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Abstract: Let K= be the torus knot of type (m,2). It is well-known that the fundamental
group of S§%\ Ku is G=(A,B|A™ = B?). In this paper we obtain a defining polynomial
of the character variety X (G) which allows us to give an easy geometrical description of it.
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1. THE CHARACTER VARIETY OF A FINITELY PRESENTED GROUP

Let G be a group, a representation p : G — SL(2,C) is just a group
homomorphism. We say that two representations p and p’ are equivalent if
there exists P € SL(2,C) such that p'(g) = P 1p(g)P for every g € G.
A representation p is reducible if the elements of p(G) all share a common
eigenvector, otherwise we say p is irreducible.

Now, let us consider a finitely presented group G = (x1, ..., 2k | r1,...,7s)
and let p : G — SL(2,C) be a representation. It is clear that p is completely
determined by the k-tuple (p(x1),..., p(z)) and thus we can identify

R(G) = {(p(x1),...,p(xx)) | pis a representation of G} C C*

with the set of all representations of G into SL(2,C), which is therefore (see
[1]) a well-defined affine algebraic set, up to canonical isomorphism.

Recall that given a representation p : G — SL(2,C) its character x, :
G — C is defined by x,(g9) = trp(g). Note that two equivalent representa-
tions p and p’ have the same character, and the converse is also true if p or p’ is
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irreducible [1, Prop. 1.5.2]. Now choose any g € G and define ¢, : R(G) — C
by t4(p) = x,(g9). Let T denote the ring generated by {t, | g € G}, then ({1,
Prop. 1.4.1]) T is finitely generated ring and, moreover, it can be shown using
the well-known identities

trA=trA"
tr AB =tr BA
trAB=trAtr B —tr AB~!

which hold in SL(2,C) (see [2, Cor. 4.1.2]) that T is generated by the set:
{txi’txqjxj7t$‘¢$jxh | 1<i<j<h< k‘}

Now choose 71,...,7, € G such that T'= (t,, | 1 <i < v) and define the
map ¢ : R(G) — C” by t(p) = (t,(p),-..,ty,(p)). Observe that v < @.
Put X(G) = t(R(G)), then X (G) is an algebraic variety which is well defined
up to canonical isomorphism [1, Cor. 1.4.5] and is called the character variety
of the group G in SL(2,C). Note that X (G) can be identified with the set of
all characters x, of representations p € R(G).

For every 1 < j < k and for every 1 <1i < s we have that p;; = t;,2;, — ta;
is a polynomial with rational coefficients in the variables {twil...mim | m < 3},
(see [2, Cor. 4.1.2]). Then, we have the following explicit description of X (G).

THEOREM 1.1. ([2, Theor. 3.2]) X(G) = {z € X(F}) | pij(T) =0, Vi, j},
where F}, is the free group in k generators.

2. TORUS KNOTS

Recall that R? is the universal covering of the torus 72. We define the
action ® : (Z x Z) x R? — R? by ®((m,n), (z,y)) = (x + m,y + n), this
action induces an isomorphism R?/(Z x Z) = T? that we shall denote by ¢.
If we now consider the family {r, : y = pz | p € R} of straight lines passing
through the origin, it is easily seen that if p is irrational then ¢(r,) is dense
in 72 and if p = m/n with g.c.d.(m,n) = 1, then ¢(r,) C T? C R? is a knot.
We denote this knot by K'm and call it the torus knot of type (m,n) (see [5,
Chapter 3] for further considerations).

If we denote, as usual, by G(K) the fundamental group of the exterior of
any knot K it is well-known that

G(Kn)=(A,B| A" = B").
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Now, if m > 1 is an odd integer, let us define the following group:

length m
——
Hy,, = {(z,y | zyzy...yz =Yyzyx...xY).
~—_——

length m

Where length m means that there are m letters counting 4’s and x’s together.
Note that since m is odd, the word starts and ends with the same letter. Now,
the following isomorphism will be useful in the sequel.

LEMMA 2.1. Let m > 1 be an odd integer. Then G(Kx) = Hy,.

Proof. We define ¢ : Hy, — G(K=) given by p(z) = B*1Am7+17 o(y) =
length m
AT B and ¢ : G(Kn) — Hyy, given by ¢(A) = yx, ¢(B) = Gagz ).
The result follows from some easy computations. 1

3. SOME FAMILIES OF POLYNOMIALS

We will start this section by defining recursively the following family of
polynomials:

ql(T):T—2,
qQ(T):T+27
1 Xl xn=2 4. 4 X +1
qu<X+X)— + L—: rAT if n is odd,
1#£d|n X2
1 X 24Xty X241
H q4 X—i—f = =) if n is even.
1,2#d|n X2

Remark 1. If we recall the recursive definition of the cyclotomic polyno-
mials (see [3, Chapter 5]) by

[[ga() =1" -1,

dln

then it is easily seen that for n > 1
e(n) 1
() =74, (T4 1)

where ¢ is the Fuler function.
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Now we introduce another family of polynomials:

p2(X) = X% -2,
pn(X) = Xpn—l(X) _pn—Q(X)7 vn > 3.

