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Resumen

La materia granular en condiciones de flujo rápido puede modelarse como un gas
granular compuesto por esferas duras inelásticas. En su estado natural, la mate-
ria granular se encuentra generalmente sumergida en un fluido, como aire o agua,
de tal manera que el flujo granular es un proceso multifásico. A pesar de que la
influencia del fluido intersticial no se ha tenido en cuenta en numerosos trabajos,
existen situaciones en las que el efecto de la fase fluida no puede ignorarse y, por
tanto, en principio, uno tiene que empezar por una descripción teórica que tenga
en cuenta ambas fases (fluida y sólida). En este trabajo, modelamos los granos
como part́ıculas inmersas en un gas viscoso a temperatura constante. Como suele
ser habitual, la influencia de la fase gaseosa sobre los granos aparece modelada en
las ecuaciones cinéticas de Enskog y Boltzmann como un término tipo Fokker–
Planck (fuerza de arrastre más término tipo Langevin). En este caso, la enerǵıa
adquirida por los granos debido a su contacto con el gas intersticial compensa la
enerǵıa disipada por colisiones binarias inelásticas de modo que el sistema alcanza
un estado estacionario de no equilibrio. El principal objetivo de la presente tesis
es determinar los coeficientes de transporte de suspensiones mono y bidispersas
a través de dos v́ıas diferentes pero complementarias. La primera de ellas con-
siste en resolver las ecuaciones cinéticas mediante métodos anaĺıticos (método de
Chapman–Enskog, método de los momentos de Grad, modelo cinético tipo BGK
y modelos de Maxwell inelásticos) y la segunda emplea resultados de simulación
(simulaciones numéricas de Monte Carlo). Además, como complemento se realiza
un análisis exhaustivo de los estados homogéneos estacionarios y dependientes del
tiempo, aśı como de las propiedades no newtonianas de suspensiones granulares
sometidas a la acción de un flujo tangencial uniforme.
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Abstract

Granular matter under rapid flow conditions can be modeled as a granular gas composed

of inelastic hard spheres. It is known that granular matter in nature is generally

immersed in a fluid, like air or water, and so a granular flow is a multiphase process.

Despite the fact that the influence of the interstitial fluid on the granular flow has

been ignored in numerous works, there are situations where the effect of the fluid

phase cannot be neglected, and hence, in principle, one has to start from a theoretical

description that accounts for both phases (fluid and solid phases). In this work, we

consider that the grains are immersed in a viscous gas at a fixed temperature (granular

suspension). As usual, we model the influence of the gas phase on grains by means of a

Fokker–Planck term (drag friction plus Langevin-like term) in the Enskog or Boltzmann

kinetic equations. In this case, the energy gained by grains due to their thermal contact

with the interstitial gas is compensated for by the collisional dissipation due to binary

inelastic collisions and so, the system reaches a a non-equilibrium steady state. The

main objective of the present thesis is to determine the transport properties of mono

and bidisperse granular suspensions by two different but complementary routes: (i)

analytical methods (Chapman–Enskog method, Grad’s moments method, BGK-type

kinetic model, and inelastic Maxwell models) and (ii) computational simulations (direct

simulation Monte Carlo method). Moreover, we perform an exhaustive analysis of

the time-dependent and steady homogeneous states as well as of the non-Newtonian

properties under simple shear flow of granular suspensions.
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Chapter 1

Introduction to Granular

Suspensions

1.1 Introduction

Granular matter can be defined as large conglomerations of discrete macroscopic par-

ticles (let us call them grains) of different sizes (typically larger than 1 µm), shapes,

micromechanical, and chemical properties [1]. Grains are ubiquitous in many industrial

and natural processes. They form an extremely vast family that ranges from sand to

astronomical objects, so they span several orders of magnitude in size [2].

The macroscopic size of grains deals to a collective motion governed by dissipative

dynamics. Namely, when two particles collide, part of their kinetic energy is lost due

to processes of friction, fraction, internal vibration, or plastic deformation; in other

words, thermodynamically they are in a non-equilibrium state [3, 4]. For this reason,

granular media exhibit intermediate behaviors between solids and fluids. For example,

a jar of rice at rest behaves like a solid; any small external perturbation is quickly

dissipated. On the other hand, if they are noncohesive, then the forces between the

grains are only repulsive so that the shape of the material is determined by external

boundaries and gravity. Additionally, when submitted to a strong excitation, grains

acquire a kind of random motion that suppresses in part the effects of inelasticity and

gravity. This complex behavior (different from that found in solids, liquids, or gases)

causes the granular media to be considered an additional state of matter in its own

right [2, 3, 5, 6].
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2 1.1 Introduction

A primary motivation for the study of granular matter relies on their involvement

in many industrial processes. In fact, it is estimated that granular matter is the second

most used type of material in industry after water [1, 7]. The conveying and handling

of grains play major roles in many industries [8], including chemical (e.g., thermal

processing of fossil fuel [9]), pharmaceutical (e.g., pills segregation [10] or powders

hoppers [11]), agriculture (e.g., storage, transport, and processing of grains [12, 13]), or

mining (e.g., particle crushing or breakage [14]). Their comprehension is also of great

importance for the understanding of geological processes such as earthquakes, snow

avalanches, or landslides [15, 16].

As on Earth, granular media has strong implications on the morphology of ex-

traterrestrial bodies [17–19]. Moreover, the wide variety of particle features makes the

granular media to be present out of our planet in the form of small bodies and dust

[20–22]. The origin, formation, and evolution of the Solar System can be better under-

stood by analyzing the physics of granular media as asteroids, comets, or planetesimals

[23]. Many physical phenomena of the Universe focus on the formation and evolution of

planetary rings. The study of rings’ dynamics would allow astronomers to understand

important mechanisms which would explain the behavior of celestial objects far away

from us, like spiral galaxies [24]. Even historically, Maxwell’s advances on the kinetic

theory of granular gases were motivated by the attempt to describe Saturn’s rings [25].

Most studies have focused on “dry” granular media, for which interactions between

grains are dominated by solid contact [2], such as dry sand or interplanetary dust.

Nonetheless, grains are generally immersed in a fluid like water or air, so a granular

flow is a multiphase process [4]. A rather large spectrum of societal concerns involves

wet granular material. Examples are rain-induced and submarine landslides, food pro-

cessing, or civil engineering [26–28]. In this kind of mixtures (called suspensions), the

interstitial fluid perturbs the interactions between the grains (which are essentially

noncohesive and short-range) to add new effects to the dynamics of grains, such as

lubrication or cohesiveness. Suspensions of solid particles are commonly encountered

in applications in a large number of industries [29–31]. The rheology of such particles in

Newtonian suspending fluids shows rich non-linear phenomena as shear thickening [32]

or normal stress differences [33] distinct from those found in ordinary fluids. Thus, it

is clear the broad spectrum of potential applications entailing the presence of granular

matter.
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Despite their industrial, geophysical, and planetary applications, understanding the

granular media from a fundamental point of view poses a great challenge. No theoretical

framework is able to cover such complexity and provide a general description of the

different phenomena observed in granular flows.

The main reasons of such lack of generality fall on the complex and dissipative

character of collisions between grains. Granular media are composed of a large number

of particles each of which varies in size and characteristics. Thus, the contact between

two particles involves non-trivial and highly non-linear phenomena such as friction

and inelastic shocks [2, 5, 34]. Moreover, although the number of grains is generally

much smaller than Avogadro’s number due to their macroscopic size, this number is

large enough so that accounting for each individual collision is almost impossible [4].

This lack of generality would be even more accentuated in the case of suspensions,

since in particular the different phases evolve over quite different spatial and temporal

scales. An alternative approach to handle the study of granular media consists on

a statistical description based on the representation of the macroscopic quantities as

averaged “microscopic” variables. Namely, to express the macroscopic properties in

terms of the fundamental microscopic features of the particles, such as mass, shape,

coefficients of restitution, and collisional properties [3]. However, it is not clear that a

theory derived from equilibrium thermodynamics can be a priori applied to granular

substances. The reason is that unlike molecules, grains collide inelastically and therefore

they are inherently out of equilibrium [35, 36].

In addition, some researchers have expressed doubts concerning the applicability of

different theories to granular matter, specially those related to elasticity theory and

simple hydrodynamics [37, 38]. These theories arise out of an averaging process over

length and time scales that must be well separated from the relevant macroscopic scales.

Since even in the largest system, the size of the container may be only a thousand

grains diameters [6], the lack of scale separation questions the approaches based on a

continuum description [39]. Despite their ranges of applicability, the successes of these

theories are notable and speaks for themselves [40–42]. Therefore, further investigation

regarding the theoretical modeling of granular matter is clearly worth pursuing.



4 1.2 Granular Gases

1.2 Granular Gases

For the sake of a better theoretical description, granular matter may be classified into

two different density regimes: dense and dilute. Although the density is a continuous

variable and sometimes it is difficult to establish a criterion of whether a material is

dense or dilute, this artificial dichotomy facilitates the description of granular media.

For example, for hard repulsive potentials, the dense regime is characterized by col-

lective static friction whereas a dilute gas evolves through binary collisions. Thus, the

physics entailing each regime is completely different and so are the mathematical treat-

ments. Besides that, the gravitational potential energy of a grain is much larger than

its thermal energy scale kBT (where kB is the Boltzmann’s constant). For example,

at room temperature (T = 300 K), a common grain of sand would require an energy

of the order of 105 kBT to counteract the effect of gravity and rise a distance equal to

its diameter [6]. Ordinary temperature therefore plays no role in the motion of grains,

such that thermal fluctuations are negligible compared with the particles interaction

(athermal systems). This nonergodicity causes that unless driven externally, grains

stay in a single configuration. At the core of statistical description, we can establish

an equivalence between density and the response to an external driving. Hence, solid

or fluid-like behavior is completely controlled by the driving protocol [43].

In this sense, granular matter arises in two classes of states: compact and activated

[3]. In the first case, the material remains at rest at the bottom of the container. It is

able to resiliently withstand enormous loads and form into piles of jammed particles.

The effect of gravity and the static friction either between grains and with the walls

of the repository dissipate energy. Thus, grains seem to be inactive, although they do

in fact have some kinetic energy due to the room temperature [4]. In this context, the

unusual behaviors that compact granular matter exhibits raise important questions.

For example, the understanding of the network of forces within the container and of

the distribution of packing configurations that give rise to the Janssen effect (sand

flows in an hourglass at nearly constant rate) [44], clogging and jamming (blockage via

formation of particle bridges and arches) [45], or dilatancy (dense granular material

expands in volume when sheared) [46]. These issues are of crucial practical interest

for the prediction of earthquakes and to mitigate the collapse of storage silos [47,

48]. Conversely, when loads overcome particle bonds, the system will collapse and
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begin to flow [5]. At this first stage of deformation, particles will come off forming

aggregates that move along narrow shear bands [49]. Far beyond the initial spillover,

when grains are submitted to a strong excitation (e.g., by vibration, shear, or other

external thermalization), a fluidized phase arises [50]. In this case, the velocities of

grains contain apparently random components that will result in nearly instantaneous

collisions between grains in a similar way as atoms or molecules interact in an ordinary

gas [4, 5, 51]. For this reason, strongly-activated granular materials are commonly

referred to as “granular gases” and the inherent regime where such systems live to as

“rapid granular flows” [52, 53]. The main aim of the present thesis is to provide new

insights in the theoretical study of granular matter when it admits a gas-like description.

A rigorous theoretical treatment of granular gases is rather intricate. It involves

a large number of parameters since the dominant particle interactions depend on the

particles size, shape, magnetization, or electrical charge [54]. If real progress is to

be achieved in the granular description, many of subtle effects have to be neglected.

The core of the governing equations must therefore focus on the general features that

capture the phenomenology of real systems. In that regard, we can screen the subtleties

to summarize the particle interactions in two major concepts: excluded volume and

dissipation [55].

Grains are solid so they cannot interpenetrate. Moreover, if the gas is noncohesive,

the duration of a collision becomes irrelevant when compared with the hydrodynamic

scale. Thus, collisions can be considered instantaneous and well-located; particles move

freely almost all the time until they collide. When two particles touch, their velocities

instantly change according to the mechanisms of the collision and the properties of the

colliding particles (i.e., masses, sizes, or shapes). A concise approach that accounts

for noncohesiveness and rigidity is the hard-sphere model. The hard repulsive forces

sustain a general theory that provides a basically correct description of the structure

and dynamics of simple fluids [56]. However, as said before, the macroscopic size

of particles entails a consequent loss of energy in each collision [3]. Therefore, the

mathematical description of the collision must consider, among other things, what

processes, if any, dissipate energy. Progress in that regard has been significant by

means of the extension of the hard-sphere models to inelastic collisions. The hard-

sphere dynamics with inelastic collisions constitutes one of the most noteworthy models

for granular media in rapid flow [4, 57].
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For hard spheres, the kinetic theory, based on the Enskog and Boltzmann kinetic

equations, is the broader field that contemplates the dynamics of particles without

doing any initial assumption on the dissipative character of collisions [58, 59]. Since

the kinetic theory is based on several approximations, it needs the aid of numerical

simulations to test the reliability of the theoretical results. Therefore, kinetic theory

together with computer simulation are likely the best tools to describe granular gases.

On the other hand, the study of granular gases from a kinetic point of view supposes

an interesting and important challenge since it involves the extension of the classical

kinetic equations to dissipative dynamics. The application of such theories allows us

to obtain the hydrodynamic equations of motion that encompass the microscopic prop-

erties into a coarse-grained macroscopic description. The resulting equations establish

an analogy with the Navier–Stokes (NS) equations that describe the flow of ordinary

fluids. Nonetheless, granular hydrodynamics include a new ingredient in the balance

of energy: a “sink” or “cooling” term that measures the rate of energy dissipation

due to the inelasticity of collisions. This term provides the basic precondition for the

existence of the homogeneous cooling state (HCS) in absence of gradients. Namely, a

homogeneous state where temperature monotonically decays in time [4, 60].

The homogeneous cooling situation conforms an idealized state where the loss of

mechanical energy is uniform in the whole system. However, the absence of energy

excitation leads the grains to collapse into zones of larger density [60, 61]. Within these

regions, the collision rate is enhanced and, consequently, the loss of kinetic energy is

also enhanced [62, 63]. If the cooling rate is great enough, the pressure cannot pull the

particles apart and, density gradients appear associated with mass fluxes from dilute to

dense domains. This way, cluster instabilities arise inducing bigger and denser clusters

[64]. Thereby, an initially homogeneous granular gas is unstable to the formation of

aggregates and the homogeneity is destroyed [53, 65]. The onset of the cluster instability

has been widely studied at the NS hydrodynamic level [66–76].

Since non-homogeneous situations can prevent the investigations of granular mat-

ter in rapid flow, the study of granular gases necessitates the challenging condition

that particles distribute homogeneously and isotropically under external excitations to

maintain the gaseous state [60]. Several experimental investigations are performed by

exciting the particles by means of mechanical-boundary shaking, air-fluidized bed, or
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magnetic forces [77–82]. Nonetheless, this way of supplying energy can create insta-

bilities and inhomogeneities [83–86], so research is mostly carried out via computer

simulations that drive the granular agitation as a bulk thermostat [61, 87–94]. By now,

simulation data of granular gases driven by thermostats is well accepted as it was repro-

duced using different theoretical approaches [95–100]. However, if real experiments of

solid particles thermostated by external driving want to be reproduced by simulations,

it will be desirable to build more realistic theoretical tools together with new simula-

tion techniques, so that they can supplement each other by serving as a reference for

comparison.

An interesting example of thermostated granular gases is the case of solid particles

immersed in an interstitial fluid. Although granular matter surrounded by a fluid (like

the air, for instance) is commonplace in nature and industry, most of theoretical and

computational studies have neglected the impact of the gas phase on the dynamics

of solid particles. The sort criterion to still consider a granular gas is established on

the basis of the ratio of the stress due to the grains to that due to the fluid (Bagnold

number). If the effect of the surrounding fluid on the dynamics of grains cannot be

ignored, the system is to be considered a suspension [101]. It is known that in many

practical applications (like for instance species segregation in granular mixtures [102–

108]) the underlying gas-solid interaction can play significant roles. For this reason, the

study of granular suspensions has generated growing interest in the scientific community

[109].

The dynamics of gas-solid flows is rich and extraordinarily complex so their under-

standing is really challenging. The dynamics of this kind of multiphase flows evolves

through nonhydrodynamic (example is the Brownian motion) and hydrodynamic forces

[109]. The latter are hard to treat analytically since the determination of the many-

body interactions among the particles (for instance, several friction mechanisms [110])

raises many difficulties: some of them often associated with the long-range character

of the hydrodynamic interactions. On the other hand, short-range hydrodynamic in-

teractions (such as lubrication forces) are also factors which substantially influence the

collision dynamics of two approaching particles [111, 112]. The most widespread way

to mimic the gas-solid interactions is by means of the Stokesian dynamics [113]. This

kind of molecular-dynamics-like approach considers that large and discrete particles are

dispersed in a continuum fluid. The capability of the method relies on the possibility to
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describe the hydrodynamic interactions via the linear Stokes equation at low-Reynolds

numbers.

Among the different types of gas-solid flows, an interesting problem is the so-called

particle-laden suspensions [74, 114–119]. In this kind of suspensions, dilute and immis-

cible particles are immersed in a denser fluid so that the dispersion of particles causes

that the hydrodynamics interactions become less relevant [120]. Hence, the dynamics of

solid particles arises from the thermal fluctuations in the fluid, and therefore interpar-

ticle, external, and Brownian forces prevail [113]. Moreover, one can assume that the

number density of the solid phase is much smaller than that of the surrounding fluid,

so that the latter is not affected by the presence of the solid particles. In this situation,

the external fluid may be treated as a thermostat (or bath) at a fixed temperature. In

the case of dilute systems where interparticle (grain-grain) collisions are still relevant

[121], the classical kinetic theory of gases [122–124] conveniently adapted to account for

inelastic collisions and gas-solid effects can be considered an appropriate tool to model

granular suspensions.

As said before, the fluid-like behavior can be understood as a response to an external

driving. In this context, solid particles driven by means of the action of a surrounding

fluid evolve through binary instantaneous collisions. Thus, the gas-solid interactions

can be modeled in an effective way via a fluid-solid force that appears in the starting

kinetic equation [114, 115, 125]. Some models for granular suspensions [126–135] only

consider the isolated body resistance via a linear drag law. Other models [136, 137]

include also an additional Langevin-type stochastic term.

In this thesis, based on the results obtained in direct numerical simulations (DNS),

the impact of the viscous gas on solid particles in high-velocity—but low-Reynolds

numbers— gas-solid flows is by means of a force constituted by three different terms:

(i) a term proportional to the difference between the mean flow velocities of both

phases, (ii) a drag force term proportional to the particle velocity, and (iii) a stochastic

Langevin-like term taking into account the effects of neighboring particles [137]. While

the second term mimics the dissipation of energy due to the friction of grains on the

viscous gas, the third term models the energy gained by the solid particles due to their

interaction with the particles of the interstitial gas.

In the case of homogeneous states, the loss of energy due both to inelastic collisions

and viscous drag and the external injection of energy to grains are responsible for
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the fluctuations and evolution of the granular temperature. Since granular materials

are athermal, the granular temperature is defined in terms of the mean value of the

fluctuations of the instantaneous velocities of the particles with respect of the mean

flow velocity [138]. This description opens up new possibilities for definition under

out-of-equilibrium conditions of a statistical temperature on which kinetic theories can

be built [35]. Within the framework of the fluctuation approach, the action of the

external driving and the collisions on the velocities of particles compete to govern the

time evolution of temperature, so that a steady state is reached when both mechanisms

compensate each other [139, 140]. The above steady condition significantly simplifies

the description of granular gases since it eliminates the time dependence in the resulting

equations for homogeneous states.

The previous Fokker–Planck model (drag force plus random stochastic term) as-

sumes multiple approximations, so it is worth testing theoretical results against com-

puter simulations. In particular, molecular dynamics (MD) simulations have been used

to test the Fokker–Planck model [137] in several problems, including the onset of in-

stabilities [141], rheological properties under shear [142–144], or binary suspensions

in homogeneous situations [94]. Simulations using the discrete element model (DEM)

method [145] and DNS data [146] have assessed kinetic-theory results for describing

clustering instabilities. In addition, the direct simulation Monte Carlo (DSMC) method

has been employed to validate different theoretical approaches used to solve the perti-

nent kinetic equations [98, 147]. In spite of the apparent simplicity of the suspension

model, simulation results show in general good agreements.

This thesis is devoted to the study of the influence of the interstitial gas on the

properties of granular particles. Kinetic theory tools will be used along the thesis.

The theoretical results provided will be supplemented in most cases with Monte Carlo

simulations. It is worth mentioning that both the study of monocomponent and binary

suspensions will be addressed. In the former situation, the novelty of the results re-

ported here with respect to previous works [148, 149] is based on the consideration of a

new density dependence on the drag coefficient that may affect the dynamics properties

of grains. On the other hand, since a real granular system is usually characterized by

some degree of polydispersity in density and size, we will also study multicomponent

suspensions. The importance of their study relies on the set of phenomena, such as

particle segregation or demixing [150, 151], that has no monocomponent counterpart.
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For the sake of simplicity, bidisperse suspensions composed of two species of solid par-

ticles immersed in a viscous fluid will be considered. Needless to say, the disparity of

particles induces additional difficulties that prevents in some cases a clear theoretical

description of such systems. Therefore, the lack of theoretical results regarding the

influence of a fluid phase on the dynamic properties of a granular mixture is significant.

For this reason, we will analyze first the impact of the interstitial fluid on the failure of

the energy equipartition in granular mixtures (namely, that the granular temperature

T could not be equally distributed among the species of the mixture). The nonequipar-

tition is well-established in the case of granular mixtures since it has been studied by

means of kinetic theory [152, 153], computer simulations [154–167] and real experiments

[168, 169]. Hence, it is worthwhile to compare these results to those obtained when the

Fokker–Planck model is accounted for. In addition, as happen in the monocomponent

case [137, 148, 149] and for driven granular mixtures at low-densities [94], we want to

see if the transport coefficients of moderately dense granular mixtures are perturbed

by the presence of the external fluid and if so, quantify this influence. Note that this

extension involves quite long and complex calculations since the number of transport

coefficients are larger than for a single gas and additionally they depend on many

parameters (masses and diameters, concentrations, and coefficients of restitution).

1.3 Structure of the Thesis

We have organized this thesis as follows.

In Chapter 2 we present the suspension model previously introduced in the context

of dilute and low-Reynolds number gas-solid flows. Furthermore, we display the general

theoretical and numerical tools employed throughout this work.

To begin with, we first consider an ensemble of identical smooth solid particles (hard

disks or spheres) immersed in a viscous gas in Chapter 3 (Article 1). Collisions between

grains are inelastic and are characterized by a (positive) constant coefficient of normal

restitution α ≤ 1, where α = 1 corresponds to elastic collisions (ordinary gases). The

objective of Article 1 is to consider the Enskog kinetic theory for moderately dense

granular suspensions as a model to determine the NS transport coefficients. To do so,

a Chapman–Enskog-like (CE) expansion [122] conveniently adapted to dissipative dy-

namics is applied to solve the Enskog kinetic equation. The first step is to characterize
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the reference state in the perturbation scheme, namely the homogeneous steady state

(HSS). In the HSS, the energy lost due to both inelastic collisions and the friction with

the interstitial gas is exactly compensated for by the energy injected by the collisions

with the more rapid particles of the molecular gas. This simple situation allows us to

compute the steady granular temperature T and the kurtosis or fourth cumulant a2

(measuring the deviation of the distribution function from its Maxwellian form). DSMC

simulations compare very well with the theoretical predictions. Then, we assume that

we slightly perturb the HSS by small spatial gradients. Explicit expressions for the NS

transport coefficients under steady-state conditions are obtained. As an application,

a linear stability analysis is performed showing that the HSS is always linearly stable

with respect to long enough wavelength excitations. The new contributions of Article

1 are two-fold. On the one side, the gas-solid interactions entail time-correlation forces;

the response of the grains to an applied force is not simultaneous with the application

of the force. Therefore, the collisions with the interstitial fluid and the cooling due to

viscous friction and inelasticity cannot be locally compensated. This fact introduces

the possibility of a local energy unbalance, and hence the zeroth-order distributions of

the perturbation scheme are not in general stationary distributions. Nevertheless, pre-

vious articles [90, 170] are based on the simplifying assumption that the reference state

is stationary at any point of the system. On the other side, this study extends previous

works [148, 149] since, as usual in granular suspension models [125, 171], an additional

density dependence is implemented on the reduced drag coefficient and, consequently,

on the zeroth-order solution.

The extension of the monocomponent case to multicomponent granular suspensions

is analyzed in Chapter 4 (Articles 2 and 3) and Chapter 5 (Articles 4 and 5). A subtle

point of the model regards the drag coefficients of the mixture. One can chose that the

body resistance is the same for both species, or distinguish the gas-solid interactions

on the basis of the mechanical properties of each species. Here, for consistency with

simulations of bidisperse gas-solid flows [172–174], we decided to pursue the second

option. While Chapter 4 deals with homogeneous situations, Chapter 5 also considers

an expansion in gradients of the HSS within the scope of the CE procedure to compute

the transport coefficients.

Article 2 studies the homogeneous description of bidisperse granular suspension in

the context of the Enskog equation. The lack of scale separation between microscopic
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and macroscopic scales is one of the fundamental open question in granular gases [39,

175–177]. The reason is that collisional dissipation introduces a new time scale in the

temperature evolution not present in elastic gases [4]. For this reason, we explore first

the “aging to hydrodynamics”. It is found that, regardless of the initial conditions, the

system reaches a universal hydrodynamic regime where all the dependence of the system

occurs through the (global) temperature. This fact simplifies further studies such as

the determination of the transport coefficients of the mixture. After times longer than

the mean-free time, the system is shown to reach a steady state. As a complement

to the transient regime, a comprehensive study on the steady values of the properties

is carried out. Moreover, theoretical results are confronted against DSMC simulations

for both time-dependent and steady homogeneous states with an excellent agreement,

excluding some discrepancies found in the steady values of the fourth cumulants.

Also in the transient regime, the discrimination on the way of interacting between

the surrounding fluid and the individual species (encoded in the drag coefficients) pro-

vokes the emergence of memory effects. Memory effects are astonishingly common

among nonequilibrium systems, including granular matter [178, 179]. Memory connotes

the ability to encode, access, and erase signatures of past history in the state of a system

[180]. A complete specification of the state of a macroscopic system requires knowledge

of a very large number of variables. Thus, the evolution of granular suspensions is not

uniquely determined by their current state (through the few macroscopic variables that

one measures at an experiment), since it depends on the information contained in other

“hidden” variables. Memories can have important practical consequences, such us jam-

ming control, refrigeration times, or industrial handling and transport [179, 181]. In

the case of bidisperse suspensions, the evolution of the (total) temperature is coupled

with that of the partial temperatures of the species so unusual temperature relaxation

towards the steady state turns up to be feasible. In this regard, the Mpemba effect

(namely, when an initially hotter sample cools down sooner) [182, 183] is a memory

effect frequently discussed in gas-solid literature [100, 184, 185]. On the other hand,

given the complexity of the analytical expressions achieved for granular mixtures, it is

preferable, at the outset, to analyze first ordinary mixtures (elastic collisions) to pro-

vide a straightforward explanation for the Mpemba-like effect. Article 3 thoroughly

analyzes the Mpemba effect in the context of molecular suspensions, for initial states
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close to and far away from equilibrium. The extension to granular suspensions is ac-

complished in Article 2. DSMC and MD simulations concur with theoretical results

in both molecular and granular systems.

The aim of Chapter 5 is to determine the NS transport coefficients of a binary

granular suspension by means of the CE method. The starting point is the Enskog

kinetic equations. Due to the inherent complexity of the kinetic equations, many of the

pioneering papers [186–188] devoted to compute the NS transport coefficient of gran-

ular mixtures consider nearly elastic particles and equipartition of the total granular

kinetic energy in the HCS. Although the failure of energy equipartition due to inelastic

character of collisions is completely established and has been considered in more re-

cent papers on granular mixtures [189–193], there is an additional contribution to the

nonequipartition of energy not covered by the one appearing in the HCS. The origin of

these inhomogeneous contributions comes from the fact that the partial temperatures

of the species are non-hydrodynamic quantities. Thus, as stated in the CE method,

they have to be perturbed in terms of gradients of the hydrodynamics fields (those that

characterize the macroscopic state of the system). To the best of our knowledge, the

first-order contributions to the partial temperature have only been calculated in elastic

systems [194–196] and recently noticed in an Erratum for driven granular mixtures at

low density [197]. Before considering binary granular suspensions, it would therefore

seem appropriate to measure the influence of the first-order contributions to the partial

temperatures on transport properties in polydisperse dense “dry” granular mixtures.

These efforts are expected to further clarify the origin of violation of the equipartition

theorem observed in real experiments of agitated granular mixtures [168, 169]. The

goal of Article 4 is to determine the first-order partial temperatures from the CE

solution to the (inelastic) version of the Enskog kinetic equation [4]. In addition, we

show the influence of these coefficients on the bulk viscosity and on the first-order con-

tribution to the cooling rate, which cannot be neglected for disparate masses and/or

strong dissipation. Once the basis of the CE procedure for binary granular mixtures

is well consolidated, a systematic extension of previous theoretical results for dilute

multicomponent granular suspensions [99] to moderate densities allows us to identify

the NS transport coefficient. Article 5 focuses on the evaluation of the mass and

momentum fluxes for dense binary granular suspensions, together with the cooling rate

up to first order in the spatial gradients.
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In Chapter 6 (Articles 6 and 7) we study non-Newtonian rheological properties in

dilute granular suspensions. Article 6 addresses the study a set of smooth hard spheres

immersed in a viscous fluid under simple or uniform shear flow (USF). Two simpler

collision models that are often used to prevent the mathematical difficulties arising from

the Boltzmann collision operator are considered to determine the velocity moments up

to the fourth degree. These alternative models, that try to mimic the hard-sphere

dynamics, are the so-called Inelastic Maxwell Models (IMM) [198] and a Bhatnagar-

Gross-Krook (BGK)-type kinetic model [199]. The efforts of computing the second- and

fourth-degree moments for IMM and BGK in the USF problem may be justified at least

for two different reasons. The first one is to assess the reliability of the results derived

for the IMM and BGK model when compared with those obtained for inelastic hard

sphere (IHS) results obtained by Hayakawa et al [142, 143] by two alternative ways:

(i) Grad’s moment method to analytically solve the inelastic Boltzmann equation [200]

and (ii) event-driven Langevin simulations for hard spheres (EDLSHS). As expected, a

discontinuous shear thickening (DST) transition is observed when the viscosity abruptly

increases above a critical value of the applied shear rate. On the other hand, the

mathematical difficulties encountered in the form of the collision rate for hard spheres

prevents the possibility of obtaining explicit results for higher velocity moments. To

that effect, once the results derived from the IMM and BGKmodel show to qualitatively

reproduce the rheological properties in the IHS model, we can go beyond to derive the

first non-trivial higher-order velocity moments, namely the fourth-degree ones. The

knowledge of the fourth-degree moments not only provides some indirect information

of the distribution function, but also is required to analyze the stability of the USF

state [201].

A more realistic approach in assessing the granular modeling is to consider inelastic

rough spheres [51, 202]. In this model, apart from the normal coefficient of restitution α,

a coefficient of tangential restitution −1 ≤ β ≤ 1 is introduced to measure the energy

dissipation with respect to the angular velocity. While β = −1 refers to perfectly

smooth spheres, β = 1 means perfectly rough spheres. Total energy is conserved in

a collision in the cases α = 1 and β = ±1. The purpose of Article 7 is to assess

the impact of roughness on the rheological properties of the suspensions. Following a

model introduced years ago by Hess [203], we assume that the influence of the interstitial

fluid in the rotational dynamics of grains is via a viscous drag force plus a stochastic
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Langevin-like term, just as the translational part. This suspension model is solved

by two different theoretical tools: (i) Grad’s moment method and (ii) a BGK-type

kinetic model for inelastic rough hard spheres [204]. As a complement of the previous

results, we analyze the stability of the steady solution for non-Newtonian rheology.

Surprisingly, the analysis shows that the steady solution is linearly unstable in some

regions of the parameter space.

The work is ended with a brief discussion of the results reported in the thesis as

well as the main conclusions.





Chapter 2

Kinetic Theory of Granular

Suspensions

2.1 Introduction

In this Chapter we overview the theoretical tools together with the suspension model

studied throughout this thesis and the alternative methods that will be used to solve

the kinetic equations.

As discussed previously, one of the main aims in the context of rapid granular flows is

the construction of pertinent hydrodynamics by means of kinetic theories for granular

gases. The above theories have been developed to calculate collective properties of

grains such as the granular temperature, distribution functions, or transport properties.

Kinematics of grains are expressed in terms of the lower moments of the one-body

distribution function f(r,v; t). It is defined in such a way that f(r,v; t)drdv gives the

average number of particles which at time t lie in the volume element dr around the

point r moving with instantaneous velocities in the range dv about v. Knowledge of the

distribution function f permits us to establish a connection of macroscopic predictions

with the underlying microscopic interactions.

The kinetic theory of inelastic hard spheres can be highly elaborated in close analogy

with that for elastic collisions [4, 122, 205]. A rigorous derivation of the Boltzmann

equation stems as a formulation in terms of a pseudo-Liouville equation for the N -

particle distribution function, to obtain the Bogoliubov–Born–Green–Kirkwood–Yvon

(BBGKY) hierarchy [206, 207]. Since the BBGKY hierarchy does not lead to a closed

17
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set of equations for the distribution functions, a conjecture is assumed for the two-

body distribution function f2(v2, r2,v1, r1; t) (it represents the probability of finding

a particle at the point r1 and another at r2 at time t with velocities v1 and v2,

respectively). For many-particle systems interacting via short-range potentials, the

BBGKY hierarchy reduces to the so-called Boltzmann hierarchy in the Boltzmann-

Grad limit [208–210]. In this case, the two-body distribution function f2 factorizes

into the product of the one-body distribution functions f(r1,v1; t) and f(r2,v2; t) for

any pair of pre-collisional velocities v1 and v2. This is essentially the molecular chaos

hypothesis (or Stosszahlansatz ) used by Boltzmann to derive the governing equation

for f [123, 206]. Note that the factorization of f2 can be only applied to the velocities of

the particles that are about to collide; after the collisions the velocities of the particles

are strongly correlated. Nevertheless, it is very unlikely that two particles of a dilute

gas recollide during a long period of time so the use of the molecular chaos hypothesis is

justified. Apart from that, the Boltzmann equation has the property of preserving the

initial chaos and therefore, it constitutes a closed equation for the one-body distribution

function. A more intuitive and stepwise derivation of the Boltzmann equation for

inelastic hard spheres by using a procedure similar to that made by Boltzmann himself

in the case of elastic collisions can be found in Ref. [4].

For the sake of clarity, let us first consider a granular gas composed of inelastic hard

disks (d = 2) or spheres (d = 3) of mass m and diameter σ. Here d indicates the dimen-

sion of the system. Particles are assumed to be completely smooth so that inelasticity

of collisions is characterized only by the constant (positive) coefficient of restitution α

(α ≤ 1). Multicomponent granular gases formed by particles with different mechanical

properties are considered in Section 2.2.2. For low densities, the one-particle velocity

distribution function f(r,v; t) verifies the nonlinear Boltzmann kinetic equation:

∂f

∂t
+ v · ∇f +

1

m

∂

∂v
· (Ff) = J [v|f, f ], (2.1)

where F(r,v; t) represents the action of an external force (for instance, the gravity)

and the Boltzmann collision operator is

J [v1|f, f ] = σd−1

∫
dv2

∫
dσ̂ Θ(σ̂·g12)(σ̂·g12)

[
α−2f(v′′

1)f(v
′′
2)− f(v1)f(v2)

]
. (2.2)

Here, g12 = v1 − v2 is the relative velocity, σ̂ is a unit vector along the line of centers
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of the two spheres at contact, and Θ is the Heaviside step function. The relationship

between the pre-collisional velocities (v′′
1 ,v

′′
2) and the post-collisional velocities (v1,v2)

is

v′′
1 = v1 −

1 + α

2α
(σ̂ · g12)σ̂, v′′

2 = v2 +
1 + α

2α
(σ̂ · g12)σ̂. (2.3)

Equations (2.3) give the so-called inverse or restituting collisions. Inversion of these

collision rules provides the form of the so-called direct collisions, namely, collisions

where the pre-collisional velocities (v1,v2) lead to the post-collisional velocities (v′
1,v

′
2)

[60]:

v′
1 = v1 −

1

2
(1 + α) (σ̂ · g12) σ̂, v′

2 = v2 +
1

2
(1 + α) (σ̂ · g12) σ̂. (2.4)

A schematic representation of the inverse and direct collisions is illustrated in Fig. 2.1

for inelastic colliding spheres of diameters σ. From Eqs. (2.3) and (2.4), one gets the

relations
(
σ̂ · g′′

12

)
= −α−1 (σ̂ · g12) ,

(
σ̂ · g′

12

)
= −α (σ̂ · g12) , (2.5)

where g′′
12 = v′′

1 − v′′
2 and g′

12 = v′
1 − v′

2. Since α ≤ 1, it is quite apparent from Eq.

(2.5) that the magnitude of the normal component of the relative velocity decreases

for inelastic collisions. In addition, the direct and inverse collisions are not equivalent

when α < 1 since there is no time reversal when the collisions are inelastic.

The change in kinetic energy of the colliding pair in a binary collision can be easily

obtained from Eq. (2.4):

∆E ≡ E′ − E =
m

2

[
v
′2
1 + v

′2
2 − v21 − v22

]
= −m

4
(σ̂ · g12)2

(
1− α2

)
, (2.6)

Therefore, for elastic collisions (α = 1), ∆E = 0 and then the energy is conserved in a

collision. Otherwise, ∆E < 0 and part of the kinetic energy of two colliding grains is

lost.

Equation (2.1) is restricted to the case of a low density gas. At higher densities,

the revised Enskog kinetic theory (RET) is known to be the most general theory that

provide an accurate description of elastic gases [211–214]. Its generalization to inelastic

collisions constitutes a unique basis for the description of granular gases at moderate

densities [57, 77, 215]. The Enskog kinetic equation is given by

∂f

∂t
+ v · ∇f +

1

m

∂

∂v
· (Ff) = JE[r,v|f, f ], (2.7)
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Figure 2.1: Direct and inverse inelastic binary collisions in the reference frame of particle
2. The spheres have a common diameter σ. The solid lines correspond to a given case
where the coefficient of restitution satisfies 0 < α < 1. The dashed lines correspond to
elastic collisions (α = 1).

where the Enskog collision operator is

JE[r,v1|f, f ] = σd−1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

[
α−2χ(r, r− σ)f(r,v′′

1 ; t)

×f(r− σ,v′′
2 ; t)− χ(r, r+ σ)f(r,v1; t)f(r+ σ,v2; t)

]
. (2.8)

The notation here is the same as in Eqs. (2.1) and (2.2). In contrast to the Boltz-

mann equation, the Enskog theory accounts for the separation of the centers of the

colliding spheres since the diameter of the sphere σ is not negligible when compared

with the mean free path between particles ℓ (i.e., the average length that a particle

travels between two successive collisions). As a consequence, the distribution function

varies over distances equal to the diameter of the spheres (represented by ±σ = ±σσ̂).
Although the Enskog equation still maintains the molecular chaos hypothesis, it takes

into account spatial correlations through the pair correlation distribution function at

contact χ[r1, r2|n(t)]. In the RET, the pair correlation function χ is the same as that

of an equilibrium system with non-uniform density field

n(r; t) =

∫
dv f(r,v; t). (2.9)
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2.2 Suspension Model

2.2.1 Monocomponent case

We consider the same system of smooth spheres characterized in Section 2.1 at moderate

densities. Nevertheless, the solid particles are immersed in an ordinary gas of viscosity

ηg. Figure 2.2 shows a schematic diagram of the system considered in this section.

For the sake of generality, let us assume that the whole system is in the presence of a

gravitational field, so that each particle feels the action of the force Fi = mig, where g

is the gravity acceleration. As usual, the action of the external fluid on the motion of

particles is accounted for by the action of an effective external force [116, 137, 141–144].

This approach leads to the following Enskog equation [4]

∂f

∂t
+ v · ∇f + g · ∂f

∂v
+ Ff = JE[r,v|f, f ]. (2.10)

In Eq. (2.10) the operator F represents the fluid-solid interaction force that models the

effect of the viscous gas on the solid particles. Although not explicitly stated, the form

of the Enskog equation (2.10) has been obtained by writing the equation of motion for

a particle of velocity v as [92, 136, 216–218]

mv̇ = Fint + Fcoll, (2.11)

where Fint tries to mimic the fluid-solid interaction while Fcoll is the force due to

grain-grain collisions. A crucial assumption of this model is that the action of the

external fluid is decoupled from that of the collisions. Namely, the Enskog collision

operator is the same as for a granular gas where the presence of the interstitial gas is

neglected. This hypothesis holds up when the mean free time between collisions τ is

much smaller than the time needed by the gas to notably affect the dynamics of grains

[116, 125, 127, 128]. In other words, the surrounding fluid must be dilute enough in

such a manner that its influence on the collision process can be ignored.

For low-Reynolds numbers, the external fluid-solid force can be decomposed into

two independent terms: (i) a viscous drag force Fdrag proportional to the instantaneous

velocity v of the particle and (ii) an stochastic Langevin-like term Fst. While the

first term models the viscous friction on grains, the second tries to mimic the random

collisions with the particles of the bath. In addition, since the model tries to model
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Figure 2.2: Schematic representation of a granular suspension. Solid particles are im-
mersed in a carrier fluid of mass mg ≪ m.

gas-solid flows, the drag is referred to the known mean flow velocity of the gas phase

Ug. Thus, the drag force

Fdrag = −mγ(v −Ug) (2.12)

is represented in the Enskog equation (2.10) by the operator

Fdragf = −γ ∂

∂v
· (v −Ug)f, (2.13)

being γ the drag or friction coefficient. The second term Fst is represented by a Gaussian

white noise with the conditions [219]

⟨Fst
i (t)⟩ = 0, ⟨Fst

i (t)F
st
j (t

′)⟩ = 2m2γTexIδijδ(t− t′), (2.14)

where I is a unit tensor and i and j refer to different particles. Since we want that

the gas phase drives the granular gas acting as a bulk thermostat, the temperature of

the bath Tex is assumed to be constant. Note that in contrast to previous works in

granular gases driven by thermostats [99], the strength of the correlation in Eq. (2.14)

is chosen to be consistent with the fluctuation-dissipation theorem for elastic collisions

[219]. The representation of the white-noise operator acting on the distribution f in
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the Enskog equation is given by1 [220]

Fstf = −γTex
m

∂2

∂v2
f. (2.15)

Therefore, according to equations (2.13) and (2.15), the Enskog equation (2.10) reads

∂f

∂t
+ v · ∇f + g · ∂f

∂v
− γ∆U · ∂f

∂v
− γ

∂

∂v
· (Vf)− γTex

m

∂2f

∂v2
= JE[r,v|f, f ]. (2.16)

Here, ∆U = U−Ug, V = v −U is the peculiar velocity, and

U(r; t) =
1

n(r; t)

∫
dv vf(r,v; t) (2.17)

is the mean flow velocity of the solid particles. As discussed above, since granular gases

are athermal, we define the granular temperature as the variance of the velocity of

particles with respect to the mean flow velocity U of the granular gas. Namely,

T (r; t) =
m

dn(r; t)

∫
dv V(r; t)2f(r,v; t). (2.18)

To completely define the suspension model, it still remains to explicitly write the

drag coefficient γ. Although the drag coefficient is in general a tensor, for dilute sus-

pensions one can assume that γ is a scalar proportional to the viscosity of the solvent

ηg ∝ Tex [116]. In addition, following the investigations of granular suspensions by

Koch and Sangani [125, 171], γ depends on density through the solid volume fraction

ϕ =
πd/2

2d−1dΓ
(
d
2

)nσd. (2.19)

Therefore, we can write γ as

γ = γ0R(ϕ), γ0 ∝ ηg. (2.20)

1In what follows we will take temperature as units of energy so that kB = 1.
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For hard spheres (d = 3), the function R(ϕ) is given by [125, 171]

R(ϕ) =





1 + 3

√
ϕ

2
, if ϕ ≤ 0.1

1 +
3√
2
ϕ1/2 +

135

64
ϕ lnϕ+ 11.26

× ϕ
(
1− 5.1ϕ+ 16.57ϕ2 − 21.77ϕ3

)
− ϕχ(ϕ) ln ϵm, if ϕ > 0.1

. (2.21)

The parameter ϵm mimics lubrication forces between two approaching particles and its

value lies in the range [0.01, 0.05]. Here, we set ϵm = 0.01 for the sake of simplicity.

