}^{m} \times G$ is called the (∇, Γ) adapted trivialization corresponding to $p \in P_{x}$ and $l \in P_{x}^{1} M$.

Clearly, given $A \in G L(m)$ and $\xi \in G$ we have

$$
\begin{equation*}
\Phi^{p . \xi, l . A}=\left(A^{-1} \times L_{\xi^{-1}}\right) \circ \Phi^{p, l} . \tag{4}
\end{equation*}
$$

3. Solution of Problems A and B

Let $F: \mathcal{P B}_{m}(G) \rightarrow \mathcal{F M}$ be a gauge bundle functor. On the standard fiber $F_{0}\left(\mathbf{R}^{m} \times G\right), 0 \in \mathbf{R}^{m}$, we have the left action of $G L(m) \times G$ by $(B, \xi) \cdot f=$ $F\left(B \times L_{\xi}\right)(f), f \in F_{0}\left(\mathbf{R}^{m} \times G\right)$. The following theorem is a solution of Problem A.

Theorem 1. Let $F: \mathcal{P B}_{m}(G) \rightarrow \mathcal{F M}$ be a gauge bundle functor. The following conditions are equivalent:
(a) There exists a canonical construction (a $\mathcal{P} \mathcal{B}_{m}(G)$-natural gauge operator) of a classical linear connection $A(\Gamma, \nabla)$ from a principal general connection Γ on $P \rightarrow M$ by means of a classical linear connection ∇ on M.
(b) There exists a $G L(m) \times G$-invariant classical linear connection $\tilde{\nabla}$ on the standard fibre $F_{0}\left(\mathbf{R}^{m} \times G\right)$ of F.

Proof. Suppose we have a $G L(m) \times G$-invariant classical linear connection $\tilde{\nabla}$ on $F_{0}\left(\mathbf{R}^{m} \times G\right)$. Let Γ be a principal general connection on an $\mathcal{P} \mathcal{B}_{m}(G)$ object $p: P \rightarrow M$ and let ∇ be a classical linear connection on M. We are going to construct a classical linear connection $A(\Gamma, \nabla)$ on $F P$. Let $f \in F_{x} P$, $x \in M$. We choose $p \in P_{x}$ and $l \in P_{x}^{1} M$. Let $\Phi^{p, l}$ over φ^{l} be be the (∇, Γ) adapted trivialization corresponding to p and l (see Definition 4). We have classical linear connection $\varphi_{*}^{l} \nabla \times \tilde{\nabla}$ on some neighborhood of the fibre over zero of $F\left(\mathbf{R}^{m} \times G\right) \simeq \mathbf{R}^{m} \times F_{0}\left(\mathbf{R}^{m} \times G\right)$. We put

$$
\left.A(\Gamma, \nabla)_{f}=\left(Q F \Phi^{p, l}\right)^{-1}\left(\left(\varphi^{l}\right)_{*} \nabla \times \tilde{\nabla}\right)_{F \Phi^{p, l}(f)}\right)
$$

where Q is the bundle functor of classical linear connections. Because of (4) and the $G L(m) \times G$-invariance of $\tilde{\nabla}$, the definition of $A(\Gamma, \nabla)_{f}$ is correct (it is independent of the choice of $(p, l))$.

Conversely, suppose we have a canonical construction $\left(\mathcal{P B}_{m}(G)\right.$-natural gauge operator) A transforming principal general connections Γ on $P \rightarrow M$ and classical linear connections ∇ on M into classical linear connections $A(\Gamma, \nabla)$ on $F P$. Let ∇^{o} be the flat classical linear connection on \mathbf{R}^{m} and Γ^{o} be the trivial principal general connection on $\mathbf{R}^{m} \times G \rightarrow \mathbf{R}^{m}$. Then we have the classical linear connection $A\left(\Gamma^{o}, \nabla^{o}\right)$ on $F\left(\mathbf{R}^{m} \times G\right)=\mathbf{R}^{m} \times F_{0}\left(\mathbf{R}^{m} \times G\right)$. Thus (by the Gauss formula) we have the classical linear connection $\tilde{\nabla}$ on $F_{0}\left(\mathbf{R}^{m} \times G\right)$. Since Γ^{o} is $G L(m) \times G$-invariant and ∇^{o} is $G L(m)$-invariant and A is invariant, then $\tilde{\nabla}$ is $G L(m) \times G$-invariant.