Remark 2. Let G be a group and p : G — SL(2,C) a representation.
Then p,(trp(x)) = trp(z™) for every n > 1. For the sake of completeness we
will set, where necessary, po(X) = 1.

We have the following relationship between the families we have just de-
fined:

PROPOSITION 3.1. pu(X) — 2 = qi(X) [Ty4q), 43(X) if n is odd, and
Pu(X) =2 = 1 (X)@2(X) [T, g pqp 63(X) i is even.

Proof. We will just show the odd case, the even case being completely
analogous.

Consider the cyclic group G = (x) and a representation p : G — SL(2,C).
We can suppose, conjugating if necessary, that

p(z) = <g ! 1) .

In such case it must be

n n a ¢
o) =star = (g 5.
Set X = tr(p(z)) = a +a~!, then
n_ 1 2
palX) ~ 2= tr(p(a™) ~2 =" + o~ —2 = L
2 2
1 _ (a—1)?
o Hgd(a) =T H ga(a)
din 1#£d|n

X 2

_(atal-2a ww

= p I] @2 qala+a™)

1#£d|n

=q(X) [ a2(x).

1#£d|n
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where the identity Z o(d) = n was used. N
din

Remark 3. The roots of p,(X) — 2 are precisely the possible values of
tr(p(z)) if p: G — SL(2,C) is a representation and z™ = 1.

Let R be any ring and consider a polynomial g(T') = >." a,T" € R[T).
We define

n

«: R[T] — R[T] by ¢"(T)=> (-1)""a,T".
=0

In the next lemma we show some useful properties of this application.
LEMMA 3.2. Given g,h € R[T]| we have:

)gg

b) (gh)* =
c) If g(T) = ZZ 0@;T", then g* = g if and only if a; = 0 for every i such
that (n — i) = 1 (mod 2).

Proof. a) and b) follow from the identity ¢*(T) = (—1)38@g(-T). ¢) is
straightforward. |1

We can use the involution just defined to show another relation between
our two families of polynomials.

PrROPOSITION 3.3. If s > 1 is an integer, then

S

Y pi(2)= [ @@

i=0 15£d|2s5+1

Proof. We observe that the degree of every term in ps(Z) has the same
parity as s = deg ps(Z). This fact together with the definition of * shows that

(Z(_l)ipsi(z)> = Zpi(z
i=0

i=0
Now, we claim that

Yoni2)= [ w@).
=0

1£d|2s+1



168 A.M. OLLER-MARCEN

We will prove this by induction on s, the case s = 1 being trivial since
po(Z) +p1(Z2) =14+ Z = ¢3(Z). Now let s > 1 be an odd integer (the even
case is similar), by hypothesis we have

sz‘( sz +ps = H Qd(Z)+ps(Z)
=0

1#£d|2s—1

1
and thus, setting Z = X + < one obtains:

s
1 1 1
Zpi<X+X>: H qd<X—|—X)+ps<X+X>
=0 1#d|2s—1

2s—2

2 X
1 1
XS - +q1<X+X> 11 q§<X+X>+2

1#d|s
252 s—1 2
i i
R
_ 1=0 + =0 +2
Xs—l X Xs—l
25—2 2s
Xt Xt
B ; X* 41 ; B x 1
T oxs—1 + xXs  Xs H 9d +X :

1#£d|254+1

The proof is now completed by applying 3.2 a), b). |}

4. THE SL(2,C) CHARACTER VARIETY OF THE KNOTS Km

The aim of this section is to give a generating family of polynomials for
X(G) with G = G(Kz) (m > 1, odd) as well as a geometric description of
this variety. Since we know that G(K=n) = H,, we will work with X (Hy,)
instead.

Before going into our main result we have to introduce another polynomial.
We set h(X,Z) = X? — Z and k(X) = X2 — 2. Now we define

hX,Z) iflis even.

X, 7) =
(X, 2) {k:(X) if 1 is odd.
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and finally we write for s > 1

S

fs(X7 Z) = ps(Z)(h(X7 Z) - 1) + Z(—l)ips_i(Z)ai(X, Z)
=1

With these definitions we can prove the following result.

PROPOSITION 4.1. If m > 1 is an odd integer, then
X(Hp) = {(X.2) € C* | fus(X,2) = 0},

Proof. We set w = zyzy...yxy 'z 'y 'z~ ... y~'. Then, using Theo-

length m length m
rem 3.2 in [2], we have

X(Hm) - {(X,Y,Z) € (Cg ‘ pO(X7Y7Z) :pl(X7Y7Z) :p2(X7Y72) - 0}

where
X:Txv pO(Xayuz):Tw_Tl

YZTyv pl(va;Z):Twaz—ch

Z:Twyv pQ(Xv}/uZ):Twy_Ty

-1

Now, wy = zyx...y x(zyxr...y ) so we have 7,y = 7, obtaining that
N—— SN——

length m—1  length m—1
(XY, Z) =X -Y.