Expression (2.21) has been derived by using an analytical closure for Stokes flow in

the case of very dilute suspensions (ϕ ≤ 0.1) [125] and simulations based on multipole

expansion at higher densities (ϕ > 0.1) [171].

2.2.2 Binary mixtures

A real granular gas is composed of particles of disparate nature in the sense that its

composition in terms of masses and sizes is quite varied. To account for the effect of

dispersity, we consider here a binary mixture of hard disks or spheres of masses mi and

diameters σi (i=1,2) immersed in a viscous fluid. As above, collisions among particles

are characterized by a constant normal coefficient of restitution αij ≤ 1. Indices i

and j refer to collisions between particles of species i and j. An example of a binary

suspension is illustrated in Fig. 2.3. The extension of the Enskog equation (2.7) to

polydisperse mixtures is straightforward. In the case of a binary suspension subjected

to the action of gravity, the one-body velocity distribution function fi(r,v; t) of the

species or component i verifies the set of two coupled Enskog equations [4]

∂fi
∂t

+ v · ∇fi + g · ∂fi
∂v

+ Fifi =
2∑

j=1

JE,ij [r,v|fi, fj ], (2.22)

where the Enskog collision operator is

JE,ij [r,v1|fi, fj ] = σd−1
ij

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

[
α−2
ij χij(r, r− σij)

fi(r,v
′′
1 ; t)× fj(r− σij ,v

′′
2 ; t)− χij(r, r+ σij)

f(r,v1; t)f(r+ σij ,v2; t)

]
. (2.23)
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Figure 2.3: Schematic representation of a bidisperse suspension. Two kinds of particles
of masses m1 and m2 are immersed in an interstitial gas of mass mg ≪ m1,2.

In Eq. (2.22) the operator Fi models the effect of the surrounding gas on the solid

particles of the species i. The notation is the same as in Eqs. (2.1) and (2.2), except

that σij = σijσ̂, σij = (σi + σj)/2 and χij(r, r ± σij). The latter is the equilibrium

pair correlation function of two hard spheres, one for the species i and the other for

the species j at contact (namely, when the distance between their centers is σij). In

addition, the precollisional velocities (v′′
1 ,v

′′
2) are given by

v′′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, v′′

2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, (2.24)

where µij = mi/(mi+mj). The form of the corresponding Boltzmann collision operator

Jij [fi, fj ] can be derived from Eq. (2.22) by taking χij(r, r±σij) → 1 and fj(r±σij) ≃

fj(r) in the operator JE,ij [r,v1|fi, fj ] given in Eq. (2.23). Its explicit form is

Jij [v1|fi, fj ] = σd−1
ij

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

[
α−2
ij fi(v

′′
1)fj(v

′′
2)

−fi(v1)fj(v2)

]
. (2.25)



26 2.2 Suspension Model

Turning now to the suspension model, the expression of Fi is discussed below. As

in the monocomponent case, if the gas phase is dilute enough, Fi takes the form of

a Fokker-Plank operator (drag plus stochastic terms). A crucial point of the model

regards the selection of Fi with respect to the way of interchange of energy between

the bath and each species. The simplest option would be to define Fi to be the same

for both species. However, in accordance with simulations of bidisperse gas-solid flows

[172–174], the drag coefficients γi of the species i = 1, 2 are chosen to be different.

Thus, the extension of Eqs. (2.13) and (2.15) to binary mixtures yields the following

expression for the operator Fi

Fifi = F
drag
i fi + Fst

i fi = −γi∆U · ∂f
∂v

− γi
∂

∂v
· (Vfi)−

γiTex
mi

∂2fi
∂v2

. (2.26)

The set of Enskog equations (2.22) reads

∂fi
∂t

+v·∇fi+g·∂fi
∂v

−γi∆U·∂f
∂v

−γi
∂

∂v
·(Vfi)−

γiTex
mi

∂2fi
∂v2

=

2∑

j=1

JE,ij [r,v|fi, fj ], (2.27)

where the local mean flow velocity of the mixture is

U(r; t) =
1

ρ(r; t)

2∑

i=1

∫
dv mivfi(r,v; t). (2.28)

Here, ρ =
∑

i ρi is the total mass density and ρi = nimi is the mass density of the

species i defined in terms of the local number density of the species i. Namely,

ni(r; t) =

∫
dv fi(r,v; t). (2.29)

Apart from the partial densities ni and the flow velocity U, the other important hy-

drodynamic field is the granular temperature T . It is defined as

nT =
∑

i

niTi, (2.30)

where n = n1 + n2 is the total number density. Moreover,

Ti =
mi

dni

∫
dv V 2fi(v) (2.31)
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is the partial temperature of the species i.

Consistent with the monocomponent case, we define γi as scalars that depend on

density. In this case, the results obtained in lattice-Boltzmann simulations of low-

Reynolds-number fluid flow in bidisperse suspensions [172–174] provide the expressions

of γi. They are given by γi = γ0R(ϕ, ϕi), where

γ0 =
18ηg
ρσ212

, R(ϕ, ϕi) =
ρσ212
ρiσ2i

(1− ϕ)ϕiσi
ϕ

2∑

i=1

ϕj
σj

[
10ϕ

(1− ϕ)2
+ (1− ϕ)2(1 + 1.5)

√
ϕ

]
.

(2.32)

Here, ϕi is the partial volume fraction of the species i and ϕ = ϕi + ϕ2 is the total

volume fraction.

2.2.3 Rough spheres

Let us consider a dilute ensemble of inelastic rough hard spheres of diameter σ, massm,

and moment of inertia I immersed in a molecular gas. Inelasticity of collisions among

particles is characterized by a coefficient of normal restitution (α ≤ 1) and a coefficient

of tangential restitution (−1 ≤ β ≤ 1). For the sake of clarification, a schematic

representation of the rough-spheres multiphase system can be found in Fig. 2.4. As in

the case of binary mixtures, the Boltzmann equation (2.1) can be easily extended to

the case of rough spheres. In these circumstances, the one-body distribution function

f(r,v,ω; t) gives the average number of particles which at instant t have linear velocities

v and angular velocities ω. In addition, as before we assume that the influence of the

interstitial gas on grains is via an effective instantaneous force characterized by the

operator Ff . Contemplating the effects of the gravity field, the velocity distribution f

obeys the Boltzmann kinetic equation [4, 60, 202, 221, 222]

∂f

∂t
+ v · ∇f + g · ∂f

∂v
+ Ff = J

[
v,ω|f, f

]
, (2.33)

where J [f, f ] is the Boltzmann collision operator given by [4, 60]

J [v1,ω1|f, f ] = σ2
∫

dv2

∫
dω2

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

[ 1

α2β2
f(r,v′′

1 ,ω
′′
1; t)

×f(r,v′′
2 ,ω

′′
2; t)− f(r,v1,ω1; t)f(r,v2,ω2; t)

]
. (2.34)

In Eq. (2.34), the collision rules that govern the change of the precollisional velocities
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Figure 2.4: Schematic representation of a system of rough spheres immersed in a molec-
ular gas of mass mg ≪ m.

{v′′
1 ,ω

′′
1,v

′′
2 ,ω

′′
2} into {v1,ω1,v2,ω2} are [202, 221–224]

v′′
1 = v1 −Q′′, v′′

2 = v2 +Q′′, (2.35)

ω′′
1 = ω1 −

2

σκ
σ̂ ×Q′′, ω′′

2 = ω2 −
2

σκ
σ̂ ×Q′′, (2.36)

where the impulse Q′′ is given by

Q′′ =
1 + α−1

2
σ̂(σ̂ · g)− κ

1 + κ

1 + β−1

2

[
σ̂(σ̂ · g)− g +

σ

2
σ̂ × (ω1 + ω2)

]
. (2.37)

In Eqs. (2.36) and (2.37), κ = 4I/mσ2 is a dimensionless parameter characterizing the

mass distribution within a sphere. The parameter κ runs from the values κ = 0 (mass

concentrated on the center) and κ = 2
3 (mass concentrated on the surface). In the case

of uniformly distributed mass, κ = 2
5 .

As in the previous models of granular suspensions described in 2.2.1 and 2.2.2, the

operator F has the form of a Fokker–Plank equation when acting on the translational

degrees of freedom of the spheres. On the other hand, although the effect of the
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external fluid on the angular velocity of particles is not known a priori, we expect that

the mathematical structure of this terms is similar to the translational case. In fact,

following a generalized Fokker–Planck equation for rotating spheres proposed many

years ago by Hess [203], we write the operator Ff as

Ff = Ftrf + Frotf, (2.38)

where Ftr and Frot denote the corresponding Fokker–Planck terms associated with the

translational and rotational degrees of freedom of spheres. As usual, the translational

part Ftrf can be written as in Eqs. (2.13) and (2.15). Namely,

Ftrf = −γt
∂

∂v
· (v −Ug) f − γt

Tex
m

∂2f

∂v2
, (2.39)

where γt now refers to the drag coefficient associated with the translational degrees of

freedom. In the case of very dilute suspensions, γt = 3πσηg/m. Similarly, the rotational

part Frotf has an analogous structure to Eq. (2.39) except that the linear velocity v is

replaced by the angular velocity ω. It is given by [203]

Frotf = −γr
∂

∂ω
· ωf − γr

Tex
m

∂2f

∂ω2
, (2.40)

where γr = πσ3ηg/I. Note that we are assuming for simplicity that the mean angular

velocity of the surrounding gas is zero. Moreover, for the sake of consistency with Grad’s

solution in the USF (defined in terms of a two-temperature Maxwellian distribution

(2.56) where the translational and rotational degrees of freedom are decorrelated) we

are also neglecting in Eqs. (2.39) and (2.40) the coupling of translational and rotational

velocities. Besides symmetry considerations, it must be remarked that this model has

been recently considered to study the segregation dynamics in a binary mixture of

microswimmers with good agreement between experiments and theory [225].

According to Eqs. (2.39) and (2.40), the Boltzmann kinetic equation (2.33) can be

written as

∂f

∂t
+v·∇f−γt∆U·∂f

∂v
−γt

∂

∂v
·Vf−γt

Tex
m

∂2f

∂v2
−γr

∂

∂ω
·ωf−γr

Tex
I

∂2f

∂ω2
= J [f, f ], (2.41)
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where

U(r; t) =
1

n(r; t)

∫
dv

∫
dω vf(r,v,ω; t) (2.42)

is the mean flow velocity of rough spheres and

n(r; t) =

∫
dv

∫
dω f(r,v,ω; t) (2.43)

is the number density. In the rough case, the temperature is defined as

T =
1

2
(Tt + Tr) , (2.44)

where the (partial) translational Tt and rotational Tr temperatures are defined as

Tt(r; t) =
m

3n(r; t)

∫
dv

∫
dω V 2f(r,v,ω; t), (2.45)

Tr(r; t) =
I

3n(r; t)

∫
dv

∫
dω ω2f(r,v,ω; t). (2.46)

It is worth noting that we have not referred the angular velocities ω to the mean value

Ω = ⟨ω⟩ in the definition of Tr because the total temperature T = (Tt + Tr)/2 would

not then be a conserved quantity for α = β = 1.

2.3 The Chapman–Enskog Method

The Chapman–Enskog (CE) method conveniently adapted to inelastic collisions will

be implemented to solve the Enskog equations of monocomponent suspensions, dry

granular mixtures, and bidisperse suspensions in Articles 1, 4, and 5, respectively.

As we have already discussed, one of the main aims of kinetic theory is to express

the macroscopic properties of the system in terms of microscopic quantities. In the case

of granular suspensions, two new ingredients are added in the balance equations with

respect to ordinary gases: (i) a cooling term characterizing the rate of energy dissipated

due to the inelasticity of collisions and (ii) the influence of the external bath by means of

the presence of the drag coefficients and the external temperature Tex. Therefore, the

macroscopic balance equations are not closed equations for the hydrodynamic fields

{n,U, T} ({n1, n2,U, T} in a binary mixture) due to the presence, not only of the

pressure tensor P, the heat flux q, and the mass flux ji for species i in the case of a
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mixture [122], but also of the cooling rate ζ1 [see for instance Eqs. (20-22) of Article 4].

To close these equations, one has to express the fluxes and the cooling rate in terms of

the hydrodynamic fields and their spatial gradients. Explicit knowledge of f together

with Eqs. (2.21) and (2.22) would yield a closed set of equations for the hydrodynamic

fields. Although the exact form of f is not known, a good approximation of this

distribution can be derived by looking for a normal (or hydrodynamic) solution to the

kinetic equation. The existence of a normal solution implies that all space and time

dependence of the velocity distribution function only occurs through the hydrodynamic

fields:

f(v, r; t) = f [v|n(r; t), T (r; t), U(r; t)] . (2.47)

The notation on the right hand side indicates a functional dependence on the density,

temperature and flow velocity.

The conjecture raised in Eq. (2.47) can be clearly justified when analyzing the time

evolution of granular suspensions. In analogy to the molecular case [122, 123, 205],

the evolution of granular suspensions towards a steady state goes through two different

stages as follows [4, 60]. At a very early stage (t ∼ τ , τ being the mean free time), a

kinetic regime drives the evolution of granular suspensions. The first collisions between

neighboring particles take place and the main effect of collisions is to relax quickly the

gas toward a local time-dependent non-equilibrium distribution function (the so-called

local homogeneous cooling state in the case of dry granular gases). This kinetic stage

has a high dependence on the initial conditions. Then, for times much longer than the

mean free time (t ≫ τ), a hydrodynamics stage is identified. Since the hydrodynamic

fields are collisional invariants in the case of molecular gases (namely, the density

of mass, momentum, and energy are conserved in elastic collisions), the classical CE

method considers that the hydrodynamic regime is characterized by a slower evolution

of the hydrodynamic fields as they approach towards the global equilibrium. Therefore,

at this second stage, the response of the system to any spatial deviation from the local

equilibrium distribution will be characterized by the evolution of the fields n, U, and

T . Although the temperature is not conserved in granular systems, kinetic models as

well as DSMC and MD simulations suggest that the granular temperature can still be

considered as a slow variable (i.e., its time evolution is much slower than other velocity

1For the sake of clarity, we will consider henceforth a monocomponent gas. The application of the
CE method to bidisperse granular gases is analogous and can be found in Chapter 4.
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Figure 2.5: Schematic representation of the time evolution of the distribution function f
for granular suspensions.

moments of f such as those related to the irreversible fluxes) [4, 226–230]. For the sake

of illustration, a schematic representation of the evolution of the distribution function

f via the kinetic and hydrodynamic regimes is displayed in Fig. 2.5.

The normal solution (2.47) means that in order to know f at the point r, we need

to know not only the hydrodynamic fields at this point, but also all their spatial deriva-

tives evaluated at the same point r. The simplest way of obtaining the explicit form of

the normal solution (2.47) is to assume weak spatial gradients. In this case, f can be

expanded in a series expansion in powers of the gradients of the hydrodynamic fields.

The resulting series can then be truncated at a finite number of terms, thus yielding an

approximation of the distribution function. Therefore, the CE procedure becomes more

effective when the gradients of the hydrodynamic fields (or the inhomogeneities of the

system) are small so that the series expansion converges [231]. Thus, we need to quan-

tify somehow the inhomogeneity of the system such that the expansion is implemented

rigorously.

A straightforward way to quantify the inhomogeneity of the granular system is by

analyzing the order of magnitude of the different terms appearing in the Enskog equa-

tion (2.7). Let us define a typical hydrodynamic length h (over which the distribution

function varies significantly) and a typical velocity of the thermal motion of particles

vth. Associated to them, we introduce a typical hydrodynamic time τh = h/vth. Hence,

∂f

∂t
= O

(
τ−1
h f

)
, v · ∇f = O

(
vthh

−1f
)
, JE[f, f ] = O

(
nσd−1vth

)
. (2.48)

If we compare the magnitude of the left hand side of the Enskog equation (2.7) with the

right hand side, we can therefore establish a relation between the gradients of the system
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(or hydrodynamic scale) with respect to the microscopic length nσd−1 that measures

the collision (or microscopic) stage. Thus, we can express the relative magnitude of

both sides in terms of the ratio (nσd−1)−1/h. For hard spheres, ℓ = (nσd−1)−1 is

proportional to the mean free path between collisions. Since the ratio Kn = ℓ/h, known

as the Knudsen number [232], relates the macroscopic and microscopic scales, it may

be also useful to quantify the inhomogeneity of the system. The normal solution (2.47)

holds up then if Kn → 0. As a consequence, τ/τh → 0 and so, there is a separation

between the microscopic (τ) and macroscopic (τh) times.

In addition, the boundary conditions can create correlations between inelasticity

and spatial gradients (e.g., non-Newtonian flows under shear [51]) and both quantities

cannot be chosen separately. This constraint prevents the application of the CE method

for strong inelasticities since the strength of the gradients increases with increasing

inelasticity. In order to avoid such difficulties, the normal solution is restricted to much

longer times than the mean free time (hydrodynamic stage) and distances from the

boundaries larger than the mean free path.

In accordance with Eq. (2.48), since h ∼ |∇ ln f |−1, small spatial variations imply

low Knudsen numbers. On this basis, as said before, the functional dependence (2.47)

can be made local in space through an expansion in the gradients of the hydrodynamic

fields. To generate it, f is written as a series expansion in a formal book-keeping

parameter ϵ measuring the non-uniformity of the system:

f = f (0) + ϵf (1) + ϵf (2) + · · · , (2.49)

where each factor ϵ means an implicit gradient. Moreover, in ordering the different

level of approximations in the kinetic equation, one has to characterize the magnitude

of the friction coefficient γ, the gravity field g, and the term ∆U relative to the spatial

gradients as well. As in the case of elastic collisions [215], the gravity field is considered

to be at least of first order in the perturbation expansion since it induces a pressure

gradient ∇p (the so-called barometric formula). In addition, with respect to the drag

coefficient γ, it is considered to be to zeroth order in gradients since it does not induce

any flux in the system. Finally, since U relaxes to Ug in the absence of gradients, we

expect that the term ∆U is at least of first order in the gradients.
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According to the expansion (2.49), the Enskog operator JE[f, f ] and the time deriva-

tive ∂t are also expanded in terms of the parameter ϵ as

∂t = ∂
(0)
t + ϵ∂

(1)
t + ϵ2∂

(2)
t + · · · , JE = J

(0)
E + ϵJ

(1)
E + ϵ2J

(2)
E + · · · (2.50)

Moreover, the fluxes P and q and the cooling rate ζ are given by the representations

P = P(0) + ϵP(1) + ϵ2P(2) + · · · , q = q(0) + ϵq(1) + ϵ2q(2) + · · · ,
ζ = ζ(0) + ϵζ(1) + ϵ2ζ(2) + · · ·

(2.51)

When the solution (2.47) is inserted in the Enskog equation (2.10), and the expansion

(2.50) for the time derivative is implemented, the time derivative of f can be written

as

∂
(k)
t f =

(
∂
(k)
t n

) ∂f
∂n

+
(
∂
(k)
t U

) ∂f

∂U
+
(
∂
(k)
t T

) ∂f
∂T

, (2.52)

where the time derivatives ∂
(k)
t n, ∂

(k)
t U, and ∂

(k)
t T are determined from the correspond-

ing balance equations at this order.

The introduction of these expansions into the Enskog equation leads to a set of

integro-differential equations for the approximation f (k). The zeroth-order equation

involves only f (0); the second-order, f (0) and f (1); the third-order, f (0), f (1), and

f (2); etc. The zeroth-order level gives the so-called Euler equations, the first-order

approximation leads to the NS equations, while the second and third order are the

Burnett and super-Burnett equations. Here, we will retain our calculation up to the

first order in the gradients (NS hydrodynamic level).

In contrast to previous works on the CE method applied to granular gases [66, 148,

149, 215], two modifications are introduced with regard to the zeroth-order distribution

f (0): (i) a time dependence caused by a local imbalance of energy between collisions

and the action of the interstitial fluid and (ii) the influence of density on the reference

distribution introduced by the parameters of the gas-solid force.

2.4 Grad’s Moment Method

Grad’s moment method will be employed in Article 7 to obtain the collisional moments

of a dilute suspension composed of inelastic rough spheres under simple shear flow.
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Grad’s moment method is the best known alternative to the CE method. Just as

the molecular case [200], the basis of this approach consists on an expansions of the

distribution function in a complete set of orthogonal polynomials [generalized Hermite

polynomialsHk(v)] with a Gaussian measure. The coefficients of the expansion give the

corresponding velocity moments. The key factor of the method resides in the selection

of the coefficients to be the same as those of the exact distribution function. Following

Grad’s paper [200], we assume that the state of the gas can be described accurately by

an extended set of moments

⟨ψ⟩ = 1

n(r, t)

∫
dv

∫
dω ψ(r,v,ω; t)f(r,v,ω; t), (2.53)

where ψ(r,v,ω; t) is an arbitrary dynamic property of the velocities v and ω.

The resulting hierarchy of moment equations is infinite and must therefore be trun-

cated at some given order k. This means that the moments of degree higher than k

are neglected in the corresponding solution. In the case of a three-dimensional gas, the

standard Grad’s method retains the moments associated to the density n, the three

components of the linear velocity field U, the (partial) translational temperature Tt,

the five components of the pressure tensor P [Tt = (Pxx + Pyy + Pzz)/(3n)], and the

three components of heat flux q [200, 233]. This represents a total of thirteen moments

and, as a consequence, the method is referred to as the 13-moment method. Here,

we add a new velocity moment related to the so-called partial rotational temperature,

which stems from the definition of the Maxwellian distribution.

At a microscopic level, the main advantage of the simple shear flow is that this state

becomes spatially homogeneous when the velocities of the particles v are referred to the

frame moving with the mean flow velocity U. Moreover, since the heat flux vanishes

by symmetry in the simple shear flow problem, the explicit form of the non-equilibrium

distribution function f(V,ω) in this approximation is [223, 234]

f(V,ω) → f0(V,ω)
[
1 +

m

2nT 2
t

(
ViVj −

1

3
V 2δij

)
Πij

]
, (2.54)

where

Πij = Pij − nTtδij (2.55)

is the traceless part of the pressure tensor Pij = ρ⟨ViVj⟩ and f0 is the
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two-temperature Maxwellian velocity distribution

f0(V,ω) = n
( mI

4π2TtTr

)3/2
exp

(
−mV

2

2Tt

)
exp

(
−Iω

2

2Tr

)
. (2.56)

Upon writing the distribution (2.54) we have ignored the possible contributions to

f coming from a sum of projections along the three polar vectors V, (V · ω), and

V × ω [235, 236]. This can be justified since the selection of the Maxwellian weight

distribution f0 entails that the orientational correlations betweenV and ω are neglected

[see Eq. (2.38)], and hence the distribution is isotropic in the velocity space. Moreover,

theoretical results for the temperature ratio Tt/Tr assuming the approximation f0 to f

in homogeneous states have been shown to compare very well with both Monte Carlo

and MD simulations [237].

2.5 BGK-type Kinetic Model

We consider a Bhatnagar–Gross-Krook (BGK)-type kinetic model of the Boltzmann

equation to obtain the rheological properties of a granular suspension under simple

shear flow in Articles 6 and 7.

We do know already that while the mass m and momentum mv are collisional

invariants of the Boltzmann collision operator, the energy is not conserved in the case

of inelastic collisions. Strictly speaking,

∫
dv

{
1,mv,

1

2
mV2

}
J [v|f, f ] =

{
0,0,−d

2
nTζ

}
, (2.57)

where

ζ = − m

dnT

∫
dv V 2J [v|f, f ] (2.58)

is the cooling rate. Therefore, guided by the results provided by Brey, Dufty, and Santos

(BDS) [199], the (inelastic) Boltzmann collision operator J (α)[v|f, f ] can be written as

J (α)[v|f, f ] → υ(α)J (1)[v|f, f ] + ζ

2

∂

∂v
· (Vf) , (2.59)

where J (1)[f, f ] is the collision operator for elastic collisions (α = 1). The frequency

υ(α) tries to mimic the granular trends that are observed in the collisional moments of

granular gases. It can be selected for instance to agree with the IHS results. Given that
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the cooling rate cannot be exactly evaluated, we take here the expression of ζ obtained

from the definition (2.58) by replacing f by its Maxwellian form.

For ordinary gases, the simplest choice for J (1)[f, f ] that retains its collisional in-

variants
{
1,v, V 2

}
is the well-known BGK approximation [238, 239]. Its explicit form

is

J (1)[v|f, f ] → K[f ] = −ν(f − fL), (2.60)

where ν is an effective collision frequency that stems from the Boltzmann collision

operator and fL is the local equilibrium distribution function. Behind this simple

equation, the BGK model assumes that the non-equilibrium distribution function f

relaxes towards the local equilibrium distribution function fL in a time ν−1. Inserting

Eq. (2.60) into Eq. (2.59), the BGK-type kinetic model reads

J (α)[v|f, f ] → −υ(α)ν(f − fL) +
ζ

2

∂

∂v
· (Vf) . (2.61)

In the context of inelastic rough spheres, the operator J (α,β)[v,ω|f, f ] becomes [204]

J (α,β)[v,ω|f, f ] → −υ(α, β)νt (f − f0) +
ζt
2

∂

∂V
· (Vf) + ζr

2

∂

∂ω
· (ωf) , (2.62)

where f0 is the two-temperature Maxwellian distribution defined in Eq. (2.56). The

partial energy production rates associated with the translational (ζt) and rotational

(ζr) degrees of freedom are

ζt = − m

3nTt

∫
dv

∫
dω v2J [f, f ], ζr = − I

3nTr

∫
dv

∫
dω ω2J [f, f ]. (2.63)

They can be determined for instance by replacing f by Grad’s distribution (2.54) in

the Boltzmann operator (2.34).

2.6 Inelastic Maxwell Models

Inelastic Maxwell Models (IMM) for dilute granular gases (or suspensions) are intro-

duced in this section. Article 6 uses IMM to exactly obtain the rheological properties

of a sheared granular suspension.

One of the main limitations of the Boltzmann kinetic equation relies on the afford-

ability of the calculations involving the collisional moments. The real difficulty arises
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from the form of the collision rate appearing inside the Boltzmann collision operator

(2.2). To overcome the difficulty associated to the IHS core, one may assume an in-

teraction model where the collision rate is independent of the relative velocity of the

colliding pair. In the case of elastic collisions [206], Maxwell models can be under-

stood by the introduction of a repulsive potential that is proportional to the inverse

of the fourth power of distance between particles. Conversely, for inelastic collisions,

the collision rules (2.3) should be changed in order to consider the Maxwell potential.

Nonetheless, as pointed out by Ernst [198], IMM can be introduced at the level of the

cross section, without any special reference to an interaction potential.

To obtain the Boltzmann collision operator for IMM, the scalar product |σ̂ · g12| is
replaced by a term proportional to the thermal velocity vth =

√
2T/m and independent

of the relative velocity g12 [4]. In this case, the Boltzmann collision operator JIMMf, f ]

reads [240]

JIMM[v|f, f ] = νM
nΩd

∫
dv2

∫
dσ̂
[
α−2f(v′′

1)f(v
′′
2)− f(v1)f(v2)

]
, (2.64)

where Ωd = 2πd/2/Γ(d/2) is the solid angle in d dimensions and the precollisional

velocities (v′′
1 ,v

′′
2) are given by the collision rules (2.3). The collision frequency νM

is independent of velocity but depends on space and time through its dependence on

density and temperature. It plays the role of υ(α) in the case of the BGK-type model,

i.e., it acts as a free parameter of the model that can be chosen to optimize agreement

with some property of interest of the original Boltzmann equation. It can be defined

as νM ∝ T q, where q can be seen as a generic parameter that is picked upon request

to mimic different potentials. The case q = 0 is closer to the classical Maxwell Models,

whereas q = 1
2 mimics the hard sphere potential [198].

The main advantage of the IMM is that the collisional moments can be expressed in

terms of the velocity moments of the distribution function f , without explicit knowledge

of the latter [241]. Thus, the collisional moments of degree k can be expressed in terms

of the velocity moments of degree less or equal to k. This opens up the possibility to

use the IMM for example to get the dependence of higher-degree moments (third and

fourth) on the coefficients of restitution α and β [242, 243].
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2.7 Direct Simulation Monte Carlo (DMSC) Method

The kinetic equations derived in this Chapter must be solved by successive approxima-

tions that concern the form f , both as regards the local value of f(r,v; t) and its time

and space derivatives. The former affect the form of the zeroth-order solution f (0),

which unlike ordinary gases is not a Maxwellian distribution, yielding a slightly differ-

ent functional form [220]. Throughout this thesis, we will usually consider the leading

terms in a Sonine polynomial expansion of f (0) (first-Sonine approximation) [122]. The

second kind of approximations involves the normal or hydrodynamic solution (2.47)

that has been already discussed in terms of the Knudsen number Kn.

In the case of a rarefied gas dominated by collisions, an alternative but complemen-

tary method to solve the Boltzmann and Enskog equations is the Direct Simulation

Monte Carlo (DSMC) method. Although the DSMC method still assumes the molec-

ular chaos hypothesis, it is able to provide the “exact” form of f without making any

assumption on the existence of a hydrodynamic solution. Thus, it is worth solving the

kinetic equations by means of the DSMC method to test the reliability of the (approx-

imate) theoretical predictions.

The classical DSMC simulations originally proposed by Bird [244] were created with

the specific goal of solving rarefied gas flows that are not accessible from a computa-

tional point of view to MD simulations. It should, however, be noted that if the Knudsen

number is very low (continuum approach), the results obtained from the method are

still valid as a solution of the Boltzmann equation [245, 246].

In this thesis, we follow similar steps as those proposed by Montanero and Garzó

[154] (who performed simulations for freely cooling granular mixtures) to numerically

solve the Boltzmann–Enskog equation of a homogeneous bidisperse granular (molecu-

lar) suspension in both transient and steady regimes1 (Chapters 4 and 5).

The simulation is initiated by drawing the particle velocities from a certain dis-

tribution at an initial temperature Ti,0. The discretized distribution function f
(N)
i of

species i stems from the velocities {vk} of Ni “virtual particles”:

f
(N)
i (v; t) → ni

Ni

N∑

k=1

δ(v − vk(t)). (2.65)

1The Monte Carlo simulation results for the monocomponent case that are displayed in Article 1
were obtained in Ref. [148, 149], and hence are not part of the present thesis.
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For low-density regimes, since the collisions are assumed to be instantaneous, the

free flight of particles and the collision stage can be decoupled in time. The DSMC

method maintains this assumption and therefore the method can be divided into two

steps: the convective and the collision stages. However, since the granular gas is

assumed to be spatially homogeneous in our simulations, only the collision stage is

described here. The procedure can be summarized as follows:

Granular mixtures:

1. To simulate the collisions between particles of species i with j a required number

of N δt
ij candidate pairs to collide in a time δt is selected. This number is given by

[154]

N δt
ij =

2d−1dΓ
(
d
2

)

π(d−2)/2

NiNjσ
2
12∑

iNiσdi
ϕχijg

max
ij δt, (2.66)

where Ni is the total number of simulated particles of species i and gmax
ij is

an upper bound of the average relative velocity between two particles. A good

estimate is gmax
ij = Cvthij , where v

th
ij =

√
2Tg/m is the mean thermal velocity,

m = (mi +mj)/2, and C is a constant, e.g., C = 5 [246]. Note that the number

of candidate pairs is enhanced by the presence of the pair correlation function χij

to solve the Enskog equation [247].

2. A colliding direction σ̂kℓ for a pair of colliding particles labeled as k and ℓ is

randomly selected with equal probability.

3. The collision is accepted if

|σ̂kℓ · gkℓ| = |σ̂kℓ · (vk − vℓ)| > R(0, 1)gmax
ij , (2.67)

where R(0, 1) is a random number uniformly distributed in [0, 1].

4. If the collision is accepted, the velocities of particles are updated according to the

scattering rules [4]:

vk → vk − µji (1 + αij) (gkℓ · σ̂kℓ)σ̂kℓ,

vℓ → vℓ + µij (1 + αij) (gkℓ · σ̂kℓ)σ̂kℓ. (2.68)
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5. Repeat the procedure for all the permutations of i = 1, 2 and j = 1, 2.

Binary suspensions:

For a three-dimensional system (d = 3), the influence of the interstitial fluid on grains

is taken into account by updating the velocity vk of every single grain each time step

δt according to [94]:

vk → e−γiδtvk +

(
6γiTexδt

mi

)1/2

R[−1, 1]. (2.69)

Here, R is a uniformly distributed random vector in [−1, 1]3. Equation (2.69) converges

to the Fokker–Plank operator (2.26) when the time step δt is much smaller than the

mean free time between collisions [94].1

1Note that R[-1,1] can be replaced by any random vector of zero mean and unit variance. Here,
we have chosen a uniformly distributed random vector for the sake of simplicity.





Chapter 3

Transport Coefficients for

Granular Suspensions at

Moderate Densities

3.1 Summary

An ensemble of solid particles (disks for d = 2 or spheres for d = 3) of mass m and di-

ameter σ immersed in a viscous fluid at a fixed temperature Tex is considered. Particles

are assumed to be completely smooth so the inelasticity of collisions is represented by

a constant coefficient of normal restitution α ≤ 1. In accordance with direct numerical

simulations (DNS) at low-Reynolds numbers [137], the influence of the interstitial gas

on the dynamics of grains is account for by an effective force composed of two differ-

ent terms: (i) a drag force proportional to the instantaneous velocity of the particles

and (ii) a stochastic Langevin-like term in the form of a Gaussian white noise. The

first term models the friction of grains on the viscous fluid, whereas the second tries

to mimic the energy gained by the grains when they collide with the particles of the

interstitial gas. The amplitude of the white noise is chosen in such a way that the

fluctuation-dissipation relation is recovered in the elastic limit (α = 1) [see equation

(2.15)].

The starting point of the present work is the Enskog kinetic equation at moderate

densities. Once the action of the external force on the one-body distribution function f

is settled, the balance equations for the hydrodynamic quantities (namely the density

43
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n, flow velocity U, and granular temperature T ) can be obtained by multiplying the

Enskog equation by
{
m,mv, 12mv

2
}
and integrating over velocity. Unfortunately, the

presence of the momentum and heat fluxes as well as the cooling rate make the bal-

ance equations not to be closed equations for the hydrodynamic quantities. Thus, the

constitutive equations for these quantities (that measure the response of the system to

the gradients of hydrodynamic variables) must be determined. In this work, we use the

Chapman–Enskog method [122] conveniently adapted to dissipative dynamics as a re-

liable procedure to obtain the transport properties of a granular suspension, and hence

to achieve a closure relation for the balance equations. Here, we retain our calculations

up to the first-order solution; Navier–Stokes hydrodynamic level.

To compute the NS transport coefficients, one needs to characterize first the zeroth-

order solution or, in other words, the reference state of the perturbation scheme. The

reference or homogeneous state conforms the simplest situation in which we can test

the different assumptions taken to compute the distribution function and the collisional

moments. More precisely, we assume first that the normal solution (2.47) exists, namely,

a special solution of the Enskog equation where all the spatial and time dependence

of the distribution function occurs through the hydrodynamic variables. Then, an

approximate solution is proposed based on a Sonine expansion of the zeroth-order

distribution f (0). The latter slightly perturbs the local equilibrium function (i.e., the

reference state in the elastic case) in terms of Laguerre polynomials [220]. Moreover,

in the absence of gradients, the loss of energy due to the inelasticity of collisions is

compensated for by the action of the bath. Hence, a homogeneous steady state is

reached. The steady values for the granular temperature T and the fourth cumulant a2

—measuring the deviation of f (0) from its Maxwellian form— are confronted against

DSMC simulations.

In addition, while in the dry granular case the distribution f (0) is chosen to be the

local version of the homogeneous cooling state, there is more flexibility in the choice

of f (0) in granular suspensions. Since the response to the action of the bath is not

instantaneous, the effect of inelasticity cannot be locally compensated by the presence

of the interstitial fluid, and hence the zeroth-order distribution is not in general a

stationary distribution. Thus, although the NS transport coefficients are computed

under steady-state conditions, one should previously consider the time dependence of

f (0). This condition requires the knowledge of the derivatives of a2 with respect to the
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hydrodynamic fields through the dependence on the parameters of the bath. Besides

the dependence on the temperature ratio T/Tex and in contrast to previous works

[148, 149], we also take into account an additional dependence of a2 on the density

field n since the drag coefficient γ contemplates the effect of density in our suspension

model [see Eq. (2.20)].

Once the reference state is characterized, the CE method is implemented. To first

order in spatial gradients, the CE solution allows us to identify the NS transport co-

efficients associated with the momentum and heat fluxes. Explicit forms for the shear

and bulk viscosities, the thermal and diffusive heat conductivities, and the first-order

contribution to the cooling rate, are obtained in steady-state conditions by retaining

the leading terms in a Sonine polynomial expansion. As an application, the stability of

the HSS is analyzed showing that it is always linearly stable under small perturbations.
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The Enskog kinetic theory for moderately dense granular suspensions is considered as a model
to determine the Navier-Stokes transport coefficients. The influence of the interstitial gas on solid
particles is modeled by a viscous drag force term plus a stochastic Langevin-like term. The suspen-
sion model is solved by means of the Chapman–Enskog method conveniently adapted to dissipative
dynamics. The momentum and heat fluxes as well as the cooling rate are obtained to first order
in the deviations of the hydrodynamic field gradients from their values in the homogeneous steady
state. Since the cooling terms (arising from collisional dissipation and viscous friction) cannot be
compensated for by the energy gained by grains due to collisions with the interstitial gas, the refer-
ence distribution (zeroth-order approximation of the Chapman–Enskog solution) depends on time
through its dependence on temperature. On the other hand, to simplify the analysis and given
that we are interested in computing transport properties in the first order of deviations from the
reference state, the steady-state conditions are considered. This simplification allows us to get ex-
plicit expressions for the Navier–Stokes transport coefficients. The present work extends previous
results [Garzó et al. 2013, Phys Rev. E 87, 032201] since it incorporates two extra ingredients
(an additional density dependence of the zeroth-order solution and the density dependence of the
reduced friction coefficient) not accounted for by the previous theoretical attempt. While these two
new ingredients do not affect the shear viscosity coefficient, the transport coefficients associated
with the heat flux as well as the first-order contribution to the cooling rate are different from those
obtained in the previous study. In addition, as expected, the results show that the dependence
of the transport coefficients on both inelasticity and density is clearly different from that found in
its granular counterpart (no gas phase). Finally, a linear stability analysis of the hydrodynamic
equations with respect to the homogeneous steady state is performed. In contrast to the granular
case (no gas-phase), no instabilities are found and hence, the homogeneous steady state is (linearly)
stable.

I. INTRODUCTION

Although in nature granular matter is surrounded by an interstitial fluid (like the air, for instance), most of
theoretical and computational studies have neglected the impact of the gas phase on the dynamics of solid particles.
On the other hand, it is known that in many practical applications (like for instance species segregation in granular
mixtures [1–6]) the effect of the surrounding fluid on grains cannot be ignored. Needless to say, at a kinetic theory
level, the description of granular suspensions ( namely, a suspension of solid particles in a viscous gas) is a quite
complex problem since a complete microscopic description of the gas-solid system involves the solution of a set of
two coupled kinetic equations for each one of the velocity distribution functions of the different phases. Thus, due to
the mathematical difficulties embodied in this approach and in order to gain some insight into this problem, an usual
model for describing gas-solid flows [7] is to consider a kinetic equation for the solid particles where the influence of
the surrounding fluid on them is modeled by means of an effective external force. As usual [8, 9], the external force
modeling the effect of the gas phase is constituted by two terms: (i) a viscous drag force (via a term involving a drift
or friction coefficient γ) accounting for the friction of grains on the interstitial fluid and (ii) a stochastic Langevin-like
term (via a term involving the background or bath temperature Tex) accounting for the energy gained by the grains
due to their collisions with particles of the background fluid.
Recently the above suspension model has been employed to study the so-called discontinuous shear thickening in

non-Newtonian gas-solid suspensions [9, 10]. The results show the transition from the discontinuous shear thickening
(observed for very dilute gases) to the continuous shear thickening as the density of the system increases. These
analytical results (approximately obtained by means of Grad’s moment method [9] and from an exact solution of the

∗ Electronic address: ruben@unex.es
† Electronic address: vicenteg@unex.es; URL: http://www.unex.es/eweb/fisteor/vicente/
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Boltzmann equation for inelastic Maxwell models [10]) compare quite well with molecular dynamics simulations [9]
for conditions of practical interest. This good agreement highlights again the good performance of kinetic theory tools
in reproducing the transport properties of gas-solid flows.
On the other hand, to the best of our knowledge, most of the efforts in kinetic theory of granular suspensions has

been mainly focused on non-Newtonian transport properties (which are directly related with the pressure tensor). In
particular, much less is known about the energy transport in gas-solid flows. The knowledge of the transport coefficients
associated with the heat flux is interesting by itself and also for possible practical applications in suspensions where
temperature and density gradients are present in the system. In this context, it would be desirable to provide
simulators with the appropriate expressions of the Navier–Stokes transport coefficients to work when studying gas-
solid flows where collisions among particles are inelastic.
The aim of this paper is to determine the Navier–Stokes transport coefficients of granular suspensions in the

framework of the Enskog kinetic equation. Since this equation applies for moderate densities (let’s say for instance,
solid volume fraction φ . 0.25 for hard spheres), the comparison between kinetic theory and molecular dynamics
simulations becomes practical. Attempts on the evaluation of the Navier–Stokes transport coefficients for granular
suspensions modeled by the Enskog equation have been previously published. Thus, in Ref. [8] the authors determined
the transport coefficients of gas-solid flows starting from the suspension model constituted by the viscous drag force
plus the stochastic Langevin term. Their results show that the effect of the gas phase on both the shear viscosity
and the diffusive heat conductivity coefficients is non-negligible for industrially relevant portions of the parameter
space. However, for the sake simplicity, the temperature dependence of the scaled friction coefficient γ∗ = γ/ν(T )
(where ν ∝ T 1/2 is an effective collision frequency for hard spheres and T is the granular temperature) was implicitly
neglected in the above calculations [8] to get analytic (explicit) expressions for the transport coefficients. The above
temperature dependence of γ∗ was accounted for in a subsequent paper [11] but for a simplified model where only the
drag force term was considered in the Enskog equation.
A more careful study was carried out later in Ref. [12] where the transport coefficients were explicitly computed

by considering both the temperature dependence of the reduced friction coefficient as well as the complete form of
the suspension model. On the other hand, although computer simulations [13] have clearly shown that the friction
coefficient depends on the volume fraction, the calculations performed in Ref. [12] were carried out by assuming that the
driven parameters of the model are constant. Needless to say, the impact of the density dependence of γ on transport
properties is expected to be more relevant as the gas phase becomes denser. Apart from this simplification, although
not explicitly stated, another limitation of the above theory [12] is that it was obtained by neglecting contributions
to the transport coefficients coming from an additional density dependence of the zeroth-order distribution f (0) (in
fact, although this simplification was noted in a subsequent erratum [14], it has not been implemented so far in the
calculations). This extra density dependence of f (0) is expected to be involved in the evaluation of the heat flux
transport coefficients.
The question arises then as to whether, and if so to what extent, the conclusions drawn from Ref. [12] may be altered

when the above two new ingredients (density dependence of both the distribution f (0) and the friction coefficient γ)
are accounted for in the theory. In this paper we address this question by extending the results derived in Ref. [12] to
situations not covered by previous studies on granular suspensions. The present theory subsumes all previous analyses
[8, 11, 12], which are recovered in the appropriate limits. In particular, a comparison between the results obtained
here for the transport coefficients with those derived in [12] shows that while the expression of the shear viscosity
coefficient is formally equivalent to the one obtained before, the heat flux transport coefficients and the first-order
contribution to the cooling rate differ from those reported in Ref. [12].
As in previous works [8, 15, 16], the transport coefficients are obtained by solving the Enskog equation by means of

the application of the Chapman–Enskog method [17]. Since a reference equilibrium state is missing in granular gases,
an important point in the Chapman–Enskog expansion is the choice of the zeroth-order solution f (0) (reference base
state of the perturbation scheme). While in the dry granular case (no gas phase) the distribution f (0) is chosen to
be the local version of the homogeneous cooling state, there is more flexibility in the choice of f (0) in driven granular
gases ( or, equivalently in gas-solid flows). In the case of gas-solid flows [12], for simplicity one possibility is to take a
steady distribution f (0) at any point of the system [18, 19]. However, the presence of the interstitial fluid introduces
the possibility of a local energy unbalance and hence, the zeroth-order distribution is not in general a stationary
distribution. This fact introduces new contributions to the transport coefficients, which were not considered when a
local steady state was assumed at zeroth-order [18, 19]. Thus, for general small deviations from the homogeneous
steady state the energy gained by grains due to collisions with the background fluid cannot be compensated locally
with the cooling terms (viscous friction plus inelastic collisions). Thus, although we are interested in determining the
transport coefficients under steady state conditions, we have to start from an unsteady zeroth-order solution in order
to achieve the integral equation verifying the first-order solution f (1). The solution to this equation under steady
state conditions provides the explicit forms of the transport coefficients.
The plan of the paper is as follows. In section II, the Enskog kinetic equation for granular suspensions is introduced
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and the corresponding balance equations for the densities of mass, momentum, and energy are derived. Then, section
III studies the homogeneous steady state where some theoretical predictions are compared against available computer
simulation results. The comparison shows an excellent agreement for conditions of practical interest. Section IV
addresses the Chapman–Enskog expansion around the unsteady reference distribution f (0)(r,v, t) up to first-order
in spatial gradients. The explicit expressions of the Navier–Stokes transport coefficients and the cooling rate are
displayed in section V for steady state conditions. In dimensionless form, these coefficients are given in terms of the
coefficient of restitution α, the volume fraction φ, and the (reduced) background temperature T ∗

ex. The dependence
of the transport coefficients and the cooling rate on the parameter space is illustrated for several systems showing
that the influence of the gas phase on them is in general quite significant. As an application of the results found
here, a linear stability analysis of the Navier–Stokes hydrodynamic equations around the homogeneous steady state
is carried out in section VI; the analysis shows that the homogeneous state is linearly stable. This finding agrees
with the previous stability analysis performed in Ref. [12]. We close the paper in section VII with a brief discussion
of the results reported here.

