The $S L(2, \mathbb{C})$ Character Variety of a Class of Torus Knots

Antonio M. Oller-Marcén *
Departamento de Matemáticas, Universidad de Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain, oller@unizar.es

Abstract: Let $K_{\frac{m}{2}}$ be the torus knot of type $(m, 2)$. It is well-known that the fundamental group of $S^{3} \backslash K_{\frac{m}{2}}$ is $G=\left\langle A, B \mid A^{m}=B^{2}\right\rangle$. In this paper we obtain a defining polynomial of the character variety $X(G)$ which allows us to give an easy geometrical description of it.
Key words: Torus knot, character variety
AMS Subject Class. (2000): 57M25, 57M27

1. The character variety of a finitely presented group

Let G be a group, a representation $\rho: G \longrightarrow S L(2, \mathbb{C})$ is just a group homomorphism. We say that two representations ρ and ρ^{\prime} are equivalent if there exists $P \in S L(2, \mathbb{C})$ such that $\rho^{\prime}(g)=P^{-1} \rho(g) P$ for every $g \in G$. A representation ρ is reducible if the elements of $\rho(G)$ all share a common eigenvector, otherwise we say ρ is irreducible.

Now, let us consider a finitely presented group $G=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{s}\right\rangle$ and let $\rho: G \longrightarrow S L(2, \mathbb{C})$ be a representation. It is clear that ρ is completely determined by the k-tuple $\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{k}\right)\right)$ and thus we can identify

$$
R(G)=\left\{\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{k}\right)\right) \mid \rho \text { is a representation of } G\right\} \subseteq \mathbb{C}^{4 k}
$$

with the set of all representations of G into $S L(2, \mathbb{C})$, which is therefore (see [1]) a well-defined affine algebraic set, up to canonical isomorphism.

Recall that given a representation $\rho: G \longrightarrow S L(2, \mathbb{C})$ its character χ_{ρ} : $G \longrightarrow \mathbb{C}$ is defined by $\chi_{\rho}(g)=\operatorname{tr} \rho(g)$. Note that two equivalent representations ρ and ρ^{\prime} have the same character, and the converse is also true if ρ or ρ^{\prime} is

[^0]irreducible [1, Prop. 1.5.2]. Now choose any $g \in G$ and define $t_{g}: R(G) \longrightarrow \mathbb{C}$ by $t_{g}(\rho)=\chi_{\rho}(g)$. Let T denote the ring generated by $\left\{t_{g} \mid g \in G\right\}$, then ($[1$, Prop. 1.4.1]) T is finitely generated ring and, moreover, it can be shown using the well-known identities
\[

$$
\begin{aligned}
\operatorname{tr} A & =\operatorname{tr} A^{-1} \\
\operatorname{tr} A B & =\operatorname{tr} B A \\
\operatorname{tr} A B & =\operatorname{tr} A \operatorname{tr} B-\operatorname{tr} A B^{-1}
\end{aligned}
$$
\]

which hold in $S L(2, \mathbb{C})$ (see [2, Cor. 4.1.2]) that T is generated by the set:

$$
\left\{t_{x_{i}}, t_{x_{i} x_{j}}, t_{x_{i} x_{j} x_{h}} \mid 1 \leq i<j<h \leq k\right\}
$$

Now choose $\gamma_{1}, \ldots, \gamma_{\nu} \in G$ such that $T=\left\langle t_{\gamma_{i}} \mid 1 \leq i \leq \nu\right\rangle$ and define the $\operatorname{map} t: R(G) \longrightarrow \mathbb{C}^{\nu}$ by $t(\rho)=\left(t_{\gamma_{1}}(\rho), \ldots, t_{\gamma_{\nu}}(\rho)\right)$. Observe that $\nu \leq \frac{k\left(k^{2}+5\right)}{6}$. Put $X(G)=t(R(G))$, then $X(G)$ is an algebraic variety which is well defined up to canonical isomorphism [1, Cor. 1.4.5] and is called the character variety of the group G in $S L(2, \mathbb{C})$. Note that $X(G)$ can be identified with the set of all characters χ_{ρ} of representations $\rho \in R(G)$.

For every $1 \leq j \leq k$ and for every $1 \leq i \leq s$ we have that $p_{i j}=t_{r_{i} x_{j}}-t_{x_{j}}$ is a polynomial with rational coefficients in the variables $\left\{t_{x_{i_{1}} \ldots x_{i_{m}}} \mid m \leq 3\right\}$, (see [2, Cor. 4.1.2]). Then, we have the following explicit description of $X(G)$.