On the other hand 7, = 7Ty — Tyyp—1 and wz!

_ -1 -1
—— ——
length m length m

so we get T, ;-1 = 7,~1 = 7, and thus

P XY, Z) =Tys — To = TwTa — Ty — To = Ta(Tw — 1) — 7y

m—1

Set now w; = (xy) 2 and wy = (yx)mTflyx_l. Since w = 1 if and only if
w1 = wa, then it is easy to see that po(X,Y, Z) = 7, — 71 vanishes if and only
if f(X,Y,Z) =7y, — Tw, does. As a a consequence

X(Hnm)={(X,Y,2)eC’ | f(X,Y,Z)=0=X —-Y}
~{(X,Z2)eC?| f(X,X,Z) =0}

Let us compute now the polynomial f(X,Y, 7).
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Firstly it is obvious by definition that 7., = pm-1(Z). In addition we have
2

Twy =T, m-1Typ—1—T, m-3 =pma(Z)( XY —-2Z)—T  m-s

(yz)"z Y (zy)” 2 2z 2 (zy) 2 =zx

Thus, we have that

(xy) 7 az’

FX Y, Z) = Tuy — Ty = pmr (Z) (XY = Z =1) =T w3
2

Now, we claim that if X =Y then

m—1
2
o) " an _;(—U pmoi_(Z)ai(X, Z).

We will proceed by induction on m, the cases m = 3,5 being an easy verifi-
cation. If n > 7, then some straightforward computations and the use of the
recursive definition of the family {p,} gives

T —3 TxyT m—5 — T m—"T7
(zy) 2 2z (zy) 2 2z (xy) 2 ax
ms mt
=- ZZ; (~1)'pms_(Z2)oi(X,Z) + Z;(—l) pus_(Z)oi(X, Z)
m—7

== Z(_l)i[meT*—i(Z) —pm=s_; (2)]ei(X, 2)

2

m m

— ()" Zpi(Z)ans (X, 2) = (-1)"7 Zpo(Z)ans (X, Z)
(

2
m—>5

+(=1) 2 po(Z)ams(X, 2)
=_ Z(—l)imeflii(Z)ai(X, Z).
i=1

Consequently, and recalling the definition of fs(X, Z) we get that f(X, X, Z) =
fm=1(X,Z) and the proof is complete. 1
2

In order to obtain a geometrical description of X (H,,) we are interested in
factorizing the polynomial f(X, Z). We will start by rewriting it in a different
way':

S

f(X,2) = (X*~Z-2) (Z(—l)ipsi(@) +05(Z2)+ ) _(=1)'Bi(Z)ps-i(2),
i=1

=0



THE SL(2,C) CHARACTER VARIETY OF A CLASS OF TORUS KNOTS 171

Z if k is odd.

2 if k is even.

where i (Z2) = {

LEMMA 4.2. ps(Z) + i(—l)iﬁi(Z)ps,i(Z) =0
i=1

Proof. Tt is enough to use the fact that ps(Z) — Zps—1(Z) = —ps—2(Z). 1

COROLLARY 4.3. If m > 1 is an odd integer, then

X(Ha)2{(X,2)eC? | (X*—Z-2) ] ai(2) =0}
1#£d|m

Proof. Just apply Proposition 3.3 and Lemma 4.2 to Proposition 4.1. |

Now, we will find the roots of ¢4(Z). This is done in the following lemma.

LEMMA 4.4. Let {a1,a1,...,a,0),00m } be set of the p(r) primitive rth
2 2

roots of unity. Then

P(r

0.(2) = [[ (2 - 2Re(a:))

=

—_

e(r)

Proof. Recall that, for » > 2 we have ¢,(X) =X "2 ¢ (X +1/X) with
gr(X) being the rth cyclotomic polynomial. As fo(r )all 1< < @ it holds
o(r

that % = @; we obtain that ¢.(Z) has exactly =~ different roots, namely

{2Re(a1),...,2Re(a e )}. This together with the fact that the degree of
2
qr(Z) is @ completes the proof. |

This lemma allows us to go one step further in our description of the curve
X(Hp).

COROLLARY 4.5. Let m > 1 be an odd integer. In the complex plane
(X, Z) the curve X (H,,) consists of the parabola Z = X? — 2 and the union
of =L horizontal lines of the form Z = —2Re(w), being 1 # w an mth root
of unity.

Proof. 1t is enough to apply the previous lemma together with the fact
that given a polynomial g, then a number a is a root of g if and only if —a is
a root of g*. |
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(m—1)(n—1)
2

, which precisely coincides with

Remark 4. Recall that the genus of the torus knot Km is . In

m—1

our case, where n = 2 the genus of K m is 5

the number of straight lines in X (H,,).
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