II. ENSKOG KINETIC EQUATION FOR GRANULAR SUSPENSIONS

We consider a set of solid particles of diameter σ and mass m immersed in a viscous gas. Collisions between
grains are inelastic and are characterized by a (positive) constant coefficient of normal restitution α ≤ 1, where α = 1
corresponds to elastic collisions (ordinary gases). At moderate densities, the one-particle velocity distribution function
of solid particles f(r,v; t) obeys the Enskog kinetic equation

∂f

∂t
+ v · ∇f + Ff = JE[r,v|f, f ], (1)

where

JE [r,v1|f, f ] = σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2f2(r, r − σ,v′′

1 ,v
′′
2 , t) − f2(r, r+ σ,v1,v2, t)

]
(2)

is the Enskog collision operator. Here,

f2(r1, r2,v1,v2, t) = χ(r1, r2)f(r1,v1, t)f(r2,v2, t), (3)

d is the dimensionality of the system (d = 2 for disks and d = 3 for spheres), σ = σσ̂, σ̂ being a unit vector, Θ is the
Heaviside step function, and g12 = v1 − v2. The double primes on the velocities in Eq. (2) denote the initial values
{v′′

1 ,v
′′
2} that lead to {v1,v2} following a binary collision:

v′′
1 = v1 − 1

2

(
1 + α−1

)
(σ̂ · g12)σ̂, v′′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g12)σ̂. (4)

In addition, χ[r, r±σ|{n(t)] is the equilibrium pair correlation function at contact as a functional of the nonequilibrium
density field n(r, t) defined by

n(r, t) =

∫
dvf(r,v, t). (5)

In Eq. (1), the operator F represents the fluid-solid interaction force that models the effect of the viscous gas on
solid particles. In order to fully account for the influence of the interstitial molecular fluid on the dynamics of grains,
a instantaneous fluid force model is employed [8, 9, 11]. For low Reynolds numbers, it is assumed that the external
force F acting on solid particles is composed by two independent terms. One term corresponds to a viscous drag force
Fdrag proportional to the (instantaneous) velocity of particle v. This term takes into account the friction of grains on
the viscous gas. Since the model attempts to mimic gas-solid flows, the drag force is defined in terms of the relative
velocity v − Ug where Ug is the (known) mean flow velocity of the surrounding molecular gas. Thus, the drag force
Fdrag = −mγ (v − Ug) is represented in the Enskog equation (1) by the term

Fdragf → −γ
∂

∂v
· (v − Ug) f, (6)

where γ is the drag or friction coefficient. The second term in the total force corresponds to a stochastic force that
tries to simulate the kinetic energy gain due to eventual collisions with the (more rapid) molecules of the background
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fluid. It does this by adding a random velocity to each particle between successive collisions [20]. This stochastic
force Fst has the form of a Gaussian white noise with the properties [21]

〈Fst
i (t)〉 = 0, 〈Fst

i (t)F
st
j (t

′)〉 = 2mγTexIδijδ(t − t′), (7)

where I is the unit tensor and i and j refer to two different particles. Here, Tex can be interpreted as the temperature
of the background (or bath) fluid. In the context of the Enskog kinetic equation, the stochastic external force is
represented by a Fokker–Planck operator of the form [21, 22]

F stf → −γTex

m

∂2f

∂v2
. (8)

Note that the strength of correlation in Eq. (8) has been chosen to be consistent with the fluctuation-dissipation
theorem for elastic collisions [21].
Although the drift coefficient γ is in general a tensor, here for simplicity we assume that this coefficient is a scalar

proportional to the square root of Tex because the drag coefficient is proportional to the viscosity of the solvent [7].
In addition, as usual in granular suspension models [13, 23], γ is a function of the solid volume fraction

φ =
πd/2

2d−1dΓ
(
d
2

)nσd. (9)

Thus, the drift coefficient γ can be written as

γ = γ0R(φ), (10)

where γ0 ∝ ηg ∝ √
Tex, ηg being the viscosity of the solvent or gas phase. In the case of hard spheres (d = 3), for

Stokes flow we can use the existing analytical closure derived by Koch [23] for the function R(φ) in the case of very
dilute suspensions (φ ≤ 0.1):

R(φ) = 1 + 3

√
φ

2
. (11)

For φ > 0.1, Koch and Sangani [13] used simulations based on multipole expansions to propose the φ-dependence of
R. It is given by

R(φ) = 1 +
3√
2
φ1/2 +

135

64
φ ln φ+ 11.26φ(1− 5.1φ+ 16.57φ2 − 21.77φ3) − φχ(φ) ln ǫm. (12)

Here, ǫmσ can be regarded as a length scale characterizing the impact of non-continuum effects on the lubrication
forces between two smooth particles at contact. Typical values of ǫm are in the range 0.01–0.05. Since this term
contributes to R(φ) through a weak logarithmic factor, the influence of its explicit value is not important in the final
results. Here, we take ǫm = 0.01 as a typical value.
The suspension model defined by Eqs. (1), (6), and (8) is a simplified version of the model employed in Ref. [12] to

get the Navier–Stokes transport coefficients. In this latter model [8], the friction coefficient of the drag force (γb in
the notation of Ref. [12]) and the strength of the correlation (ξ2b in the notation of Ref. [12]) are considered to be in
general different. Here, as mentioned before, both coefficients are related as ξ2b = 2γbTex/m

2 to be consistent with the
fluctuation-dissipation theorem. Thus, some of the results derived in this paper (mainly those regarding homogeneous
states) can be directly obtained from those reported in Ref. [12] by making the changes γb → mγ and ξ2b → 2γTex/m
with R(φ) = 1. We have preferred in this paper to adopt the notation introduced in Eqs. (6) and (8) because this is
the notation used in previous studies of sheared granular suspensions [9, 10].
According to Eqs. (6) and (8), the Enskog equation (1) reads

∂f

∂t
+ v · ∇f − γ∆U · ∂f

∂v
− γ

∂

∂v
· Vf − γ

Tex

m

∂2f

∂v2
= JE[r,V|f, f ]. (13)

Here, ∆U = U − Ug, V = v − U is the peculiar velocity, and

U(r, t) =
1

n(r, t)

∫
dv vf(r,v, t) (14)
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is the mean particle velocity. Another relevant hydrodynamic field is the granular temperature T (r, t) defined as

T (r, t) =
m

dn(r, t)

∫
dv V 2f(r,v, t). (15)

Note that in the model defined in [12]) the mean flow velocity of the interstitial gas is assumed to be equal to the
mean flow velocity of solid particles (Ug = U) for the sake of simplicity.
The macroscopic balance equations for the granular suspension are obtained when one multiplies the Enskog equa-

tion (13) by {1,mv,mv2} and integrates over velocity. After some algebra, one gets the balance equations [8, 12, 15]

Dtn+ n∇ · U = 0 , (16)

DtU = −ρ−1∇ · P − γ∆U , (17)

DtT +
2

dn
(∇ · q+ P : ∇U) = 2γ (Tex − T ) − ζ T. (18)

In the above equations, Dt = ∂t +U ·∇ is the material derivative and ρ = mn is the mass density. The cooling rate ζ
is proportional to 1−α2 and is due to dissipative collisions. The pressure tensor P(r, t) and the heat flux q(r, t) have
both kinetic and collisional transfer contributions, i.e., P = Pk + Pc and q = qk + qc. Their kinetic contributions are
defined by

Pk =

∫
dvmVVf(r,v, t), qk =

∫
dv

m

2
V 2Vf(r,v, t), (19)

and the collisional transfer contributions are [15]

Pc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2σ̂σ̂

∫ 1

0

dx f2 [r − xσ, r + (1 − x)σ,v1,v2, t] , (20)

qc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2(G12 · σ̂)σ̂
∫ 1

0

dx f2 [r − xσ, r+ (1 − x)σ,v1,v2, t] ,

where G12 = 1
2 (V1 +V2) is the velocity of center of mass. Finally, the cooling rate ζ is given by

ζ =

(
1 − α2

)

4dnT
mσd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

3f2(r, r+ σ,v1,v2, t). (21)

Before closing this section, it is important to recall the range of validity of the suspension model (13). As already
discussed before [8], the assumptions made in the model are relevant to the range of dimensionless physical parameters
encountered in a circulating fluidized bed (low Reynolds numbers and moderate densities). A crucial aspect of the
model is that the form of the Enskog collision operator JE[r,v|f, f ] is assumed to be the same as for a dry granular gas
(i.e., when the influence of the interstitial gas is neglected). This means that the collision dynamics does not contain
any parameter of the environmental gas. As it has been noted in several papers [7, 23–26], the above assumption
requires that the mean-free time between collisions is assumed to be much less than the time needed by the fluid
forces to significantly affect the dynamics of solid particles. Thus, we expect that the suspension model (3) may be
reliable in situations where the gas phase has a weak influence on the motion of grains (solid particles immersed in
air, for instance). Of course, this assumption fails for instance in the case of liquid flows (high density) where the
presence of fluid must be taken into account in the collision process.

III. HOMOGENEOUS STEADY STATE

Before computing the transport coefficients, it is instructive to analyze the homogeneous steady state. This state
was widely analyzed in Refs. [12, 27]. For homogeneous situations, the density n and the temperature T are spatially
uniform, and with an appropriate selection of the frame of reference, the mean flow velocities vanish (U = Ug = 0).
Consequently, Eq. (13) becomes

∂f

∂t
− γ

∂

∂v
· vf − γ

Tex

m

∂2f

∂v2
= JE[V|f, f ], (22)
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where

JE [f, f ] = χσd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2f(v′′1 )f(v

′′
2 ) − f(v1)f(v2)

]
. (23)

Here, χ is the pair correlation function evaluated at the (homogeneous) density n. The collision operator (23) can be
recognized as the Boltzmann operator for inelastic collisions multiplied by the factor χ. For homogeneous states, the
only nontrivial balance equation is that of the temperature (18):

∂tT = 2γ (Tex − T )− ζT. (24)

As usual, for times longer than the mean free time, one expects that the system achieves a hydrodynamic regime
where the distribution f qualifies as a normal distribution [17] in the sense that f depends on time only through its
dependence on the temperature T . In this regime, ∂tf = (∂T f)(∂tT ) and Eq. (22) reads

[
2γ
(
θ−1 − 1

)
− ζ

]
T
∂f

∂T
− γ

∂

∂v
· vf − γTex

m

∂2f

∂v2
= JE[f, f ], (25)

where θ ≡ T/Tex and use has been made of Eq. (24). In addition, for homogeneous states, Eq. (21) gives the following
form for the cooling rate ζ:

ζ(t) =
π(d−1)/2

4dΓ
(
d+3
2

) (1 − α2)
mσd−1

nT
χ

∫
dv1

∫
dv2 g312 f(v1, t) f(v2, t). (26)

For elastic collisions (α = 1 and so, ζ = 0), as expected Eq. (25) admits the solution

f0(v, t) = n

(
m

2πT (t)

)d/2

exp

(
− mv2

2T (t)

)
(27)

where the temperature obeys the time-dependent equation

∂tT = 2γ (Tex − T ) . (28)

The system therefore is in a time-dependent “equilibrium state” before reaching the asymptotic steady state where
T = Tex. For inelastic collisions, ζ 6= 0 and to date the solution to Eq. (25) has not been found.
On the other hand, after a transient stage, the system achieves a steady state characterized by the steady temper-

ature Ts. According to Eq. (28), Ts is given by the condition

2γ
(
θ−1
s − 1

)
− ζs = 0, (29)

where the subscript s means that the quantities are evaluated at T = Ts. At a given value of the environmental
temperature Tex (which acts as a bath temperature in the sense that it is considered as a thermal energy reservoir),
Eq. (29) implies that in the steady state the energy gained by grains due to their collisions with the interstitial fluid
(γTex) is exactly compensated by the cooling terms arising from collisional dissipation (ζT ) and viscous friction (γT ).
Moreover, as usual in the granular literature, the effects of the energy balance on the internal degrees of freedom of
grains are not considered in the description.
As shown in previous works [12, 27–29], dimensionless analysis requires that fs has the scaled form

fs(v, γ, Tex) = nv−d
0 ϕs(c, γ

∗
s ) ≡ nv−d

0 ϕs(c, λ, θs), (30)

where v0 =
√
2Ts/m is the thermal speed and the unknown scaled distribution ϕs is a function of the dimensionless

parameters c ≡ v/v0 and γ∗
s where

γ∗
s (λ, θs) = λθ−1/2

s , λ(φ) =
γ0R(φ)ℓ√
2Tex/m

=

√
2πd/2

2ddΓ
(
d
2

) R(φ)

φ
√

T ∗
ex

. (31)

Here, T ∗
ex ≡ Tex/(mσ2γ2

0) is the (reduced) background gas temperature. In the second relation of Eq. (31), ℓ =
1/(nσd−1) is proportional to the mean free path of hard spheres. The scaling given by Eq. (30) is equivalent to the

one proposed in Refs. [12, 27] when one makes the mapping ξ∗s → 2λθ
−3/2
s with R(φ) = 1. Here, ξ∗s is defined by Eq.

(24) of [12]. This means that the results for homogeneous states can be directly obtained from those derived in Refs.
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[12, 27] by making the above change. On the other hand, we have preferred here to revisit the homogeneous state in
order to check the previous results.
In terms of ϕs, in the steady state, Eq. (22) for fs can be rewritten as

− γ∗
s

∂

∂c
· cϕs − γ∗

s

2θs

∂2ϕs

∂c2
= J∗

E[ϕs, ϕs], (32)

where we have introduced the dimensionless collision operator J∗
E = ℓvd−1

0 JE/n. Although the exact form of ϕs is not
known, an indirect information on it can be obtained from the kurtosis or fourth cumulant

a2,s =
4

d(d+ 2)

∫
dc c4ϕs(c) − 1. (33)

The cumulant a2,s measures the deviation of ϕs from its Maxwellian form π−d/2e−c2 . This coefficient can be obtained
by multiplying Eq. (32) by c4 and integrating over velocity. The result is

d(d+ 2)

(
γ∗
s a2,s − 1

2
ζ∗s

)
= β4, (34)

where ζ∗s ≡ ℓζs/v0 and

β4 =

∫
dc c4 J∗

E[ϕs, ϕs]. (35)

Upon deriving Eq. (34) use has been made again of the steady state condition (29).
As expected, Eq. (34) cannot be solved unless one knows the collisional moments ζ∗s and β4. As in previous works

[12, 22, 27], a good estimate of ζ∗s and β4 can be obtained by replacing ϕs by its leading Sonine approximation [22]:

ϕs ≃ e−c2

πd/2

{
1 + a2,s

[
c4

2
− (d+ 2)c2

2
+

d(d+ 2)

8

]}
. (36)

In this case, retaining only linear terms in a2,s, one has

ζ∗s → ζ
(0)
0 + ζ

(1)
0 a2,s, β4 → β

(0)
4 + β

(1)
4 a2,s, (37)

where [22]

ζ
(0)
0 =

2K

d
χ(1 − α2), ζ

(1)
0 =

3

16
ζ
(0)
0 , (38)

β
(0)
4 = −Kχ

(
1 − α2

)(
d+

3

2
+ α2

)
, β

(1)
4 = −Kχ

(
1 − α2

) [ 3

32

(
10d+ 39 + 10α2

)
+

d − 1

1 − α

]
, (39)

and

K =
π(d−1)/2

√
2Γ(d/2)

. (40)

With these results, Eq. (34) can be easily solved with the result

a2,s =
16(1 − α)(1 − 2α2)

73 + 56d − 3α(35 + 8d) + 30(1 − α)α2 + 32d(d+ 2)γ∗
s /Kχ(1 + α)

. (41)

Notice that in Eq. (41), γ∗
s is consistently obtained from the steady state condition (29) by replacing ζ∗s → ζ

(0)
0 . The

expression (41) agrees with the one obtained in Ref. [12] when one takes the steady state condition ξ∗s = 2γ∗
s + ζ

(0)
0 in

Eq. (31) of [12].
Once a2,s is known, the dependence of the cooling rate on both the coefficient of restitution α and the (reduced)

external temperature T ∗
ex can be obtained from the first relation of Eq. (37). Finally, the (reduced) steady temperature

θs is determined by solving the cubic equation

2λ
(
θ−1
s − 1

)
=

√
2

d

π(d−1)/2

Γ
(
d
2

) (1 − α2)χ(φ)

(
1 +

3

16
a2,s

)√
θs. (42)
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FIG. 1: Plot of the fourth cumulant a2,s as a function of the coefficient of restitution α for a two-dimensional (d = 2) granular
suspension with φ = 0.25. The line is the theoretical result given by Eq. (41) (with R(φ) = 1) and the symbols are the Monte
Carlo simulation results obtained in Ref. [12]. The parameters of the simulation are m = 1, σ = 0.01, γ0 = 1, and Tex = 1.
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FIG. 2: Plot of the fourth cumulant a2,s as a function of the volume fraction φ for a two-dimensional (d = 2) granular suspension.
Two different values of the coefficient of restitution are considered: α = 0.8 (solid line and squares) and α = 0.6 (dashed line
and triangles). The lines are the theoretical results given by Eq. (41) (with R(φ) = 1) and the symbols are the Monte Carlo
simulation results. The parameters of the simulation are m = 1, σ = 0.01, γ0 = 1, and Tex = 1.
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FIG. 3: Plot of the (reduced) temperature θs ≡ Ts/Tex as a function of the coefficient of restitution α for a two-dimensional
(d = 2) granular suspension with φ = 0.25. The line is the theoretical result given by Eq. (42) (with R(φ) = 1) and the symbols
are the Monte Carlo simulation results obtained in Ref. [12]. The parameters of the simulation are m = 1, σ = 0.01, γ0 = 1,
and Tex = 1.
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FIG. 4: Plot of the (reduced) temperature θs ≡ Ts/Tex as a function of the volume fraction φ for a two-dimensional (d = 2)
granular suspension. Two different values of the coefficient of restitution are considered: α = 0.8 (solid line and squares) and
α = 0.6 (dashed line and triangles). The lines are the theoretical results given by Eq. (42) (with R(φ) = 1) and the symbols
are the Monte Carlo simulation results. The parameters of the simulation are m = 1, σ = 0.01, γ0 = 1, and Tex = 1.

As expected, Eq. (42) is consistent with Eq. (33) of Ref. [12] for the steady temperature when one takes R(φ) = 1

and makes the replacement ξ∗s → 2λθ
−3/2
s .

Figure 1 shows the α-dependence of the fourth cumulant a2,s for hard disks (d = 2) with the solid volume fraction
φ = 0.25. In the case of hard disks, we have chosen the following form for χ(φ) [30]:

χ(φ) =
1 − 7

16φ

(1 − φ)2
. (43)

The theoretical results given by Eq. (41) are compared against the results obtained in Ref. [12] by numerically solving
the Enskog equation from the direct simulation Monte Carlo (DSMC) method [31]. The parameters of the simulation
are m = 1, σ = 0.01, γ0 = 1, and Tex = 1. In addition, the function R(φ) = 1 in the simulations. Although this
figure was already presented in Ref. [12], we plot it again here to remark the excellent agreement between theory
and simulations observed in the complete range of values of α. Since the values of a2,s are very small (in fact their
magnitude is smaller than the one found in the dry granular case [22, 32]) then, the Sonine approximation (36) can
be considered as a good representation of the scaled distribution ϕs(c). As a complement of Fig. 1, Fig. 2 shows
a2,s versus φ for two values of α. It is quite apparent that the qualitative dependence of the fourth cumulant on the
density depends strongly on the inelasticity since while a2,s decreases monotonically with φ at α = 0.8, the opposite
happens at α = 0.6. We do not actually have an intuitive explanation for the change of behaviour of a2,s when the
coefficient of restitution varies from 0.8 to 0.6. Next, the (reduced) temperature θs is considered. Figure 3 shows θs
versus α for d = 2, φ = 0.25, and the same parameters as the one considered in Figs. 1 and 2. First, as expected,
θs = 1 for elastic collisions. Moreover, the steady granular temperature decreases with inelasticity. It is illustrated
in Fig. 4 ( which was also plotted in Ref. [12]) where θs is plotted against the density φ for two different values of α.
Figures 3 and 4 highlight again the excellent agreement between theory and simulations, even for extreme values of
both inelasticity and/or density.

IV. TRANSPORT AROUND THE HOMOGENEOUS STEADY STATE. CHAPMAN–ENSKOG
EXPANSION

As in previous studies [12, 15, 33], we assume that we perturb the homogeneous steady state by small spatial
gradients. These perturbations give rise to nonzero contributions to the pressure tensor and the heat flux, which
are characterized by transport coefficients. The evaluation of the transport coefficients is the main objective of the
present contribution. In order to get them, we will solve the Enskog equation (13) by means of the Chapman–Enskog
method [17] conveniently adapted to granular fluids. As usual, the Chapman–Enskog method assumes the existence
of a normal solution such that all space and time dependence of the velocity distribution function occurs through the
hydrodynamic fields, namely,

f(r,v, t) = f [v|n(t), T (t),U(t)] . (44)
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The notation on the right hand side indicates a functional dependence on the density, temperature and flow velocity.
For small spatial variations (i.e., low Knudsen numbers), this functional dependence can be made local in space
through an expansion in the gradients of the hydrodynamic fields. To generate it, f is written as a series expansion
in a formal parameter ǫ measuring the non-uniformity of the system,

f = f (0) + ǫ f (1) + ǫ2 f (2) + · · · , (45)

where each factor of ǫ means an implicit gradient of a hydrodynamic field. In contrast to the case of dry granular gases
[15], in ordering the different level of approximations in the kinetic equation, one has to characterize the magnitude
of the drift term γ relative to the gradients as well as the term ∆U. With respect to the first term, since γ does not
induce any flux in the system, it is considered to be of zeroth-order in gradients. Regarding the term ∆U, since in
the absence of gradients U tends to Ug after a transient period, then ∆U is expected to be at least to first order in
the spatial gradients.
According to the expansion (45), the Enskog operator JE and the time derivative ∂t are also given in the represen-

tations

JE = J
(0)
E + ǫJ

(1)
E + · · · , ∂t = ∂

(0)
t + ǫ∂

(1)
t + · · · . (46)

The coefficients in the time derivative expansion are identified by a representation of the fluxes and the cooling rate
in the macroscopic balance equations as a similar series through their definitions as functionals of f . This is the usual
Chapman–Enskog method [17, 34] for solving kinetic equations. The expansions (46) yield similar expansions for the
heat and momentum fluxes and the cooling rate when substituted into Eqs. (19)–(21):

Pij = P
(0)
ij + ǫP

(1)
ij + · · · , q = q(0) + ǫq(1) + · · · , ζ = ζ(0) + ǫζ(1) + · · · . (47)

Here, we shall restrict our calculations to the first order in the uniformity parameter ǫ.

A. Zeroth-order approximation

To zeroth order in the expansion, the distribution f (0) obeys the kinetic equation

∂
(0)
t f (0) − γ

∂

∂v
· Vf (0) − γ

Tex

m

∂2f (0)

∂v2
= J

(0)
E [f (0), f (0)], (48)

where J
(0)
E [f (0), f (0)] is given by Eq. (23) with the replacement fs → f (0)(r,v, t). The conservation laws at this order

are given by ∂
(0)
t n = 0, ∂

(0)
t U = 0, and

∂
(0)
t T = 2γ (Tex − T ) − ζ(0)T, (49)

where ζ(0) is determined from Eq. (21) to zeroth order. In particular, as said in section III, a good approximation to
ζ(0) is given by the first relation of Eq. (37), namely,

ζ(0) =
2

d

π(d−1)/2

Γ
(
d
2

) (1 − α2)χ

(
1 +

3

16
a2

)
nσd−1

√
T

m
. (50)

The kinetic equation (48) can be rewritten in terms of the derivative ∂T f
(0) when one takes into account the

zeroth-order balance equations:

[
2γ
(
θ−1 − 1

)
− ζ(0)

]
T
∂f (0)

∂T
− γ

∂

∂v
· Vf (0) − γTex

m

∂2f (0)

∂v2
= J

(0)
E [f (0), f (0)]. (51)

Equation (51) has the same form as the corresponding Enskog equation (25) for a strictly homogeneous state. However,
in Eq. (51) f (0)(r,v, t) is a local distribution. Therefore, as in the homogeneous state, the solution to Eq. (51) can be
written in the form (30) (with the replacement Ts → T ) where the scaled distribution ϕ(c, λ, θ) obeys the unsteady
equation

[
2γ∗ (θ−1 − 1

)
− ζ∗0

]
θ
∂ϕ

∂θ
+

(
ζ∗0
2

− γ∗θ−1

)
∂

∂c
· cϕ − γ∗

2θ

∂2ϕ

∂c2
= J∗

E[ϕ, ϕ], (52)
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FIG. 5: Plot of the derivatives ∆θ (a), ∆λ (b), and ∆χ (c) for d = 3, φ = 0.25, and T ∗
ex = 0.9.

where ζ∗0 ≡ ℓζ(0)/v0(T ) and γ∗ = λθ−1/2. Upon deriving Eq. (52) use has been made of the property

T
∂f (0)

∂T
= −1

2

∂

∂V
· Vf (0) + nv−d

0 θ
∂ϕ

∂θ
, (53)

where the derivative ∂ϕ/∂θ is taken at constant c.
The velocity distribution function f (0) is isotropic in V so that, according to Eqs. (19)–(21), the heat flux to

zeroth-order vanishes as expected (q(0) = 0) and the pressure tensor P
(0)
ij = pδij , where the hydrostatic pressure is

p = nT
[
1 + 2d−2(1 + α)φχ

]
. (54)

As discussed in section III, although the explicit form of ϕ is not known, a good approximation is given by the
Sonine approximation (36). In particular, the equation for the unsteady fourth cumulant a2 can be easily obtained
from Eq. (52) as

d(d+ 2)

4
Λ(0)θ

∂a2
∂θ

+ d (d+ 2)

(
γ∗θ−1 − ζ∗0

2

)
(1 + a2) − d (d+ 2)γ∗θ−1 = β4, (55)

where Λ(0) ≡ 2γ∗ (θ−1 − 1
)

− ζ∗0 and β4 is defined in Eq. (35). In the steady state, Λ(0) = 0 and the solution to
Eq. (55) is given by Eq. (41) once one expands ζ∗0 and β4 in powers of a2. Beyond the steady state, Eq. (55) must
be numerically solved to get the dependence of a2 on the (reduced) temperature. On the other hand, as we will
show in section V, in order to get the transport coefficients in the steady state we need to know the derivatives
∆θ ≡ (∂a2/∂θ)s, ∆λ ≡ (∂a2/∂λ)s, and ∆χ ≡ (∂a2/∂χ)s. These derivatives provide an indirect information (through

the fourth cumulant) on the departure of the time-dependent solution f (0) from its stationary form fs. According to
Eq. (55), the former derivative is given by

∂a2
∂θ

=

4
d(d+2)β

(0)
4 + 2ζ

(0)
0 + 2

(
2

d(d+2)β
(1)
4 − 2γ∗θ−1 + 19

16ζ
(0)
0

)
a2

θ
[
2γ∗(θ−1 − 1) −

(
ζ
(0)
0 + ζ

(1)
0 a2

)] , (56)

where here the expansions (37) have been considered and as usual nonlinear terms in a2 have been neglected. In the
steady state, the numerator and denominator of Eq. (56) vanish, hence the quantity ∆θ becomes indeterminate. As
in Ref. [12], this problem can be solved by applying l’Hôpital’s rule. The final result yields a quadratic equation for
∆θ. However, given that the magnitude of ∆θ is quite small, one can neglect the term proportional to ∆2

θ in the
above quadratic equation and obtain the simple expression

∆θ =
6γ∗

s θ
−2
s a2,s

2γ∗
s − 15

8 ζ
(0)
0 − 4

d(d+2)β
(1)
4

. (57)

Equation (57) is consistent with Eq. (A6) of Ref. [12] when one neglects nonlinear terms in (∂a2/∂ξ
∗)s and takes

β = 1
2 . The derivatives ∆λ and ∆χ can be easily derived from Eq. (55) with the results

∆λ =
4θ

−3/2
s a2,s + 2θ

1/2
s

(
θ−1
s − 1

)

4
d(d+2)β

(1)
4 − 4γ∗

s + 3
8ζ

(0)
0

, (58)
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∆χ =

4
d(d+2)β

(0)
4 + 2ζ

(0)
0 + 4

d(d+2)β
(1)
4 + 19

8 ζ
(0)
0 + ζ

(0)
0 θs∆θ

2χ
(
2γ∗

s − 2
d(d+2)β

(1)
4 − 3

16ζ
(0)
0

) . (59)

Note that in Eqs. (57)–(59), θs is obtained from Eq. (42) by neglecting a2,s. The dependence of the derivatives ∆θ,
∆λ, and ∆χ on the coefficient of restitution α is plotted in Fig. 5 for d = 3 and φ = 0.25. Here, T ∗

ex = 0.9; this is
a typical value for the (reduced) background temperature used in previous simulations [9]. It is seen that while the
magnitude of ∆λ, and ∆χ is much smaller than that of the kurtosis a2,s, ∆θ is of the same order of magnitude as a2,s.

B. First-order approximation

The mathematical steps involved in the derivation of the first-order distribution function f (1) are quite similar
to those carried out in Ref. [12]. On the other hand, given that the calculations performed in this paper take into
account some additional density dependencies not accounted for in the previous derivation [12], we have preferred
here to perform an independent calculation where most of the technical details are provided in the Appendix A for
the sake of completeness. To first-order in spatial gradients, f (1) is given by

f (1)(V) = A(V) · ∇ lnT + B(V) · ∇ lnn+ Cij(V)
1

2

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ · U

)
+ D(V)∇ · U, (60)

where, in the steady state (Λ0) = 0), the quantities A, B, Cij , and D verify the following set of coupled linear integral
equations:

−
(
2γθ−1 +

1

2
ζ(0) + ζ(0)θ

∂ ln ζ∗0
∂θ

)
A − γ

∂

∂v
· VA − γTex

m

∂2

∂v2
A + LA = A, (61)

−γ
∂

∂v
· VB − γTex

m

∂2

∂v2
B + LB = B+

[
ζ(0)

(
1 + φ

∂ lnχ

∂φ

)
+ χφ

∂χ

∂φ

∂

∂χ

(
ζ(0)

χ

)

−λ

(
1 − φ

∂ lnR

∂φ

)
∂ζ(0)

∂λ
− 2γ

(
θ−1 − 1

)
φ
∂ lnR

∂φ

]
A, (62)

− γ
∂

∂v
· VCij − γTex

m

∂2

∂v2
Cij + LCij = Cij , (63)

− γ
∂

∂v
· VD − γTex

m

∂2

∂v2
D − ζ

(1)
1 T

∂f (0)

∂T
+ LD = D. (64)

In Eq. (64), ζ
(1)
1 is a functional of D defined by Eq. (B16). Moreover, in Eqs. (61)–(64), L is the linearized collision

operator

Lf (1) = −
(
J
(0)
E [f (0), f (1)] + J

(0)
E [f (1), f (0)]

)
, (65)

R is defined by Eqs. (10)–(12) and the coefficients A, B, Cij , and D are functions of the peculiar velocity V and
the hydrodynamic gradients. They are defined by Eqs. (A9)–(A12). Note that all the quantities appearing in Eqs.
(61)–(64) are evaluated in the steady state (the subscript s has been omitted here for the sake of simplicity). Thus,
the transport coefficients obtained by solving Eqs. (10)–(12) will be provided in terms of the steady temperature Ts.
It is worthwhile to remark that since we are here interested in obtaining the momentum and heat fluxes in the first
order of the deviations from the steady state, we only need to know the transport coefficients to zeroth order in the
deviations. This means that the solution to the integral equations (61)–(64) will provide us the forms of the transport
coefficients and the cooling rate in steady state conditions.
According to the Chapman–Enskog scheme [17], acceptable solutions to Eqs. (61)–(64) must obey

∫
dv
(
1,V, V 2

)
f (1) = (0,0, 0) . (66)

These are necessary conditions for the solution to the integral equations to exist (the so-called Fredholm alternative
[35]). Since A(V) ∝ A(V), B(V) ∝ B(V), Cij(V) ∝ Cij(V), and D(V) ∝ D(V), then the solubility conditions (66)
can be proved when one takes into account the explicit forms of A, B, Cij , and D.
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V. NAVIER–STOKES TRANSPORT COEFFICIENTS

To first order in the spatial gradients, the constitutive equations for the pressure tensor P
(1)
ij and the heat flux q(1)

are

P
(1)
ij = −η

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ · U

)
− ηbδij∇ · U, (67)

q(1) = −κ∇T − µ∇n. (68)

Here, η is the shear viscosity, ηb is the bulk viscosity, κ is the thermal conductivity, and µ is the diffusive heat
conductivity. This latter coefficient vanishes for ordinary gases (α = 1). While the coefficients η, κ, and µ have
kinetic and collisional contributions, the bulk viscosity ηb has only collisional contributions and hence, it vanishes for
dilute gases. In addition, as already mentioned in Ref. [8], the forms of the collisional contributions to the transport
coefficients are exactly the same as those obtained in the dry granular case (namely, in the absence of the gas phase)
[15, 16], except that a2,s depends on γ∗. Thus, we will focus here our attention on the kinetic contributions to the
transport coefficients and the cooling rate. Some technical details on this calculation are provided in the Appendix
B.

A. Shear and bulk viscosities

The bulk viscosity ηb is given by

ηb =
22d+1

π(d+ 2)
φ2χ(1 + α)

(
1 − a2,s

16

)
η0, (69)

where

η0 =
d+ 2

8

Γ
(
d
2

)

π(d−1)/2
σ1−d

√
mTs (70)

is the low density value of the shear viscosity for an ordinary gas of hard spheres (α = 1). The shear viscosity η can
be written as

η =
η0

ν∗η + 2K ′γ∗
s

[
1 − 2d−2

d+ 2
χφ(1 + α)(1 − 3α)

] [
1 +

2d−1

d+ 2
(1 + α)φχ

]
+

d

d+ 2
ηb, (71)

where K ′ = (d+ 2)/8K, K is defined by Eq. (40) and the (reduced) collision frequency ν∗η is [36]

ν∗η =
3

4d
χ

(
1 − α+

2

3
d

)
(1 + α)

(
1 +

7

16
a2,s

)
, (72)

where a2,s is defined by Eq. (41). The expression (71) for the shear viscosity agrees with the one obtained in Ref.
[12] when R(φ) = 1. This is because the new contributions to the fluxes coming from the extra density dependencies
not accounted for in [12] do not affect the form of the pressure tensor.

B. Thermal conductivity and diffusive heat conductivity

The thermal conductivity is given by

κ = κk

[
1 + 3

22−d

d+ 2
φχ (1 + α)

]
+

22d+1 (d − 1)

(d+ 2)2 π
φ2χ (1 + α)

(
1 +

7

16
a2,s

)
κ0, (73)

where

κ0 =
d(d+ 2)

2(d − 1)

η0
m

(74)
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is the low density value of the thermal conductivity for an ordinary gas of hard spheres (α = 1) and κk denotes the
kinetic contribution to the thermal conductivity. Its explicit expression is

κk = κ0
d − 1

d

1 + 2a2,s + θs∆θ + 3 2d−3

d+2 χφ (1 + α)2
[
2α − 1 + a2,s (1 + α) + 1

2 (1 + α) θs∆θ

]

ν∗κ +K ′
(
γ∗
s − 3

2ζ
∗
0 − θsζ

(1)
0 ∆θ

) , (75)

where ζ
(1)
0 is defined by Eq. (38) and the derivative ∆θ is given by Eq. (57). In addition, the (reduced) collision

frequency ν∗κ is [36]

ν∗κ =
1 + α

d
χ

[
d − 1

2
+

3

16
(d+ 8) (1 − α) +

296 + 217d− 3 (160 + 11d)α

256
a2,s

]
. (76)

To compare the expression (75) with the one derived in Ref. [12] (see Eq. (65) of this reference), one has to make
the mapping ξ∗s (∂a2/∂ξ

∗)s → −(2/3)θs∆θ and takes R(φ) = 1. In this case, we find that the form (75) of the thermal
conductivity coefficient is consistent with the one obtained in [12] except for the last term of the numerator (i.e., the
term proportional to 1

2 (1 + α) θs∆θ). This term comes from the collision integral (B13). We have checked that Eq.
(75) gives the correct result and hence it fixes the slight mistake of Eq. (65) of Ref. [12].
The diffusive heat conductivity µ is

µ = µk

[
1 + 3

2d−2

d+ 2
φχ (1 + α)

]
, (77)

where the kinetic contribution µk is given by

µk =
κ0Ts

n
(ν∗κ − 3K ′γ∗

s )
−1

{
κk

κ0

[
K ′ζ∗0

(
1 + φ

∂ lnχ

∂φ

)
+K ′ζ(1)0

(
φ
∂χ

∂φ
∆χ − λ

(
1 − φ

∂ lnR

∂φ

)
∆λ

)

−2
(
θ−1
s − 1

)
γ∗
s φ

∂ lnR

∂φ

]
+

d − 1

d

[
a2,s − λ

(
1 − φ

∂ lnR

∂φ

)
∆λ + φ

∂χ

∂φ
∆χ

]

+3
2d−4 (d − 1)

d (d+ 2)
χφ (1 + α)

3

[
φ
∂χ

∂φ
∆χ − λ

(
1 − φ

∂ lnR

∂φ

)
∆λ

]

+3
2d−2 (d − 1)

d (d+ 2)
χφ (1 + α)

(
1 +

1

2
φ
∂ lnχ

∂φ

)[
α (α − 1) +

a2,s
6

(
10 + 2d − 3α+ 3α2

) ]
}
. (78)

Here, the derivatives ∆λ and ∆χ are defined by Eqs. (58) and (59), respectively. The expression (78) agrees with
Eq. (69) of Ref. [12] when one neglects (i) the density dependence of the function R (i.e., ∂φR = 0) and (ii) all the
derivatives of a2 with respect to θ, λ, and χ in the steady state (i.e., ∆θ = ∆λ = ∆χ = 0). In addition, as in the case
of a dry granular gas [15, 16, 42], the coefficient µ vanishes for elastic collisions.

C. Cooling rate

The cooling rate is

ζ = ζ(0)s + ζU∇ · U, (79)

where ζ
(0)
s is given by Eq. (50) with the replacement T → Ts. The coefficient ζU can be written as

ζU = ζ
(0)
1 + ζ

(1)
1 , (80)

where

ζ
(0)
1 = −3

2d−2

d
χφ(1 − α2), (81)
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FIG. 6: Dependence of the (scaled) shear viscosity η(α)/η(1) on the coefficient of restitution α for d = 3, T ∗
ex = 0.9, and three

different values of the solid volume fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, η(1) refers to the shear viscosity
coefficient of a suspension with elastic collisions.

ζ
(1)
1 =

9(d+ 2)2d−8

d2
χ
(
1 − α2

) (
ν∗γ + 4K ′γ∗

s

)−1
{

ω∗φχ
2(d+ 2)

− 22−d d

3

[
λ

(
1 − φ

∂ lnR

∂φ

)
∆λ

−φ
∂χ

∂φ
∆χ − 2

d
θs∆θ

]
− (1 + α)

(
1

3
− α

)
(2a2,s + θs∆θ)φχ

}
. (82)

Here, we have introduced the quantities

ω∗ = (1 + α)
{(

1 − α2
)
(5α − 1) − a2,s

6

[
15α3 − 3α2 + 3 (4d+ 15)α − (20d+ 1)

]}
, (83)

ν∗γ = −1 + α

192
χ
[
30α3 − 30α2 + (105 + 24d)α − 56d − 73

]
. (84)

It is quite apparent that ζU = 0 for elastic collisions (α = 1). As in the case of the diffusive heat conductivity, to

compare Eq. (82) with the expression (73) for ζ
(1)
1 obtained in Ref. [12] one has to make the replacement θ∆θ →

−(3/2)ξ∗s (∂a2/∂ξ
∗)s, take R(φ) = 1, and neglect the derivatives of a2 with respect to λ and χ (∆λ = ∆χ = 0). After

these changes, we see that both results agree except for a misprint we have found in Eq. (73) of Ref. [12]. Note also
that ζU 6= 0 for dilute granular suspensions [29].

D. Some illustrative examples

In summary, the Navier–Stokes transport coefficients ηb, η, κ, and µ are given by Eqs. (69), (71), (73), and (77),
respectively, while the first-order contribution ζU to the cooling rate is given by Eqs. (80)–(82). As expected, all
these coefficients present an intricate dependence on the coefficient of restitution α, the density φ, and the (reduced)
background temperature T ∗

ex. In addition, their dimensionless forms are defined in terms of the steady temperature
θs and the derivatives ∆θ, ∆λ, and ∆χ. While these derivatives are explicitly given by Eqs. (57)–(59), the granular
temperature is given in terms of the physical solution of the cubic equation (42).
As in previous works [8, 12], it is quite apparent that one of the principal new features of the present paper lies

on the dependence of the Navier–Stokes transport coefficients of granular suspensions on the coefficient of restitution
α. Therefore, to illustrate the differences between granular (α 6= 1) and ordinary (α = 1) suspensions, the transport
coefficients are scaled with respect to their values for elastic collisions. In addition, we consider a three-dimensional
system (d = 3) with T ∗

ex = 0.9 and three different values of the volume fraction φ: φ = 0.01 (very dilute system),
φ = 0.1, and φ = 0.2 (moderately dense system).
In Figs. 6–8, the above Navier–Stokes transport coefficients are plotted as functions of α. While in the case of

the shear viscosity and thermal conductivity coefficients we observe that their deviation from their forms for elastic
collisions is in general significant, no happens the same in the case of the diffusive heat conductivity since the
magnitude of the scaled coefficient nµ(α)/Tκ(1) is much smaller than that of the (scaled) coefficient κ(α)/κ(1). Since
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FIG. 7: Dependence of the (scaled) thermal conductivity κ(α)/κ(1) on the coefficient of restitution α for d = 3, T ∗
ex = 0.9, and

three different values of the solid volume fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, κ(1) refers to the thermal
conductivity coefficient of a suspension with elastic collisions.
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FIG. 8: Dependence of the (scaled) diffusive heat conductivity nµ(α)/Tκ(1) on the coefficient of restitution α for d = 3,
T ∗
ex = 0.9, and three different values of the solid volume fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, κ(1) refers

to the thermal conductivity coefficient of a suspension with elastic collisions.

both κ and µ characterize the heat flux, one could neglect the term proportional to the density gradient in the heat
flux. Thus, for practical purposes and analogously to ordinary (elastic) suspensions, one could assume that the heat
flux verifies Fourier’s law q(1) = −κ∇T . With respect to the α-dependence of η and κ, Figures 6 and 7 highlight
that both transport coefficients are decreasing functions of the inelasticity regardless of the density of the system.
In addition, the influence of collisional dissipation on momentum and heat transport increases with density, being
very tiny in the limit of dilute suspensions. A comparison with the results obtained for dry granular fluids (see for
instance, Fig. 1 of Ref. [37]) shows significant differences between dry (no gas phase) and granular suspensions. In
particular, both theory [15, 16, 38] and simulations [39] show that for relatively dilute dry granular gases (φ . 0.1)
η increases with inelasticity, while the opposite occurs for sufficiently dense dry granular fluids (φ & 0.1). The same
qualitative behavior is observed for the thermal conductivity coefficient [15, 16, 38]. This non-monotonic behavior
contrasts with the predictions found here for granular suspensions where η and κ always decreases with decreasing α.
Regarding the coefficient µ, we see that the impact of density on it is significant since while µ is always positive for
dilute suspensions, it can be negative for moderately dense suspensions. It is worthwhile to note that the behavior of
the shear viscosity and thermal conductivity on both density and coefficient of restitution found here is qualitatively
similar to that of a confined quasi-two-dimensional granular fluid [40].
Finally, the dependence of the magnitude of the first-order contribution |ζU | to the cooling rate is plotted in Fig. 9

for the same parameters employed in Figs. 6–8. As the coefficient µ, ζU = 0 for elastic collisions. On the other hand,
in contrast to the diffusive heat conductivity, we observe that the influence of inelasticity on ζU is important, specially
at large densities. This means that the contribution of ζU to the cooling rate must be considered as the inelasticity
increases.
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FIG. 9: Dependence of the magnitude of the first-order contribution |ζU | to the cooling rate on the coefficient of restitution α
for d = 3, T ∗

ex = 0.9, and three different values of the solid volume fraction: φ = 0.1 (a), φ = 0.3 (b), and φ = 0.5 (c).