Theorem 1.1. ([2, Theor. 3.2]) $X(G)=\left\{\bar{x} \in X\left(F_{k}\right) \mid p_{i j}(\bar{x})=0, \forall i, j\right\}$, where F_{k} is the free group in k generators.

2. Torus knots

Recall that \mathbb{R}^{2} is the universal covering of the torus T^{2}. We define the action $\Phi:(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by $\Phi((m, n),(x, y))=(x+m, y+n)$, this action induces an isomorphism $\mathbb{R}^{2} /(\mathbb{Z} \times \mathbb{Z}) \cong T^{2}$ that we shall denote by ϕ. If we now consider the family $\left\{r_{p}: y=p x \mid p \in \mathbb{R}\right\}$ of straight lines passing through the origin, it is easily seen that if p is irrational then $\phi\left(r_{p}\right)$ is dense in T^{2} and if $p=m / n$ with g.c.d. $(m, n)=1$, then $\phi\left(r_{p}\right) \subseteq T^{2} \subseteq \mathbb{R}^{3}$ is a knot. We denote this knot by $K \frac{m}{n}$ and call it the torus knot of type (m, n) (see [5, Chapter 3] for further considerations).

If we denote, as usual, by $G(K)$ the fundamental group of the exterior of any knot K it is well-known that

$$
G\left(K_{\frac{m}{n}}\right) \cong\left\langle A, B \mid A^{m}=B^{n}\right\rangle
$$

Now, if $m \geq 1$ is an odd integer, let us define the following group:

$$
H_{m}=\langle x, y \mid \underbrace{x y x y \ldots y x}_{\text {length } m}=\overbrace{y x y x \ldots x y}^{\text {length } m}\rangle
$$

Where length m means that there are m letters counting y 's and x 's together. Note that since m is odd, the word starts and ends with the same letter. Now, the following isomorphism will be useful in the sequel.

Lemma 2.1. Let $m \geq 1$ be an odd integer. Then $G\left(K_{\frac{m}{2}}\right) \cong H_{m}$.
Proof. We define $\varphi: H_{m} \longrightarrow G\left(K_{\frac{m}{2}}\right)$ given by $\varphi(x)=B^{-1} A^{\frac{m+1}{2}}, \varphi(y)=$ $A^{-\frac{m-1}{2}} B$ and $\psi: G\left(K_{\frac{m}{2}}\right) \longrightarrow H_{m}$ given by $\psi(A)=y x, \psi(B)=\overbrace{y x y x \ldots y}^{\text {length } m}$. The result follows from some easy computations.

3. Some families of polynomials

We will start this section by defining recursively the following family of polynomials:

$$
\begin{gathered}
q_{1}(T)=T-2 \\
q_{2}(T)=T+2 \\
\prod_{1 \neq d \mid n} q_{d}\left(X+\frac{1}{X}\right)=\frac{X^{n-1}+X^{n-2}+\cdots+X+1}{X^{\frac{n-1}{2}}} \quad \text { if } n \text { is odd } \\
\prod_{1,2 \neq d \mid n} q_{d}\left(X+\frac{1}{X}\right)=\frac{X^{n-2}+X^{n-4}+\cdots+X^{2}+1}{X^{\frac{n-2}{2}}} \quad \text { if } n \text { is even. }
\end{gathered}
$$

Remark 1. If we recall the recursive definition of the cyclotomic polynomials (see [3, Chapter 5]) by

$$
\prod_{d \mid n} g_{d}(T)=T^{n}-1
$$

then it is easily seen that for $n>1$

$$
g_{n}(T)=T^{\frac{\varphi(n)}{2}} q_{n}\left(T+\frac{1}{T}\right)
$$

where φ is the Euler function.

Now we introduce another family of polynomials:

$$
\begin{gathered}
p_{1}(X)=X \\
p_{2}(X)=X^{2}-2 \\
p_{n}(X)=X p_{n-1}(X)-p_{n-2}(X), \forall n \geq 3
\end{gathered}
$$

Remark 2. Let G be a group and $\rho: G \longrightarrow S L(2, \mathbb{C})$ a representation. Then $p_{n}(\operatorname{tr} \rho(x))=\operatorname{tr} \rho\left(x^{n}\right)$ for every $n \geq 1$. For the sake of completeness we will set, where necessary, $p_{0}(X)=1$.