Example 2. In the case of a vector gauge bundle functor $F: \mathcal{P B}_{m}(G) \rightarrow$ $\mathcal{V B}$ (where $\mathcal{V B}$ is the category of all vector bundles and all vector bundle maps) we have the linear action of $G L(m) \times G$ on the vector space $F_{0}\left(\mathbf{R}^{m} \times G\right)$. Let $\tilde{\nabla}=\nabla^{F}$ be the usual flat connection on $F_{0}\left(\mathbf{R}^{m} \times G\right)$. It is $G L(m) \times$ G-invariant. Therefore (because of Theorem 1) we have a $\mathcal{P} \mathcal{B}_{m}(G)$-natural
gauge operator A^{F} transforming principal general connections Γ on $\mathcal{P} \mathcal{B}_{m}(G)$ objects $P \rightarrow M$ and classical linear connections ∇ on M into classical linear connections $A^{F}(\Gamma, \nabla)$ on $F P$.

Example 3. Let $F=W_{m}^{r}: \mathcal{P B}_{m}(G) \rightarrow \mathcal{F} \mathcal{M}$ be the r-th order principal prolongation functor. The fiber $W_{m}^{r} G$ over 0 of $W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$ is a Lie group and therefore there exists left $W_{m}^{r} G$-invariant classical linear connection $\tilde{\nabla}$ on $W_{m}^{r} G$. Since $G l(m) \times G$ is a subgroup of $W_{m}^{r} G$, then this connection $\tilde{\nabla}$ is also $G L(m) \times G$ invariant. Consequently, by Theorem 1 we have a $\mathcal{P} \mathcal{B}_{m}(G)$-natural gauge operator A transforming principal general connections Γ on $P \rightarrow M$ and classical linear connections ∇ on M into classical linear connections $A(\Gamma, \nabla)$ on $W_{m}^{r} P$.

Remark 1. In [1], M. Doupovec and the second author classified all $\mathcal{P} \mathcal{B}_{m}(G)$-natural gauge operators A transforming principal connections Γ on $P \rightarrow M$ and r-th order linear connections $\Lambda: T M \rightarrow J^{r} T M$ on M into classical linear connections $A(\Gamma, \Lambda)$ on $W_{m}^{r} P$.

Example 4. (A solution of Problem B) Let $\tilde{\mathbf{P}}(T): \mathcal{P} \mathcal{B}_{m}(G) \rightarrow \mathcal{F M}$ be the gauge bundle functor

$$
\tilde{\mathbf{P}}(T)(P)=\bigcup_{x \in M} \mathbf{P}\left(T_{x} M\right), \quad \tilde{\mathbf{P}}(T)(f)=\bigcup_{x \in M} \mathbf{P}\left(T_{x} \underline{f}\right)
$$

where $\mathbf{P}(V)$ is the projective space determined by a vector space V. By Lemma 5 in [7] for $n=0$ we have that there is no $G L(m)$-invariant classical linear connection on $\mathbf{P}\left(\mathbf{R}^{m}\right)$ for $m \geq 2$. That is why, there is no $G L(m) \times G$ invariant classical linear connection on $\tilde{\mathbf{P}}(T)_{0}\left(\mathbf{R}^{m} \times G\right) \simeq \mathbf{=}\left(\mathbf{R}^{m}\right)$. By Theorem 1, there is no canonical construction of a classical linear connection $A(\Gamma, \nabla)$ on $\tilde{\mathbf{P}}(T)(P)$ from a principal general connection Γ on $P \rightarrow M$ by means of a classical linear connection ∇ on M.

References

[1] M. Doupovec, W.M. Mikulski, Gauge natural constructions on higher order principal prolongations, Ann. Polon. Math. 92 (1) (2007), 87-97.
[2] M. Doupovec, W.M. Mikulski, Reduction theorem for classical and principal connections, Acta Math. Sinica (English-Series) 25 (2009), to appear.
[3] C. Ehresmann, Sur les connections d'ordre supérieur, in "Atti del C. Cang. del'Unione Mat. Italiana 1955, Roma Cremonese (1956)", 344-346.
[4] L. Fatibene, M. Francaviglia, "Natural and Gauge Formalisms for Classical Field Theories", Kluwer Academic Publishers, Dordrecht, 2003.
[5] I. KoláŘ, P.W. Michor, J. Slovák, "Natural Operations in Differential Geometry", Springer-Verlag, Berlin, 1993.
[6] W.M. Mikulski, Negative answers to some questions about constructions on connections, Demonstratio Math. 39 (3)(2006), 685-689.
[7] W.M. Mikulski, On the existence of prolongation of connections by bundle functors, Extracta Math. 22 (3)(2007), 297-314.