VI. STABILITY OF THE HOMOGENEOUS STEADY STATE

The knowledge of the Navier–Stokes transport coefficients and the cooling rate opens up the possibility of solving
the hydrodynamic equations for n, U, and T for situations close to the homogeneous steady state. The solution
of the linearized hydrodynamic equations allows us to study the stability of the homogeneous steady state. This is
likely one of the nicest applications of the Navier–Stokes equations. In order to obtain them, one has to substitute
the equation of state (54), the Navier–Stokes constitutive equations (67) and (68) for the pressure tensor and heat
flux, respectively, and Eq. (79) for the cooling rate into the exact balance equations (16)–(18). The Navier–Stokes
hydrodynamic equations read

Dtn+ ∇ · U = 0, (85)

DtUi + ρ−1∂ip = ρ−1∂j

[
η

(
∂iUj + ∂jUi − 2

d
δij∇ · U

)
+ ηbδij∇ · U

]
− γ∆U, (86)

(
Dt + 2γ

(
1 − θ−1

)
+ ζ(0)

)
T =

2

dn
∇ · (κ∇T + µ∇n) +

2

dn

[
η

(
∂iUj + ∂jUi − 2

d
δij∇ · U

)

+ηbδij∇ · U
]
∂iUj − TζU∇ · U − 2

dn
p∇ · U. (87)

As mentioned in several previous papers [37, 41], the general form of the cooling rate ζ should include second-order
gradient contributions of the form ζn∇2n and ζT∇2T in Eq. (87). Nevertheless, as shown for a dilute (dry) granular
gas [42], given that the ratios ζn/µ and ζT /κ were shown to be very small for not very inelastic particles, the terms
ζn∇2n and ζT∇2T were neglected in the Navier–Stokes transport equations. We assume that the same happens
for dense gases and hence, these second-order contributions can be neglected for practical purposes. Apart from this
approximation, Eqs. (85)–(87) are exact to second order in the spatial gradients for a granular suspension at moderate
densities.
The stability analysis of the homogeneous steady state was also carried out in Ref. [12]. On the other hand and

as mentioned in section I, the present work generalizes the results derived before [12] since it takes into account both
an extra density dependence of the zeroth-order distribution f (0) and the dependence of the friction coefficient γ on
the volume fraction φ (R(φ) 6= 1). Thus, it is worth to assess to what extent the previous theoretical results [12] are
indicative of what happens in the stability analysis of the homogeneous state when the above density dependencies
for the transport coefficients and the cooling rate are considered. This is the main motivation of this Section.
To analyze the stability of the homogeneous solution, Eqs. (85)–(87) must be linearized around the homogeneous

steady state. In this state, the hydrodynamic fields take the homogeneous steady values n ≡ const., Ts ≡ const., and
Ug = U ≡ 0. For small spatial gradients, we assume that the deviations δyβ(r, t) = yβ(r, t) − yβ,s are small, where
δyβ(r, t) denotes the deviations of the hydrodynamic fields {yβ ;β = 1, · · · , d+ 2} = {n,U, T } from their values in the
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homogeneous steady state. Moreover, as usual we also suppose that the interstitial fluid is not perturbed and hence,
Ug = U = 0.
It must be recalled that here, in contrast to the linear stability analysis for dry granular gases [37, 43, 44], the

reference state is stationary and so one does not have to eliminate the time dependence of the transport coefficients.
On the other hand, in order to compare our results with those obtained for granular fluids [37], the following space
and time variables are introduced:

τ =
1

2
nσd−1

√
Ts

m
t, r′ =

1

2
nσd−1r. (88)

The dimensionless time scale τ measures the average number of collisions per particle in the time interval between 0
and t. The unit length r′ is proportional to the mean free path of solid particles. As usual, a set of Fourier transformed
dimensionless variables are then introduced by

ρk(τ) =
δnk(τ)

n
, wk(τ) =

δUk(τ)√
Ts/m

, θk(τ) =
δTk(τ)

Ts
, (89)

where δykβ ≡ {ρk(τ),wk(τ), θk(τ)} is defined as

δykβ(τ) =

∫
dr′e−ik·r′δyβ(r

′, τ), (90)

where here the wave vector k is dimensionless.
In terms of the above dimensionless variables, as expected, the d − 1 transverse velocity components wk⊥ =

wk −
(
wk · k̂

)
k̂ (orthogonal to the wave vector k) decouple from the other three modes. Their evolution equation is

∂wk⊥
∂τ

+

(
2
√
2γ∗

s +
1

2
η∗k2

)
wk⊥ = 0, (91)

where η∗ = η/σ1−d
√
mTs. The solution to Eq. (91) is

wk⊥(k, τ) = wk⊥(0) exp

[
−
(
1

2
η∗k2 + 2

√
2γ∗

s

)
τ

]
. (92)

Since both the (reduced) friction coefficient γ∗
s and the (reduced) shear viscosity coefficient η∗ are positive, then the

transversal shear modes of the granular suspension are linearly stable.
The remaining (longitudinal) modes correspond to ρk, θk, and the longitudinal velocity component of the velocity

field, wk‖ = wk · k̂ (parallel to k). These modes are coupled and obey the equation

∂δykβ(τ)

∂τ
+Mβµδykµ(τ) = 0, (93)

where δykβ(τ) denotes now the set
{
ρk, wk‖, θk

}
and M is the square matrix

M =




0 ik 0

ikp∗Cp 2
√
2γ∗

s + ν∗ℓ k
2 ikp∗

2
√
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)
+ µ∗k2 2

d ik
(
p∗ + d

2ζU
)

2
√
2
(
2γ∗

s θ
−1
s + 1

2ζ
∗
0 + ζ

(1)
0 θs∆θ

)
+D∗

Tk
2


 . (94)

Here, the (reduced) transport coefficient ν∗ℓ , µ
∗, and D∗

T are defined as

ν∗ℓ =
1

2σ1−d
√
mTs

(
2
d − 1

d
η + ηb

)
, D∗

T =
κ

dσ1−d
√
Ts/m

, µ∗ =
ρ

dσ1−dTs

√
mTs

µ, (95)

while p∗ ≡ ps/nTs = 1 + 2d−2(1 + α)χφ, ρ = mn, and the quantities Cp, Cχ, Cn, and Cγ are given by

Cp = 1 + φ
∂ ln p∗

∂φ
, Cχ = 1+ φ

∂ lnχ

∂φ
, (96)

Cn = φ
∂χ

∂φ
∆χ + φ

∂λ

∂φ
∆λ, Cγ = 2

(
1 − θ−1

s

)
γ∗
s φ

∂ lnR

∂φ
. (97)
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In the above equations, it is understood that the transport coefficients η∗, ν∗ℓ , D∗
T , and µ∗ are evaluated in the

homogeneous steady state.
The longitudinal three modes have the form exp [Λℓ(k)τ ] for ℓ = 1, 2, 3, where Λℓ(k) are the eigenvalues of the

matrix M, namely, they are the solutions of the cubic equation

Λ3 +X(k)Λ2 + Y (k)Λ + Z(k) = 0, (98)

where

X(k) =
√
2
(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)
+ k2 (D∗

T + ν∗ℓ ) , (99)

Y (k) =
(
2
√
2γ∗

s + k2ν∗ℓ
) [

k2D∗
T +

√
2
(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)]
+ k2p∗

(
Cp + ζU +

2

d
p∗
)
, (100)

Z(k) = p∗k2
[
k2 (CpD

∗
T − µ∗) +

√
2Cp

(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)
− 2

√
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)]
. (101)

In general, one of the longitudinal modes can be unstable for k < kh, where kh is obtained from Eq. (98) when Λ = 0,
namely, Z(kh) = 0. The result is

k2h =
√
2
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)
− Cp

(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)

CpD∗
T − µ∗ . (102)

At a fixed value of the background temperature T ∗
ex, a careful analysis of the dependence of k2h on both the coefficient

of restitution α and the volume fraction φ shows that k2h is always negative. This means that there are no physical
values of the wave numbers for which the longitudinal modes become unstable. Therefore, as in the case of the
transversal shear modes, we can conclude that all the eigenvalues of the dynamical matrix M have a positive real part
and no instabilities are found in the homogeneous steady state of a granular suspension.
In summary, the stability analysis performed here by including the extra density dependencies of the transport

coefficients shows no surprises relative to the earlier analysis [12]: the homogenous steady state of a moderately dense
granular suspension is linearly stable. On the other hand, the dispersion relations derived here are different from
those obtained in Ref. [12] since for instance the functional form of the heat flux transport coefficients differs in both
approaches.

VII. CONCLUSIONS

In this paper we have undertaken a rather complete study on the transport properties of granular suspensions in
the Navier–Stokes domain (first-order in the spatial gradients). The starting point of our study has been the Enskog
kinetic equation where the effect of the gas phase on the solid particles is via the introduction of two additional terms:
(i) a viscous drag force term proportional to the velocity of particle and (ii) a stochastic Langevin-like term. While the
first term attempts to model the friction of solid particles on the viscous surrounding gas, the second term mimics the
kinetic energy gained by grains due to eventual collisions with the more rapid molecules of the interstitial gas. Both
terms are characterized by the friction coefficient γ (which is a function of the volume fraction φ) and the background
temperature Tex (which is a known quantity of the model).
A previous attempt on the derivation of the Navier–Stokes transport coefficients of dense granular suspensions

was worked out by Garzó et al. [12] by starting from a similar suspension model. However, the above work has
two deficiencies: (i) it neglects an additional density dependence of the zeroth-order distribution f (0) through the
parameter λ(φ) (defined in Eq. (31)), and (ii) it assumes that the friction coefficient γ is constant. While the former
simplification may be relevant in the evaluation of the diffusive heat conductivity coefficient (the transport coefficient
associated to the density gradient in the heat flux), the latter simplification may be not reliable as the suspension
becomes denser. The present analysis incorporates both extra new ingredients (the density dependence of λ in f (0)

and γ = γ0R(φ), γ0 being constant) in the Chapman–Enskog solution. The results show that while these two new
density dependencies do not formally affect the expression of the shear viscosity coefficient obtained in Ref. [12], the
forms of the heat flux transport coefficients and the cooling rate obtained here differ from those derived before. These
findings are likely the most significant contributions of the present work. In this context, this paper complements and
extends previous papers on transport properties in granular suspensions [8, 11, 12].
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Before considering inhomogeneous situations, the homogeneous steady state has been analyzed. As expected, after
a transient period, the steady distribution function fs adopts the form (30) where the temperature dependence of

the scaled distribution ϕs is encoded through the dimensionless velocity c = v/v0 (v0 =
√
2Ts/m being the thermal

speed) and the (scaled) friction coefficient γ∗
s = λ(φ)θ

−1/2
s (θs = Ts/Tex being the reduced steady temperature). As

in previous works on granular fluids driven by thermostats [12, 28], the above scaling differs from the one assumed for
undriven granular fluids [22, 43, 44] where ϕs depends on T only through the scaled velocity c. Although the exact
form of ϕs is not known, a good approximation of this distribution (at least in the thermal velocity region c ∼ 1)
is provided by the leading Sonine approximation (36). By using this distribution, we have explicitly obtained the
fourth cumulant a2,s; this coefficient provides an indirect information on the deviation of ϕs from its Maxwellian form

π−d/2e−c2 . Once a2,s is known, the steady temperature θs is obtained by solving the cubic equation (42). In spite of
the above approximations, the theoretical predictions for θs and a2,s show an excellent agreement with Monte Carlo
simulation results. As expected, the results obtained for homogeneous systems agree with those derived in Ref. [12]

when one makes the mapping ξ∗s → 2λθ
−3/2
s with R(φ) = 1.

Once the steady reference state is well characterized, we have considered the transport processes occurring in
granular suspensions with small spatial gradients of the hydrodynamic fields. In this situation, the Enskog kinetic
equation has been solved by means of the Chapman–Enskog method [17] where only terms up to the first order in the
spatial gradients have been retained (Navier–Stokes hydrodynamic order). As in previous papers on the application
of the Chapman–Enskog method to granular systems [12, 15, 16, 42], the spatial gradients have been assumed to be
independent of the coefficient of restitution α. Thus, although the constitutive equations for the irreversible fluxes
are limited to first order in spatial gradients, the corresponding transport coefficients appearing in these equations
apply a priori to arbitrary degree of collisional dissipation. This type of expansion differs from the ones considered by
other authors [45–48] where the Chapman–Enskog solution is given in powers of both the Knudsen number (or spatial
gradients as in the conventional scheme) and the degree of collisional dissipation δ ≡ 1 − α2. The results reported
here are consistent with the ones obtained in those papers [45–48] in the limit δ → 0.
As in the Chapman–Enskog solution obtained in Ref. [12], a subtle but important point is the choice of the zeroth-

order approximation f (0) in the perturbation expansion. Although we are interested in obtaining the transport
coefficients in steady state conditions, for general small perturbations around the homogeneous steady state, the
density and temperature are specified separately in the local reference state f (0) and hence, it is not expected that

the temperature is stationary at any point of the system. This means that ∂
(0)
t T 6= 0 in the reference base state and

consequently, the complete determination of the Navier–Stokes transport coefficients requires to know for instance
the temperature dependence of the fourth cumulant a2 of the unsteady reference state. This of course involves the
numerical integration of the differential equation (56). This is quite an intricate problem that goes beyond the objective
of this paper. Since we are essentially motivated by a desire for analytic expressions, the steady state conditions have

been considered. On the other hand, given that ∂
(0)
t T 6= 0 in the Chapman–Enskog scheme, the transport coefficients

are defined not only in terms of the hydrodynamic fields in the steady state but also there are contributions to the
transport coefficients [such as the derivatives ∆θ, ∆λ, and ∆χ defined by Eqs. (57)–(59), respectively] accounting for
the vicinity of the perturbed state to the steady state.
As usual, in order to obtain explicit expressions for the transport coefficients, the leading terms in a Sonine

polynomial expansion have been considered. These forms have been displayed along the section V: the bulk ηb and
shear η viscosities are given by Eqs. (69) and (71), respectively, the thermal conductivity κ is given by Eqs. (73) and
(75), the heat diffusive conductivity µ is given by Eqs. (77) and (78) and the first-order contribution ζU to the cooling
rate is given by Eqs. (81) and (82). As said before, the expressions of ηb and η agree with those derived in [12] (once
one takes R(φ) = 1) while the expressions of κ, µ, and ζU reduce to those obtained in [12] when the contributions
coming from the derivatives ∆θ, ∆λ, and ∆χ are neglected.
In reduced forms, it is quite apparent that the Navier–Stokes coefficients of the granular suspension exhibit a

complex dependence on the (steady) temperature θs, the coefficient of restitution α, the solid volume fraction φ, and
the (reduced) background temperature T ∗

ex. In addition, Figs. (6)–(8) highlight the significant impact of the gas phase
on the Navier–Stokes transport coefficients η, κ, and µ since their α-dependence is clearly different from the one
previously found for dry granular gases [15, 42].
As an application of the previous results, the stability of the special homogeneous steady state solution has been

analyzed. This has been achieved by solving the linearized Navier–Stokes hydrodynamic equations for small pertur-
bations around the homogeneous steady state. The linear stability analysis performed here shows no new surprises
relative to the earlier work [12]: the homogeneous steady state is linearly stable with respect to long enough wave-
length excitations (namely, long enough small spatial gradients). On the other hand, it is worthwhile to recall that
the conclusion reached here for the reference homogeneous steady state differs from the one found for freely cooling
granular fluids where it was shown [37, 42] that the resulting hydrodynamic equations exhibit a long wavelength in-
stability for three of the hydrodynamic modes. This shows again the influence of the interstitial fluid on the dynamics
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of solid particles.
It is quite apparent that the theoretical results obtained in this paper under certain approximations should be tested

against computer simulations. This would allow us to gauge the degree of accuracy of the theoretical predictions. As
happens for dry granular gases [39, 49–57], we expect that the present results stimulate the performance of appropriate
simulations where the kinetic theory calculations reported here can be assessed. We also plan to undertake such kind
of simulations for the case of the shear viscosity. More specifically, we want to perform simulations of granular
suspensions under uniform shear flow where the Navier–Stokes shear viscosity might be measured in the Newtonian
regime (very small shear rates). Another possible project for the next future is the extension of the present results to
the relevant subject of multicomponent granular suspensions. Work along these lines will be worked out in the near
future.
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Regional” funds. The research of Rubén Gómez González has been supported by the predoctoral fellowship BES-
2017-079725 from the Spanish Government.

Appendix A: Some technical details on the first-order solution

Up to the first order in the expansion, the velocity distribution function f (1) verifies the Enskog kinetic equation

∂
(0)
t f (1) − γ

∂

∂v
· Vf (1) − γTex

m

∂2f (1)

∂v2
= −

(
D

(1)
t +V · ∇

)
f (0) + γ∆U · ∂f

(0)

∂v
+ J

(1)
E [f, f ], (A1)

where D
(1)
t ≡ ∂

(1)
t +U · ∇ and J

(1)
E [f, f ] denotes the first-order contribution to the expansion of the Enskog collision

operator in powers of the spatial gradients. In order to explicitly determine J
(1)
E [f, f ] we need the results

χ (r, r ± σ|n) → χ

(
1 ± 1

2
n
∂ lnχ

∂n
σ · ∇ lnn

)
, (A2)

f (0)(r ± σ,v; t) → f (0)(r,v; t) ± f (0)(r,v; t)

[
n
∂f (0)

∂n
σ · ∇ lnn+ T

∂f (0)

∂T
σ · ∇ lnT − ∂f (0)

∂Vi
(σ · ∇)Ui

]
, (A3)

where χ is obtained from the functional χ(r, r ± σ|n) by evaluating all density fields at n(r, t). Taking into account

Eqs. (A2) and (A3), J
(1)
E reads [12]

J
(1)
E [f, f ] = −K

[
n
∂f (0)

∂n

]
· ∇ lnn − 1

2
φ

(
∂ lnχ

∂φ

)
K
[
f (0)

]
· ∇ lnn − K

[
T
∂f (0)

∂T

]
· ∇ lnT

+
1

2
Ki

[
∂f (0)

∂Vj

](
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ · U

)
+

1

d
Ki

[
∂f (0)

∂Vi

]
∇ · U − Lf (1), (A4)

where L is defined by Eq. (65) and the operator K[X ] is given by

K[X ] = σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g12) (σ̂ · g12) σ̂

[
α−2f (0)(v′′

1 )X(v′′
2 ) + f (0)(v1)X(v2)

]
. (A5)

As already noted in Ref. [12], upon obtaining Eq. (A4) use has been made of the symmetry property Ki[∂Vjf
(0)] =

Kj [∂Vif
(0)] that follows from the isotropy of the zeroth-order solution. Thus we are able to separate the contributions

from the flow field gradients into independent traceless and diagonal components.
The macroscopic balance equations to first order in the gradients are

D
(1)
t n = −n∇ · U, D

(1)
t U = −ρ−1∇p − γ∆U, D

(1)
t T = − 2p

dn
∇ · U − ζ(1)T, (A6)
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where ζ(1) is the first order contribution to the cooling rate. Since the cooling rate is a scalar, corrections to first-order
in the gradients can arise only from ∇ · U since ∇n and ∇T are vectors and the tensor ∂jUi + ∂iUj − 2

dδij∇ · U is a

traceless tensor. Thus, ζ(1) can be written as

ζ(1) = ζU∇ · U. (A7)

The unknown quantity ζU is a functional of the first-order distribution f (1). A more explicit form for ζU is obtained

by expanding Eq. (21) to first-order in gradients. This yields Eq. (80) where ζ
(0)
1 and ζ

(1)
1 are defined by Eqs. (81)

and (B16), respectively.
The use of the balance equations (A6) allows us to evaluate the right-hand side of Eq. (A1). The combination of

these results with the forms (A4) of the Enskog collision operator J
(1)
E and (80) of ζU leads to the expression

(
∂
(0)
t + L

)
f (1) − γ

∂

∂v
· Vf (1) − γTex

m

∂2f (1)

∂v2
− ζ

(1)
1 T

∂f (0)

∂T
∇ · U = A · ∇ lnT +B · ∇ lnn

+Cij
1

2

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ · U

)
+D∇ · U, (A8)

where

A(V) = −VT
∂f (0)

∂T
− p

ρ

∂f (0)

∂V
− K

[
T
∂f (0)

∂T

]
, (A9)

B(V) = −Vn
∂f (0)

∂n
− p

ρ

(
1 + φ

∂ ln p∗

∂φ

)
∂f (0)

∂V
− K

[
n
∂f (0)

∂n

]
− 1

2
φ

(
∂ lnχ

∂φ

)
K
[
f (0)

]
, (A10)

Cij(V) = Vi
∂f (0)

∂Vj
+ Ki

[∂f (0)

∂Vj

]
, (A11)

D(V) =
1

d

∂

∂V
·
(
Vf (0)

)
+

(
ζ
(0)
1 +

2

d
p∗
)
T
∂f (0)

∂T
− f (0) + n

∂f (0)

∂n
+

1

d
Ki

[∂f (0)

∂Vi

]
. (A12)

Here, p∗ ≡ p/(nT ). The structure of Eqs. (A8)–(A12) is formally equivalent to the ones derived for driven granular
gases [12]. The only difference lies on the dependence of the zeroth-order solution f (0) on density and temperature.
As for dry granular gases [15], the solution to the kinetic equation (A8) is given by Eq. (60) where the unknown

functions A, B, Cij , and D are determined by solving Eq. (A8). Since the gradients of the hydrodynamic fields are
all independent, substitution of (60) into Eq. (A8) yields a set of linear, inhomogeneous integral equations. In order
to obtain them, one needs the result

∂
(0)
t ∇ lnT = ∇∂

(0)
t lnT = ∇

(
2γ
(
θ−1 − 1

)
− ζ(0)

)
= −

[
ζ(0)

(
1 + φ

∂ lnχ

∂φ

)
+ χφ

∂χ

∂φ

∂

∂χ

(
ζ(0)

χ

)

−λ

(
1 − φ

∂ lnR

∂φ

)
∂ζ(0)

∂λ
− 2

(
θ−1 − 1

)
γφ

∂ lnR

∂φ

]
∇ lnn

−
(
2γθ−1 +

1

2
ζ(0) + ζ(0)θ

∂ ln ζ∗0
∂θ

)
∇ lnT. (A13)

The integral equations (61)–(64) can be easily obtained after taking into account Eq. (A13) and the steady state
condition Λ(0) = 0.

Appendix B: Kinetic contributions to the transport coefficients

In this Appendix we give some details on the determination of the kinetic contributions to the transport coefficients
η, κ, and µ as well as the first-order contribution ζU to the cooling rate. Since all these quantities are obtained int he
steady state, the subscript s appearing along the main text will be omitted here for the sake of brevity.
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The kinetic part of the shear viscosity ηk is defined as

ηk = − 1

(d − 1)(d+ 2)

∫
dv Dij(V) Cij(V), (B1)

where

Dij = m

(
ViVj − 1

d
V 2δij

)
. (B2)

As usual, to get ηk one multiplies both sides of Eq. (61) by Dij and integrates over velocity. The result is

(2γ + νη) ηk = nT − 1

(d − 1)(d+ 2)

∫
dVDij(V)Ki

[
∂f (0)

∂Vj

]
, (B3)

where

νη =

∫
dvDij(V)LCij(V)∫
dvDij(V)Cij(V)

, (B4)

and [15, 16, 38]

∫
dVDij(V)Ki

[
∂f (0)

∂Vj

]
= 2d−2(d − 1)nTχφ(1 + α)(1 − 3α). (B5)

The expression of ηk can be easily obtained when one takes into account Eq. (B5) and the explicit form (72) of νη.
This latter expression is obtained from Eq. (B4) by considering the leading terms in a Sonine polynomial expansion
of the unknown Cij(V).
The kinetic parts κk and µk are defined, respectively, as

κk = − 1

dT

∫
dvS(V) · A(V), (B6)

µk = − 1

dn

∫
dvS(V) · B(V), (B7)

where

S(V) =

(
m

2
V 2 − d+ 2

2
T

)
V. (B8)

As in the case of ηk, κk is obtained by multiplying both sides of Eq. (61) by S(V) and integrating over v. The result
is

(
νκ + γθ−1 − 2ζ(0) − ζ(0)θ

∂ ln ζ∗0
∂θ

)
κk = − 1

dT

∫
dVS(V) · A, (B9)

where use has been made of the steady state condition (29) and

νκ =

∫
dvS(V) · LA(V)∫
dvS(V) · A(V)

. (B10)

The right hand side of Eq. (B9) can be computed when one takes into account Eq. (A9) and the relationship (53).
After some algebra, one gets

− 1

dT

∫
dVS · A =

1

dT

{
d(d + 2)

2m
nT 2 (1 + 2a2 + θ∆θ) − 1

2

∫
dvS(V) · K

[
∂

∂V
·
(
Vf (0)

)]

+
θ

a2
∆θ

∫
dvS(V) · K

[
f (0) − fM

]}
, (B11)
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where fM(c) = nπ−d/2v−d
0 e−c2 and use has been made of the Sonine approximation (36) to f (0) and the property

(53). The first collision integral involving the operator K has been calculated in previous works [15, 16, 38] and the
result is

∫
dVS(V) · K

[
∂

∂V
·
(
Vf (0)

)]
= −3

8
2dd

nT 2

m
χφ (1 + α)2 [2α − 1 + a2(1 + α)] . (B12)

The second collision integral in (B11) has not been evaluated before. After some algebra, one gets

∫
dVS(V) · K

[
f (0) − fM

]
=

3

32
2dd

nT 2

m
χφ (1 + α)3 a2. (B13)

With the above results, κk can be finally written in the form (75). As in the case of νη, the (reduced) collision
frequency νκ can be well estimated by considering the leading Sonine approximation to A.
The evaluation of µk follows similar mathematical steps to those made for κk since one has to multiply both sides

of Eq. (62) by S(V) and integrate over v. In order to get its explicit form (78), one needs the partial results

− 1

dn

∫
dVS · B =

d+ 2

2

T 2

m

[
a2 − λ

(
1 − φ

∂ lnR

∂φ

)
∆λ + φ

∂χ
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∆χ

]
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2

dn
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λ

(
1 − φ

∂ lnR

∂φ

)
∆λ − φ

∂χ

∂φ
∆χ

] ∫
dVS(V) · K

[
f (0) − fM

]

+
1

dn

(
1 +

1

2
φ
∂ lnχ

∂φ

)∫
dVS(V) · K

[
f (0)

]
, (B14)

∫
dVS(V) · K

[
f (0)

]
=

3

8
2dd

nT 2

m
χφ (1 + α)

[
α (α − 1) +

a2
6

(
10 + 2d − 3α+ 3α2

)]
. (B15)

The expression (78) can be derived by using Eqs. (B14) and (B15).

Finally, the contribution ζ
(1)
1 to the cooling rate ζU is defined as

ζ
(1)
1 =

1

2nT

π(d−1)/2

dΓ
(
d+3
2

)σd−1χm
(
1 − α2

) ∫
dV1

∫
dV2g

3f (0)(V1)D(V2), (B16)

where the unknown function D(V) is the solution of the linear integral equation (64). As before, an approximate
solution to (64) can be obtained by taking the Sonine approximation

D(V) → eD fM(V) F (V), (B17)

where

F (V) =
( m

2T

)2
V 4 − d+ 2

2

m

T
V 2 +

d (d+ 2)

4
. (B18)

The coefficient eD is given by

eD =
2

d (d+ 2)

1

n

∫
dVD(V)F (V). (B19)

Substitution of Eq. (B17) into Eq. (B16) gives

ζ
(1)
1 =

3 (d+ 2)

32d
χ
(
1 − α2

)(
1 +

3

32
a2

)
ν0eD, (B20)

where ν0 = nT/η0. The coefficient eD is obtained by substituting the Sonine solution (B17) into the integral equation
(64), multiplying it by the polynomial F (V) and integrating over velocity. After some algebra one gets the expression

(82) for ζ
(1)
1 .
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[29] Garćıa de Soria M I, Maynar P and Trizac E, 2013 Phys. Rev. E 87, 022201
[30] Torquato S, 1995 Phys. Rev. E 51, 3170
[31] Bird G A, 1994 Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows (Clarendon, Oxford)
[32] Montanero J M and Santos A, 2000 Granular Matter 2, 53
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[38] Garzó V, 2013 Phys. Fluids 25, 043301
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Chapter 4

Homogeneous States of

Bidisperse Suspensions

4.1 Summary

The homogeneous states of a bidisperse granular suspension at moderate densities are

analyzed. The suspension is modeled as a set of hard disks (d = 2) or spheres (d = 3)

composed of two different species of masses mi and diameters σi (i = 1, 2) immersed in

a viscous fluid. Spheres are assumed to be completely smooth so that inelasticity of col-

lisions between particles of the species i with particles of the species j is characterized

only by the constant (positive) coefficients of restitution αij ≤ 1. As in the mono-

component case, the presence of interstitial gas is represented in the Enskog equations

by a Fokker–Planck (drag force plus stochastic term) operator acting on the one-body

distribution function fi of the species i. In accordance with simulations of bidisperse

gas-solid flows [172–174], the drag coefficients γi of the species i = 1, 2 are chosen to

be different and functions of density.

The main aims of this chapter are two-fold. On the one hand we want to analyze the

transient regime towards the asymptotic steady state. While in the case of molecular

mixtures, the final state is that of equilibrium, a non-equilibrium steady state is reached

in the case of granular mixtures. As discussed above, the hydrodynamic solution is the

key point of the CE method. Thus, it is interesting to ascertain the existence of a hydro-

dynamic regime in the case of bidisperse granular suspensions. The study of the “aging

to hydrodynamics” in a multicomponent granular suspension is the first objective of the

71
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present work. It is found that for times longer than the mean free time and regardless

of the initial conditions, the system reaches a universal hydrodynamic solution where

the distribution function depends only on the temperature of the mixture T through

the dimensionless velocity c (which is scaled with v0 =
√
2T/m, m = [m1 +m2] /2),

and the granular to external temperature ratio T/Tex. To confirm this result, we show

that the evolution of the partial (reduced) temperature T1/Tex collapses in a single

time-evolution curve whose shape is only determined through the instantaneous val-

ues of T/Tex. Time-dependent DSMC simulations are performed showing an excellent

agreement with the theoretical predictions.

At the early stages of the evolution, the system has not yet reached the hydro-

dynamic stage. However, due to the presence of interstitial gas, the evolution of the

total T and partial temperatures Ti are also coupled. This coupling gives rise to the

emergence of memory effects. A system possesses memory when the evolution of the

hydrodynamic variables depends on the whole microscopic configuration composed by

kinetic and macroscopic quantities. Here, we focus our efforts in the study of the

so-called Mpemba effect. Namely, when a hotter sample cools down sooner [182]. In

this context, we want to study what initial conditions (T0, T1,0/T2,0), if any, lead to a

crossover in the temperature evolution of two identical samples. However, the presence

of the total and partial cooling rates makes more difficult the derivation of analytical

results, and hence we focus first on the study of the Mpemba-like effect in molecular

suspensions (elastic collisions). A exhaustive analysis of the Mpemba effect and its in-

verse counterpart (namely when the two initial temperatures are below the equilibrium

one) in situations close and far away from equilibrium is carried out. In this case, fi is

approximated by its Maxwellian form for the sake of simplicity. DSMC and MD data

show a good agreement with theoretical results proving not only the accuracy of the

hydrodynamic and Maxwellian solution, but also of the molecular chaos hypothesis.

An exhaustive analysis of the Mpemba-like effect in granular suspensions is also per-

formed. The inelasticity of collisions enhances the emergence of the effect and we can

observe even the existence of non-linear Mpemba effects (non-monotonic and mixed)

in far-from-equilibrium situations [248].

The second goal of this chapter is devoted to the study of the homogeneous steady

state. In previous studies on homogeneous states of driven granular mixtures [94],

the steady values of the temperature ratio T1/T2 and the fourth cumulants c1 and c2
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(measuring the departure of the velocity distributions f1 and f2 from their Maxwellian

forms) were confronted against MD simulations. Although the comparison shows a

good agreement for the temperature ratio between theory and simulations for dilute and

moderate densities, some discrepancies were found in the case of the cumulants. Given

that molecular dynamics avoids any assumption inherent in the kinetic theory (such

as the molecular chaos hypothesis), it is not clear whether the origin of the differences

between theory and MD simulations are due to the failure of the Enskog kinetic theory

or to the approximations made in solving the Enskog kinetic equation. Thus, it is

desirable to provide also Monte Carlo results to find out the origin of the discrepancies

encountered in the case of the cumulants. The stationary values of T1/T2, c1, and c2

are plotted in three different situations: as a function of (i) the mass ratio m1/m2, (ii)

the size ratio σ1/σ2, and (iii) the partial volume fractions ratio ϕ1/ϕ2. Finally, a linear

stability analysis of the steady state solution is also carried out showing that the steady

state is always linearly stable.
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ABSTRACT

The time evolution of a homogeneous bidisperse granular suspension is studied in the context of the Enskog kinetic equation. The influence
of the surrounding viscous gas on the solid particles is modeled via a deterministic viscous drag force plus a stochastic Langevin-like term. It
is found first that, regardless of the initial conditions, the system reaches (after a transient period lasting a few collisions per particle) a uni-
versal unsteady hydrodynamic regime where the distribution function of each species not only depends on the dimensionless velocity (as in
the homogeneous cooling state) but also on the instantaneous temperature scaled with respect to the background temperature. To confirm
this result, theoretical predictions for the time-dependent partial temperatures are compared against direct simulation Monte Carlo (DSMC)
results; the comparison shows an excellent agreement confirming the applicability of hydrodynamics in granular suspensions. Also, in the
transient regime, the so-called Mpemba-like effect (namely, when an initially hotter sample cools sooner than the colder one) is analyzed for
inelastic collisions. The theoretical analysis of the Mpemba effect is performed for initial states close to and far away from the asymptotic
steady state. In both cases, good agreement is found again between theory and DSMC results. As a complement to the previous studies, we
determine in this paper the dependence of the steady values of the dynamic properties of the suspension on the parameter space of the sys-
tem. More specifically, we focus our attention on the temperature ratio T1=T2 and the fourth degree cumulants c1 and c2 (measuring the
departure of the velocity distributions f1 and f2 from their Maxwellian forms). While our approximate theoretical expression for T1=T2 agrees
very well with computer simulations, some discrepancies are found for the cumulants. Finally, a linear stability analysis of the steady state
solution is also carried out showing that the steady state is always linearly stable.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062425

I. INTRODUCTION

An effective way of accounting for the influence of the interstitial
fluid on the dynamics of solid particles is through a nonconservative
external force.1 Usually, for low Reynolds numbers, this force is com-
posed of two terms: (i) a deterministic drag force proportional to the
particle velocity and (ii) a stochastic Langevin-like term. While the first
contribution attempts to model background friction (or viscous damp-
ing) of grains, the second term mimics the energy gained by solid par-
ticles due to their interactions with the particles of the surrounding
molecular gas. The friction of grains on the interstitial gas must not be
confused with the static solid body friction which has been shown to
play an important role in sheared suspensions.2–4 The suspension
model considered here can also be formally derived from the corre-
sponding collision integral by retaining the leading term of the

Kramer–Moyal expansion in powers of the mass ratio of the back-
ground and solid particles.5–7

The Navier–Stokes transport coefficients of a binary granular sus-
pension have been recently determined8 by solving the above suspen-
sion model by means of the Chapman–Enskog method9 conveniently
adapted to dissipative dynamics. The starting point of this study is the
set of Enskog kinetic equations for the mixture with the inclusion of
drag and stochastic forces for each one of the kinetic equations of the
components of the mixture. In addition, it is assumed that the state of
the surrounding gas is not affected by the presence of solid particles. It
is worth noting that this suspension model is inspired by simulation
results reported in the granular literature,10 where the drift coefficients
depend on both the partial and global volume fractions and the
mechanical properties of grains (masses and diameters).

Phys. Fluids 33, 093315 (2021); doi: 10.1063/5.0062425 33, 093315-1
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On the other hand, given the intricacies associated with the com-
putation of transport coefficients in the time-dependent problem,
steady state conditions (namely, when the cooling terms arising from
viscous and collisional dissipation are exactly balanced by the heat
injected in the system by the bath) were considered to get explicit
forms of the diffusion coefficients and the shear and bulk viscosities.
The results derived in Ref. 8 show that the forms of diffusion coeffi-
cients are, in general, very different from those found in the case of dry
(no gas phase) granular mixtures.11 With respect to the shear viscosity,
it is found that its form for granular suspensions compares qualita-
tively well with the one obtained in the dry granular case11 for not
quite high densities. However, significant quantitative discrepancies
between both descriptions (with and without the gas phase) appear for
strong inelasticity. The suspension model has been recently12

employed for studying the rheology of a dilute binary mixture of iner-
tial suspension under simple shear flow.

A crucial point on the derivation of the Navier–Stokes hydrody-
namic equations is the existence of a normal (or hydrodynamic) solu-
tion9 in the homogeneous problem. This state is taken in fact as the
reference state (zeroth-order approximation) in the Chapman–Enskog
expansion around the local version of the homogeneous time-
dependent state. As widely discussed in different textbooks,9,13,14 two
separate stages can be clearly identified in the evolution of a molecular
suspension toward equilibrium. First, for times of the order of the
mean free time, a kinetic stage is identified where the collisions
between particles give rise to a relaxation of the distribution function
toward a local equilibrium distribution. This kinetic stage depends on
the initial preparation of the system. Then, for times much longer than
the mean free time, a hydrodynamic stage is identified. The hydrody-
namic regime is characterized by a slower evolution of the hydrody-
namic fields as they approach toward equilibrium. The main feature of
the hydrodynamic regime is that the system has practically forgotten
the details of the initial conditions, except for an implicit dependence
on these conditions through the hydrodynamic fields. In the case of
granular suspensions, the above two-stage regimes are also expected to
be identified, but with the caveat that in the kinetic regime the inelas-
ticity of collisions causes a relaxation toward a non-equilibrium distri-
bution function instead of the local equilibrium distribution. For the
sake of clarification, a schematic representation of the two-regime
(kinetic and hydrodynamic) evolution of the distribution functions fi
for homogeneous time-dependent states can be found in Fig. 1.

Although the applicability of a hydrodynamic description to
granular fluids has been supported in recent years by theory in both
the Navier–Stokes11 and the non-Newtonian15,16 regimes,

simulations,17–19 and experiments,20–22 it is interesting to analyze the
existence of a hydrodynamic regime in the case of bidisperse granular
suspensions. The study of the “aging to hydrodynamics” in a multi-
component granular suspension is the first objective of the present
work.

We find that, before reaching the stationary regime, the system
“quickly” forgets its initial preparation and then evolves toward an
unsteady universal (hydrodynamic) state where the velocity distribu-
tion function fiðv; tÞ of species i has the scaling form

fiðv; tÞ ¼ niv0ðtÞ�duiðcðtÞ;TðtÞ=TexÞ: (1)

Here, ni is the number density of species i; v0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TðtÞ=�m

p
[�m ¼ ðm1 þm2Þ=2, mi being the mass of species i] is the thermal
speed; T is the global granular temperature; c ¼ v=v0; and Tex is the
(known) background temperature. As in previous studies on driven
granular fluids23,24 and in contrast to the homogeneous cooling state,25

the scaling distribution ui depends on T not only through the dimen-
sionless velocity c but also on the instantaneous temperature, suitably
scaled with respect to the known bath temperature Tex. A consequence
of the scaling solution (1) is that the velocity moments of fi evolve in
time in a similar form. Thus, for arbitrary initial conditions, one
expects that the partial temperatures TiðtÞ=Tex achieve a universal
function (independent of the initial conditions) that depends on time
only through the (scaled) temperature TðtÞ=Tex. This theoretical result
is indeed confirmed here by direct Monte Carlo simulations
(DSMC)26 of the Enskog kinetic equation.

The fact that a multicomponent granular suspension admits a
hydrodynamic-like type of description opens up possible applications.
Among them, thermal diffusion segregation of an intruder immersed
in a granular suspension is a very interesting problem. The determina-
tion of a segregation criterion will allow us to assess the impact of the
interstitial gas on the dynamics of the intruder by comparing this crite-
rion against the one previously reported27–29 when the gas phase was
neglected.

A surprising and fascinating phenomenon in the transient regime
toward the final asymptotic steady state is the so-called Mpemba
effect.30 The Mpemba effect is a counterintuitive phenomenon where
two samples of fluids at initially different temperatures can evolve in
time in such a way that their temperatures cross each other at a given
time tc; the curve for the initially cooler sample stays below the other
one for longer times t > tc. Although this exciting phenomenon was
first found in the case of water, similar behaviors to the Mpemba effect
have been observed in other systems.31,32 However, in spite of the
extensive number of works devoted to this problem, the origin of this
phenomenon is still unknown. For this reason, different studies based
on kinetic theory33–40 have been reported in the granular literature for
unveiling in a clean way the origin of the Mpemba-like effect (and its
inverse counterpart). In the context of molecular suspensions (elastic
collisions), we have recently analyzed the Mpemba effect38,39 for initial
states close to and far away from equilibrium. Theoretical results have
been confronted against computer simulations (DSMC and molecular
dynamics simulations) showing, in general, excellent agreement. As a
complement to the results reported in Refs. 38 and 39, we offer in this
paper a quantitative analysis of the Mpemba-like effect for binary
granular suspensions, namely, when collisions between solid particles
are inelastic. The study of the Mpemba-like effect is the second target
of the paper.

FIG. 1. Schematic representation of the time evolution of the distribution functions fi
for molecular and granular mixtures in homogeneous time-dependent states with
vanishing mean flow velocity.
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As expected, for long times, the suspension reaches an asymptotic
stationary state. A study of the dependence of the steady values of the
dynamic properties of the suspension on the parameter space of the
system is the third goal of the present paper. More specifically, we are
interested in obtaining the ratio of kinetic temperatures T1=T2 and the
fourth-degree cumulants c1 and c2 (which measure non-Gaussian
properties of the velocity distributions f1 and f2, respectively) as func-
tions of the mass and diameter ratios, concentration, density, coeffi-
cients of restitution, and the background temperature. Theory is
compared with DSMC simulations for different systems and coeffi-
cients of restitution. While the theoretical predictions for the tempera-
ture ratio compare very well with computer simulations, some
discrepancies are found for the cumulants. These discrepancies are of
the same order of magnitude as those previously found in dry (no gas
phase) granular mixtures.41

The plan of the paper is as follows. Section II deals with the
Enskog equation of the binary granular suspension for homogeneous
time-dependent states. The corresponding evolution equations for the
global temperature T(t) and the partial kinetic temperatures TiðtÞ
(measuring the mean kinetic energy of each species) are also derived
from the set of Enskog kinetic equations. Time evolution toward the
unsteady hydrodynamic regime is studied in Sec. III where the exis-
tence of a universal hydrodynamic solution (1) is shown at the level of
the partial temperatures and the cumulants. Section III addresses the
Mpemba-like effect where exact expressions for the crossing time tc
and the critical value of the initial temperature differences (which pro-
vides information on the occurrence or not of the Mpemba effect) are
obtained for initial states close to the asymptotic steady state. A more
qualitative analysis is carried out for the so-called large Mpemba-like
effect (namely, for initial situations far from the steady state). In both
cases (small and large Mpemba effect), theory shows very good agree-
ment with Monte Carlo simulations. Results for the dynamic proper-
ties in the stationary state are studied in Sec. IV while a linear stability
analysis of this steady state is also carried out in Sec. V. The analysis
shows that the steady state is always linearly stable. The paper is closed
in Sec. VI with a discussion of the results reported here.