We have the following relationship between the families we have just defined:

Proposition 3.1. $p_{n}(X)-2=q_{1}(X) \prod_{1 \neq d \mid n} q_{d}^{2}(X)$ if n is odd, and $p_{n}(X)-2=q_{1}(X) q_{2}(X) \prod_{1,2 \neq d \mid n} q_{d}^{2}(X)$ if n is even.

Proof. We will just show the odd case, the even case being completely analogous.

Consider the cyclic group $G=\langle x\rangle$ and a representation $\rho: G \longrightarrow S L(2, \mathbb{C})$. We can suppose, conjugating if necessary, that

$$
\rho(x)=\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)
$$

In such case it must be

$$
\rho\left(x^{n}\right)=\rho(x)^{n}=\left(\begin{array}{cc}
a^{n} & c \\
0 & a^{-n}
\end{array}\right) .
$$

Set $X=\operatorname{tr}(\rho(x))=a+a^{-1}$, then

$$
\begin{aligned}
p_{n}(X)-2 & =\operatorname{tr}\left(\rho\left(x^{n}\right)\right)-2=a^{n}+a^{-n}-2=\frac{\left(a^{n}-1\right)^{2}}{a^{n}} \\
& =\frac{1}{a^{n}}\left(\prod_{d \mid n} g_{d}(a)\right)^{2}=\frac{(a-1)^{2}}{a^{n}}\left(\prod_{1 \neq d \mid n} g_{d}(a)\right)^{2} \\
& =\frac{\left(a+a^{-1}-2\right) a}{a^{n}}\left(\prod_{1 \neq d \mid n} a^{\frac{\varphi(d)}{2}} q_{d}\left(a+a^{-1}\right)\right)^{2} \\
& =q_{1}(X) \prod_{1 \neq d \mid n} q_{d}^{2}(X) .
\end{aligned}
$$

where the identity $\sum_{d \mid n} \varphi(d)=n$ was used.
Remark 3. The roots of $p_{n}(X)-2$ are precisely the possible values of $\operatorname{tr}(\rho(x))$ if $\rho: G \longrightarrow S L(2, \mathbb{C})$ is a representation and $x^{n}=1$.

Let R be any ring and consider a polynomial $g(T)=\sum_{i=0}^{n} a_{i} T^{i} \in R[T]$. We define

$$
: R[T] \longrightarrow R[T] \quad \text { by } \quad g^{}(T)=\sum_{i=0}^{n}(-1)^{n-i} a_{i} T^{i}
$$

In the next lemma we show some useful properties of this application.
Lemma 3.2. Given $g, h \in R[T]$ we have:
a) $g^{* *}=g$.
b) $(g h)^{*}=g^{*} h^{*}$.
c) If $g(T)=\sum_{i=0}^{n} a_{i} T^{i}$, then $g^{*}=g$ if and only if $a_{i}=0$ for every i such that $(n-i) \equiv 1(\bmod 2)$.

Proof. a) and b) follow from the identity $g^{*}(T)=(-1)^{\operatorname{deg}(g)} g(-T)$. c) is straightforward.

We can use the involution just defined to show another relation between our two families of polynomials.

Proposition 3.3. If $s \geq 1$ is an integer, then

$$
\sum_{i=0}^{s}(-1)^{i} p_{s-i}(Z)=\prod_{1 \neq d \mid 2 s+1} q_{d}^{*}(Z)
$$

Proof. We observe that the degree of every term in $p_{s}(Z)$ has the same parity as $s=\operatorname{deg} p_{s}(Z)$. This fact together with the definition of $*$ shows that

$$
\left(\sum_{i=0}^{s}(-1)^{i} p_{s-i}(Z)\right)^{*}=\sum_{i=0}^{s} p_{i}(Z) .
$$