II. MODEL AND KINETIC DESCRIPTION OF BINARY
GRANULAR SUSPENSIONS

Let us consider a granular binary mixture modeled as a gaseous
mixture of inelastic hard disks (d¼ 2) or spheres (d¼ 3) of masses m1

andm2 and diameters r1 and r2. For the sake of simplicity, the spheres
are assumed to be perfectly smooth and, so, collisions among all pairs
are characterized by three (positive) constant coefficients of normal
restitution aij � 1 (i; j ¼ 1; 2). The coefficients aij can be different for
the three types of binary collisions.

Grains (solid particles) are immersed in a viscous gas of viscosity
gg /

ffiffiffiffiffiffiffi
Tex
p

. We assume that the granular mixture is sufficiently rare-
fied so that one can suppose that the state of the interstitial fluid (like
air or water) is not disturbed by the presence of the solid particles and
it can be treated as a thermostat. Thus, we assume that both gg and Tex

are constant quantities. Moreover, as has been widely discussed in pre-
vious works,42–46 we also assume that the stresses exerted by the back-
ground gas on solid particles are sufficiently weak so they have a small
influence on the motion of grains. Thus, the impact of gas phase on
collision dynamics can be neglected and, consequently, the
Enskog–Boltzmann collision operators are not affected by the presence

of the interstitial gas. This assumption becomes less reliable as the
particle-to-fluid density ratio decreases (for instance, glass beads in liq-
uid water) where one should consider the influence of the gas phase
on the collision operator. The use of the kinetic-theory analogy to
gas–solid systems is appropriate for relatively massive particles (i.e.,
high Stokes number) engaging in nearly instantaneous collisions.47

These type of systems occur in a wide range of engineering operations,
including the riser section of a circulating fluidized bed, pneumatic
conveying systems, or bubbling fluidized beds. Figure 2 shows a sche-
matic diagram of the system considered in this work.

Under the above conditions, for moderate densities, the one-
particle velocity distribution function fiðv; r; tÞ of species or compo-
nent i of the mixture (i¼ 1, 2) obeys a set of coupled nonlinear
Enskog kinetic equations. For homogeneous and isotropic states, this
set reads

@fi
@t
þF ifi ¼

X2
j¼1

Jij vjfi; fj
� �

; (2)

where the Enskog–Boltzmann collision operator Jij½fi; fj� is given by

Jij fi; fj
� �

¼ rd�1
ij vij

ð
dv2

ð
dr̂H r̂ � g12ð Þ r̂ � g12ð Þ

� a�2ij fiðv001 ; tÞfjðv002 ; tÞ � fiðv1; tÞfjðv2; tÞ
h i

: (3)

Here, rij ¼ rijr̂; rij ¼ ðri þ rjÞ=2; r̂ is a unit vector directed along
the line of centers from the sphere of component i to that of compo-
nent j at contact, H is the Heaviside step function, g12 ¼ v1 � v2 is
the relative velocity, and vijðrijÞ is the equilibrium pair correlation
function evaluated at contact. The relationship between the pre- and
post-collisional velocities is

v001 ¼ v1 � lji 1þ a�1ij

� �
r̂ � g12ð Þr̂;

v02 ¼ v2 þ lij 1þ a�1ij

� �
r̂ � g12ð Þr̂;

(4)

where lij ¼ mi=ðmi þmjÞ.
In Eq. (2), the operator F i represents the gas–solid interaction

force that models in an effective way the effect of the background vis-
cous gas on the solid particles of component i. For low Reynolds num-
bers (only laminar flows are considered), this force is usually
constituted by two terms: (i) a deterministic viscous drag force

FIG. 2. Schematic diagram of the binary suspension. Two kinds of particles of
masses m1 and m2 are surrounded by a gas of mass mg � m1;2.
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proportional to the (instantaneous) particle velocity v and (ii) a sto-
chastic Langevin-like term that takes into account the effects on a par-
ticle of species i coming from neighboring particles.47 While the drag
force term attempts to account for the loss of energy of particles due to
their friction on the surrounding viscous gas (viscous damping), the
stochastic term models the energy gained by grains due to their (ran-
dom) collisions with gas particles. This latter term is represented by a
Fokker–Planck collision operator.48 Therefore, the Enskog equation
(2) can be written as8

@fi
@t
� ci

@

@v
� vfi �

ciTex

mi

@2fi
@v2
¼
X2
j¼1

Jij vjfi; fj
� �

; (5)

where the coefficients ci are the drag or drift coefficients. Upon writing
Eq. (5), we have assumed that the mean flow velocity of the gas phase
vanishes for homogeneous states. Although the drag coefficients ci
should be in general tensorial quantities (as a result of the hydrody-
namic interactions between solid particles), here we will assume that
those coefficients are scalar quantities independent of the configura-
tion of grains. As said in previous works,49 this simple model is
expected to be reliable for describing inertial suspensions where the
mean diameter of suspended particles ranges approximately from 1 to
70lm.

On the other hand, lattice-Boltzmann simulations10,50,51 for
binary granular suspensions have shown that the coefficients ci must
be functions of the partial volume fractions

/i ¼
pd=2

2d�1dC
d
2

� � nir
d
i (6)

and the total volume fraction / ¼ /1 þ /2. Here, the number density
of component i is defined as

niðtÞ ¼
ð
dv fiðv; tÞ: (7)

The drag coefficients ci can be written as ci ¼ c0Ri, where c0 / gg
and the dimensionless quantities Ri depend on the mole fraction
x1 ¼ n1=ðn1 þ n2Þ, the mass ratio m1=m2, the diameter ratio r1=r2,
and the total volume fraction /. Although several expressions for the
coefficients ci can be found in the literature on polydisperse gas–solid
flows, in this work we assume the expression provided in Ref. 10 for a
three-dimensional system (d¼ 3) as follows:

ci ¼ 18
gg

qr2
12
Ri; (8)

where q ¼ q1 þ q2; qi ¼ mini is the mass density of species i and the
dimensionless function Ri is given by

Ri ¼
qr2

12

qir
2
i

ð1� /Þ/iri

/

X2
j¼1

/j

rj

10/

1� /ð Þ2

"

þ 1� /ð Þ2 1þ 1:5
ffiffiffiffi
/

p� �#
; i ¼ 1; 2: (9)

In homogeneous states, the properties of primary interest in a
binary mixture are the total granular temperature T(t) and the partial

temperatures TiðtÞ associated with the kinetic energy of each species.
They are defined as

TðtÞ ¼
X2
i¼1

xiTiðtÞ; TiðtÞ ¼
1

dniðtÞ

ð
dvmiv

2 fiðv; tÞ; (10)

where x2 ¼ 1� x1. The time-dependence of T(t) and TiðtÞ follows
from the set of Enskog equations (2) that gives8

@T
@t
¼ 2

X2
i¼1

xici Tex � Tið Þ � fT; (11)

@Ti

@t
¼ 2ci Tex � Tið Þ � fiTi; (12)

where fi is the cooling rate associated with Ti and f is the total cooling
rate. The latter quantity gives the rate of change of the total kinetic
energy due to inelastic collisions among all components of the mix-
ture. The cooling rates f and fi are defined, respectively, as

f ¼ 1
T

X2
i¼1

xiTifi; fi ¼ �
mi

dniTi

X2
j¼1

ð
dv v2Jij vjfi; fj

� �
: (13)

Equation (11) shows the competing mechanisms appearing in the
evolution of the granular temperature toward its steady state
Ts ¼ limt!1 TðtÞ. Thus, the stationary temperature is approached
from below [TðtÞ < Ts] when the heat supplied by the external bath
(2
P

i xiciTex) prevails over the cooling terms arising from viscous fric-
tion (2

P
i xiciTi) and collisional cooling (fT); this situation will be

referred to as the heating case. Otherwise, the stationary temperature is
achieved from above [TðtÞ > Ts] and this will be referred to as the cool-
ing case. The interesting question is if an unsteady hydrodynamic
regime exists in both situations (heating and/or cooling cases) before the
granular binary suspension achieves an asymptotic steady state.

III. TIME EVOLUTION TOWARD THE STATIONARY
STATE: THE UNSTEADY HYDRODYNAMIC REGIME

In order to analyze the homogeneous transient regime through-
out the evolution of T(t) and TiðtÞ, it is convenient to introduce
dimensionless variables for temperature and time. Let us define the
reduced temperatures hðtÞ ¼ TðtÞ=Tex and hiðtÞ ¼ TiðtÞ=Tex, the
reduced friction coefficients c�i ðtÞ ¼ ci=�ðtÞ, and the reduced cooling
rates f�ðtÞ ¼ fðtÞ=�ðtÞ and f�i ðtÞ ¼ fiðtÞ=�ðtÞ. Here, the effective col-
lision frequency �ðtÞ is defined as

�ðtÞ ¼ nrd�1
12 v0ðtÞ; (14)

where n ¼ n1 þ n2 is the total number density of the mixture and we
recall that v0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TðtÞ=�m

p
. According to Eqs. (8) and (9), the dimen-

sionless drag coefficients c�i can be expressed more explicitly in terms of
the dimensionless functions Ri and the (reduced) temperature h as

c�i ¼ kih
�1=2; ki ¼

ffiffiffi
2
p

pd=2

2ddC
d
2

� � Riffiffiffiffiffiffiffi
T�ex

p X
j

ðr12=rjÞd/j

; (15)

where

T�ex 	
Tex

�mr2
12c

2
0

(16)
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is the reduced background temperature. In terms of the above dimen-
sionless quantities, Eqs. (11) and (12) can be written as

@h
@t�
¼ 2

X2
i¼1

xikið1� hiÞ � h3=2f�; (17)

@hi
@t�
¼ 2kið1� hiÞ � h1=2f�i hi; (18)

where the reduced time t� ¼ nrd�1
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tex=�m

p
t and f� ¼ h�1ðx1h1f�1

þx2h2f�2Þ.
It is quite apparent that to solve the Enskog kinetic equations (5)

one has to provide specific initial conditions fiðv; 0Þ 	 f 0i ðvÞ. In this
sense, the solution fiðv; tÞ can be considered as a functional of the ini-
tial distribution, namely, fiðv; tÞ ¼ fiðv; tjf 0i Þ.

15 Analogously, the
velocity moments of fi (such as the partial temperatures hi) are also
functionals of the initial distribution. Since the only time-dependent
hydrodynamic variable in the homogeneous state is the granular tem-
perature, for times longer than the mean free time, the existence of a
hydrodynamic regime necessarily implies that the time-dependence of
the distribution function fiðv; tÞ is through the temperature T(t). It fol-
lows from dimensional analysis that fiðv; tÞ has the scaling form (1),
i.e.,

fiðv; tjf 0i Þ ! niv0ðtÞ�duiðcðtÞ; hðtÞÞ; (19)

where we recall that cðtÞ 	 v=v0ðtÞ is the particle velocity expressed in
units of the time-dependent thermal speed. Upon writing the right-
hand side of Eq. (19), we have accounted for the dependance of c�i ðtÞ
on time is only through its dependence on hðtÞ. For given values of
the parameters of the mixture (concentration, masses, sizes, density,
and coefficients of restitution), the scaled distribution uiðcðtÞ; hðtÞÞ is
a universal function independent of the initial distribution f 0i ; its time-
dependence is enclosed not only in the dimensionless velocity c but
also in the scaled temperature h. The fact that the velocity statistics is
envisioned by a two-parameter scaling form (at variance with the
homogenous cooling state in undriven granular mixtures11,25) is a
common feature in driven granular gases.23,24 Thus, if an unsteady
hydrodynamic description exists, the different solutions fiðv; tjf 0i Þ to
the set of Enskog equations (5) must collapse to the universal form
(19). Then, for very long times, the steady state is eventually achieved
where uiðc; hÞ ! uiðc; hsÞ; hs being the stationary value of the
(reduced) temperature. A consequence of Eq. (19) is that the velocity
moments of the distribution fiðv; tÞ will evolve in a similar way. In
particular, regardless of the initial state, the partial temperature
hiðtjf 0i Þ will be attracted by the universal function hiðhðtÞÞ.

On the other hand, according to Eqs. (17) and (18), to confirm
the existence of the hydrodynamic solution one needs to know the
partial cooling rates f�i , which are defined by Eq. (13) in terms of the
velocity distributions fiðv; tÞ. Here, to estimate f�i we take the simplest
approximation for the distributions fiðv; tÞ, namely, the Maxwellian
distributions fi;Mðv; tÞ defined with the partial temperatures TiðtÞ as
follows:

fi;Mðv; tÞ ¼ ni
mi

2pkBTiðtÞ

� �d=2

exp � miv2

2kBTiðtÞ

 !
: (20)

In this approximation, the (reduced) partial cooling rates f�i are given
by11

f�i ¼
4pðd�1Þ=2

dC
d
2

� � X2
j¼1

xjvijlji
rij

r12

� �d�1 bi þ bj

bibj

 !1=2

� ð1þ aijÞ 1�
lji

2
ð1þ aijÞ

bi þ bj

bj

" #
; (21)

where bi ¼ Mih=hi andMi ¼ mi=�m. In addition, to make a plot hiðtÞ
vs hðtÞ, the form of the pair correlation function is also needed. A
good approximation for vij for spheres (d¼ 3) is52,53

vij ¼
1

1� /
þ 3
2

/

ð1� /Þ2
rirjM2

rijM3
þ 1
2

/2

ð1� /Þ3
rirjM2

rijM3

� �2

; (22)

whereM‘ ¼
P

i xir
‘
i . A parametric plot h1ðt�Þ vs hðt�Þ is a quite use-

ful test to see if actually an unsteady hydrodynamic regime is estab-
lished, namely, if h1ðt�Þ ! h1ðhðt�ÞÞ, where the function h1ðhÞ must
be independent of the initial conditions. Such a parametric plot is
shown in Fig. 3 for a binary mixture with parameters r1=r2 ¼ 1;
m1=m2 ¼ 10; x1 ¼ 1

2 ; / ¼ 0:1, and T�ex ¼ 1. Two different values of
the (common) coefficient of restitution aij 	 a are considered: a¼ 1
(elastic collisions) and a ¼ 0:9 (inelastic collisions). Different cooling
[hðt�Þ decreases in time] and heating [hðt�Þ increases in time] cases
have been considered in Fig. 3. Lines are the theoretical results derived
by numerically solving Eqs. (17) and (18) with the Maxwellian approx-
imation (21) for f�i while symbols refer to the results obtained via
DSMC simulations. Figure 3 highlights that, for sufficiently long times,
the different curves (corresponding to different initial conditions) are
attracted to a common universal curve (time-dependent hydrody-
namic regime) where h1 depends on time through the granular tem-
perature h only. Moreover, excellent agreement is found between the
theoretical and the DSMC results in both granular and elastic cases.
Although not shown here, similar results are found for smaller values
of a (a � 0:5).

A. Unsteady hydrodynamic regime. Leading Sonine
approximation

In the unsteady hydrodynamic regime, fi adopts the hydrody-
namic form (19) and, so, the Enskog equation (5) for the scaled distri-
butions uiðc; hÞ reads

2
X2
i¼1

xic
�
i ð1� hiÞ � f�h

" #
@ui

@h
þ f�

2
�
X2
i¼1

xic
�
i h
�1ð1� hiÞ � c�i

" #

� @

@c
� cui �

c�i
2Mih

@2ui

@c2
¼
X2
j¼1

J�ij cjui;uj
� �

; (23)

where J�ij ¼ ‘Jij=ðniv1�d0 Þ and use has been made of the property8

T
@fi
@T
¼ � 1

2
@

@v
� vfi þ niv

�d
0 h

@ui

@h
: (24)

Here, the derivative @ui=@h is taken at constant c. In addition, in the
hydrodynamic regime, the evolution equation (18) can be rewritten as

K
@hi
@h
¼ Ki; Ki ¼ 2c�i 1� hið Þ � hif

�
i ; K ¼ x1K1 þ x2K2: (25)
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The exact solution to the time-dependent Enskog equation (23) is
not known to date. Although we have seen before that the Maxwellian
distribution (20) yields a good estimate of the partial cooling rates f�i ,
the scaled distribution uiðcÞ differs from its Maxwellian form

ui;MðcÞ ¼ p�d=2bd=2
i e�bic

2
: (26)

An usual way of assessing the deviations of ui from ui;M in the range
of low and intermediate velocities is to expand ui in a complete set of

Laguerre (or Sonine) polynomials where the coefficients (or cumu-
lants) ci of such an expansion are the velocity moments of the distribu-
tion. Based on the assumption that the cumulants ci are small,
approximate expressions for them can be achieved by truncating the
series expansion at a given order. Hence, the leading Sonine approxi-
mation toui is given by

uiðcÞ ¼ ui;MðcÞ 1þ ci
2

b2
i c

4 � ðd þ 2Þbic
2 þ dðd þ 2Þ

4

	 
� �
; (27)

where the fourth-degree cumulants ci are defined as

ci ¼
4

dðd þ 2Þ b
2
i

ð
dc c4uiðcÞ � 1: (28)

We want to analyze the time-dependence of the coefficients ci, or
equivalently, the dependence of ci on h. To obtain self-consistent
results, the partial cooling rates f�i are now estimated by using the lead-
ing Sonine polynomial term (27). Thus, according to the constraint
hðt�Þ ¼ x1h1ðt�Þ þ x2h2ðt�Þ, the unknown (independent) quantities
are the partial temperature h1 and the cumulants c1 and c2. The equa-
tion governing the time evolution of h1 is given by Eq. (25) with i¼ 1.
The time evolution equations for the cumulants can be obtained by
multiplying the set of Enskog equations (23) by c4 and integrating
over c. After some algebra, one gets

K
@ci
@h
þ 2 Kih

�1
i þ 2c�i

 �
1þ cið Þ � 4c�i h

�1
i ¼

4b2
i

dðd þ 2ÞRi; (29)

where

Ri ¼
X2
j¼1

ð
dv c4J�ij cjui;uj

� �
: (30)

The partial cooling rates f�i as well as the collisional moments Ri are
obtained by substituting the leading Sonine approximation (27) into
Eqs. (13) and (30), retaining only linear terms in ci, and integrating
over velocity. The final expressions can be written as follows:54

f�1 ¼ f10 þ f11c1 þ f12c2; f�2 ¼ f20 þ f22c2 þ f21c1; (31)

R1 ¼ R10 þ R11c1 þ R12c2; R1 ¼ R20 þ R22c2 þ R21c1; (32)

where the explicit forms of fij and Rij are displayed in the Appendix
for the sake of completeness.

Figure 4 illustrates the dependence of coefficients c1 and c2 on h
for the same initial conditions as in Fig. 3. It is quite apparent that,
after a transient period, the cumulants converge toward the universal
hydrodynamic regime in the same way as the partial temperatures hi
do. We also observe that the temporal duration of the unsteady hydro-
dynamic regime of cumulant c2 is greater than that of cumulant c1.

IV. MPEMBA-LIKE EFFECT IN BINARY GRANULAR
SUSPENSIONS

As mentioned in Sec. I, before considering steady situations, it is
interesting to analyze the so-called Mpemba-like effect in binary gran-
ular suspensions. Mpemba-like effect is a counterintuitive phenome-
non where an initially hotter sample can cool down sooner than the
colder one. This effect was experimentally observed for the first time
many years ago by Mpemba and Osborne30 in the case of water.
Although different mechanisms have been proposed in the literature

FIG. 3. Evolution of the (reduced) partial temperature h1ðt�Þ vs the (reduced) tem-
perature hðt�Þ for m1=m2 ¼ 10; r1=r2 ¼ 1; x1 ¼ 1

2 , and a common coefficient
of restitution a (a 	 a11 ¼ a12 ¼ a22). Solid lines represent the theoretical values
and symbols DSMC data. Top panel corresponds to a ¼ 0:9 and bottom panel to
a¼ 1. Top panel: the initial values h1ðhÞ of the colored lines are h1ð0:6Þ ¼ 0:6
(purple line and symbols), h1ð0:6Þ ¼ 1:1 (green line and symbols), h1ð1:1Þ ¼ 0:6
(blue line and symbols), and h1ð1:1Þ ¼ 1:1 (red line and symbols). Bottom panel:
the initial values h1ðhÞ of the colored lines are h1ð0:8Þ ¼ 0:8 (purple line and sym-
bols), h1ð0:8Þ ¼ 1:2 (green line and symbols), h1ð1:2Þ ¼ 0:8 (blue line and sym-
bols), and h1ð1:2Þ ¼ 1:2 (red line and symbols). The remaining parameters are
d¼ 3, / ¼ 0:1, and T�ex ¼ 1. The filled circles correspond to the values of h1 in
the steady state.
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to explain the Mpemba effect in such a system,55–61 the problem is still
open since there are still doubts about the origin of this exciting phe-
nomenon.62,63 For this reason, to gain some insight into this complex
problem, kinetic theory tools have been widely employed in the last
few years to understand the cause of a reduction in the relaxation time
as the trigger of the Mpemba-like effect in molecular36,38 and granu-
lar33–35,37,40 gases. In particular, we have recently analyzed38,39 this
phenomenon (and its inverse and mixed counterparts) in the case of
molecular binary mixtures driven by a stochastic bath with friction.
Theoretical approximate results have been confronted against com-
puter simulations showing excellent agreement. Although some pre-
liminary results for inelastic collisions were also reported Ref. 38, we
complement in this section the results obtained before by offering a
more quantitative analysis of the Mpemba-like effect in binary granu-
lar suspensions.

Let us assume two identical homogeneous states A and B except
for their initial values of the reduced global temperatures hð0ÞA and hð0ÞB
and their reduced partial temperatures hð0Þ1;A and hð0Þ1;B.

64 As discussed in
Ref. 38, the fact that the time evolution equations obeying hðt�Þ and
h1ðt�Þ are coupled [see Eqs. (17) and (18)] opens up the possibility
that hAðt�c Þ ¼ hBðt�c Þ at a given crossing time t�c (Mpemba-like effect)
before reaching the (common) asymptotic steady state value hs.

To analyze the time evolution of h and h1, let us rewrite Eqs. (17)
and (18) as

@h
@t�
¼ Uðh; h1Þ;

@h1
@t�
¼ Wðh; h1Þ; (33)

where

Uðh; h1Þ ¼ U1 þ U2ðhÞ þ U3ðh1Þ þ U4ðh; h1Þ;
Wðh; h1Þ ¼ W1 þW2ðhÞ þW3ðh; h1Þ:

(34)

Here, we have introduced the following quantities:

U1 ¼ 2 x1k1 þ x2k2ð Þ; U2ðhÞ ¼ �2k2h;
U3ðh1Þ ¼ �2x1 k1 � k2ð Þh1;

U4ðh; h1Þ ¼ �h1=2 x1h1 f�1 � f�2
 �

þ hf�2
� �

;

(35)

W1 ¼ 2k1; W2ðh1Þ ¼ �2k1h1; W3ðh; h1Þ ¼ �h1=2h1f
�
1: (36)

In contrast to other memory effects reported in the case of molec-
ular and granular gases,33,36,40 here we use the partial temperature as
the kinetic variable whose evolution couples with that of the tempera-
ture. For this reason, no cumulants are needed in the description of
the Mpemba-like effect. Thus, in order to solve Eqs. (35) and (36),
since the impact of cumulants ci on the partial temperatures hi is very
small, we will neglect them for the sake of simplicity to estimate the
partial cooling rates f�i . In that case, according to Eq. (21), f�i can be
rewritten as

f�1 ¼

ffiffiffiffiffiffiffiffiffi
h1
M1h

s
f01ðbÞ; (37)

where

f01ðbÞ ¼
ffiffiffi
2
p

pðd�1Þ=2

dC
d
2

� � x1v11
r1

r12

� �d�1
ð1� a211Þ þ

4pðd�1Þ=2

dC
d
2

� �

� x2v12l21ð1þ bÞ1=2ð1þ a12Þ 1� l21

2
ð1þ a12Þð1þ bÞ

	 

:

(38)

Here, b ¼ b1=b2 ¼ m1h2=m2h1. The expression of f�2 can be easily
obtained from Eqs. (37) and (38) by interchanging 1 and 2 and setting
b! b�1.

For elastic collisions (aij ¼ 1), hf� ¼ x1h1ðf�1 � f�2Þ þ hf�2 ¼ 0
and so, U4 ¼ 0 according to the last identity in Eq. (35). Thus, for
molecular mixtures, the study of the Mpemba effect becomes simpler
since the time evolution of hðt�Þ is essentially ruled by the function
U2ðhÞ þ U3ðh1Þ. On the other hand, for inelastic collisions (U4 6¼ 0),
the analysis of the Mpemba effect is much more intricate than for
molecular mixtures. Thus, in order to offer a quantitative analysis, we
consider first initial states which are very close to the final steady state.
This will allow us to get an explicit expression for the crossing time t�c
and, as a consequence, for the initial conditions needed for the cross-
over in the evolution of the temperatures of the two samples. In this
context, the set of coupled differential equations (34) can be linearized
around the stationary solutions hs and h1;s, where the subscript s
means that the quantity is evaluated in the steady state. An exhaustive
study of the dependence of hs and h1;s on the parameter space will be
provided in Sec. V.

We want to solve the set of equations (33) and (34) by assuming
small deviations from the steady state solution. Therefore, we write

hðt�Þ ¼ hs þ dhðt�Þ; h1ðt�Þ ¼ h1;s þ dh1ðt�Þ: (39)

Substituting Eq. (39) into Eq. (34) and retaining only linear terms in
dh and dh1, one obtains the set of linear differential equations

@

@t�
dh
dh1

� �
¼ L � dh

dh1

� �
: (40)

The square matrix L is composed of the following elements:

FIG. 4. Evolution of the cumulants c1 and c2 vs the (reduced) temperature h for
m1=m2 ¼ 10; r1=r2 ¼ 1; x1 ¼ 1

2, and a common coefficient of restitution
a ¼ 0:9 (a 	 a11 ¼ a12 ¼ a22). Solid and dashed lines represent the time evolu-
tion of c1 and c2, respectively. The initial values h; h1; c1; c2f g of the colored lines
are 0:6; 0:6; 0:1;�0:1f g (green line and symbols), 0:6; 0:6;�0:1; 0:1f g (purple
line and symbols), 1:1; 1:1; 0:1;�0:1f g (red line and symbols), and
0:6; 0:6;�0:1; 0:1f g (blue line and symbols). The remaining parameters are
d¼ 3, / ¼ 0:1, and T�ex ¼ 1. The filled circles correspond to the values of c1 and
c2 in the steady state.
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L11 ¼�2k2 �
3
2
h1=2s f�2;s � h1=21;s

x1M
1=2
1

x2M2

@f01
@b

 !
s

þ
h3=22;s

h1;s

M1

M3=2
2

@f02
@b

� �
s
;

(41)

L12 ¼� 2x1 k1 � k2ð Þ þ 3
2
h1=2s x1 f�2;s � f�1;s

 �
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h1=21;s

x1M
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1
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 !
s

þ
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3=2
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2

@f02
@b

� �
s
; (42)

L21 ¼ �h1=21;s
M1=2

1

x2M2

@f01
@b

� �
s
;

L22 ¼ �2k1 �
3
2
h1=2s f�1;s þ hsh

�1=2
1;s

M1=2
1

x2M2

@f01
@b

� �
s
:

(43)

Here, the derivatives of f01 and f02 on b are evaluated in the steady state.
The solution of the matrix equation (40) for dhðt�Þ is

dhðt�Þ ¼ 1
kþ � k�

L11 � k�ð Þdh0 þ L12dh1;0
� �

ekþt
�

n
þ kþ � L11ð Þdh0 � L12dh1;0
� �

ek�t
�
o
; (44)

where dh0 and dh1;0 are the initial values of dh and dh1, respectively.
The eigenvalues of the matrix L are given by

k6 ¼
1
2
L11 þ L226

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11 � L22ð Þ2 þ 4L12L21

q	 

: (45)

Let us assume that the initial temperature of the state A is larger
than that of the state B (hð0ÞA > hð0ÞB ). The possible crossing time t�c for
the occurrence of the Mpemba effect can be obtained from the condi-
tion dhAðt�c Þ ¼ dhBðt�c Þ. This leads to the result

t�c ¼
1

k� � kþ
ln
L12 þ ðL11 � k�ÞDh0=Dh1;0
L12 � ðkþ � ‘11ÞDh0=Dh1;0

; (46)

where Dh0 ¼ hð0ÞA � hð0ÞB and Dh1;0 ¼ hð0Þ1;A � hð0Þ1;B. As expected,38 in
the linear theory, for given values of the parameters of the mixture, t�c
depends on the initial conditions only through the single control
parameter Dh0=Dh1;0. Moreover, since k� � kþ < 0 and t�c 2 Rþ,
the argument of the logarithm in Eq. (46) belongs to the interval (0, 1).
According to this constraint, the initial values must satisfy the follow-
ing conditions:38

Dh0
Dh1;0

2 0;
L12

k� � L11

� �
if

L12
k� � L11

> 0;

Dh0
Dh1;0

2 L12
k� � L11

; 0

� �
if

L12
k� � L11

< 0:

(47)

A phase diagram showing the necessary conditions appearing in
Eq. (47) as a function of the common coefficient of restitution a is
plotted in the top panel of Fig. 5. We consider here an equimolar mix-
ture (x1 ¼ 1

2) of hard spheres (d¼ 3) of equal diameters (r1 ¼ r2) but
different masses (m1 ¼ 5m2) at moderate densities (/ ¼ 0:1). As
expected, the inelasticity of collisions enlarges the region where the ini-
tial conditions lead to a crossover in temperature relaxations. From a
kinetic point of view, as inelasticity grows, particles of the hotter sam-
ple A suffer more collisions per time; so, the loss of energy is

emphasized when compared with the colder sample B. Thus, the
inelasticity brings the relaxation curves of the two samples together
and increases the possibility of the occurrence of the Mpemba-like
effect. However, the influence of the cooling rate on the time evolution
of temperature must be analyzed in conjunction with the action of the
interstitial fluid. As already pointed out in Ref. 38, in the case of small
inelasticity (values of a close to 1), the influence of the cooling rate on
the relative behavior of the two samples can be neglected since it gen-
erally represents less than 10% of the external fluid impact. On the
contrary, at moderate inelasticities, the origin of the Mpemba-like
effect falls on the heterogeneity of the coefficients ki. This discrimina-
tion in the way of energy transfer from the bath to the components of
the mixture causes uneven decay of the partial temperature toward the
steady state. Hence, since the global temperature is a sum of partial

FIG. 5. Top panel: phase diagram of the necessary initial condition Dh0=Dh1;0 as
a function of the common coefficient of restitution a. Bottom panel: relaxation of the
(reduced) temperature h toward the steady state for a ¼ 0:8. Solid lines represent
theoretical results and symbols the DSMC data. The initial conditions for the tem-
perature difference ratio Dh0=Dh1;0 are: –1 (green and orange lines and symbols)
and –4 (green and black lines and symbols). The theoretical value of t�c is also plot-
ted with a vertical line. The remaining parameters in both panels are d¼ 3,
m1=m2 ¼ 5; r1=r2 ¼ 1; x1 ¼ 1

2 ; T
�
ex ¼ 1, and / ¼ 0:1. The dashed horizontal

line represents the steady value hs.
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temperatures weighted by their respective mole fractions, we select the
partial temperature of the component whose interaction with the bath
is more effective to be the further one from the steady state. In this
way, the relaxation time of the hotter sample can be reduced. In the
specific case of Fig. 5, we consider a mixture of two components iden-
tical in every way except for their masses (m1=m2 > 1). Due to inertial
effects, the transmission of momentum (and hence the transmission of
kinetic energy) between the interstitial fluid and the lighter component
is smoother. That is the reason why the necessary initial temperature
difference hð0ÞA � hð0ÞB ¼ Tð0Þ1;A=T

ð0Þ
2;A � Tð0Þ1;B=T

ð0Þ
2;B < 0. On the other

hand, as inelasticity increases, the action of the cooling rate becomes
more relevant and a competition arises between both mechanisms.

Once analyzed the necessary initial conditions for the crossover
to happen, we discuss the fulfillment of Eq. (47). For this purpose, a
cooling and a heating transition toward the steady state is illustrated in
the bottom panel of Fig. 5. Here, we assume the same mechanical con-
ditions as in the phase diagram but we pick up a value for the coeffi-
cient of restitution (a ¼ 0:8). According to Eq. (47), the initial
conditions Dh0=Dh1;0 must be in the range comprised between
‘12=ðk� � ‘11Þ ’ �2 and 0. For this reason, we choose one of the ini-
tial conditions to belong to this interval (Dh0=Dh1;0 ¼ �1) and the
other to be outside this interval (Dh0=Dh1;0 ¼ �4). Specific details of
the initial conditions used in the above panels can be found in Table I.
The solid lines are the theoretical results as derived from the Enskog
equation (33) and symbols refer to the results obtained via DSMC sim-
ulations. The reliability of conditions (47) and an excellent agreement
between theory and simulations are clearly shown. Moreover, it is also
worth noting the accuracy of expression (46) for the crossing time t�c .

The linearization of the Enskog equation has allowed us to give a
simple explanation of the different mechanisms involved in the occur-
rence of the Mpemba-like effect. There are, however, situations where
small deviations from the steady state cannot be assumed. In this case,
no explicit expressions for Dh0=Dh1;0 and t�c can be achieved. These
scenarios include the so-called large and non-monotonic Mpemba
effects. The latter refers to crossovers in temperature relaxation when
at least one temperature presents non-monotonic evolution. In the
present work, we follow similar steps as those previously made in Ref.
38 to establish the necessary but not sufficient conditions for the emer-
gence of these out-from-equilibrium phenomena.

Let us consider again two identical samples A and B whose initial
temperatures hð0ÞA and hð0ÞB and/or partial temperatures hð0Þ1;A and hð0Þ1;B
are significantly far away from the steady state. At the initial stages of
evolution, the condition needed for a crossover in temperature evolu-
tion relies on the relative behavior of the initial slopes Uðhð0ÞA ; hð0Þ1;AÞ
and Uðhð0ÞB ; hð0Þ1;BÞ. If we assume sample A to be hotter than B, we must
choose UA < UB at the initial stages of evolution to observe the

occurrence of the Mpemba effect. The next step is to analyze the
dependence of the function U on h1. By doing so, we can establish
some criterion for the selection of the initial partial temperature hð0Þ1 as
a function of hð0Þ. For the sake of simplicity, as proven in Ref. 38, we
assume first that the influence of inelasticity in collisions on the rela-
tive behavior of the evolution of temperatures is negligible as com-
pared with the action of the bath. Thus, we perform the derivative of
U3 with respect to h1 at fixed h. The result is

@U3

@h1

� �
h
¼ 2x1ðk2 � k1Þ; (48)

which is always a positive (negative) function if k2 > k1 (k2 < k1).
Therefore, keeping in mind that hð0ÞA > hð0ÞB , then

Dh0
Dh1;0

> 0 if k1 > k2;

Dh0
Dh1;0

< 0 if k1 < k2

(49)

are the required conditions for the presence of the Mpemba effect.
Unlike the linear case, the fulfillment of Eq. (49) does not constrain
the region that the initial conditions must belong to. So, in order to
achieve crossover, the difference between the initial slopes must be
selected to be large enough.

Examples of the large and non-monotonic Mpemba effects are
plotted in Fig. 6 for the same parameters as in Fig. 5 except for the
common coefficient of restitution (a ¼ 0:7). Since k1 < k2, the initial
temperature ratio is chosen so that Dh0=Dh1;0 < 0 (more details can
be found in Table II). Solid lines refer to the theoretical results while
symbols represent DSMC data. In Fig. 6(a), we observe a large
Mpemba effect even when the initial temperature difference is of the
same order than the temperatures themselves. In comparison with the
elastic case, the inelasticity enables the choice of the partial tempera-
ture to be closer for the global temperature. This fact enhances the
probability to see the non-monotonic Mpemba effect because a cross-
over will still be possible when the partial temperature is far away from
the global temperature, inducing the appearance of nonlinear effects.
This latter effect is shown in Figs. 6(b) and 6(c). On the one hand, the
non-monotonic Mpemba and its inverse effect can be observed in Fig.
6(b). In this case, the emergence of this surprising effect is just a matter
of the choice of the initial temperature h1;0. On the other hand, the
mixed effect, namely when one initial temperature is above and the
other below the steady one (dashed horizontal line), is plotted in Fig.
6(c). A good agreement between the Enskog theory and simulations
can be found in all the relaxation cases ensuring the use of Maxwellian
approximation to model the distribution functions in highly nonlinear
situations.

V. STEADY STATE COMPARISON BETWEEN THEORY
AND DSMC SIMULATIONS

As discussed in Sec. III, the system achieves a steady state for suf-
ficiently long times. The stationary state was widely studied years ago
in Ref. 54 where the reliability of the approximate solution to the set of
Enskog equations for the temperature ratio T1=T2 and the cumulants
c1 and c2 for a granular mixture driven by a stochastic bath with fric-
tion was assessed by molecular dynamics simulations over a wide
range of the parameter space. The comparison shows good agreement

TABLE I. Initial values of the (reduced) temperatures h0 and partial temperatures
h1;0 used to generate the relaxation curves shown in the right panel of Fig. 5.

h0 h1;0 h0 h1;0

Color Cooling cases Heating cases
Black 0.82 0.815 0.68 0.685
Orange 0.82 0.8 0.68 0.7
Green 0.8 0.82 0.7 0.68
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for the temperature ratio between theory and simulations for dilute
and moderate densities, which contrasts with the comparison per-
formed in dry (or undriven) granular mixtures19 where important dif-
ferences between theory and molecular dynamics simulations for
T1=T2 were found for moderately dense mixtures. Regarding the com-
parison carried out in Ref. 54 for the cumulants, the results show good
agreement for dilute driven mixtures but significant systematic devia-
tions appear as the density increases. Given that molecular dynamics
avoids any assumption inherent in the kinetic theory (such as

molecular chaos hypothesis), it is not clear whether the origin of the
differences between theory and molecular dynamics simulations is due
to the failure of the Enskog kinetic theory at high densities and/or
strong inelasticity or the approximations made in solving the Enskog
kinetic equation. To clarify this point, we compare in this section the
(approximate) Enskog results for T1=T2, c1, and c2 with those obtained
by numerically solving the Boltzmann–Enskog equation by means of
the DSMC method.26 Since the DSMC method (which is also based
on the molecular chaos assumption) has been proved to be a powerful
tool for numerically solving the Boltzmann–Enskog equation, it is
quite apparent that the present comparison allows us to gauge the
degree of accuracy of the approximations involved in the determina-
tion of the temperature ratio and the cumulants.

The steady state is defined by the conditions @hh1 ¼ @hh2 ¼ 0.
According to Eq. (25), the above conditions imply that K1 ¼ K2 ¼ 0,
which yields the following set of equations for the partial temperatures
h1 and h2:

2c�1 1� h1ð Þ ¼ h1 f10 þ f11c1 þ f12c2ð Þ; (50)

2c�2 1� h2ð Þ ¼ h2 f20 þ f21c1 þ f22c2ð Þ: (51)

Upon writing Eqs. (50) and (51), use has been made of the expansions
(31). In Eqs. (50) and (51) and the remaining part of this section, it is
understood that all quantities are evaluated in the steady state.
Equations (50) and (51) are coupled to those of the cumulants c1 and
c2. The equations for cumulants are obtained from Eq. (29) by taking
the steady state conditions K1 ¼ K2 ¼ 0. This leads to the following
set of algebraic linear equations:

dðd þ 2Þ h1
M1h

� �2

c�1ð1� h�11 Þ � R10

¼ R11 � dðd þ 2Þ h1
M1h

� �2

c�1

" #
c1 þ R12c2; (52)

dðd þ 2Þ h2
M2h

� �2

c�2ð1� h�12 Þ � R20

¼ R22 � dðd þ 2Þ h2
M2h

� �2

c�2

" #
c2 þ R21c1; (53)

where use has been made of the expansion (32).
Solution to the set of equations (50)–(53) provides the stationary

values of the ratio of partial temperatures T1=T2 and the cumulants c1

FIG. 6. Relaxation of the (reduced) temperature h toward the steady state for
a ¼ 0:8, d¼ 3, m1=m2 ¼ 5; r1=r2 ¼ 1; x1 ¼ 1

2 ; T
�
ex ¼ 1, and / ¼ 0:1. Solid

lines represent theoretical results and symbols the DSMC data. (a) Large Mpemba
effect: the initial conditions for the temperature difference ratio are Dh0=Dh1;0
¼ �1 in both the heating and the cooling transitions. (b) Non-monotonic Mpemba
effect: the initial conditions for the temperature difference ratio Dh0=Dh1;0 are
�2=3 in the heating process and �1=2 in the cooling transition. (c) Mixed
Mpemba effect: the initial condition for the temperature difference ratio is
Dh0=Dh1;0 ¼ �2=7. The dashed horizontal lines represent the steady value hs.

TABLE II. Initial values of the (reduced) temperatures h0 and partial temperatures
h1;0 used to generate the relaxation curves shown in Fig. 6.

Figure 4(a) Figure 4(b) Figure 4(c)

Color h0 h1;0 h0 h1;0 h0 h1;0

Cooling cases
Red 0.9 0.8 1.0 0.8 0.8 0.3
Blue 0.8 0.9 0.8 1.2 � � �

Heating cases
Red 0.6 0.5 0.6 0.3 � � �
Blue 0.5 0.6 0.4 0.6 0.6 1.0
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and c2. These quantities are given as a function of the dimensionality
d; the (reduced) background temperature T�ex; the mass ratio m1=m2;
the concentration ratio /1=/2; the ratio of diameters r1=r2; the den-
sity /; and the coefficients of restitution a11, a22, and a12. Since the
parameter space of the problem is large, as usual and to reduce the
number of independent parameters, we consider a three-dimensional
system (d¼ 3), a (reduced) bath temperature T�ex ¼ 1, a moderate
density / ¼ 0:1, and a common coefficient of restitution
a 	 a11 ¼ a22 ¼ a12. This reduces the parameter space to four
dimensionless quantities: m1=m2;/1=/2;r1=r2; af g.

As in Ref. 54, the set of dimensionless quantities N
	 T1=T2; c1; c2f g have been obtained from the approximate theory
and DSMC simulations in three different cases. Two different values
of a have been considered in each case: a ¼ 0:9 (moderate inelasticity)
and a ¼ 0:8 (strong inelasticity). In the first case (case I), the set N is
determined as a function of the mass ratiom1=m2 for /1=/2 ¼ r1=r2

¼ 1, while in the second case (case II) N is obtained as a function of
the ratio of diameters r1=r2 form1=m2 ¼ /1=/2 ¼ 1. Finally, in case
III, N is given as a function of concentration /1=/2 for m1=m2 ¼ 8
and r1=r2 ¼ 1. Given the disparity of parameters of the mixture ana-
lyzed in the three different cases, the test of the approximate kinetic
theory can be considered as stringent.

Case I is shown in Fig. 7. While the solid lines correspond to
the (approximate) theoretical results, the symbols represent the
Monte Carlo simulation data (squares for a ¼ 0:9 and triangles for
a ¼ 0:8). As expected, the extent of energy nonequipartition
increases with the mass disparity of the mixture. On the other
hand, the departure form energy equipartition is more noticeable
in dry granular mixtures than in binary granular suspensions.
Figure 7 highlights the excellent agreement between theory and
simulations for the temperature ratio, even for quite disparate
masses. With respect to the cumulants, we observe that the magni-
tude of c1 and c2 is much smaller than that of a dry granular mix-
ture.19,25,41 In addition, while the theoretical results for c1 compare
well with simulations, some discrepancies are found in the case of
cumulant c2 (specially for large values of the mass ratio) since the
theory slightly underestimates the value of c2. In any case, the quan-
titative discrepancies between theory and simulations are of the
same order as those observed in the dry granular limit case41 since
the largest relative error of c2 is about 9%.

Figure 8 shows the results of case II, N as function of the ratio of
diameters r1=r2. As in Fig. 7, the agreement is again excellent for the
temperature ratio; more significant discrepancies are observed for
both cumulants in case II than in case I. These discrepancies could be
likely mitigated by considering nonlinear terms in c1 and c2 in the
approximate theory and/or by considering more terms in the Sonine
polynomial expansion of uiðcÞ. However, given that the price to be
paid for considering these type of terms is very high (since the
involved calculations would be very cumbersome), we think that
the approximate theory reported here is still an accurate approach
to estimate the cumulants. In fact, as in case I, the largest relative
error found in Fig. 8 for c1 is 9.4% and 8.2% for c2. Finally, Fig. 9
shows case III, N vs the concentration /1=/2. It is quite apparent
that Fig. 9 exhibits similar trends as those observed before for
Figs. 7 and 8: while T1=T2 displays excellent agreement between
theory and simulations, there are small differences for the
cumulants.

VI. LINEAR STABILITY ANALYSIS OF THE STEADY
SOLUTION

Although the study offered in Sec. V has focused on the deter-
mination of the temperature ratio and the cumulants in steady state
conditions, it is worthwhile to analyze if the stationary solution is
linearly stable. To study the stability of this steady solution, we will
take into account the effect of cumulants c1 and c2 on the evolution
equations of h and h1. Retaining only linear terms in the above
cumulants, the evolution equations of h, h1, c1, and c2 can be writ-
ten, respectively, as

FIG. 7. Case I: Plot of the temperature ratio T1=T2 and the cumulants c1 and c2 as
a function of the mass ratio m1=m2 for r1=r2 ¼ /1=/2 ¼ 1, and two different val-
ues of the (common) coefficient of restitution a: a ¼ 0:8 (a) (blue lines and trian-
gles) and a ¼ 0:9 (b) (black lines and squares). The lines are the Enskog
predictions and the symbols refer to the DSMC simulation results. The remaining
parameters are T�ex ¼ 1; / ¼ 0:1, and d¼ 3.
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@h
@t�
¼ 2 x1k1 þ x2k2 � x1 k1 � k2ð Þh1 � k2h½ �

� h1=2 x1h1 f10 � f20þ f11 � f21ð Þc1 þ f12 � f22ð Þc2½ �
�

þ h f20 þ f21c1 þ f22c2ð Þg; (54)

@h1
@t�
¼ 2k1ð1� h1Þ � h1=2h1 f10 þ f11c1 þ f12c2ð Þ; (55)

@c1
@t�
¼ � 4k1 h�11 � 1

 �
ð1þ c1Þ þ 2h1=2 f10 þ f10 þ f11ð Þc1 þ f12c2½ �

þ 4k1h
�1
1 þ

4h5=2

dðd þ 2Þ
M1

h1

� �2

ðR10 þ R11c1 þ R12c2Þ; (56)

@c2
@t�
¼ �4k2 h�12 � 1

 �
ð1þ c2Þ þ 2h1=2 f20 þ f20 þ f22ð Þc2 þ f21c1½ �

þ 4k2h
�1
2 þ

4h5=2

dðd þ 2Þ
M2

h2

� �2

ðR20 þ R21c1 þ R22c2Þ: (57)

Here, we recall that h2ðt�Þ ¼ x�12 ½hðt�Þ � x1h1ðt�Þ� and use has been
made of the expansions (31) and (32) for obtaining Eqs. (54)–(57).

Now, as in Sec. III, one looks for solutions of the form

hðt�Þ ¼ hs þ dhðt�Þ; h1ðt�Þ ¼ h1;s þ dh1ðt�Þ;
c1ðt�Þ ¼ c1;s þ dc1ðt�Þ; c2ðt�Þ ¼ c2;s þ dc2ðt�Þ

(58)

FIG. 8. Case II: Plot of the temperature ratio T1=T2 and the cumulants c1 and c2 as
a function of the size ratio r1=r2 for m1=m2 ¼ /1=/2 ¼ 1, and two different val-
ues of the (common) coefficient of restitution a: a ¼ 0:8 (a) (blue lines and trian-
gles) and a ¼ 0:9 (b) (black lines and squares). The lines are the Enskog
predictions and the symbols refer to the DSMC simulation results. The remaining
parameters are T�ex ¼ 1; / ¼ 0:1, and d¼ 3.

FIG. 9. Case III: Plot of the temperature ratio T1=T2 and the cumulants c1 and c2
as a function of the partial density ratio /1=/2 for m1=m2 ¼ 8; r1=r2 ¼ 1, and
two different values of the (common) coefficient of restitution a: a ¼ 0:8 (a) (blue
lines and triangles) and a ¼ 0:9 (b) (black lines and squares). The lines are the
Enskog predictions and the symbols refer to the DSMC simulation results. The
remaining parameters are T�ex ¼ 1; / ¼ 0:1, and d¼ 3.
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and neglects nonlinear terms in the perturbations dh; dh1; dc1; dc2f g.
If the real parts of the eigenvalues ‘i (i ¼ 1; 2; 3; 4) are negative, the
steady solution hs; h1;s; c1;s; c2;s

� �
is (linearly) stable. The expressions

of the eigenvalues ‘i are very large and will be omitted here for the
sake of brevity. On the other hand, in the simplest case where the
cumulants ci are neglected in the determination of the cooling rates f�i
and the collisional moments Ri, the time evolution of dhðt�Þ and
dh1ðt�Þ is governed by the eigenvalues ‘1 and ‘2 defined by Eq. (45). A
careful analysis of the eigenvalues shows that Reð‘iÞ < 0 ði ¼ 1;
2; 3; 4Þ, so that the steady state is always stable.

As an illustration, the real parts of the eigenvalues ‘i are plotted
in Fig. 10 against the common coefficient of restitution a 	 a12
¼ a12 ¼ a22 for d¼ 3, r1=r2 ¼ 1; x1 ¼ 1

2 ; / ¼ 0:1, and T�ex ¼ 1.
Two values of mass ratio are considered: m1=m2 ¼ 10 and
m1=m2 ¼ 1

2. It is quite apparent that the real part of the eigenvalues ‘i
is always negative. Moreover, the inset of Fig. 10 shows a comparison
of the eigenvalues ‘1 and ‘2 when the cumulants are neglected vs those
obtained by solving the set of coupled equations (54)–(57). No signifi-
cant discrepancies between both approaches are found in the qualita-
tive behavior of ‘i and, hence, the reliability of the Maxwellian
approximation is ensured once again.

VII. DISCUSSION

In this paper, we have analyzed the time-dependent homoge-
neous state of a binary granular suspension. The starting point of the
study has been the set of two coupled Enskog kinetic equations for the
velocity distribution functions fiðv; tÞ (i¼ 1, 2) of the solid particles.
As usual, the influence of the surrounding viscous gas on the dynamics
of grains has been accounted for in an effective way by means of a
force constituted by two terms: a deterministic viscous drag force plus
a stochastic Langevin-like term. This simple suspension model is
mainly based on the assumption that the interstitial fluid is not per-
turbed by the grains and, so, it can be considered as a thermostat at
the (known) temperature Tex. On the other hand, since the model is
inspired by numerical and experimental results,10 the friction coeffi-
cients ci display a complex dependence on the partial /i and global

/ ¼ /1 þ /2 volume fractions, and the massesmi and diameters ri of
the mixture [see Eqs. (8) and (9)].

The objective of this paper is twofold. First, we want to character-
ize the temporal evolution of the system toward the asymptotic steady
state. In particular, we have investigated the existence of an unsteady
“hydrodynamic” stage [where the velocity distributions fi depend on
time only through the global temperature T(t)] before achieving the
stationary regime. The existence of the above time-dependent state is
crucial for deriving the corresponding Navier–Stokes hydrodynamic
equations since this state plays the role of “reference” state in the appli-
cation of the Chapman–Enskog method9 to granular suspensions.8 As
a complement to this study, we have also explored the occurrence of
the so-called Mpemba-like effect (an initially hotter gas cools sooner
than the colder one) in bidisperse granular suspensions. By doing so,
we have extended the results obtained for molecular suspensions to the
inelastic case.38,39 Beyond the transient regime and as a second objec-
tive, we have also determined the temperature ratio T1=T2 and the
cumulants c1 and c2 (which measure the departure of the distributions
fi from their Maxwellian forms) in the stationary state as functions of
the mass and size ratios, the concentration, the volume fraction, the
coefficients of restitution, and the background temperature. It is worth
remarking that the (approximate) theoretical results obtained in each
one of the different issues covered along the paper have been tested
against DSMC simulations26 for different systems and conditions.

Regarding the transient regime, theory and simulations have
clearly shown that, after a kinetic stage and before the steady state is
reached, the system evolves toward a universal unsteady hydrody-
namic stage that no longer depends on the initial conditions. As for
driven granular gases,23,24 the distributions fiðv; tÞ have the form (19)
where the time-dependence of the scaled distributions ui occurs not
only through the dimensionless velocity cðtÞ ¼ v=v0ðtÞ but also
through the scaled temperature hðtÞ ¼ TðtÞ=Tex. A consequence of
this scaling is that the velocity moments hiðt�Þ ¼ Tiðt�Þ=Tex and
ciðt�Þ tend toward the universal functions hiðhðt�ÞÞ and ciðhðt�ÞÞ,
respectively, where the functions hiðhÞ and ciðhÞ are independent of
the initial conditions.

With respect to the Mpemba-like effect, as expected this phe-
nomenon is also present when collisions in the binary mixture are
inelastic. However, in contrast to the analysis performed in Refs. 38
and 39 for elastic collisions, the presence of the cooling term f� [which
gives rise to the granular new term U4 in the evolution equation of the
temperature hðt�Þ; see Eq. (33)] makes it more difficult to find clean
initial conditions for the occurrence of the Mpemba-like effect. To
gain some insight, situations near the final asymptotic steady state
have been considered first to get explicit expressions for the crossing
time t�c . By analyzing the dependence of t�c on the initial conditions,
we have been able to study the necessary conditions for the effect to
occur. Figure 5 illustrates the dependence of the initial temperature
ratio Dh0=Dh1;0 as a function of the common coefficient of restitution
a. As expected, inelasticity of collisions increases the possibilities to
observe the Mpemba-like effect. Moreover, the necessary conditions
given in Eq. (47) are tested against DSMC simulations in the right
panel of Fig. 5 for a cooling and a heating transition. The excellent
agreement found between theory and simulations ensure the use of
the Maxwellian approximation.

Once we have studied the Mpemba-like effect in situations close
to the steady state, we explored the nonlinear situations. The coupling

FIG. 10. Plot of the real parts of the eigenvalues ‘i (i ¼ 1; 2; 3; 4) of the matrix L
for r1=r2 ¼ 1; x1 ¼ 1

2 ; T
�
ex ¼ 1; / ¼ 0:1, and d¼ 3. Solid lines correspond to

m1=m2 ¼ 10 and dashed lines to m1=m2 ¼ 1
2. The inset shows a comparison of ‘i

(i¼ 1, 2) for m1=m2 ¼ 10 when cumulants (solid lines) and no cumulants (dashed
lines) are considered.
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between h and h1 provokes the appearance of large and non-
monotonic Mpemba effects. In the former, the large Mpemba effect
has been observed even when the initial temperature difference is
about 10% of the temperatures themselves. Inelasticity of collisions
enlarges the necessary distance between h0 and h1;0 that leads to a
crossover in the evolution of temperatures. Thus, nonlinear effects
arise and we can observe the non-monotonic and mixed Mpemba
effects. Figure 6 illustrates the large, non-monotonic, and mixed
effects for a given case and exhibits a good agreement between
theory and simulations in the set of parameters considered.
However, we have neglected the influence of inelasticity to deter-
mine the necessary conditions for the emergence of the Mpemba
effect in the nonlinear regime. Therefore, we could consider a dry
(no gas phase) granular mixture to easily draw conclusions about
the effect of inelasticity in the appearance of such effect. We plan
to carry out a more exhaustive study on the necessary conditions
for the onset of the Mpemba-like effect in dry granular mixtures
in the near future.

Finally, the stationary values of the temperature ratio and the
fourth cumulants have been determined and compared with DSMC
simulations. This study complements a previous comparison made in
Ref. 54 between kinetic theory and molecular dynamics simulations.
In this context, the comparison carried out here in Sec. IV can be seen
as a test of the approximations involved in the computation of T1=T2

and ci but not as a test of the kinetic equation itself since the DSMC
method does not avoid the inherent assumptions of kinetic theory
(molecular chaos hypothesis). As Figs. 7–9 clearly show, theoretical
results for T1=T2 agree very well with DSMC results for all the systems
considered in the simulations. On the other hand, in the case of cumu-
lants, although theory compares qualitatively well with simulations,
more quantitative discrepancies are found between both approaches
(especially in the case of c2). This quantitative disagreement between
theory and simulations could be mitigated by the inclusion of cumu-
lants of higher order as well as nonlinear terms in c1 and c2. However,
based on previous results obtained for monocomponent granular
gases65,66 on the possible lack of convergence of the Sonine polynomial
expansion, the absolute value of higher order cumulants could increase
with inelasticity. In this case, the Sonine expansion could be not rele-
vant in the sense that one would need to retain a large number of
Sonine coefficients to achieve an accurate estimate of the fourth-
degree cumulants.

Although the results derived in this paper have been focused on
smooth inelastic spheres, the extension to rough hard inelastic spheres
is a very challenging problem. This study could allow us to assess the
impact of solid body friction on the applicability of a hydrodynamic
description to granular suspensions and/or the occurrence of the
Mpemba effect. Based on previous results,67 we expect that the effect
of roughness on the dynamic properties of grains can play an impor-
tant role. We will work on this issue in the near future.

In summary, we believe our results provide additional support to
the validity of hydrodynamics for studying time-dependent homoge-
neous states in multicomponent granular suspensions. As said before,
this conclusion is relevant since the local version of the time-
dependent homogeneous state is considered as the zeroth-order
approximation in the Chapman–Enskog expansion. In addition, we
have also shown the occurrence of the Mpemba-like effect in bidis-
perse granular suspensions for situations close to and far away from

the asymptotic stationary state. In both cases, approximate theoretical
results agree very well with DSMC simulations. As a complement to
the previous studies, the temperature ratio T1=T2 and the fourth-
degree cumulants ci have been determined in the stationary state also.
While theory shows excellent agreement with simulations for T1=T2,
some differences are found in the case of cumulants. However, these
differences are relatively small and, in fact, they are of the same order
as those observed in the homogeneous cooling state for undriven gran-
ular mixtures.25,41
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APPENDIX: EXPRESSIONS FOR THE PARTIAL
COOLING RATES AND THE FOURTH-DEGREE
COLLISIONAL MOMENTS

In this appendix, we display the explicit expressions of the
(reduced) partial cooling rates f�i and the fourth-degree collisional
moments Ri. Their forms are provided by Eqs. (31) and (32) when
nonlinear terms in ci are neglected. The corresponding expressions
of fij and Rij are given by54

f10 ¼
ffiffiffi
2
p

pðd�1Þ=2

dC
d
2

� � x1v11
r1

r12

� �d�1
b�1=21 ð1� a211Þ

þ 4pðd�1Þ=2

dC
d
2

� � x2v12l21
1þ b

b

� �1=2

ð1þ a12Þb�1=22

� 1� 1
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l21ð1þ a12Þð1þ bÞ

	 

; (A1)
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8
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� 3þ 4b� 3
2
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2dC
d
2
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2
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R10 ¼�
pðd�1Þ=2ffiffiffi
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The expressions for f20, f21, f22, R20; R22, and R21 can easily be
obtained from Eqs. (A1)–(A6) by changing 1! 2 and b! b�1.
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Authors: Rubén Gómez González1, Nagi Khalil2, and Vicente Garzó3
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ABSTRACT

The Mpemba effect occurs when two samples at different initial temperatures evolve in such a way that the temperatures cross each other
during the relaxation toward equilibrium. In this paper, we show the emergence of a Mpemba-like effect in a molecular binary mixture in
contact with a thermal reservoir (bath). The interaction between the gaseous particles of the mixture and the thermal reservoir is modeled via a
viscous drag force plus a stochastic Langevin-like term. The presence of the external bath couples the time evolution of the total and partial
temperatures of each component allowing the appearance of the Mpemba phenomenon, even when the initial temperature differences are of the
same order of the temperatures themselves. Analytical results are obtained by considering multitemperature Maxwellian approximations for the
velocity distribution functions of each component. The theoretical analysis is carried out for initial states close to and far away (large Mpemba-
like effect) from equilibrium. The former situation allows us to develop a simple theory where the time evolution equation for the temperature
is linearized around its asymptotic equilibrium solution. This linear theory provides an expression for the crossover time. We also provide a
qualitative description of the large Mpemba effect. Our theoretical results agree very well with computer simulations obtained by numerically
solving the Enskog kinetic equation by means of the direct simulation Monte Carlo method and by performing molecular dynamics simulations.
Finally, preliminary results for driven granular mixtures also show the occurrence of a Mpemba-like effect for inelastic collisions.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0050530

I. INTRODUCTION

The Mpemba effect is a counterintuitive phenomenon in which
two samples of fluids, A and B, at initially different temperatures
(TA;0 > TB;0) can evolve in time in such a way that their temperatures
cross each other at a given time tc; the curve for TA (initially hotter sam-
ple) stays below the other one TB for longer times t > tc. Although this
anomalous cooling process was first reported in the case of water many
years ago by Mpemba,1 its origin for that liquid is yet unclear.2–16 In
addition, although similar behaviors to the Mpemba effect have been
observed in other systems,17–19 the existence of the Mpemba effect still
remains very controversial.20,21 This is in part due to the arduous task of
knowing and monitoring the initial conditions of the two samples that
give rise to a crossing of the respective cooling curves.

For the above reason, in order to gain some insight into the
understanding of this problem, the kinetic theory approach to granular

gases22–25 has been widely employed in recent years as a reliable tool
for unveiling in a clean way the origin of the Mpemba-like effect (and
its inverse one, namely, when initially cooler systems equilibrate faster
than the hotter ones26) from a more fundamental point of view.
Granular gases can be considered as a collection of macroscopic par-
ticles (typically of the orders of micrometers or larger) whose interac-
tions are dissipative. The inelastic character of the collisions among
granular particles gives rise to the coupling of the (granular) tempera-
ture with other velocity moments of the velocity distribution function,
such as (i) the fourth cumulant or kurtosis a2 (a quantity measuring
the departure of the distribution function from its Maxwellian form in
driven granular gases),22 (ii) the rotational-to-translational tempera-
ture ratio in a granular gas of inelastic rough hard spheres,23 (iii) the
partial temperatures ratio in a binary granular mixture,24 and (iv) the
shear stress in a sheared inertial suspension.25 The above couplings are
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the origin of the emergence of the Mpemba-like effect in granular
gases, which now accounts for the evolution of the system toward a
final asymptotic nonequilibrium steady state.

Among the above previous studies, to the best of our knowledge
and in the context of kinetic theory, the only paper where the
Mpemba-like effect has been studied for driven granular mixtures has
been carried out by Biswas et al.24 Since the number of parameters
involved in multicomponent mixtures is much larger than that of a
monocomponent gas, for the sake of simplicity, they consider the
inelastic Maxwell model, namely, a simplified model for a granular gas
where the collision rate is assumed to be independent of the relative
velocity of the colliding particles.27 The use of this simple model allows
them to offer an exact analysis of the conditions under which the
Mpemba-like effect is present. In addition, no simulations are per-
formed in this work and only analytical results are reported.24 Thus,
given that inelastic Maxwell gases are an idealized version of the more
realistic hard-sphere model, it is quite apparent that a study of the
Mpemba-like effect in driven mixtures of hard spheres is still lacking.

Aside from granular gases, a recent paper28 has shown that the
Mpemba effect can also take place in homogeneous and isotropic
states of molecular gases (i.e., when collisions are elastic) in contact
with a background fluid. The particles of the system are assumed to be
hard spheres surrounded by an interstitial fluid at equilibrium. When
the particles of the background fluid are much lighter than that of the
gas (Brownian particles), the particles of the gas are subjected to a non-
linear drag force plus a stochastic force with nonlinear variance. After
a transient period, the velocity distribution function is ensured to
achieve a Maxwellian distribution with temperature given by the back-
ground fluid. To characterize the transient toward equilibrium, the
first Sonine approximation to the distribution function (which
includes the kurtosis a2) was considered. As in the analysis performed
in Ref. 22, the Mpemba effect arises from the coupling of the time evo-
lution of the temperature T with that of the kurtosis a2. This coupling
is due here to the nonlinear form of the drag term. Nonetheless, as
happens in the case of granular gases,27,29 since a2 is small then the ini-
tial temperatures must be very close to each other in order to achieve a
crossover in the evolution curves. As a consequence, the Mpemba
crossover takes place in the very early stage of the relaxation toward
equilibrium.

In this work, we analyze the occurrence of the Mpemba-like
effect in a driven binary mixture of hard spheres. The driving of the
mixture is due to its interaction with the surrounding molecular fluid.
When the density of the gas is sufficiently low, one can assume that
the interstitial fluid is not perturbed by the gas particles and so, it may
be treated as a thermostat. As noted by Takada et al.,25 the system we
consider (inertial suspension) could be close to the original setup of
Mpemba and Osborne1 since they study a system of ice-mix, which is
a suspension system.

Under the above conditions, as usual in granular literature,30 the
interaction between gas particles and the surrounding fluid can be
modeled by means of an effective external force. This fluid–solid inter-
action force (which follows the fluctuation–dissipation theorem31–33)
is composed of two terms: (i) a linear drag force proportional to the
(instantaneous) velocity of particles and (ii) a stochastic force. While
the first contribution mimics the friction exerted by the viscous back-
ground fluid to the gas particles, the second term simulates the trans-
mission of energy through random and instantaneous collisions with

the external bath. This type of driving mechanism can be also formally
obtained from the corresponding collision integral by considering the
leading term in the Kramer–Moyal expansion in powers of the mass-
ratio of the background and grain particles.34–38

In order to provide a simple explanation of the subjacent mecha-
nisms involved in the Mpemba-like effect, we assume first a driven gas
mixture of molecular gases (elastic collisions). This allows us to obtain
simple conditions for the occurrence of such a phenomenon. An
extension of the study to inelastic collisions is briefly analyzed and
illustrated in Sec. V. However, given the complexity of the analytical
expressions achieved for granular mixtures, it is not easy to provide
simple conditions for the existence of the Mpemba-like effect for these
systems.

As usual in driven mixtures, we consider the Enskog kinetic the-
ory (which applies to small and moderate densities) in combination
with the Fokker–Planck suspension model39 mentioned above.
Starting from the set of Enskog kinetic equations for the mixture, the
time evolution of the total temperature T(t) and the partial tempera-
tures T1(t) and T2(t) is obtained. As expected, the coupling between
T(t), T1(t), and T2(t) is behind the emergence of the Mpemba-like
memory effect. In addition, to get explicit results, the partial produc-
tion rates ni (which give the rate of energy change in collisions i-j)
appearing in the evolution equation of the partial temperatures are
estimated here by assuming Maxwellian distributions at the tempera-
tures Ti. This means that, in contrast to previous works,22,24,28 neither
cumulants nor the presence of a nonlinear drag force is needed for the
emergence of the Mpemba effect.

Moreover, in accordance with simulations of bidisperse gas–solid
flows,40–42 the fact that the friction coefficients ci accounting for the
interaction of the component i with the background fluid are different
(c1 6¼ c2) makes different energies transferred from the external bath
to each component. As a consequence, the relaxation of Ti toward its
common equilibrium value (T1 ¼ T2 ¼ T) for molecular mixtures
can be quite different for both partial temperatures. This makes the
Mpemba effect arises even when the systems are initially prepared in
Maxwellian velocity distribution functions at different partial tempera-
tures. Moreover, the use of the partial temperatures as the control
parameter allows some flexibility in the selection of the initial condi-
tions and so, the magnitude of the Mpemba effect is not limited
(namely, the so-called “large” Mpemba effect can be observed).

Nevertheless, given that the theoretical predictions derived here
are based on a simple approximation (Maxwellian distributions for
evaluating the production rates), a comparison with computer simula-
tions turns out to be crucial to gauge their reliability. In this work,
kinetic-theory results are compared against two independent simula-
tion methods: (i) a modified algorithm of the standard direct Monte
Carlo simulation (DSMC) method43 to numerically solve the Enskog
equation for a driven binary mixture44,45 and (ii) event-driven molecu-
lar dynamics (MD) simulations.29,46,47 Both simulation methods com-
plement each other since, on the one hand, DSMC offers a way to
solve the Enskog equation by means of Monte Carlo-like simulations.
It inherently assumes the molecular chaos hypothesis and an approxi-
mate form of the pair distribution function at contact; both hypotheses
stemming from the kinetic-theory description. At the same time, the
DSMCmethod provides the exact form of the time-dependent velocity
distribution function, allowing us to assess the reliability of the approx-
imate theory in the transient regime. On the other hand, for the
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suspension model considered here, given that MD solves numerically
Newton’s equations of motion with the action of a deterministic drag
force plus a stochastic Langevin-like force, the limitations of the
Enskog theory itself can be tested.

The paper is organized as follows: Sec. II deals with the Enskog
equation for homogeneous states conveniently adapted to the case of
driven molecular binary mixtures. Evolution equations for the temper-
ature ratio T1ðtÞ=T2ðtÞ and the (total) temperature T(t) are also
derived. Next, Sec. III analyzes states close to equilibrium. This allows
us to linearize the above set of differential equations around the equi-
librium solution and to solve them analytically. Exact expressions for
the crossing time and the critical value of the initial temperature differ-
ence (which determines Mpemba and no Mpemba effects) are
obtained and compared against DSMC simulations showing an excel-
lent agreement. The large Mpemba-like effect is explored in Sec. IV
in which we carry out a more qualitative analysis. Some examples
regarding the fulfillment of the necessary but no sufficient conditions
to achieve the Mpemba effect are tested against both DSMC and MD
simulations. Again, the theoretical results compare very well with
computer simulations. Some preliminary results obtained for granular
gases are presented in Sec. V while the paper ends in Sec. VI with a
brief discussion of the results derived in this work.

II. ENSKOG KINETIC THEORY FOR MOLECULAR
BINARY MIXTURES IN CONTACT WITH A THERMAL
RESERVOIR

Let us consider a binary mixture of hard particles of masses m1

andm2 and diameters r1 and r2. For the sake of simplicity and to pro-
vide a simple analysis of the conditions under which the Mpemba-like
effect appears, we study first molecular binary mixtures (namely, when
collisions between particles are elastic). Granular mixtures will be con-
sidered in Sec. V. For moderate densities, the one-particle velocity dis-
tribution function fiðr; v; tÞ (i¼ 1, 2) of the component i obeys the
Enskog kinetic equation.48 We assume that the mixture interacts with
a thermal reservoir (or equivalently, particles of the gas are surrounded
by an interstitial fluid) so that the total temperature of the mixture
does not remain constant and changes in time. To model the interac-
tion of the particles of the gas with the surrounding fluid, one possibil-
ity would be to describe the molecular suspension in terms of a set of
two coupled kinetic equations for each one of the velocity distributions
of the different phases. However, the resulting theory would be very
difficult to solve, in particular in the case of multicomponent mixtures.
For this reason, due to the technical difficulties involved in the above
approach, it is more usual in gas–solid flows to model the influence of
the interstitial fluid on particles of the gas mixture by means of an
effective external force.30

For homogeneous and isotropic states, the set of Enskog coupled
equations reads48,49

@fi
@t
¼
X2
j¼1

Jij vjfi; fj
� �

þ Ci;ex ði ¼ 1; 2Þ; (1)

where the Boltzmann–Enskog collision operator Jij½fi; fj� for homoge-
neous states is48,49

Jij v1jfi; fj
� �

¼ vijr
d�1
ij

ð
dv2

ð
dr̂ Hðr̂ � g12Þðr̂ � g12Þ

� fiðv01Þfjðv02Þ � fiðv1Þfjðv2Þ
� �

: (2)

Here, rij ¼ ðri þ rjÞ=2, r̂ is an unit vector along the line of centers,
H is the Heaviside step function, d is the dimensionality of the system
(d¼ 2 for disks and d¼ 3 for spheres), g12 ¼ v1 � v2 is the relative
velocity, and the relation between the precollisional velocities (v1, v2)
and the postcollisional velocities ðv01; v02Þ is

v01 ¼ v1 � 2ljiðr̂ � g12Þr̂; v02 ¼ v1 þ 2lijðr̂ � g12Þr̂; (3)

where lij ¼ mi=ðmi þmjÞ. Moreover, vij is the pair correlation func-
tion at thermal equilibrium for particles of types i and j when they are
in contact, i.e., separated by rij. Except for the presence of the pair cor-
relation functions vij, the Enskog equation for homogeneous states is
identical to the Boltzmann equation.

The second term Ci;ex of the right-hand side of Eq. (1) describes
the coupling between the thermal reservoir and particles of the com-
ponent i. As said in the Introduction, if the gaseous mixture is suffi-
ciently dilute, one can neglect the impact of gas particles on the
surrounding fluid and so, the latter plays the role of a thermostat. In
this case, a reliable model for describing suspensions is the Langevin
equation,25,32,33 so that the influence of the background fluid on gas
particles is accounted for by (i) a deterministic viscous (linear) drag
force proportional to the particle velocity30 (ii) a stochastic Langevin
force representing Gaussian white noise.35 This latter term is repre-
sented by a Fokker–Planck collision operator.50–52 While the drag
force term models the friction of particles of the component i with the
surrounding fluid, the stochastic term attempts to mimic the energy
gained by particles of the gas due to their interactions with the more
rapid particles of the interstitial fluid. Thus, the term Ci;ex reads

Ci;ex ¼ ci
@

@v
� vfi þ

ciTex

mi

@2fi
@v2

; (4)

where the coefficients ci are the friction or drift coefficients and Tex is
the background temperature. Here, we have taken units for the tem-
perature for which the Boltzmann constant kB ¼ 1. The structure of
Eq. (4) can be also derived from the Boltzmann–Lorentz collision
operator (characterizing the effect of collisions on the distribution fi
between the Brownian particle i and fluid particles) by considering the
leading term in the Kramers–Moyal expansion in powers of the mass
ratio mf/mi when the background fluid is at equilibrium.34–37 Here, mf

denotes the mass of the particles of the background fluid.
It must be noted that in general, the friction coefficients may be

tensorial quantities as a result of the hydrodynamic interactions
between particles, which strongly depends on the configuration of par-
ticles. Here, the isotropic case is considered for the sake of simplicity
and so, the coefficients ci are scalar quantities. Thus, in the case of
granular particles, the suspension model employed here might be
applicable to describe inertial suspensions where the diameter of sus-
pended particles ranges approximately from 1 to 70lm.30

Under the above conditions, Enskog–Fokker–Planck kinetic
equation (1) is53

@fi
@t
� ci

@

@v
� vfi �

ciTex

mi

@2fi
@v2
¼
X2
j¼1

Jij fi; fj
� �

: (5)

The coefficients ci can be written as ci ¼ c0Ri, where c0 /
ffiffiffiffiffiffiffi
Tex
p

. The
dimensionless quantities Ri may depend on the mass ratiom1=m2, the
diameter ratio r1=r2, the total volume fraction / ¼ /1 þ /2, and
the partial volume fractions /i defined as
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/i ¼
pd=2

2d�1dC
d
2

� � nir
d
i : (6)

Suspension model (5) has been recently employed to determine the
Navier–Stokes transport coefficients of bidisperse granular suspen-
sions53 as well as the rheological properties in inertial suspensions of
inelastic rough hard spheres under simple shear flow.54

Explicit forms of Ri have been displayed in the literature of poly-
disperse gas–solid flows.40–42 In particular, we adopt the expression
ci ¼ ð18gg=qr2

12ÞRi proposed by Yin and Sundaresan.41 Here,
q ¼

P
i mini is the total mass density and

ni ¼
ð
dv fiðvÞ (7)

is the number density of the component i. For a three-dimensional
low-Reynolds-number fluid at moderate densities, the dimensionless
function Ri is given by

Rið/i;/Þ ¼
qr2

12

qir
2
i

ð1� /Þ/iri

/

�
X2
j¼1

/j

rj

10/

1� /ð Þ2
þ 1� /ð Þ2 1þ 1:5

ffiffiffiffi
/

p� �" #
: (8)

At a kinetic level, one of the most relevant quantities for a binary
mixture is the partial temperatures TiðtÞ. They measure the mean
kinetic energy of the component i and are defined as

Ti ¼
1
nid

ð
dvmiv

2 fiðvÞ: (9)

Alternatively, the same information is provided by the temperature
ratio hðtÞ ¼ T1ðtÞ=T2ðtÞ and the (total) temperature T(t) of the
mixture,

TðtÞ ¼ x1T1ðtÞ þ x2T2ðtÞ; (10)

where xi ¼ ni=ðn1 þ n2Þ is the mole fraction of the component i. The
ratios T1=T and T2=T can be easily expressed in terms of h as

T1

T
¼ h

1þ x1ðh� 1Þ ;
T2

T
¼ 1

1þ x1ðh� 1Þ : (11)

The evolution equations for both the temperature ratio h and the
(total) temperature T can be obtained by multiplying both sides of the
Enskog equation (5) by miv2 and integrating over velocity. They
are given by

@

@t
lnT ¼ 2x1c1

Tex � T1

T
þ 2x2c2

Tex � T2

T
; (12)

@

@t
ln h ¼ 2c1

Tex

T1
� 1

� �
� 2c2

Tex

T1
h� 1

� �
þ n2 � n1; (13)

where

ni ¼ �
mi

dniTi

ð
dv v2Jij fi; fj

� �
ði 6¼ jÞ (14)

are the so-called partial production rates. They measure the rate of
change of the kinetic energy of the particles of component i due to

collisions with the particles of component j. Since the collisions are
elastic, we have x1T1n1 þ x2T2n2 ¼ 0.

In the particular case of mechanically equivalent particles (m1

¼m2, r1 ¼ r2, and /1 ¼ /2), the friction coefficients c1 ¼ c2 ¼ c
and the solution to Eq. (13) is simply

TðtÞ ¼ Tex þ Tð0Þ � Tex½ �e�2ct : (15)

Thus, since c > 0, the temperature decays monotonically in time and
the Mpemba effect is not present. However, when both components
are different (c1 6¼ c2), the evolution equations of T(t) and hðtÞ are
coupled: the curve of the initially hotter (cooler) sample may cross that
of the initally cooler (hotter) one and remain below (above) it until the
systems reach equilibrium. This is the usual (or inverse) Mpemba-like
effect.

According to Eq. (14), it is quite apparent that one needs to
know the velocity distributions f1 and f2 to determine the partial pro-
duction rates n1 and n2. Here, we estimate both production rates by
taking the simplest approximation for the distributions f1 and f2,
namely, the Maxwellian distributions fi;M defined with partial temper-
atures Ti,

fi;Mðv; tÞ ¼ ni
mi

2pTiðtÞ

� �d=2

exp � miv2

2TiðtÞ

 !
: (16)

In the Maxwellian approximation, n1 is given by55–57

n1¼
8p d�1ð Þ=2

dC
d
2

� � n2l12l21v12r
d�1
12

2T1

m1
þ2T2

m2

� �1=2

1�T2

T1

� �
: (17)

The expression of n2 can be easily inferred from Eq. (17) by making
the change 1$ 2 in the subindexes. When energy equipartition holds
(T1¼T2), n1 ¼ n2 ¼ 0 as expected. However, if energy equipartition
is broken (T1 6¼ T2), then ni 6¼ 0.

In the long-time limit, the mixture achieves an equilibrium state
where energy equipartition applies, Teq

1 ¼ Teq
2 ¼ Teq ¼ Tex. However,

in the transient regime, it is expected that energy equipartition fails
and so, T1ðtÞ 6¼ T2ðtÞ. This means that the Mpemba effect in a driven
molecular mixture stems from the nonequipartition of energy.
Remarkably, this effect can be explained by computing ni by a
Maxwellian distribution, and hence, the existence of different partial
temperatures is sufficient to explain such a memory effect.

In order to analyze the time dependence of T(t) and hðtÞ, it is con-
venient to introduce dimensionless variables for temperature and time.
Thus, we define T� ¼ T=Tex and t� ¼ nrd�1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Tex=ðm1 þm2Þ

p
t. In

the Maxwellian approximation, the evolution equations for T� and h
can be easily derived from Eqs. (12), (13), and (17). After some algebra,
one gets

@

@t�
lnT� ¼ UðT�; hÞ; @

@t�
ln h ¼ WðT�; hÞ; (18)

where

UðT�; hÞ ¼ U1ðT�Þ þ U2ðhÞ;
WðT�; hÞ ¼ W1 þW2ðT�; hÞ þW3ðT�; hÞ:

(19)

Here, we have introduced the quantities
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U1ðT�Þ ¼
2
T�

x1c
�
1 þ x2c

�
2

	 

; U2ðhÞ ¼ �2

x1c�1hþ x2c�2
1þ x1ðh� 1Þ ; (20)

W1 ¼ �2ðc�1 � c�2Þ; W2ðT�; hÞ ¼ 2 c�1 � c�2h
	 
 1þ x1ðh� 1Þ

hT�
;

(21)

W3ðT�; hÞ ¼
8p d�1ð Þ=2

dC
d
2

� � v12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�

2
l12l21 l12 þ l21hð Þ

1þ x1ðh� 1Þ

s

� x1 � x2 � x1hþ x2h
�1	 


; (22)

where

c�i ¼
Riffiffiffiffiffiffiffiffiffi

2T�ex
p

ðn1 þ n2Þrd
12

; T�ex ¼
2Tex

ðm1 þm2Þr2
12c

2
0
: (23)

As mentioned before, the dependence of U on h is a necessary condi-
tion for the existence of the Mpemba-like effect.

III. MPEMBA-LIKE EFFECT FOR INITIAL STATES CLOSE
TO EQUILIBRIUM

We consider two homogeneous states A and B characterized by
their initial reduced temperatures T�I;0 and temperature ratios hI;0,
where I ¼ A;B. For the sake of simplicity, we suppose that both
states are hotter (cooler) than the equilibrium state, i.e., T�A;0 > 1 and
T�B;0 > 1 (T�A;0 < 1 and T�B;0 < 1). Furthermore, we also assume that
T�A;0 > T�B;0 > 1 (T�A;0 < T�B;0 < 1 for the cooler case). During the
time evolution of the system toward equilibrium, the gas particles
exchange energy with the thermal reservoir. This interaction is con-
trolled by the friction coefficients ci / Ri, which exhibit a complex
dependence on the mass and diameter ratios and the composition [see
Eq. (8)]. Thus, the energy transfer (per particle) between each one of
the components of the mixture and the background fluid could be
more efficient (larger) for some values of mi, ri, and xi. So, as the
energy transmission distinguishes between both components, the
decay of the temperature until its equilibrium value will depend sepa-
rately on the way of releasing energy from each component of the mix-
ture to the bath, and consequently on the initial values of the partial
temperatures hI;0. This coupling between T� and h opens up the possi-
bility of a crossroad between the trajectories of both temperatures
(Mpemba-like effect), so that T�A ¼ T�B at some crossing time t�c before
achieving the equilibrium state.

In order to quantify the constraints in the initial conditions of
both trajectories needed for the existence of t�c , we consider first in this
section initial states that are close to the final equilibrium state. Under
these conditions, Eqs. (18) can be linearized around the equilibrium
solution T�eq ¼ heq ¼ 1. Note that this is a special kind of linearization
since only the global temperature and the temperature ratio are dis-
placed with respect to their equilibrium values. As we show later, this
approach will allow us to solve the corresponding set of linear differen-
tial equations and get analytical results.

Let us define dT� ¼ T� � 1 and dh ¼ h� 1. Substitution of
these definitions into Eqs. (18) and retaining only linear terms in dT�

and dh, one gets

@

@t�
dT�

dh

� �
¼ L dT�

dh

� �
; (24)

where the matrix L is composed of the following elements:

L11 ¼ �2ðx1c�1 þ x2c�2Þ;
L12 ¼ 2x1x2ðc�2 � c�1Þ; L21 ¼ 2ðc�2 � c�1Þ;

L22 ¼ �2ðx2c�1 þ x1c�2Þ �
4pðd�1Þ=2

dC
d
2

� � v12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l21l12

p
:

(25)

The solution to matrix equation (24) can be expressed in terms
of the initial conditions dT�0 and dh0. After some algebra, the time evo-
lution of the temperature dT�ðt�Þ reads

dT�ðt�Þ ¼ 1
kþ � k�

L11 � k�ð ÞdT�0 þ L12dh0
� �

ekþt
�

n
þ kþ � L11ð ÞdT�0 � L12dh0
� �

ek�t
�
o
; (26)

where

k6 ¼
1
2
L11 þ L226

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11 � L22ð Þ2 þ 4L12L21

q� �
(27)

are the eigenvalues of the matrix L. Two observations are in order
here. On the one hand, k6 � 0 for any choice of the system parame-
ters since L11 þ L22 � 0 and

L11 þ L22ð Þ2 � L11 � L22ð Þ2 þ 4L12L21
� �

¼ 8 2c�1c
�
2þ

4pðd�1Þ=2

dC
d
2

� � v12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l21l12

p
x1c
�
1 þ x2c

�
2

	 
2
64

3
75 � 0: (28)

Hence, Eq. (26) always describes an evolution of the system toward
thermal equilibrium. On the other hand, from Eq. (26), it is obvious
that any cooling process (dT� � 0) has its associated heating pro-
cess (dT� � 0). One process can be obtained from the other one by
a change of signs on the initial conditions: dT�0 $ �dT�0 and
dh0 $ �dh0. Hence, at the level of the linear theory, the Mpemba
effect occurs if and only if the inverse Mpemba effect occurs, pro-
vided the initial conditions are related by the previous sign
transformation.

In what follows, we will assume that the initial temperature of
state A is greater than that of state B (T�A;0 > T�B;0). From Eq. (26),
we can now compute the possible crossing time t�c of both trajecto-
ries. Given that, in the linear case, this time is invariant under the
heating or cooling problem, both cases may be considered simulta-
neously. From the condition dT�Aðt�c Þ ¼ dT�Bðt�c Þ, we obtain the
expression

t�c ¼
1

k� � kþ
ln
L12 þ ðL11 � k�ÞDT�0=Dh0
L12 � ðkþ � L11ÞDT�0=Dh0

; (29)

where DT�0 ¼ T�A;0 � T�B;0 and Dh0 ¼ hA;0 � hB;0. In the linear
theory, for given values of the parameters of the mixture, the crossover
time t�c depends on the initial conditions only through the single con-
trol parameter DT�0=Dh0. Moreover, since t�c 2 Rþ and being aware
of the inequality kþ > k�, the argument of the logarithm in Eq. (29)
shall fall within the interval (0, 1). Due to this restriction, the initial
values must satisfy the following conditions:
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DT�0
Dh0
2 0;

L12

k� � L11

� �
if L12 < 0() c�1 > c�2;

DT�0
Dh0
2 L12

k� � L11
; 0

� �
if L12 > 0() c�1 < c�2:

(30)

According to Eq. (30), when L12 < 0 or equivalently c�1 > c�2
(L12 > 0 or equivalently c�1 < c�2), since k� � L11 < 0, the control
parameter is DT�0=Dh0 > 0 (DT�0=Dh0 < 0) and its maximum (mini-
mum) value for which the Mpemba effect can be observed is
L12=ðk� � L11Þ. This quantity provides the phase diagram for the
occurrence of the Mpemba effect, as shown in the upper panels of
Figs. 1–3. Here, it is important to study the singularity in the control
parameter that emerges if hA;0 ¼ hB;0. In this case, the kinetic variables
(partial temperatures) are not present in the early relative evolution of

the macroscopic fields, TA and TB, and therefore, the Mpemba-like
effect does not occur.

To illustrate the dependence of the required initial conditions on
the parameters of the system, we consider a three-dimensional (d¼ 3)
system. In this case, a good approximation for the pair correlation
functions vij are given by58–60

vij ¼
1

1� /
þ 3
2

/

ð1� /Þ2
rirjM2

rijM3
þ 1
2

/2

ð1� /Þ3
rirjM2

rijM3

� �2

; (31)

whereM‘ ¼
P

i xir
‘
i .

As said before, the upper panels of Figs. 1–3 show the phase dia-
gram of the initial conditions DT�0=Dh0 as a function of the mass
m1=m2 and size r1=r2 ratios and concentration x1, respectively. We

FIG. 1. Upper panel: Phase diagram of the initial condition DT�0 =Dh0 as a function
of the mass ratio m1=m2. Lower panel: Relaxation of the (reduced) temperature T�

over the time t� for m1=m2 ¼ 10. The upper and lower curves correspond to
the cooling and heating cases, respectively. Solid lines represent theoretical
values and symbols DSMC data. The initial values of the control parameter
DT�0 =Dh0 � ðT�A;0 � T�B;0Þ=ðhA;0 � hB;0Þ are 0.2 (A: red line and symbols; B:
black lines and symbols), and �0.2 (A: red lines and symbols; B: blue lines and
symbols). The theoretical value of t�c is also plotted with a vertical line. The remain-
ing parameters in both panels are d¼ 3, T�ex ¼ 1; x1 ¼ 1

2 ; r1=r2 ¼ 1, and
/ ¼ 0:1.