Now, we claim that

$$
\sum_{i=0}^{s} p_{i}(Z)=\prod_{1 \neq d \mid 2 s+1} q_{d}(Z)
$$

We will prove this by induction on s, the case $s=1$ being trivial since $p_{0}(Z)+p_{1}(Z)=1+Z=q_{3}(Z)$. Now let $s>1$ be an odd integer (the even case is similar), by hypothesis we have

$$
\sum_{i=0}^{s} p_{i}(Z)=\sum_{i=0}^{s-1} p_{i}(Z)+p_{s}(Z)=\prod_{1 \neq d \mid 2 s-1} q_{d}(Z)+p_{s}(Z)
$$

and thus, setting $Z=X+\frac{1}{X}$ one obtains:

$$
\begin{aligned}
\sum_{i=0}^{s} p_{i}\left(X+\frac{1}{X}\right) & =\prod_{1 \neq d \mid 2 s-1} q_{d}\left(X+\frac{1}{X}\right)+p_{s}\left(X+\frac{1}{X}\right) \\
& =\frac{\sum_{i=0}^{2 s-2} X^{i}}{X^{s-1}}+q_{1}\left(X+\frac{1}{X}\right) \prod_{1 \neq d \mid s} q_{s}^{2}\left(X+\frac{1}{X}\right)+2 \\
& =\frac{\sum_{i=0}^{2 s-2} X^{i}}{X^{s-1}}+\frac{(X-1)^{2}}{X} \frac{\left(\sum_{i=0}^{s-1} X^{i}\right)^{2}}{X^{s-1}}+2 \\
& =\frac{\sum_{i=0}^{2 s-2} X^{i}}{X^{s-1}}+\frac{X^{2 s}+1}{X^{s}}=\frac{\sum_{i=0}^{2 s} X^{i}}{X^{s}}=\prod_{1 \neq d \mid 2 s+1} q_{d}\left(X+\frac{1}{X}\right)
\end{aligned}
$$

The proof is now completed by applying 3.2 a), b).

4. The $S L(2, \mathbb{C})$ character variety of the knots $K_{\frac{m}{2}}$

The aim of this section is to give a generating family of polynomials for $X(G)$ with $G=G\left(K_{\frac{m}{2}}\right)(m>1$, odd) as well as a geometric description of this variety. Since we know that $G\left(K_{\frac{m}{2}}\right) \cong H_{m}$ we will work with $X\left(H_{m}\right)$ instead.

Before going into our main result we have to introduce another polynomial. We set $h(X, Z)=X^{2}-Z$ and $k(X)=X^{2}-2$. Now we define

$$
\alpha_{l}(X, Z)= \begin{cases}h(X, Z) & \text { if } l \text { is even } \\ k(X) & \text { if } l \text { is odd }\end{cases}
$$

and finally we write for $s \geq 1$

$$
f_{s}(X, Z)=p_{s}(Z)(h(X, Z)-1)+\sum_{i=1}^{s}(-1)^{i} p_{s-i}(Z) \alpha_{i}(X, Z)
$$

With these definitions we can prove the following result.
Proposition 4.1. If $m>1$ is an odd integer, then

$$
X\left(H_{m}\right)=\left\{(X, Z) \in \mathbb{C}^{2} \left\lvert\, f_{\frac{m-1}{2}}(X, Z)=0\right.\right\}
$$

Proof. We set $w=\underbrace{x y x y \ldots y x}_{\text {length } m} \underbrace{y^{-1} x^{-1} y^{-1} x^{-1} \ldots y^{-1}}_{\text {length } m}$. Then, using Theorem 3.2 in [2], we have

$$
X\left(H_{m}\right)=\left\{(X, Y, Z) \in \mathbb{C}^{3} \mid p_{0}(X, Y, Z)=p_{1}(X, Y, Z)=p_{2}(X, Y, Z)=0\right\}
$$

where

$$
\begin{array}{cc}
X=\tau_{x}, & p_{0}(X, Y, Z)=\tau_{w}-\tau_{1} \\
Y=\tau_{y}, & p_{1}(X, Y, Z)=\tau_{w x}-\tau_{x} \\
Z=\tau_{x y}, & p_{2}(X, Y, Z)=\tau_{w y}-\tau_{y}
\end{array}
$$

Now, $w y=\underbrace{x y x \ldots y}_{\text {length } m-1} x(\underbrace{x y x \ldots y}_{\text {length } m-1})^{-1}$ so we have $\tau_{w y}=\tau_{x}$ obtaining that $p_{2}(X, Y, Z)=X-Y$.