FIG. 2. Upper panel: Phase diagram of the initial condition DT�0 =Dh0 as a function
of the size ratio r1=r2. Lower panel: Relaxation of the (reduced) temperature T�

over the time t� for r1=r2 ¼ 3. The upper and lower curves correspond to
the cooling and heating cases, respectively. Solid lines represent theoretical
values and symbols DSMC data. The initial values of the control parameter
DT�0 =Dh0 � ðT�A;0 � T�B;0Þ=ðhA;0 � hB;0Þ are 0.1 (A: red lines and symbols; B:
blue lines and symbols), and �0.2 (A: red lines and symbols; B: black lines and
symbols). The theoretical value of t�c is also plotted with a vertical line. The remain-
ing parameters in both panels are d¼ 3, T�ex ¼ 1; x1 ¼ 1

2 ; m1=m2 ¼ 1, and
/ ¼ 0:1.
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consider a binary molecular mixture of moderate density (/ ¼ 0:1). If
we focus on Fig. 1, we see that DT�0=Dh0 < 0 when m1 > m2. For a
better understanding, let us consider an equimolar binary mixture
(x1 ¼ 1

2) with two components of identical diameters (r1 ¼ r2) but
different masses (m1 6¼ m2). In these conditions, according to Eq. (6),
c�i / m�1i and so, c�1 < c�2 whenm1 > m2. This means that the lighter
component interchanges energy with the bath in a more efficient way
than the heavier component. In addition, if we want a reduction in the
relaxation time, the component whose partial temperature is further
from Tex must be the one whose interaction with the bath is more
effective. Since DT�0 > 0 (T�A > T�B), then Dh0 < 0, namely, the ini-
tially hotter system has its kinetic energy more concentrated in the
lighter component than in the heavier one. This conclusion agrees
with the second condition of Eq. (30). As expected, the boundary

between both regions, given by the extreme value L12=ðk� � L11Þ,
decreases with increasing the mass ratio and hence, the discrimination
between both species in the exchange of energy with the bath. Similar
behavior is found in the upper panel of Fig. 2. Here, we vary the diam-
eters of particles while keepingm1¼m2. According to Eq. (6), c�i / ri

and so, c�1 > c�2 when r1 > r2. This implies that DT�0=Dh0 > 0 in
agreement with the first condition of Eq. (30). Conversely, the shape
of the phase diagram shown in the upper panel of Fig. 3 cannot be
qualitatively explained with arguments based on individual properties
(such as mass or size) but on collective behavior. As can be noted, the
Mpemba effect manifests clearer when there are more particles that
interact in a more efficient way with the bath. However, the mixture
must also be diversified so there can be more discrepancy between
both partial and total temperatures. An example of the competition
between both mechanisms is plotted in the phase diagram of Fig. 3 for
m1 ¼ 5m2.

The lower panels of Figs. 1–3 display the relaxation curves of the
reduced temperature T� as a function of the scaled time t� for some of
the mixture parameters considered in the phase diagrams described
before. Three different initial conditions are chosen in every figure.
Specific details of the initial conditions used in the above panels can be
found in Table I. According to these initial values, the control parame-
ter DT�0=Dh0 is greater than or less than 0, and within or without the
region limited by L12=ðk� � L11Þ. In this way, the fulfillment of
restrictions (30) is checked in both cooling and heating (inverse
Mpemba effect) situations. The solid lines are the theoretical results
displayed in Eq. (26) and symbols refer to the results obtained via
DSMC simulations. We found an excellent agreement between theory
and simulations in all three cases, ensuring the accuracy of Maxwellian
approximation (16) to capture the trends of the Mpemba effect.
Furthermore, the theoretical prediction for t�c exhibits also an excellent
agreement with simulations.

DSMC simulations have been carried out following similar steps
as those carried out in Ref. 44. At the initial state, one assigns velocities
to the particles drawn from Gaussian distributions at the desired par-
tial temperatures. Since the system is assumed to be spatially homoge-
neous, the velocities of the particles change only due to binary
collisions. It includes two physical events: (i) collisions among particles
and (ii) collisions of the particles with an external energy source
(bath). In the case of event (i), we consider the same algorithm as

FIG. 3. Upper panel: Phase diagram of the initial condition DT�0 =Dh0 as a function
of the concentration x1. Lower panel: Relaxation of the (reduced) temperature T�

over the time t� for x1 ¼ 0:4. The upper and lower curves correspond to the
cooling and heating cases, respectively. Solid lines represent theoretical
values and symbols DSMC data. The initial values of the control parameter
DT�0 =Dh0 	 ðT�A;0 � T�B;0Þ=ðhA;0 � hB;0Þ are �0.1 (A: red lines and symbols; B:
blue lines and symbols), and �0.5 (A: red lines and symbols; B: black lines and
symbols). The theoretical value of t�c is also plotted with a vertical line. The remain-
ing parameters in both panels are d¼ 3, T�ex ¼ 1; m1=m2 ¼ 5; r1=r2 ¼ 1, and
/ ¼ 0:1.

TABLE I. Initial values of the (reduced) temperatures T�0 and temperature ratios h0
used to generate the relaxation curves shown in the lower panels of Figs. 1–3.

Figure 1 Figure 2 Figure 3

Color of lines and symbols T�0 h0 T�0 h0 T�0 h0

Cooling cases
Red 1.05 1.06 1.05 1.11 1.05 1.01
Blue 1.04 1.11 1.04 1.01 1.04 1.11
Black 1.04 1.01 1.04 1.16 1.04 1.03
Heating cases
Red 0.95 0.94 0.95 0.89 0.95 0.99
Blue 0.96 0.89 0.96 0.99 0.96 0.89
Black 0.96 0.99 0.96 0.84 0.96 0.97

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053301 (2021); doi: 10.1063/5.0050530 33, 053301-7

VC Author(s) 2021

4. Homogeneous States of Bidisperse Suspensions 97



proposed by Bird43 but, in this case, the collision rate is enhanced by a
factor that accounts for the spatial correlations.45 In the case of event
(ii), we impose a simultaneous change of all velocities of particles every
time step Dt. For a particle of species i and velocity v, the collision
with the bath is given by

v ! e�ciDtv þ 6ciTex

mi
Dt

� �1
2

w; (32)

where w is a random vector uniformly distributed in ½�1; 1�3. In Ref.
29, it was shown that these two events (i) and (ii) give rise to the
Boltzmann kinetic equation if Dt is taken to be much smaller than the
mean free time s of inter-particle collisions. In our case, we always
take Dt=s < 10�3.

As a complement of Figs. 1–3, a density plot of the critical value
L12=ðk� � L11Þ as a function of the mass and size ratios is plotted in
Fig. 4 for an equimolar mixture (x1 ¼ 1

2). Although these parameters
have similar but opposite influences on the onset of the Mpemba
effect, the graphic reveals that discrimination in the diameters of par-
ticles (seen as a difference in the surface areas) has a more prominent
role in the emergence of the phenomenon than in the masses (seen as
a distinction in the inertial forces).

IV. LARGE MPEMBA-LIKE EFFECT IN MOLECULAR
MIXTURES

In Sec. III, we have dealt with states which have been initially pre-
pared in conditions close to thermal equilibrium. This has permitted
us to linearize Eqs. (18) around the equilibrium solution and provide
precise analytical results both for the time evolution of the temperature
and for the crossing time. Here, we consider more general conditions,
allowing the system to start away from equilibrium. In these cases, we
see that the relaxation curves may cross each other in a similar way to
that described in Sec. II. Unfortunately, no simple analytical expres-
sion for the crossing time t�c is found and a more qualitative analysis is
required to establish a necessary (but not sufficient) condition for the
occurrence of the Mpemba effect.

In this section, we analyze crossovers in the temperature transi-
tions from initial situations far away from equilibrium. Thus, the dis-
tances between the initial temperatures are assumed to be of the same
order as the temperatures themselves. A remarkable fact of this kind
of transitions is the asymmetry between the cooling and heating pro-
cesses produced by the term n2 � n1 of Eq. (13). Given two initial tem-
peratures TA > TB, both at the same distance from equilibrium
(TA > Tex > TB; jTA � Texj ¼ jTB � Texj), one may think that the
time to relax is exactly the same in both cases when the temperature
ratios hA;B are also equally separated from their equilibrium values, in
accordance with the linear theory of Sec. III. Nevertheless, on average,
particles of system A move more energetically than those of system B
and so, the mean free time among collisions of species 1 and 2 of sys-
tem A is shorter. Hence, the flux of linear momentum is more effective
and, as a consequence, relaxation toward the external temperature
turns out to be faster. This symmetry breaking results in discrimina-
tion between cooling and heating processes in such a way that, for the
same initial ratio DT�0=Dh0, the Mpemba effect could only be observed
in one of these scenarios.

Let us consider again two homogeneous states A and B arbitrary
far away from equilibrium. They are characterized by the initial tem-
peratures T�A;0 and T�B;0 and the temperature ratios hA;0 and hB;0. In
what follows, for the sake of simplicity, we will suppose that the state
A is initially hotter than B (T�A;0 > T�B;0). Under this condition, a phys-
ically intuitive necessary condition for a crossover (Mpemba-like
effect) in the relaxation curves of both temperatures is that the initially
hotter system cools faster than the cooler one. This crossover is
expected to happen in the early stage of the evolution where the system
still puts away memory of its initial preparation. Following the argu-
ments of Torrente et al.,23 for short enough times, we can assume that
the system is exponentially cooling with a characteristic rate roughly
equal to the initial value of�U [see Eq. (18)]. Thus, a necessary condi-
tion for the presence of the Mpemba effect is UðT�B;0; hB;0Þ
> UðT�A;0; hA;0Þ. So, it seems that the function UðT�; hÞ, through its
dependence on the variables T� and h, is the key quantity for deter-
mining when the Mpemba effect can occur.

Let us then analyze Eq. (19) to establish some restrictions to the
initial conditions of states A and B. The function UðT�; hÞ is the sum
of two functions U1ðT�Þ and U2ðhÞ. Thus, all the information about
the relative behavior of T�I (I ¼A,B) at the initial stages (for fixed T�I )
falls on the function U2ðhIÞ. The next step is to ensure the functions
UðT�; hÞ behave monotonically with h; so that, we can establish a cri-
terion for what the temperatures T�A and T�B will get closer or away
from each other. Only the first option will be considered here as a sim-
ple way to attain the Mpemba effect (in fact, there are other more
complex ways the relaxation curves may cross as occurs for instance in
the nonmonotonic Kovacs-like relaxation61).

Therefore, to check the occurrence of the Mpemba effect, we per-
form the derivative of U2 with respect to h at fixed T�. The result is

@

@h
U2 ¼

2x1x2ðc�2 � c�1Þ
ðx2 þ x1hÞ2

; (33)

which is always a positive (negative) function if c�2 > c�1 (c�2 < c�1).
Consequently, assuming that the temperature evolves monotonically
toward equilibrium, the presence of the Mpemba effect requires that
the initial values satisfy the conditions,

FIG. 4. Density plot of the critical value L12=ðk� � L11Þ as a function of the mass
m1=m2 and size r1=r2 ratios for an equimolar mixture (x1 ¼ 1

2) of hard spheres
(d¼ 3). The remaining parameters are T�ex ¼ 1 and / ¼ 0:1.
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DT�0
Dh0

> 0; c�1 > c�2;

DT�0
Dh0

< 0; c�1 < c�2:

(34)

Equation (34) is in agreement with results (30) derived for initial situa-
tions near to equilibrium. However, Eq. (34) does not constraint the
regions of initial conditions that turn out in a crossover of tempera-
tures. Namely, the difference between UðT�A;0; hA;0Þ and UðT�B;0; hB;0Þ
must be properly chosen to be large enough.

According to Eq. (18), the slope of the curve T�ðt�Þ is really
the product T�U. Thus, one is tempted to conclude that the
necessary condition for the presence of the Mpemba-like effect is
UðT�B;0; hB;0ÞTB;0 > UðT�A;0; hA;0ÞTA;0. On the other hand, since
TA;0 > TB;0, the Mpemba effect cannot occur unless UðT�B;0; hB;0Þ
> UðT�A;0; hA;0Þ. Therefore, the fulfillment of Eq. (34) is required to
observe the Mpemba-like effect.

The large Mpemba-like effect for heating and cooling processes is
plotted in Fig. 5 for different initial conditions. Theoretical results are
compared against DSMC and MD simulations. The MD simulations
have been conducted as follows. The system is initially prepared in a
spatially homogeneous state with each of the components of the mix-
ture having Gaussian velocity distributions with different tempera-
tures. The system then evolves using an event-driven algorithm. As in
the case of DSMC simulations, two physical events are considered:

(i) collisions among particles and (ii) collisions of the particles with the
external bath. For the event (i), we proceeded as usual; see, for
instance, Refs. 46 and 47. In the event (ii), we impose a simultaneous
change of all velocities of particles every time step Dt. This latter pro-
cedure is detailed in Eq. (32).

In Fig. 5, we consider an equimolar (x1 ¼ 1
2) binary mixture of

hard spheres (d¼ 3) of the same size (r1 ¼ r2) and different masses
(m1 ¼ 10m2) for two different densities: / ¼ 0:007 85 (very dilute
system) and/ ¼ 0:1 (moderately dense system). Lines are the theoret-
ical results as derived from the Enskog equation, filled symbols refer to
the results obtained via DSMC simulations and open symbols to those
obtained by means of MD simulations. When / ¼ 0:007 85; c�1
¼ 0:241, and c�2 ¼ 2:411, while the friction parameters are c�1 ¼ 0:445
and c�2 ¼ 4:451 when / ¼ 0:1. Therefore, since c�1 < c�2 in both cases,
initial conditions must be chosen in such a way that DT�0=Dh0 < 0
(see Table II for more details). In addition, the functions UðT�I ; hIÞ are
separately selected for the cooling and heating cases to enable the
intersection of the respective temperature curves. It is quite apparent
from the plots of Fig. 5 that the Mpemba-like effect emerges in both
(cooling and heating) relaxation problems, even when the relative dif-
ferences in the initial temperatures are around 10%. Moreover, the
panels (a) and (b) of Fig. 5 highlight an excellent agreement between
the Enskog theory and both DSMC and MD simulations in both the
low-density regime (/ ¼ 0:007 85) and for moderate densities
(/ ¼ 0:1). This good agreement ensures once again the reliability of
the Maxwellian approximation (16) as well as the accuracy of the
molecular chaos hypothesis for studying this kind of relaxation pro-
cess. The excellent agreement found in the crossing time t�c and in the
complete relaxation toward the final equilibrium state makes the
Enskog kinetic theory a very reliable theory for modeling molecular
fluids at moderate densities.

V. MPEMBA-LIKE EFFECT IN GRANULAR BINARY
MIXTURES. PRELIMINARY RESULTS

We assume now that the components of the mixture have macro-
scopic dimensions (typically of the order of micrometers or larger),
and so their collisions are inelastic. We also assume that these particles
(or grains) are in rapid flow conditions so that, they behave like a gas
of activated collisional grains (granular gas).27,37 It is well-known that
in this regime, kinetic theory tools are appropriate to describe the
dynamics of the system.

FIG. 5. Evolution of the (reduced) temperature T� over the time t� for m1=m2 ¼
10; r1=r2 ¼ 1; x1 ¼ 1

2 ; d¼ 3, and T�ex ¼ 1. Solid lines represent theoretical val-
ues, filled symbols DSMC data, and open symbols MD data. The initial values of
the control parameter DT�0 =Dh0 	 ðT�A;0 � T�B;0Þ=ðhA;0 � hB;0Þ (a: red line and
symbols; b: blue line and symbols) are �0.2 (cooling cases), �0.25 [heating case
of panel (a)], and �1/3 [heating case of panel (b)]. Panel (a) corresponds to / ¼
0:007 85 and panel (b) to / ¼ 0:1.

TABLE II. Initial values of the (reduced) temperatures T�0 and temperature ratios h0
used to generate the relaxation curves shown in Fig. 5.

Panel (a) Panel (b)

Color of lines and symbols T�0 h0 T�0 h0

Cooling cases
Red 1.3 1.1 1.3 1.1
Blue 1.2 1.6 1.2 1.6
Heating cases
Red 0.8 0.5 0.8 0.5
Blue 0.7 0.9 0.7 0.8
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For granular mixtures suspended in a background fluid, the
Enskog–Fokker–Planck equation (5) still applies, except that the
Boltzmann–Enskog collision operator reads27

J
ðaijÞ
ij v1jfi; fj
� �

¼ vijr
d�1
ij

ð
dv2

ð
dr̂ Hðr̂ � g12Þ

� ðr̂ � g12Þ a�2ij fiðv001Þfjðv002Þ � fiðv1Þfjðv2Þ
h i

; (35)

where aij is the coefficient of normal restitution for collisions between
particles of components i and j. Here, the coefficient aij is assumed to
be a positive constant smaller than or equal to 1. The limit case aij ¼ 1
corresponds to elastic collisions. In Eq. (35), the double primes denote
the precollisional velocities ðv001; v002Þ yielding the postcollisional veloci-
ties ðv1; v2Þ. They satisfy the collision rule,

v001 ¼ v1 � lji
1þ aij

aij
ðr̂ � g12Þr̂; (36)

v002 ¼ v2 þ lij
1þ aij

aij
ðr̂ � g12Þr̂: (37)

The operator J
ðaijÞ
ij denotes the inelastic Enskog–Boltzmann collision

operator. When aij ¼ 1, its elastic version Jð1Þij is given by Eq. (2).
The study of the Mpemba-like effect for driven granular mixtures

follows similar mathematical steps as those made in Secs. III and IV
for molecular mixtures. Thus, the set of differential equations (18) pro-
vides the evolution of the (reduced) temperature T� and the tempera-
ture ratio h. However, the final forms of the functions U and W for
inelastic collisions [see Eqs. (A2)–(A7) of the Appendix] appearing in
the above set of differential equations are much more intricate than
those obtained for molecular gases.

Nonetheless, preliminary straightforward results can be derived
if we realize that the dependence of the function UðT�; hÞ
¼ U1ðT�Þ þ U2ðhÞ þ U3ðT�; hÞ on inelasticity is fully encoded in the
cooling term U3. This cooling term vanishes for elastic collisions
(U3 ¼ 0 when aij ¼ 1). Thus, to establish some criterion on the emer-
gence of the Mpemba-like effect, the function U is conveniently sepa-
rated into its entirely molecular part U12 	 U1 þ U2 and the granular
termU3.

Let us consider again two different homogeneous samples A
and B at different initial granular temperatures T�I;0 and tempera-
ture ratios hI;0, where I ¼ A;B. In order to compare the relative
behavior between the two slopes UA and UB at the initial stages of
the evolution, the steady values of the molecular U1ðT�s Þ þ U2ðhsÞ
and the granular U3ðT�s ; hsÞ terms are subtracted from their non-
steady slopes U1ðT�Þ þ U2ðhÞ and U3ðT�; hÞ, respectively. Thus, we
can quantify the influence of the granular terms on the relative dis-
tance between the relaxation curves and, hence, on the onset of the
Mpemba effect.

The set of coupled equations for obtaining the steady forms of
both T�s and hs are given by Eqs. (A9) and (A10). It is quite apparent
from Fig. 6 that the granular term U3 has substantially less influence
on the relative behavior of the temperature relaxation of two given
samples than the molecular counterpart U1 þ U2 at moderate values
of the coefficients of restitution aij. In this way, similar conditions to
those previously obtained for driven molecular mixtures can be estab-
lished for granular mixtures to chose the initial values of T� and h for
the occurrence of the Mpemba-like effect.

Here, as an illustration of the Mpemba-like effect in granular
mixtures, the time evolution of T� is plotted in Fig. 7 for heating and
cooling processes. For the sake of comparison, we consider a binary
granular suspension with the same mechanical properties as those
considered in panel (b) of Fig. 5, except that now the collisions are
inelastic. Two different values of the (common) coefficient of restitu-
tion a 	 a11 ¼ a22 ¼ a12 are selected: (a) a ¼ 0:9 and (b) a ¼ 0:8.
Lines are the theoretical results derived from the Enskog equation con-
veniently adapted to inelastic collisions (see the Appendix) and sym-
bols refer to the results obtained via DSMC simulations. Since the
friction parameters are c�1 ¼ 0:445 and c�2 ¼ 4:451 in both cases, simi-
lar arguments than those derived in the molecular case are set out for
the initial conditions to satisfy the relation DT�0=Dh0 < 0 (more
details can be found in Table III). Figure 7 illustrates the emergence of
the Mpemba-like effect (and its inverse counterpart) in granular gases
when the initial conditions are relatively far away from each other
(large Mpemba-like effect). In addition, panels (a) and (b) of Fig. 7
show an excellent agreement between the Enskog theory and DSMC
simulations ensuring again the reliability of the Maxwellian approxi-
mation used to compute the partial production rates ni given in Eq.
(A1).

VI. DISCUSSION

In summary, we have observed a Mpemba-like effect in a molec-
ular binary mixture in contact with a thermal reservoir. As
usual,30,34–36 the bath acts on molecules as they were Brownian

FIG. 6. Density plot of the difference jU12 � U12;sj (top panel) and jU3 � U3;sj
(bottom panel) as a function of the (reduced) temperature T� and temperature ratio
h for a granular mixture with a common coefficient of restitution
a11 ¼ a22 ¼ a12 	 a ¼ 0:9. The parameters of the mixture are given by
m1=m2 ¼ 10; r1=r2 ¼ 1; x1 ¼ 0:5, d¼ 3, / ¼ 0:1, and T�ex ¼ 1. Here,
U12 ¼ U1 þ U2.
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particles, i.e., the interaction between gas particles and the thermal res-
ervoir (or background fluid) is accounted for by two forces: a (deter-
ministic) viscous drag force proportional to the velocity of the particles
and a stochastic force. Moreover, based on numerical and experimen-
tal results carried out in the gas–solid–flows literature,40–42 the friction
coefficients ci (i¼ 1, 2) have been chosen to distinguish between com-
ponents of the mixture through their dependence on the mechanical
properties of particles (masses mi and diameters ri) and on the partial
/i and global / ¼ /1 þ /2 volume fractions. This discrimination

couples the evolution of the total temperature T(t) with the ratio of
partial temperatures hðtÞ ¼ T1ðtÞ=T2ðtÞ giving rise to the emergence
of memory effects. Namely, the time evolution of T(t) is not autono-
mous but is coupled to hðtÞ. One of the most popular problems in
which memory effects are notorious is the so-called Mpemba effect,1

namely, when an initially hotter (cooler) system cools (heats) sooner.
To observe this effect, two identical samples A and B (namely,

sharing the same values of masses, diameters, composition, and vol-
ume fraction) are initially prepared in isotropic Maxwellian velocity
distribution functions at different temperatures (TA;0 and TB;0) and
temperature ratios (hA;0 and hB;0). These samples are in contact with a
thermal reservoir at temperature Tex. Starting from the above initial
conditions, we let the samples evolve until they reach the equilibrium
state where energy equipartition holds: Ti ¼ T1;i ¼ T2;i ¼ Tex

(i ¼ A;B). During this transient period, particles of the mixture collide
among themselves and with the bath exchanging energy in different
ways for each component. If we suitable chose the initial values of the
total and the partial temperatures, the curves associated with the relax-
ation of the temperatures TAðtÞ and TBðtÞ may cross at a given time tc
before reaching the equilibrium state (the so-called crossover time).
Contrary to other works on this topic, neither cumulants22 (measuring
the deviations of the distribution functions from their Maxwellian
forms) nor the inclusion of a nonlinear drag force28 is needed to
explain the Mpemba effect and hence, the magnitude of the effect may
be increased.

The starting point of our theoretical approach has been the
Enskog kinetic equation (1) in combination with the Fokker–Planck
term accounting for the interaction between gas particles and the ther-
mal reservoir. From this equation, the evolution equations for the total
temperature T(t) and the temperature ratio hðtÞ have been derived. To
get explicit results, the partial production rates n1 and n2 appearing in
the evolution equation (13) of h have been estimated by replacing the
exact distribution functions fiðv; tÞ by their Maxwellian forms (16).

Evolution equations (18) for the reduced quantities T� ¼ T=Tex

and h have been first analytically solved for situations close to equilib-
rium. This has allowed us to obtain explicit expressions for the
(reduced) crossing time t�c and the critical value of the initial tempera-
ture difference [see Eqs. (29) and (30)]. In addition, the numerical
solution of the set of Eqs. (18) provides the dependence of T�ðt�Þ and
hðt�Þ on the parameters of the mixture. An illustration of the above
results is displayed in Figs. 1–3 where we have varied the massm1=m2

and diameter r1=r2 ratios and the composition x1, respectively. The
comparison between those theoretical (approximate) predictions with
the DSMC results shows an excellent agreement for the whole range of
parameters studied.

As a complement of the previous study, we have analyzed the
Mpemba effect when the initial states of the samples are far from equi-
librium, the so-called large Mpemba effect. In this situation, no analyt-
ical solution is admitted and only qualitative predictions can be
achieved. For the crossover to happen, a necessary criterion for the
sign of the initial fraction DT�0=Dh0 ¼ ðT�A;0 � T�B;0Þ=ðhA;0 � hB;0Þ
has been established. This criterion is based on the efficiency or rapid-
ity (measured through the comparison of the two drag coefficients c�i )
of each one of the partial temperatures to reach equilibrium. Two
examples of cooling and heating relaxation processes for a dilute and a
moderately dense system have been plotted in Fig. 5. In particular, the
Mpemba-like effect has been shown to take place even when the

TABLE III. Initial values of the (reduced) temperatures T�0 and temperature ratios h0
used to generate the relaxation curves shown in Fig. 7.

Panel (a) Panel (b)

Color of lines and symbols T�0 h0 T�0 h0

Cooling cases
Red 1.2 0.9 1.1 0.8
Blue 1.1 1.3 1.0 1.2
Heating cases
Red 0.7 0.5 0.6 0.4
Blue 0.6 0.8 0.5 0.7

FIG. 7. Evolution of the (reduced) temperature T� over the time t� for a granular
mixture with a common coefficient of restitution a11 ¼ a22 ¼ a12 	 a. The param-
eters of the mixture are given by m1=m2 ¼ 10; r1=r2 ¼ 1; x1 ¼ 1

2 ; d¼ 3,
/ ¼ 0:1, and T�ex ¼ 1. Solid lines represent theoretical values and symbols DSMC
data. The initial values of the control parameter DT�0 =Dh0 	 ðT�A;0
�T�B;0Þ=ðhA;0 � hB;0Þ (A: red line and symbols; B: blue line and symbols) are
�0.25 (cooling cases), �1/3 (heating cases). Panel (a) corresponds to a¼ 0.9
and panel (b) to a¼ 0.8.
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relative initial temperature difference is around 10%. Moreover, an
excellent agreement between theoretical results and both DSMC and
MD simulations has been also found.

Finally, we have also considered driven granular mixtures,
namely, a collection of discrete macroscopic particles of different sizes.
Due to their macroscopic dimensions, in contrast to molecular mix-
tures, the collisions between the different components of the mixture
are inelastic. As expected, the Mpemba-like effect is also present when
collisions in the binary mixture are inelastic. However, given that the
forms of the functions U ¼ U1 þ U2 þ U3 and W appearing in the
evolution equations obeying T� and h, respectively, are more complex
than those derived for elastic collisions, it is not easy to find clean con-
ditions for the occurrence of the Mpemba effect. On the other hand,
since the impact of the granular new term U3 (which vanishes for
molecular mixtures) on the relaxation of the temperature is smaller
than that of the pure molecular contributions U1 þ U2 for not too
strong inelasticities, one can conclude that the conditions for the
occurrence of the Mpemba-like effect in granular mixtures are quite
similar to those found for driven molecular mixtures. In any case, a
more careful analysis is needed to confirm the above conclusion. We
plan to carry out a more exhaustive study on the necessary conditions
for the onset of the Mpemba-like effect in driven granular mixtures in
the near future.
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APPENDIX: EXPRESSIONS FOR DRIVEN GRANULAR
MIXTURES

In this appendix, we display the expressions of the functions U
and W for driven granular mixtures, namely, when collisions
between particles of the components i and j are inelastic. For
smooth hard spheres, the inelasticity of collisions is characterized
by the (constant) coefficients of restitution aij � 1. In this case, the
expressions of the partial production rates ni in the Maxwellian
approximation (16) are given by27

n1 ¼
ffiffiffi
2
p

p d�1ð Þ=2

dC
d
2

� � n1v11r
d�1
1

2T1

m1

� �1=2

1� a211
	 


þ 4p d�1ð Þ=2

dC
d
2

� � n2l21v12r
d�1
12

2T1

m1
þ 2T2

m2

� �1=2

ð1þ a12Þ

� 1� l21

2
1þ a12ð Þ 1þm1T2

m2T1

� �� �
: (A1)

The expression for n2 can be easily obtained from Eq. (A1) by mak-
ing the change 1$ 2. In dimensionless variables, the time evolu-
tion of T� and h can be written in the form (18) where

UðT�; hÞ ¼ U1ðT�Þ þ U2ðhÞ þ U3ðT�; hÞ;
WðT�; hÞ ¼ W1 þW2ðT�; hÞ þW3ðT�; hÞ:

(A2)

Here, we have introduced the quantities

U1ðT�Þ ¼
2
T�

x1c
�
1 þ x2c

�
2

	 

; U2ðhÞ ¼ �2

x1c�1hþ x2c�2
1þ x1ðh� 1Þ ;

U3ðT�; hÞ ¼ �n�ðT�; hÞ; (A3)

W1 ¼ �2ðc�1 � c�2Þ;

W2ðT�; hÞ ¼ 2 c�1 � c�2h
	 
 1þ x1ðh� 1Þ

hT�
;

W3ðT�;hÞ ¼ n�2ðT�; hÞ � n�1ðT�; hÞ;

(A4)

where

n� ¼ x1hn�1 þ x2n
�
2

1þ x1ðh� 1Þ ; (A5)

n�1 ¼
ffiffiffi
2
p

p d�1ð Þ=2

dC
d
2

� � x1v11
r1

r12

� �d�1
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hT�
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n�2 ¼
ffiffiffi
2
p

p d�1ð Þ=2

dC
d
2

� � x2v22
r2

r12

� �d�1
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dC
d
2

� � x1v12

ffiffiffiffiffiffiffi
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l21

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þ x1ðh� 1Þ

s
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� 1� 1þ a12
2
ðl12 þ l21hÞ

� �
: (A7)

For elastic collisions (a11 ¼ a22 ¼ a12 ¼ 1), Eqs. (A4)–(A7) reduce
to Eqs. (19)–(22) since U3 ¼ 0 and

W3 ¼ n�2 � n�1 ¼
8p d�1ð Þ=2

dC
d
2

� � v12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�

2
l12l21 l12 þ l21hð Þ

1þ x1ðh� 1Þ

s

� ðx1 � x1h� x2 þ x2h
�1Þ: (A8)

In the long-time limit, the steady forms of both T�s and h�s can
be obtained by solving the set of coupled equations,

2
T�s

x1c
�
1 þ x2c

�
2

	 

� 2

x1c�1hs þ x2c�2
1þ x1ðhs � 1Þ ¼ n�s ; (A9)

�2ðc�1 � c�2Þ þ 2 c�1 � c�2hs
	 
 1þ x1ðhs � 1Þ

hsT�s
¼ n�1s � n�2s: (A10)

For elastic collisions, the solution to Eqs. (A9) and (A10) is simply
given by T�s ¼ h�s ¼ 1 (energy equipartition). However, for inelastic
collisions, energy equipartition does not hold, and T�s and h�s have a
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complex dependence on the parameter space of the problem. A
study on this dependence has been carried out in Ref. for a binary
mixture and in Ref. 38 for a multicomponent mixture.
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Chapter 5

Enskog Kinetic Theory for

Bidisperse Suspensions

5.1 Summary

The transport properties of a bidisperse granular suspension are studied in the context

of the Enskog kinetic equation. The granular suspension is composed of two kinds of

particles (disks for d = 2 or spheres for d = 3) of masses mi and diameters σi (i = 1, 2)

immersed in a viscous fluid. The inelasticity of collisions between species i and j is

implemented by means of a constant coefficient of restitution αij ≤ 1. The influence of

the surrounding viscous gas on each species is modeled via an individual Fokker–Plank

term composed by a deterministic viscous drag force plus a stochastic Langevin-like

term.

The objective of this chapter is to provide a solution to the set of two-coupled

Enskog kinetic equations by means of the Chapman–Enskog method considering up

to the Navier–Stokes level of approximation. In the absence of spatial gradients, the

system reaches a homogeneous steady state where the energy lost by inelastic collisions

and viscous friction is compensated for by the energy injected by the stochastic force.

The first step is to characterize this homogeneous state, given that it serves as the

reference state of the perturbation scheme. Since to compute the velocity moments we

opt for simplicity to take the Maxwellian forms of the one-body distribution functions

fi, simulations are needed to assess the reliability of such approximation. In this sense,
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the partial temperature ratio T1/T2 are evaluated in the HSS and compared against

MD and DSMC simulations.

Once the HSS is characterized, a normal solution to the set of Enskog equations is

obtained by means of the CE expansion around the local version of the homogeneous

state. This solution states that all the spatial and time dependence of the distribution

functions is through the hydrodynamic variables. Therefore, the non-hydrodynamic

variables and the cooling rate ζ together with the momentum P, mass ji, and heat q

fluxes must be therefore expanded in terms of gradients of the hydrodynamic variables.

The most relevant non-hydrodynamic or kinetic variables that affect the macroscopic

description of a granular mixture are the partial temperatures T1 and T2 of species 1

and 2, respectively. Thus, as explained in Section 2.3, they must be also expanded

as Ti = T
(0)
i + ϵT

(1)
i + · · · . The existence of a nonzero first-order contribution T

(1)
i

induces a breakdown of the energy equipartition, additional to the one present in the

HSS due to the dissipative character of collisions [197]. The first-order contributions

to the partial temperature were already recognized in the pioneering papers in elastic

systems [194–196] and recently noticed in an Erratum for driven granular mixtures at

low density [197]. Nonetheless, it is worth assessing the impact of these contributions

to the partial temperatures on the transport properties in polydisperse dense “dry”

granular mixtures. Since T
(1)
i is a scalar, it is proportional to the divergence of the

flow velocity ∇ ·U. Therefore, it will produce new contributions to the bulk viscosity

ηb (proportionality coefficient between the collisional part Pc of the pressure tensor

and ∇ ·U) and to the first-order contribution ζU to the cooling rate (proportionality

coefficient between ζ and ∇ ·U) not considered in previous works [190, 191].

Now that the CE standards are in place, we can extend previous theoretical results

for dilute multicomponent granular suspensions [99] to higher densities. To first order

in spatial gradients, we obtain the unsteady set of integral equations that we have to

solve by considering the leading terms in a Sonine polynomial expansion under steady-

state conditions. This procedure allows us to obtain explicit forms of the NS transport

coefficients in terms of the mechanical parameters of the mixture (masses and sizes

and the coefficients of restitution), the composition, and the density. The evaluation of

the complete set of transport coefficients of the binary granular suspension is a quite

long task. In this chapter, we will focus our attention in obtaining the four diffusion

coefficients associated with the mass flux, the shear and bulk viscosity coefficients, and
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the first-order contributions to the partial temperatures and the cooling rate. We plan

in the near future to determine the heat flux transport coefficients and to perform a

linear stability analysis of the homogeneous steady state.
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Affiliations:

1 Departamento de F́ısica, Universidad de Extremadura, E-06006 Badajoz, Spain

2 Departamento de F́ısica and Instituto de Computación Cient́ıfica Avanzada (IC-

CAEx), Universidad de Extremadura, E-06006 Badajoz, Spain

Journal: Physical Review E

Volume: 100

Pages: 032904

Year: 2019

DOI: 10.1103/PhysRevE.100.032904

Copy of the work: “Reproduced from Rubén Gómez González and Vicente Garzó,

Influence of the first-order contributions to the partial temperatures on transport prop-

erties in polydisperse dense granular mixtures, Physical Review E 100, 032904 (2019)

https://doi.org/10.1103/PhysRevE.100.032904, ©2020 American Physical Society”

https://doi.org/10.1103/PhysRevE.100.032904


PHYSICAL REVIEW E 100, 032904 (2019)

Influence of the first-order contributions to the partial temperatures on transport properties
in polydisperse dense granular mixtures

Rubén Gómez González *

Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain

Vicente Garzó †

Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain

(Received 18 July 2019; published 19 September 2019)

The Chapman-Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to
determine the first-order contributions �i to the partial temperatures. As expected, these quantities (which were
neglected in previous attempts) are given in terms of the solution to a set of coupled integrodifferential equations
analogous to those for elastic collisions. The solubility condition for this set of equations is confirmed and the
coefficients �i are calculated by using the leading terms in a Sonine polynomial expansion. These coefficients
are given as explicit functions of the sizes, masses, composition, density, and coefficients of restitution of the
mixture. Within the context of small gradients, the results apply for arbitrary degrees of inelasticity and are not
restricted to specific values of the parameters of the mixture. In the case of elastic collisions, previous expressions
of �i for ordinary binary mixtures are recovered. Finally, the impact of the first-order coefficients �i on the bulk
viscosity ηb and on the first-order contribution ζ (1) to the cooling rate is assessed. It is shown that the effect of
�i on ηb and ζ (1) is not negligible, specially for disparate mass ratios and strong inelasticity.

DOI: 10.1103/PhysRevE.100.032904

I. INTRODUCTION

The understanding of transport processes occurring in
polydisperse granular mixtures (namely, a mixture of smooth
hard spheres with inelastic collisions) is still an exciting
unsolved problem [1–3]. The reason for this challenging target
is twofold: first, there is a large number of relevant param-
eters involved in the description of the granular mixtures;
and second, there is a wide array of intricacies arising in
the derivation of kinetic theory models. Thus, to gain some
insight into the problem, the two most common simplifica-
tions employed in many of the pioneering papers on granular
mixtures [4–8] were (i) to consider mixtures constituted by
nearly elastic particles and (ii) to assume the equipartition of
the total granular kinetic energy in the homogeneous cooling
state (namely, they assume that the zeroth-order contributions
T (0)

i to the partial temperatures Ti of each species are equal
to the granular temperature T ). On the other hand, the last
assumption can be only justified for quasielastic collisions
since the failure of energy equipartition in granular fluids
[9,10] has been confirmed by computer simulations [11–18]
and observed in real experiments of agitated granular mixtures
[19,20]. The above papers have also shown that the departure
of energy equipartition depends on the mechanical differences

*ruben@unex.es
†vicenteg@unex.es; http://www.unex.es/eweb/fisteor/vicente/

among the particles and the coefficients of restitution of the
granular mixture.

The inclusion of energy nonequipartition effects on trans-
port in granular mixtures has been considered in more recent
papers of dilute [21–26] and moderate [27–29] densities.
In particular, the results derived from the inelastic Enskog
equation [27–29] cover some of the aspects not accounted for
in previous studies. More specifically, (i) they are expected to
be applicable for a wide range of coefficients of restitution
(since they take into account the nonlinear dependence of
the transport coefficients on the coefficients of restitution);
(ii) they consider the impact of nonequipartition of granular
energy on the Navier-Stokes transport coefficients; and (iii)
they are valid for moderate densities. Thus, these works
[27–29] subsume all previous studies for dilute [21–26] and
dense quasielastic [4–8] granular mixtures, which are recov-
ered in the appropriate limits.

Nevertheless, the theory developed for dense gases [27–29]
is based on a simplifying assumption. Although not explicitly
stated, the results derived in Refs. [27–29] were obtained by
neglecting the first-order contributions T (1)

i to the partial tem-
peratures Ti. The existence of a nonzero first-order contribu-
tion T (1)

i induces a breakdown of the energy equipartition, ad-
ditional to the one appearing in the homogeneous cooling state
(which is only due to the inelastic character of collisions). In
fact, T (1)

i �= 0 in the case of ordinary dense mixtures (namely,
a dense hard-sphere mixture with elastic collisions). Although
the partial temperatures are not hydrodynamic quantities, their
determination is interesting in itself. In addition, a careful
analysis of the first-order contributions to the collisional part
Pc of the pressure tensor and the cooling rate ζ (which
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accounts for the rate of kinetic energy dissipation due to
inelastic collisions) shows that there are contributions to Pc

and ζ coming from the coefficients T (1)
i . Since the first-order

contributions to the partial temperatures are proportional to
the divergence of the flow velocity U, then the coefficients
T (1)

i are involved in the evaluation of both the bulk viscosity
ηb (proportionality coefficient between Pc and ∇ · U) and the
first-order contribution ζU to the cooling rate (proportionality
coefficient between ζ and ∇ · U). The coupling between T (1)

i
and ηb was in fact already recognized in the pioneering papers
[30–32] of the Enskog theory for multicomponent ordinary
mixtures.

The question arises then as to whether, and if so to what
extent, the conclusions drawn from Refs. [27–29] for ηb and
ζ may be altered when the above new ingredient (first-order
contributions to the partial temperatures) is accounted for in
the theory. In this paper we calculate T (1)

i and assess the
impact of these coefficients on ηb and ζ for granular mixtures.

The plan of the paper is as follows. The Enskog kinetic
equation for polydisperse granular mixtures is introduced in
Sec. II and the corresponding balance equations for the densi-
ties of mass, momentum, and energy are recalled. Section III
deals with the evaluation of the first-order contributions to
the partial temperatures. As expected, the coefficients T (1)

i
are given in terms of the solution to a set of linear integral
equations. The leading term in a Sonine polynomial expansion
is retained in Sec. IV to solve the above set and obtain the
partial temperatures in terms of the parameter space of the

problem. For the sake of illustration, a binary mixture is
considered in Sec. V. The results show that the impact of the
coefficients T (1)

i on both the bulk viscosity and the cooling
rate is not in general negligible and must be accounted for,
specially for disparate mass ratios and strong dissipation. The
paper closes in Sec. VI with some concluding remarks.