On the other hand $\tau_{w x}=\tau_{w} \tau_{x}-\tau_{w x^{-1}}$ and $w x^{-1}=\underbrace{x y \ldots x}_{\text {length } m} y^{-1}(\underbrace{x y \ldots x}_{\text {length } m})^{-1}$ so we get $\tau_{w x^{-1}}=\tau_{y^{-1}}=\tau_{y}$ and thus

$$
\begin{aligned}
p_{1}(X, Y, Z) & =\tau_{w x}-\tau_{x}=\tau_{w} \tau_{x}-\tau_{y}-\tau_{x}=\tau_{x}\left(\tau_{w}-1\right)-\tau_{y} \\
& =X p_{0}(X, Y, Z)+X-Y
\end{aligned}
$$

Set now $w_{1}=(x y)^{\frac{m-1}{2}}$ and $w_{2}=(y x)^{\frac{m-1}{2}} y x^{-1}$. Since $w=1$ if and only if $w_{1}=w_{2}$, then it is easy to see that $p_{0}(X, Y, Z)=\tau_{w}-\tau_{1}$ vanishes if and only if $f(X, Y, Z)=\tau_{w_{2}}-\tau_{w_{1}}$ does. As a a consequence

$$
\begin{aligned}
X\left(H_{m}\right) & =\left\{(X, Y, Z) \in \mathbb{C}^{3} \mid f(X, Y, Z)=0=X-Y\right\} \\
& \cong\left\{(X, Z) \in \mathbb{C}^{2} \mid f(X, X, Z)=0\right\}
\end{aligned}
$$

Let us compute now the polynomial $f(X, Y, Z)$.

Firstly it is obvious by definition that $\tau_{w_{1}}=p_{\frac{m-1}{2}}(Z)$. In addition we have

$$
\tau_{w_{2}}=\tau_{(y x)^{\frac{m-1}{2}}} \tau_{y x^{-1}}-\tau_{(x y)^{\frac{m-3}{2}}}^{x x} \text { }=p_{\frac{m-1}{2}}(Z)(X Y-Z)-\tau_{(x y)^{\frac{m-3}{2}}{ }_{x x} .}
$$

Thus, we have that

$$
f(X, Y, Z)=\tau_{w_{2}}-\tau_{w_{1}}=p_{\frac{m-1}{2}}(Z)(X Y-Z-1)-\tau_{(x y)^{\frac{m-3}{2}}}^{x x} \text { }
$$

Now, we claim that if $X=Y$ then

$$
\tau_{(x y)^{\frac{m-3}{2}} x x}=-\sum_{i=1}^{\frac{m-1}{2}}(-1)^{i} p_{\frac{m-1}{2}-i}(Z) \alpha_{i}(X, Z)
$$

We will proceed by induction on m, the cases $m=3,5$ being an easy verification. If $n \geq 7$, then some straightforward computations and the use of the recursive definition of the family $\left\{p_{n}\right\}$ gives

$$
\begin{aligned}
\tau_{(x y)^{\frac{m-3}{2}} x x} & =\tau_{x y} \tau_{(x y)^{\frac{m-5}{2}} x x}-\tau_{(x y)^{\frac{m-7}{2}} x x} \\
= & -Z \sum_{i=1}^{\frac{m-3}{2}}(-1)^{i} p_{\frac{m-3}{2}-i}(Z) \alpha_{i}(X, Z)+\sum_{i=1}^{\frac{m-5}{2}}(-1)^{i} p_{\frac{m-5}{2}-i}(Z) \alpha_{i}(X, Z) \\
= & -\sum_{i=1}^{\frac{m-7}{2}}(-1)^{i}\left[Z p_{\frac{m-3}{2}-i}(Z)-p_{\frac{m-3}{2}-i-1}(Z)\right] \alpha_{i}(X, Z) \\
& -(-1)^{\frac{m-5}{2}} Z p_{1}(Z) \alpha_{\frac{m-5}{2}}(X, Z)-(-1)^{\frac{m-3}{2}} Z p_{0}(Z) \alpha_{\frac{m-3}{2}}(X, Z) \\
& +(-1)^{\frac{m-5}{2}} p_{0}(Z) \alpha_{\frac{m-5}{2}}(X, Z) \\
= & -\sum_{i=1}^{\frac{m-1}{2}}(-1)^{i} p_{\frac{m-1}{2}-i}(Z) \alpha_{i}(X, Z)
\end{aligned}
$$

Consequently, and recalling the definition of $f_{s}(X, Z)$ we get that $f(X, X, Z)=$ $f_{\frac{m-1}{2}}(X, Z)$ and the proof is complete.

In order to obtain a geometrical description of $X\left(H_{m}\right)$ we are interested in factorizing the polynomial $f_{s}(X, Z)$. We will start by rewriting it in a different way:
$f_{s}(X, Z)=\left(X^{2}-Z-2\right)\left(\sum_{i=0}^{s}(-1)^{i} p_{s-i}(Z)\right)+p_{s}(Z)+\sum_{i=1}^{s}(-1)^{i} \beta_{i}(Z) p_{s-i}(Z)$,
where $\beta_{k}(Z)= \begin{cases}Z & \text { if } k \text { is odd. } \\ 2 & \text { if } k \text { is even. }\end{cases}$
LEMMA 4.2. $p_{s}(Z)+\sum_{i=1}^{s}(-1)^{i} \beta_{i}(Z) p_{s-i}(Z)=0$
Proof. It is enough to use the fact that $p_{s}(Z)-Z p_{s-1}(Z)=-p_{s-2}(Z)$.
Corollary 4.3. If $m>1$ is an odd integer, then

$$
X\left(H_{m}\right) \cong\left\{(X, Z) \in \mathbb{C}^{2} \mid\left(X^{2}-Z-2\right) \prod_{1 \neq d \mid m} q_{d}^{*}(Z)=0\right\}
$$

Proof. Just apply Proposition 3.3 and Lemma 4.2 to Proposition 4.1.
Now, we will find the roots of $q_{d}(Z)$. This is done in the following lemma.

LEMMA 4.4. Let $\left\{a_{1}, \bar{a}_{1}, \ldots, a_{\frac{\varphi(r)}{2}}, \bar{a}_{\frac{\varphi(r)}{2}}\right\}$ be set of the $\varphi(r)$ primitive r th roots of unity. Then

$$
q_{r}(Z)=\prod_{i=1}^{\frac{\varphi(r)}{2}}\left(Z-2 \operatorname{Re}\left(a_{i}\right)\right)
$$

Proof. Recall that, for $r>2$ we have $g_{r}(X)=X^{\frac{\varphi(r)}{2}} q_{r}(X+1 / X)$ with $g_{r}(X)$ being the r th cyclotomic polynomial. As for all $1 \leq j \leq \frac{\varphi(r)}{2}$ it holds that $\frac{1}{a_{j}}=\overline{a_{j}}$ we obtain that $q_{r}(Z)$ has exactly $\frac{\varphi(r)}{2}$ different roots, namely $\left\{2 \operatorname{Re}\left(a_{1}\right), \ldots, 2 \operatorname{Re}\left(a_{\frac{\varphi(r)}{}}\right)\right\}$. This together with the fact that the degree of $q_{r}(Z)$ is $\frac{\varphi(r)}{2}$ completes the proof.

This lemma allows us to go one step further in our description of the curve $X\left(H_{m}\right)$.

Corollary 4.5. Let $m>1$ be an odd integer. In the complex plane (X, Z) the curve $X\left(H_{m}\right)$ consists of the parabola $Z=X^{2}-2$ and the union of $\frac{m-1}{2}$ horizontal lines of the form $Z=-2 \operatorname{Re}(w)$, being $1 \neq w$ an mth root of unity.

Proof. It is enough to apply the previous lemma together with the fact that given a polynomial g, then a number a is a root of g if and only if $-a$ is a root of g^{*}.

Remark 4. Recall that the genus of the torus knot $K_{\frac{m}{n}}$ is $\frac{(m-1)(n-1)}{2}$. In our case, where $n=2$ the genus of $K_{\frac{m}{2}}$ is $\frac{m-1}{2}$, which precisely coincides with the number of straight lines in $X\left(H_{m}{ }^{2}\right)$.

Acknowledgements

The author wishes to thank the referee for his/her useful comments.

References

[1] M. Culler, P. Shalen, Varieties of group representations and splitting of 3-manifolds, Ann. of Math., 117 (1983), 109-146.
[2] F. González-Acuña, J.M. Montesinos-Amilibia, On the character variety of group representations in $S L(2, \mathbb{C})$ and $\operatorname{PSL}(2, \mathbb{C})$, Math. Z., 214 (1993), 627-652.
[3] T.W. Hungerford, "Algebra", Springer-Verlag, New York, 2003.
[4] I.M. IsAACS, "Character Theory of Finite Groups", Dover, New York, 1994.
[5] D. Rolfsen, "Knots and Links", Publish or Perish, Houston, 1990.

[^0]: *Partially supported by the Spanish projects MTM2004-08115-C04-02 and MTM2007-67884-C04-02