II. ENSKOG KINETIC EQUATION FOR POLYDISPERSE
DENSE GRANULAR MIXTURES

We consider an s-component granular mixture of inelastic
hard disks (d = 2) or spheres (d = 3) of masses mi and
diameters σi. The subscript i labels one of the s mechanically
different components and d is the dimension of the system.
Spheres are assumed to be completely smooth so that the
inelasticity of collisions is only characterized by the constant
(positive) coefficients of restitution αi j � 1. The mixture is
also assumed to be in the presence of the gravitational field
and hence, each particle feels the action of the force Fi = mig,
where g is the gravity acceleration. For moderate densities,
the one-particle velocity distribution function fi(r, v, t ) of
component i verifies the set of s-coupled nonlinear integrodif-
ferential Enskog equations:

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
=

s∑
j=1

Ji j[r, v| fi, f j], (1)

where the Enskog collision operator is [3]

Ji j[r1, v1| fi, f j] = σ d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

[
α−2

i j χi j (r1, r1 − σ i j ) fi(r1, v′′
1, t ) f j (r1 − σ i j, v′′

2, t )

−χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )
]
. (2)

In Eq. (1), σ i j = σi j σ̂, σi j = (σi + σ j )/2, σ̂ is a unit vector
directed along the line of centers from the sphere of compo-
nent i to that of component j at contact, � is the Heaviside
step function, and g12 = v1 − v2 is the relative velocity of the
colliding pair. Moreover, χi j (r1, r1 + σ i j ) is the equilibrium
pair correlation function of two hard spheres, one of com-
ponent i and the other of component j at contact, i.e., when
the distance between their centers is σi j . The precollisional
velocities (v′′

1, v′′
2 ) are given by

v′′
1 = v1 − μ ji

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (3)

v′′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (4)

where μi j = mi/(mi + mj ).
The first few velocity moments of the distributions fi

define the hydrodynamic fields of the mixture. Thus, the local
number density of component i is

ni =
∫

dv fi(v), (5)

while the local mean flow velocity of grains is defined as

U = ρ−1
s∑

i=1

∫
dv miv fi(v), (6)

where ρ = ∑
i mini is the total mass density. Apart from the

partial densities ni and the flow velocity U, the other important
hydrodynamic field is the granular temperature T . It is defined
as

T = 1

n

s∑
i=1

∫
dv

mi

d
V 2 fi(v), (7)

where n = ∑
i ni is the total number density and V = v − U

is the peculiar velocity. At a kinetic level, it is also convenient
to introduce the partial kinetic temperatures Ti for each com-
ponent. These quantities measure the mean kinetic energy of
each component. They are defined as

Ti = mi

dni

∫
dv V 2 fi(v). (8)

According to Eq. (7), the granular temperature T of the
mixture can be also written as

T =
s∑

i=1

xiTi, (9)

where xi = ni/n is the mole fraction of component i.
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An important property of the integrals involving the Enskog collision operator Ji j[r, v| fi, f j] is [3,27]

Iψi ≡
s∑

i, j=1

∫
dv1 ψi(v1)Ji j[r1, v1| fi, f j]

= 1

2

s∑
i, j=1

σ d−1
i j

∫
dv1

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

{[
ψi(v′

1) + ψ j (v′
2) − ψi(v1) − ψ j (v2)

]
fi j (r1, v1, r2, v2; t )

+ ∂

∂r1
· σ i j

[
ψi(v′

1) − ψi(v1)
] ∫ 1

0
dx fi j (r1 − xσ i j, v1, r1 + (1 − x)σ i j, v2; t )

}
, (10)

where

fi j (r1, v1, r2, v2; t ) ≡ χi j (r1, r2) fi(r1, v1, t ) f j (r2, v2, t ), (11)

ψi(v1) is an arbitrary function of v1, and

v′
1 = v1 − μ ji(1 + αi j )(σ̂ · g12 )̂σ. (12)

The first term on the right-hand side of Eq. (10) represents a collisional effect due to scattering with a change in velocities. The
second term provides a pure collisional effect due to the spatial difference of the colliding pair. For elastic collisions, the first
term vanishes. The balance equations for the densities of mass, momentum, and energy can be derived by using the property
(10). They are given by [3]

Dt ni + ni∇ · U + ∇ · ji

mi
= 0, (13)

Dt U + ρ−1∇ · P = g, (14)

Dt T − T

n

s∑
i=1

∇ · ji

mi
+ 2

dn
(∇ · q + P : ∇U) = −ζT . (15)

In the above equations, Dt = ∂t + U · ∇ is the material derivative, ρi = mini is the mass density of component i, and

ji = mi

∫
dv V fi(v) (16)

is the mass flux for component i relative to the local flow U. A consequence of the definition (16) of the fluxes ji is that

s∑
i=1

ji = 0, (17)

and hence, only s − 1 mass fluxes are independent. The pressure tensor P(r, t ) and the heat flux q(r, t ) have both kinetic and
collisional transfer contributions, i.e.,

P = Pk + Pc, q = qk + qc. (18)

The kinetic contributions Pk and qk are given by

Pk =
s∑

i=1

∫
dv miVV fi(v), (19)

qk =
s∑

i=1

∫
dv

mi

2
V 2V fi(v). (20)

The collisional transfer contributions are [3,27]

Pc =
s∑

i, j=1

σ d
i jmi j

1 + αi j

2

∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)2σ̂σ̂

∫ 1

0
dx fi j (r − xσ i j, r + (1 − x)σ i j, v1, v2, t ), (21)

qc =
s∑

i, j=1

σ d
i jmi j

1 + αi j

8

∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)2σ̂

[
4(̂σ · Gi j )

+ (μ ji − μi j )(1 − αi j )(σ̂ · g12)
] ∫ 1

0
dx fi j (r − xσ i j, r + (1 − x)σ i j, v1, v2; t ). (22)
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Here, mi j = mimj/(mi + mj ) is the reduced mass and Gi j = μi jV1 + μ jiV2 is the velocity of the center of mass. Finally, the
(total) cooling rate ζ due to inelastic collisions among all components is given by

ζ = 1

2dnT

s∑
i, j=1

σ d−1
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)3 fi j (r, r + σ i j, v1, v2; t ). (23)

As expected, the balance equations (13)–(15) are not a
closed set of equations for the fields ni, U, and T . To trans-
form these equations into a set of closed equations, one has
to express the fluxes and the cooling rate in terms of the
hydrodynamic fields and their gradients. The corresponding
constitutive equations can be obtained by solving the set
of Enskog kinetic equations (1) with the Chapman-Enskog
method [33] adapted to dissipative dynamics.

III. FIRST-ORDER CONTRIBUTIONS TO THE PARTIAL
TEMPERATURES

The inelastic Enskog equation (1) was solved in
Refs. [27,28] by means of the Chapman-Enskog method. In
particular, the first-order velocity distribution functions f (1)

i
are given by [27]

f (1)
i = Ai · ∇ ln T +

s∑
j=1

Bi j · ∇ ln n j

+ Ci,λβ

1

2

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
+Di∇ · U, (24)

where ∂λ ≡ ∂/∂rλ. The unknowns Ai(V), Bi j (V), Ci,λβ (V),
and Di(V) are functions of the peculiar velocity V and they are
the solutions of a set of coupled linear integral equations [27].
Approximate solutions to this set of integral equations were
obtained in Refs. [28,29] by considering the leading terms
in a Sonine polynomial expansion. This procedure allows
us to obtain explicit forms of the Navier-Stokes transport
coefficients in terms of the mechanical parameters of the
mixture (masses and sizes and the coefficients of restitution),
the composition, and the density. Within the context of small
gradients, the results apply in principle for arbitrary values of
the coefficients of restitution and a wide range of densities.

However, as said in Sec. I, the influence of the first-
order contribution T (1)

i to Ti on the transport coefficients was
neglected in the above papers [27,28]. This was essentially
assumed because T (1)

i comes from the second-Sonine approx-
imation and hence it is expected that its impact on transport
properties is small. Here, we want to determine T (1)

i to assess
its influence on the bulk viscosity and the cooling rate.

According to Eq. (8), the first-order contribution to the
partial temperature Ti is defined as

T (1)
i = mi

dni

∫
dv V 2 f (1)

i (V). (25)

Since T (1)
i is a scalar, it can be only coupled to the divergence

of the flow velocity ∇ · U since ∇n and ∇T are vectors and
∂λUβ + ∂βUλ − (2/d )δλβ∇ · U is a traceless tensor. Thus, T (1)

i

can be written as T (1)
i = �i∇ · U, where

�i = mi

dni

∫
dv V 2Di(V). (26)

The fact that the total temperature T is not affected by the
gradients implies necessarily the constraint

∑s
i=1 niT

(1)
i = 0.

Thus, only s − 1 partial temperatures are independent. The
above constraint comes directly from the solubility condition

s∑
i=1

∫
dvmiV

2 f (1)
i = 0. (27)

As said before, apart from obtaining T (1)
i , we are also in-

terested here in revisiting previous calculations [27,28] made
for the bulk viscosity ηb and the cooling rate ζ . The first
coefficient has only collisional contributions and its form can
be identified by expanding the collisional transfer contribution
Pc to the pressure tensor to first order in spatial gradients. A
careful first-order expansion of the expression (21) to Pc gives
the following form for ηb:

ηb = η′
b + η′′

b, (28)

where

η′
b = π (d−1)/2

�
(

d+3
2

) d + 1

2d2

s∑
i=1

s∑
j=1

mi j (1 + αi j )χ
(0)
i j σ d+1

i j

×
∫

dv1

∫
dv2 f (0)

i (V1) f (0)
j (V2)g12, (29)

and

η′′
b = − πd/2

d�
(

d
2

) s∑
i=1

s∑
j=1

μ ji(1 + αi j )χ
(0)
i j nin jσ

d
i j�i. (30)

In Eq. (29), f (0)
i is the zeroth-order distribution. In addition,

it is understood henceforth that the functional dependence
of χ

(0)
i j (r, r′|{ni}) on the compositions to zeroth order in the

gradients has the same functional dependence on the densities
replaced by {ni} → {ni(r, t )} at the point of interest.

The second contribution η′′
b to ηb in Eq. (28) was neglected

in previous works [3,27,28]. On the other hand, as said in
Sec. I, the contribution η′′

b was already accounted for in the
studies on ordinary (elastic collisions) hard-sphere mixtures
[30–32] carried out many years ago. In fact, for elastic colli-
sions, Eq. (30) is consistent with Eq. (18a) of Ref. [31].

In the case of the cooling rate, ζ → ζ (0) + ζU ∇ · U where

ζ (0) = 1

2dnT

s∑
i, j=1

σ d−1
i j mi j

(
1 − α2

i j

)
χ

(0)
i j

∫
dv1

∫
dv2

×
∫

d σ̂�(̂σ · g12)(̂σ · g12)3 f (0)
i (r, v1, t ) f (0)

j (r, v2, t ),

(31)
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and ζU = ζ (1,0) + ζ (1,1). Here,

ζ (1,0) = − 3πd/2

d2�
(

d
2

) s∑
i=1

s∑
j=1

xin jμ jiσ
d
i jχ

(0)
i j γi

(
1 − α2

i j

)
, (32)

and the coefficient ζ (1,1) is given in terms of the unknowns Di as

ζ (1,1) = 1

nT

π (d−1)/2

d�
(

d+3
2

) s∑
i=1

s∑
j=1

σ d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2 g3

12 f (0)
i (V1)D j (V2). (33)

In Eq. (32), γi ≡ T (0)
i /T is the temperature ratio of component i. The temperature ratios γi verify the relation

∑
i xiγi = 1 and

they are determined from the conditions ζ (0) = ζ
(0)
1 = ζ

(0)
2 = · · · = ζ (0)

s , where

ζ
(0)
i = − mi

dniT
(0)

i

s∑
j=1

∫
dvV 2J (0)

i j

[
f (0)
i , f (0)

j

]
. (34)

According to the results obtained in Ref. [27], the coefficients �i are the solutions of the set of coupled linear integral
equations

1

2
ζ (0) ∂

∂V
· (VDi ) + 1

2
ζ (0)Di + 1

2
ζ (1,1) ∂

∂V
· (

V f (0)
i

) −
s∑

j=1

(
J (0)

i j

[
Di, f (0)

j

] + J (0)
i j

[
f (0)
i ,D j

]) = Di, (35)

where

J (0)
i j

[
f (0)
i , f (0)

j

] = χ
(0)
i j σ d−1

i j

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

[
α−2

i j f (0)
i (v′′

1 ) f (0)
j (v′′

2 ) − f (0)
i (v1) f (0)

j (v2)
]

(36)

is the Boltzmann collision operator multiplied by the (constant) pair distribution function χ
(0)
i j , and Di is given by

Di(V) = 1

2

[
2

d
(1 − p∗) − ζ (1,0)

]
∂

∂V
· (

V f (0)
i

) − f (0)
i +

s∑
j=1

(
n j

∂ f (0)
i

∂n j
+ 1

d
Ki j,β

[
∂ f (0)

i

∂Vβ

])
. (37)

In addition, Ki j[Xj] is the collision operator

Ki j[Xj] = σ d
i jχ

(0)
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12 )̂σ

[
α−2

i j f (0)
i (v′′

1 )Xj (v′′
2 ) + f (0)

i (v1)Xj (v2)
]
, (38)

and the (reduced) hydrostatic pressure p∗ ≡ p/(nT ) is

p∗ = 1 + πd/2

d�
(

d
2

) s∑
i=1

s∑
j=1

μ jixix jnσ d
i jχ

(0)
i j γi(1 + αi j ). (39)

Since Di(V) ∝ Di(V), the solubility condition (27) requires
necessarily that

s∑
i=1

∫
dvmiV

2Di(V) = 0. (40)

This condition can easily be verified by direct integration of
Eq. (37) and using Eqs. (32)–(39), the relation

∑
i xiγi = 1,

and the result

Ai ≡
s∑

j=1

∫
dvmiV

2Ki j,λ

[
∂ f (0)

j

∂Vλ

]

= − πd/2

�
(

d
2

)T
s∑

j=1

χ
(0)
i j nin jσ

d
i j (1 + αi j )

[
3μ ji(1 + αi j )

×
(

γi

mi
+ γ j

m j

)
− 4

γi

mi

]
. (41)

In the low-density regime (niσ
d
i j → 0), p∗ = 1, ζ (1,0) =

0, the combination
∑

j n j∂ f (0)
i /∂n j − f (0)

i and the operator
Ki j[Xj] vanish, and so Di = 0 in the integral equation (35).
This means Di = 0 and hence, the first-order contributions �i

to the partial temperatures vanish for dilute granular mixtures.
This agrees with the previous results obtained in the low-
density regime [21,22,24,25].

IV. LEADING SONINE APPROXIMATION

It is quite apparent that the calculation of �i requires
one to solve the integral equation (35) as well as to know
the zeroth-order distributions f (0)

i . With respect to the latter,
previous results [9,11] derived for homogeneous states have
clearly shown that in the region of thermal velocities, f (0)

i
is well represented by the Maxwellian velocity distribution
defined at the lowest-order partial temperature T (0)

i , namely,

f (0)
i (V) → fi,M(V) = ni

(
mi

2πT (0)
i

)d/2

exp

(
−miV 2

2T (0)
i

)
.

(42)
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This means that we neglect here non-Gaussian corrections to
the distributions f (0)

i and hence, one expects to get simple but
accurate expressions for the transport coefficients. With this
approximation, ζ

(0)
i is

ζ
(0)
i = 4π (d−1)/2

d�
(

d
2

) v0

s∑
j=1

n jχ
(0)
i j μ jiσ

d−1
i j (1 + αi j )

×
(

βi + β j

βiβ j

)1/2[
1 − μ ji

2
(1 + αi j )

βi + β j

β j

]
, (43)

where v0(T ) = √
2T/m is a thermal speed of the mixture,

m = ∑
i mi/s, and βi = miT/mT (0)

i . Furthermore, according
to Eq. (29) the contribution η′

b to the bulk viscosity can also be
computed by using the Maxwellian approximation (42) with
the result

η′
b = π (d−1)/2

d2�
(

d
2

) v0

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j nin jσ

d+1
i j

×
(

βi + β j

βiβ j

)1/2

. (44)

To solve the integral equation (35), one takes the leading
Sonine approximation to Di(V)

Di(V) → fiM(V)Wi(V)
�i

T (0)
i

, (45)

where

Wi(V) = miV 2

2T (0)
i

− d

2
. (46)

The relation between ζ (1,1) and �i can be easily obtained by
substitution of Eq. (45) into Eq. (33). The result is

ζ (1,1) =
s∑

i=1

ξi�i, (47)

where

ξi = 3π (d−1)/2

2d�
(

d
2

) v3
0

nT T (0)
i

s∑
j=1

nin jσ
d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

)
× (βi + β j )

1/2β
−3/2
i β

−1/2
j . (48)

The coefficients �i can be finally obtained by substituting
Eq. (45) into Eq. (35), multiplying it with miV 2, and integrat-
ing over the velocity. After some algebra, the corresponding
set of coupled linear algebraic equations for the coefficients
�i are given by

s∑
j=1

(
ωi j + 1

2
ζ (0)δi j + T (0)

i ξ j

)
� j = Bi, (49)

where

Bi = 2

d
T (0)

i (1 − p∗) − T (0)
i ζ (1,0) − T φ

∂γi

∂φ
− Ai

d2ni
, (50)

and

φ = πd/2

2d−1d�
(

d
2

) s∑
i=1

niσ
d
i (51)

is the solid volume fraction. Upon obtaining Eq. (50) we have
taken into account that the dependence of the temperature
ratios γi on the densities ni is through their dependence on
the mole fractions xi and the volume fraction φ. Furthermore,
the collision frequencies ωi j are defined as

ωii = 1

dniT
(0)

i

⎛⎝ s∑
j=1

∫
dvmiV

2J (0)
i j

[
fi,MWi, f (0)

j

]

+
∫

dvmiV
2J (0)

ii

[
f (0)
i , fi,MWi

]⎞⎠, (52)

ωi j = 1

dniT
(0)
j

∫
dvmiV

2J (0)
i j

[
f (0)
i , f j,MWj

]
, (i �= j).

(53)

In the Maxwellian approximation (42), ωii and ωi j are

ωii = − π (d−1)/2

2dT (0)
i �

(
d
2

)v3
0

⎧⎨⎩ 3√
2

niσ
d−1
i miχ

(0)
ii β

−3/2
i

(
1 − α2

ii

)
−

s∑
j �=i

n jmi jσ
d−1
i j χ

(0)
i j (1 + αi j )(βi + β j )

−1/2β
−3/2
i

×β
−1/2
j

[
3μ ji(1 + αi j )(βi + β j ) − 2(2βi + 3β j )

]⎫⎬⎭,

(54)

ωi j = π (d−1)/2

2dT (0)
j �

(
d
2

)v3
0n jmi jσ

d−1
i j χ

(0)
i j (1 + αi j )

× (βi + β j )
−1/2β

−1/2
i β

−3/2
j

[
3μ ji(1 + αi j )

× (βi + β j ) − 2β j
]
. (55)

In Eqs. (54) and (55), it is understood that i �= j. The set
of algebraic equations (52) can be now easily solved. In
particular, for a binary mixture (s = 2) the solution of Eq. (49)
for �1 can be written as

�1 = B1

ω11 − x1
x2

ω12 + 1
2ζ (0) + T (0)

1

(
ξ1 − x1

x2
ξ2

) , (56)

where the relation �2 = −(x1/x2)�1 has been accounted
for. The expression for �2 can be easily obtained from
Eq. (56) by making the changes 1 ↔ 2. The solution (56)
is indeed consistent with the requirement x1�1 + x2�2 =
0. This is because x1γ1 + x2γ2 = 1, B2 = −(x1/x2)B1, and
ω11 − (x1/x2)ω12 + ξ1/x1 = ω22 − (x2/x1)ω21 + ξ2/x2.

The expression (56) provides �1 in terms of the parameters
of the mixture. Its explicit form is relatively long and is omit-
ted here for the sake of brevity. A simple but interesting case
corresponds to ordinary mixtures (elastic collisions) where
ζ (0) = 0, ξi = 0, γi = 1, β1 = 2μ12, β2 = 2μ21, and �1 is

�1 = 4πd/2

d2�
(

d
2

)T

(
ω11 − x1

x2
ω12

)−1[
n2σ

d
12χ

(0)
12 (x2μ21

− x1μ12) + 1

2
x2

(
n1σ

d
1 χ

(0)
11 − n2σ

d
2 χ

(0)
22

)]
. (57)
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Equation (57) differs from the one obtained by Jenkins and
Mancini [4] for nearly elastic hard spheres (d = 3). This
discrepancy is essentially due to the fact that the distribution
functions of each species in Ref. [4] are assumed to be
Maxwellian distributions even in inhomogeneous situations.
This was already noted by the authors of this paper since they
conclude that their expression for �1 could be improved by
determining the perturbations to the Maxwellians using the
Chapman-Enskog procedure [33]. Expression (57) accounts
for not only the different centers r and r ± σ i j of the colliding
pair in the Enskog collision operator (2) but also for the form
of the first-order distribution f (1) given by Eq. (24).

On the other hand, for a three-dimensional system (d = 3),
the expression (57) for �1 agrees with the one derived in
Ref. [31] [see Eq. (22d) of [31]] for a hard-sphere binary
mixture. This confirms the relevant known limiting cases for
the granular mixture results derived here for the temperature
ratios.

Once the first-order contributions to the partial tempera-
tures are known, the first-order contribution ζU to the cooling
rate can be explicitly obtained by employing Eqs. (32), (33),
(47), and (48). In addition, the second contribution η′′

b to
the bulk viscosity ηb can be obtained from Eq. (30). Thus,
ηb = η′

b + η′′
b is completely determined from Eqs. (30) and

(44). For elastic collisions (αi j = 1), as expected, the corre-
sponding expression for ηb is consistent with previous works
on ordinary mixtures [30–32].

V. BINARY GRANULAR MIXTURES

To illustrate the dependence of the coefficients �i, ζU , and
ηb on the parameter space of the system, a binary mixture
(s = 2 and so, �2 = −x1�1/x2) of inelastic hard spheres
(d = 3) is considered. The above coefficients depend on many
parameters: {x1, T, m1/m2, σ1/σ2, φ, α11, α22, α12}. A similar
complexity also exists in the elastic limit [32], so the relevant
new feature is the dependence of �1, ζU , and ηb on the
coefficients of restitution. Moreover, for the sake of simplicity,
the case of a common coefficient of restitution (α11 = α22 =
α12 ≡ α) of an equimolar mixture (x1 = 1

2 ) with σ1 = σ2

and solid volume fraction φ = 0.2 (moderately dense gas) is
considered. This reduces the parameter space to three quan-
tities: {T, m1/m2, α}. The dependence on temperature can
be scaled out by introducing the (dimensionless) quantities
� ∗

1 = (nσ 2
12v0/T )�1 and η∗

b ≡ ηb(α)/ηb(1), where ηb(1) is
the bulk viscosity for elastic collisions. The coefficient ζU is
dimensionless.

To display the dependence of the coefficients � ∗
1 , η∗

b,
and ζU on α, we have still to provide the form for the pair
distribution function χ

(0)
i j . In the case of spheres (d = 3), a

good approximation of χ
(0)
i j is [34–36]

χ
(0)
i j = 1

1 − φ
+ 3

2

φ

(1 − φ)2

σiσ jM2

σi jM3
+ 1

2

φ2

(1 − φ)3

(
σiσ jM2

σi jM3

)2

,

(58)
where M� = ∑

i xiσ
�
i . In Fig. 1, the (reduced) coefficient � ∗

1
is plotted as a function of the coefficient of restitution α for
several values of the mass ratio. It is quite apparent first that
the influence of the inelasticity on � ∗

1 is significant, specially
for high mass ratios. With respect to the dependence on the

FIG. 1. The (reduced) coefficient � ∗
1 as a function of the com-

mon coefficient of restitution α for a binary mixture of hard spheres
(d = 3) with x1 = 1

2 , σ1 = σ2, φ = 0.2, and three different values
of the mass ratio m1/m2: m1/m2 = 0.5 (a), m1/m2 = 4 (b), and
m1/m2 = 10 (c).

mass ratio, we see that while � ∗
1 increases with inelasticity

when m1/m2 < 1, the opposite happens when m1/m2 > 1.
Furthermore, Fig. 1 also highlights that the magnitude of
the first contribution to the partial temperature is in general
quite small in comparison with the values of the remain-
ing transport coefficients of the mixture [28,29]. To assess
the impact of � ∗

1 on the bulk viscosity and the first-order
contribution to the cooling rate, Figs. 2 and 3 show the α

dependence of the (reduced) coefficients ηb(α)/ηb(1) and ζU ,
respectively, for two values of the mass ratio. We also plot
the corresponding values of these coefficients when � ∗

1 is
neglected. Although both predictions (with and without � ∗

1 )
agree qualitatively, we observe that the effect of � ∗

1 on both
transport coefficients cannot be neglected specially for high
mass ratios and moderate inelasticity (for instance, α 
 0.6).
This means that previous results [27,28] derived for both

FIG. 2. The (reduced) bulk viscosity ηb(α)/ηb(1) as
a function of the common coefficient of restitution α for
a binary mixture of hard spheres (d = 3) with x1 = 1

2 ,
σ1 = σ2, φ = 0.2, and two different values of the mass
ratio m1/m2: m1/m2 = 0.5 (a) and m1/m2 = 10 (b).
The dashed lines are the results for the (reduced) bulk viscosity
when the contribution η′′

b to ηb is neglected.

032904-7

114 5.2 Article 4



RUBÉN GÓMEZ GONZÁLEZ AND VICENTE GARZÓ PHYSICAL REVIEW E 100, 032904 (2019)

FIG. 3. Magnitude of the (reduced) coefficient ζU as a function of
the common coefficient of restitution α for a binary mixture of hard
spheres (d = 3) with x1 = 1

2 , σ1 = σ2, φ = 0.2, and two different
values of the mass ratio m1/m2: m1/m2 = 0.5 (a) and m1/m2 = 10
(b). The dashed lines are the results for the coefficient ζU when the
contribution ζ (1,1) to ζU is neglected.

the bulk viscosity and the cooling rate of granular mixtures
must be slightly changed when the masses of the constituents
of the mixture become very disparate and/or the collisional
dissipation becomes significant.

VI. CONCLUDING REMARKS

One of the most intriguing differences between ordinary
and granular mixtures is the absence of energy equipartition
in homogeneous states. This means that the zeroth-order
contributions T (0)

i to the partial temperatures Ti (measuring
the mean kinetic energy of each species) of granular mixtures
are different for mechanically different components, reflect-
ing a violation of the equipartition theorem valid for elastic
collisions [9]. The origin of this violation is the inelasticity
in collisions, and its impact on transport problems such as
thermal diffusion segregation [37–39] has been shown to
be quite significant, specially for strong dissipation and/or
disparate mass ratios.

In addition, as was already noted in some of the pioneering
papers of the Enskog theory for multicomponent ordinary
mixtures [30–32], a breakdown of energy equipartition is
also present in the Navier-Stokes domain (first-order in spa-
tial gradients) for moderately dense mixtures. The origin of
this violation is associated with the spatial gradients, and
more specifically with the divergence of flow velocity since
the first-order contributions T (1)

i to the partial temperatures
are proportional to ∇ · U. This additional source of energy
nonequipartition is independent of the one appearing in the
homogeneous cooling state for granular mixtures.

On the other hand, the coefficients T (1)
i are usually ne-

glected in many of the works devoted to granular mixtures
[5,27,28] because only the first terms in the Sonine poly-
nomial expansion are retained. Since T (1)

i ∝ ∇ · U, an in-
teresting question is to assess the impact of the first-order
coefficients T (1)

i on both the bulk viscosity ηb and the first-
order contribution ζU to the cooling rate.

The goal of this paper has been to determine the coeffi-
cients T (1)

i from the Chapman-Enskog solution to the (inelas-
tic) version of the Enskog kinetic equation [3]. As in previous
works [27,28], this task has been achieved in two different
steps. First, we have obtained in an exact way the set of
linear integral equations that the first-order contributions T (1)

i
satisfy. This has allowed us to prove the solubility condition
for solving this set of integral equations. As a second step, an
approximate solution to the above set of equations is required
for practical purposes in order to explicitly express the coef-
ficients T (1)

i in terms of the parameter space of the problem
(masses, diameters, composition, density, and coefficients of
restitution). This task has been achieved by considering the
leading terms in the Sonine polynomial expansion. Thus, the
results derived here for T (1)

i extend to inelastic collisions the
calculations performed many years ago [30–32] for ordinary
hard-sphere mixtures. Moreover, the expressions obtained
here for ηb [given by Eqs. (28)–(30)] and ζU [given by
Eqs. (32), (47), and (48)] correct the previous results derived
in Refs. [27,28] where the contributions η′′

b and ζ (1,1) to ηb and
ζU , respectively, were implicitly neglected.

For the sake of illustration and to assess the impact of T (1)
i

on ηb and ζU , a binary mixture with a common coefficient
of restitution (αi j ≡ α) has been considered to analyze the
dependence of the above transport coefficients on inelasticity.
First, as Fig. 1 shows, we observe that the effect of inelasticity
on the first-order contributions to the partial temperatures is in
general quite important, specially for large mass ratios. With
respect to the influence of T (1)

1 on ηb and ζU , Figs. 2 and 3
highlight that the impact of the first-order partial tempera-
ture on both the bulk viscosity and the cooling rate can be
relatively important for moderate inelasticity and/or disparate
mass ratios.

An interesting problem is to extend the present results
to the case of polydisperse granular mixtures driven by a
stochastic bath with friction [40–42]. This kind of thermostat
models the effect of the surrounding interstitial viscous gas on
the dynamics of grains (granular suspensions). An extensive
study on the transport coefficients for driven granular mixtures
at low density has been carried out in Refs. [43–45]. In
contrast with the findings reported here for freely cooling
granular dilute gases (where T (1)

i = 0 when φ = 0), the results
derived for driven systems [45] show that the first-order con-
tributions T (1)

i to the partial temperatures are different from
zero even when φ = 0. The extension of the results obtained
in Refs. [43–45] to finite density is an interesting project.
Work along this line will be initiated in the near future.

In summary, we have revisited previous works on polydis-
perse granular mixtures [27,28] where the first-order contri-
butions T (1)

i to the partial temperatures were neglected. The
present work fixes the above limitation by including not only
the calculation of T (1)

i but also their influence on the bulk vis-
cosity ηb and on the first-order contribution ζU to the cooling
rate. Our results show first that the first-order coefficients T (1)

i
exhibit in general a complex dependence on the coefficients
of restitution of the mixture. In addition, they also show that
the impact of T (1)

i on both ηb and ζU cannot be neglected for
disparate masses and/or strong dissipation. In this context,
the results derived before for polydisperse dense granular
mixtures [27,28] must be slightly modified by including the
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contributions coming from the partial temperatures T (1)
i to the

transport properties and the cooling rate.
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The Navier-Stokes transport coefficients of multicomponent granular suspensions at moderate densities are
obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of
solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic
Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown
first that the system reaches a homogeneous steady state where the energy lost by inelastic collisions and viscous
friction is compensated for by the energy injected by the stochastic force. Once the homogeneous steady state
is characterized, a normal solution to the set of Enskog equations is obtained by means of the Chapman-
Enskog expansion around the local version of the homogeneous state. To first order in spatial gradients,
the Chapman-Enskog solution allows us to identify the Navier-Stokes transport coefficients associated with
the mass, momentum, and heat fluxes. In addition, the first-order contributions to the partial temperatures and the
cooling rate are also calculated. Explicit forms for the diffusion coefficients, the shear and bulk viscosities, and
the first-order contributions to the partial temperatures and the cooling rate are obtained in steady-state conditions
by retaining the leading terms in a Sonine polynomial expansion. The results show that the dependence of the
transport coefficients on inelasticity is clearly different from that found in its granular counterpart (no gas phase).
The present work extends previous theoretical results for dilute multicomponent granular suspensions [Khalil and
Garzó, Phys. Rev. E 88, 052201 (2013)] to higher densities.

DOI: 10.1103/PhysRevE.101.012904

I. INTRODUCTION

It is known that granular matter in nature is generally
immersed in a fluid, like air or water, and so a granular
flow is a multiphase process. However, there are situations
where the influence of the interstitial fluid on the granular
flow can be ignored. This happens, for instance, when the
stress due to the grains is greater than that exerted by the
fluid phase. Otherwise, there are many interesting phenomena
(such as species segregation in granular mixtures [1–6]) where
the effect of the fluid phase cannot be neglected, and hence,
in principle, one has to start from a theoretical description
that accounts for both phases (fluid and solid phases). In the
case of monodisperse gas-solid flows, one possibility would
be to describe the granular suspension in terms of a set of
two coupled kinetic equations for each one of the velocity
distributions of the different phases. However, the resulting

*ruben@unex.es
†nagi.khalil@urjc.es
‡vicenteg@unex.es; http://www.unex.es/eweb/fisteor/vicente/

theory would be very difficult to solve, since in particular the
different phases evolve over quite different spatial and tempo-
ral scales. The problem would be even more complex when
one considers multicomponent gas-solid flows. Thus, due to
the technical difficulties involved in the above approach, it
is more frequent in gas-solid flows to consider a suspension
model where the effect of the interstitial fluid on the solid
particles is via an effective external force [7].

The fluid-solid external force that models the effect of
the viscous gas on solid particles is usually constituted by
two different terms [8–11]. On the one hand, the first term
includes a dissipative force obeying Stokes’ law, namely, a
viscous drag force proportional to the instantaneous particle
velocity. On the other hand, the second term has a stochastic
component, modeled as a Gaussian white noise [12]. This
stochastic force provides kinetic energy to the solid particles
by randomly kicking them [13]. Hence, while the drag force
tries to model the friction of grains with the interstitial gas
phase, the stochastic Langevin-like term mimics the energy
transfer from the surrounding gas particles to the granular
particles. The above suspension model has been recently [14]
employed to get the Navier-Stokes transport coefficients of
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monocomponent granular suspensions by solving the Enskog
equation for inelastic hard spheres by means of the Chapman-
Enskog method [15] adapted to dissipative dynamics.

The determination of the Navier-Stokes transport coeffi-
cients of multicomponent granular suspensions is challenging.
This target is relevant not only from a fundamental point of
view but also from a more practical point of view since real
gas-solid flows are usually present in nature as an ensemble
of particles of different masses, sizes, and coefficients of
restitution. In such a case, given that the number of variables
and parameters involved in the analysis of multicomponent
systems is very large, it is usual to consider first more simple
systems, such as multicomponent granular suspensions at
low density. This was carried out previously in three papers
[10,16,17] where the complete set of Navier-Stokes transport
coefficients of a binary mixture were obtained from the Boltz-
mann kinetic equation.

The objective of this paper is to extend the analysis per-
formed for dilute bidisperse suspensions [10,16,17] to the
(inelastic) Enskog kinetic theory [18] for a description of
hydrodynamics and transport at higher densities. Since this
theory applies for moderate densities (let’s say, for instance,
solid volume fraction φ � 0.25 for hard spheres), a compar-
ison between kinetic theory and molecular dynamics (MD)
simulations becomes practical. This is perhaps one of the main
motivations of the present study.

As mentioned before, we want to derive here the Navier-
Stokes hydrodynamic equations of multicomponent granular
suspensions by solving the Enskog kinetic equation with the
Chapman-Enskog method. An important point in the applica-
tion of this method to the Enskog equation is the reference
state to be used in the perturbation scheme. As in the case
of dry (no gas phase) granular gases [18], the zeroth-order
velocity distribution f (0)

i of the component i cannot be chosen
a priori and must be consistently obtained as a solution of
the Enskog equation in the absence of spatial gradients. Since
we are interested here in computing the transport coefficients
under steady-state conditions, for simplicity one could take
a steady distribution f (0)

i at any point of the system [19,20].
However, this steady distribution is not the most general
election for f (0)

i since the presence of the interstitial fluid
introduces the possibility of a local energy unbalance, and,
hence, the zeroth-order distributions f (0)

i of each component
in the Chapman-Enskog solution are not in general stationary
distributions. This is because for arbitrary small deviations
from the homogeneous steady state the energy gained by
grains due to collisions with the background fluid cannot be
locally compensated with the other cooling terms arising from
the viscous friction and the collisional dissipation. Thus, in
order to get the transport coefficients, we have to achieve first
the unsteady set of integral equations verifying the first-order
distributions f (1)

i , and then we have to solve the above set
under steady-state conditions. As a consequence, the transport
coefficients depend not only on the steady temperature but
also on some quantities (derivatives of the temperature ratio)
which provide indirect information on the departure of the
time-dependent solution f (0)

i from its stationary form.
The mass, momentum, and heat fluxes are calculated here

up to first order in the spatial gradients of the hydrody-
namic fields. In addition, there are contributions to the partial

temperatures and the cooling rate proportional to the diver-
gence of the flow velocity field. These new contributions
have been recently [21] evaluated for dry granular mixtures.
As happens for binary systems [22–24], the determination
of the 12 relevant Navier-Stokes transport coefficients of a
binary mixture (10 transport coefficients and two first-order
contributions to the partial temperatures and the cooling rate)
requires one to solve 10 coupled integral equations. This is, of
course, a very long task. For this reason, in this work we will
address the determination of the four diffusion coefficients
associated with the mass flux, the shear and bulk viscosities
coefficients, and the first-order contributions to the partial
temperatures and the cooling rate.

The plan of the paper is as follows. The set of coupled
Enskog equations for multicomponent granular suspensions
and the corresponding balance equations for the densities of
mass, momentum, and energy are derived in Sec. II. Then
Sec. III analyzes the steady homogeneous state. As in pre-
vious works [10,25,26], scaling solutions are proposed whose
dependence on the temperature T occurs through the dimen-
sionless velocity c = v/v0 (v0 being a thermal speed) and
the reduced temperature θ = T/Tex (Tex being the background
temperature). Theoretical predictions for the temperature ratio
of both components T1/T2 are compared against MD simu-
lations. The comparison shows in general a good agreement
for conditions of practical interest. Section IV is focused on
the application of the Chapman-Enskog expansion around the
unsteady reference distributions f (0)

i (r, v, t ) up to first order in
the spatial gradients. The Navier-Stokes transport coefficients
are defined in Sec. V and given in terms of the solutions of a
set of linear coupled integral equations. The leading terms in
a Sonine polynomial expansion are considered in Sec. VI to
solve the integral equations defining the diffusion coefficients,
the shear viscosity, and the first-order contributions to the
partial temperatures and the cooling rate. All these coefficients
are explicitly determined as functions of both the granular and
background temperatures, the density, the concentration, and
the mechanical parameters of the mixture (masses, diameters,
and coefficients of restitution). The dependence of the trans-
port coefficients, the partial temperatures, and the cooling rate
on the parameter space is illustrated in Sec. VII for several
systems. It is shown that the impact of the gas phase on the
transport coefficients is in general quite significant since their
dependence on inelasticity is different from the one obtained
for dry granular mixtures [18,22–24]. The paper is concluded
in Sec. VIII with a brief discussion of the results obtained in
this work. Further details of the calculations carried out here
are given in three appendices.

II. ENSKOG KINETIC EQUATION FOR POLYDISPERSE
GAS-SOLID FLOWS

A. Model for multicomponent granular suspensions

We consider a binary mixture composed of inelastic hard
disks (d = 2) or spheres (d = 3) of masses mi and diameters
σi (i = 1, 2). The solid particles are immersed in an ordinary
gas of viscosity ηg. Spheres are assumed to be completely
smooth so that inelasticity of collisions between particles
of the component i with particles of the component j is
characterized only by the constant (positive) coefficients of
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restitution αi j � 1. The mixture is also assumed to be in the
presence of the gravitational field, and, hence, each particle
feels the action of the force Fi = mig, where g is the gravity
acceleration. For moderate densities, the one-particle velocity
distribution function fi(r, v, t ) of the component i verifies the
set of nonlinear Enskog equations [18]

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
+ Fi fi =

2∑
j=1

Ji j[r, v| fi, f j], (1)

where the Enskog collision operator is

Ji j[r1, v1| fi, f j]

= σ d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [α−2
i j χi j (r1, r1 − σ i j ) fi(r1, v′′

1, t ) f j (r1 − σ i j, v′′
2, t )

−χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )
]
. (2)

In Eq. (1) the operator Fi represents the fluid-solid interaction
force that models the effect of the viscous gas on the solid
particles of the component i. Its explicit form will be given
below. In addition, σ i j = σi j σ̂, σi j = (σi + σ j )/2, σ̂ is a unit
vector directed along the line of centers from the sphere of the
component i to that of the component j at contact, � is the
Heaviside step function, g12 = v1 − v2 is the relative velocity
of the colliding pair, and χi j (r1, r1 + σ i j ) is the equilibrium
pair correlation function of two hard spheres, one for the
component i and the other for the component j at contact
(namely, when the distance between their centers is σi j). The
precollisional velocities (v′′

1, v′′
2 ) are given by

v′′
1 = v1 − μ ji

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (3)

v′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (4)

where μi j = mi/(mi + mj ).
As in previous works on granular suspensions [9,11,14,27],

the influence of the surrounding gas on the dynamics of grains
is accounted for via an instantaneous fluid force. For low
Reynolds numbers, we assume that the external force is com-
posed of two independent terms. One term is a viscous drag
force (Fdrag

i ) proportional to the particle velocity v. This term
takes into account the friction of particles of the component
i with the viscous gas. A subtle point in the choice of the ex-
plicit form of the drag force Fdrag

i for multicomponent systems
is that it can be defined to be the same for both components,
or it can be chosen to be different for both components. Here,
for consistency with simulations of bidisperse gas-solid flows
[28–30], we will assume that

Fdrag
i = −miγi(v − Ug), (5)

where γi is the (positive) drift or friction coefficient associated
with the component i. In addition, since the model tries to
model gas-solid flows, the drag force (5) has been defined
in terms of the relative velocity v − Ug where Ug is the
mean fluid velocity of the gas phase. This latter quantity is
assumed to be a known quantity of the suspension model.
Thus, according to Eq. (5), in the Enskog equation (1) the drag
force is represented by the operator

Fdrag
i fi → −γi

∂

∂v
· (v − Ug) fi. (6)

The second term in the gas-to-solid force corresponds
to a stochastic Langevin force (Fst

i ) representing Gaussian
white noise [12]. This force attempts to simulate the kinetic
energy gain of grains due to eventual collisions with the more
energetic particles of the surrounding gas [13]. In the context
of the Enskog equation (1), the stochastic force is represented
by a Fokker-Planck collision operator of the form [31–34]

F st
i fi → −γiTex

mi

∂2 fi

∂v2
, (7)

where Tex can be interpreted as the temperature of the back-
ground (or bath) gas.

Although the drift coefficient γi is in general a tensor,
here for simplicity we assume that this coefficient is a scalar
proportional to the viscosity of the gas phase ηg [7]. In ad-
dition, according to the results obtained in lattice-Boltzmann
simulations of low-Reynolds-number fluid flow in bidisperse
suspensions [28–30], the friction coefficients γi must be func-
tions of the partial volume fractions φi and the total volume
fraction φ = φ1 + φ2 where

φi = πd/2

2d−1d�
(

d
2

)niσ
d
i . (8)

Here

ni =
∫

dv fi(v) (9)

is the local number density of the component i. The coeffi-
cients γi can be written as

γi = γ0Ri(φi, φ), (10)

where γ0 ∝ ηg ∝ √
Tex. Explicit forms of Ri(φi, φ) can

be found in the literature for polydisperse gas-solid
flows [28–30]. In particular, for hard spheres (d = 3),
low-Reynolds-number fluid and moderate densities, Yin
and Sundaresan [29] have proposed the expression γi =
(18ηg/ρσ 2

12)Ri where the dimensionless function Ri is

Ri(φi, φ) = ρσ 2
12

ρiσ
2
i

(1 − φ)φiσi

φ

2∑
j=1

φ j

σ j

[
10φ

(1 − φ)2

+ (1 − φ)2(1 + 1.5
√

φ)

]
. (11)

Hence, according to Eqs. (6) and (7), the operator Fi fi reads

Fi fi = Fdrag
i fi + F st

i fi

→ −γi�U · ∂ fi

∂v
− γi

∂

∂v
· V fi − γiTex

mi

∂2 fi

∂v2
,

(12)

and the Enskog equation for the component i becomes

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
− γi�U · ∂ fi

∂v
− γi

∂

∂v
· V fi

− γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j]. (13)
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In Eq. (12), �U = U − Ug, V = v − U is the peculiar veloc-
ity, and

U = ρ−1
2∑

i=1

∫
dv miv fi(v) (14)

is the local mean flow velocity of the mixture. Here ρ =∑i ρi

is the total mass density, and ρi = mini is the mass density of
the component i.

The suspension model (13) is similar to the one proposed in
Ref. [10] to obtain the Navier-Stokes transport coefficients of
multicomponent granular suspensions at low density. In this
latter model [10], the gas phase depends on two parameters:
the friction coefficient of the drag force (γb in the notation
of Ref. [10]) and the strength of the correlation (ξ 2

b in the
notation of Ref. [10]). However, in contrast with the suspen-
sion model proposed here, both parameters (γb and ξ 2

b ) were
assumed to be independent and the same for each one of the
components. Therefore, in the low-density limit, the results
derived here reduce to those obtained previously [10] when
one makes the changes γ1 = γ2 = γb [with Ri(φi, φ) = 1] and
ξ 2

b = 2γbTex. Here, in the notation of Ref. [10], the other
constants of the driven model are chosen to be β = 0 and
λ = 1; this is one of the possible elections consistent with the
fluctuation-dissipation theorem for elastic collisions [12].

B. Balance equations

Apart from the partial densities ni and the flow velocity
U, the other important hydrodynamic field is the granular
temperature T . It is defined as

T = 1

n

2∑
i=1

∫
dv

mi

d
V 2 fi(v), (15)

where n = n1 + n2 is the total number density. The granular
temperature T can also be defined in terms of the partial
kinetic temperatures T1 and T2 of the components 1 and 2,
respectively. The partial kinetic temperature Ti measures the
mean kinetic energy of the component i. They are defined as

Ti = mi

dni

∫
dv V 2 fi(v), i = 1, 2. (16)

In accordance with Eq. (15), the granular temperature T of the
mixture also can be written as

T =
2∑

i=1

xiTi, (17)

where xi = ni/n is the concentration or mole fraction of the
component i.

In order to obtain the balance equations for the hydrody-
namic fields, an important property of the integrals involv-
ing the (inelastic) Enskog collision operator Ji j[r, v| fi, f j] is
[18,35]

Iψ ≡
∫

dv1 ψ (v1)Ji j[r1, v1| fi, f j]

= σ d−1
i j

∫
dv1

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

×χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )

× [ψ (v′
1) − ψ (v1)], (18)

where ψ (v) is an arbitrary function of v and

v′
1 = v1 − μ ji(1 + αi j )(σ̂ · g12 )̂σ. (19)

The balance equations for the densities of mass, momentum,
and energy can be derived by taking velocity moments in the
Enskog equation (13) and using the property (18). They read

Dt ni + ni∇ · U + ∇ · ji

mi
= 0, (20)

Dt U + ρ−1∇ · P = g − ρ−1�U
2∑

i=1

ρiγi − ρ−1(γ1 − γ2)j1,

(21)

Dt T − T

n

2∑
i=1

∇ · ji

mi
+ 2

dn
(∇ · q + P : ∇U)

= − 2

dn
�U ·

2∑
i=1

γi ji + 2
2∑

i=1

xiγi(Tex − Ti ) − ζT . (22)

In the above equations, Dt = ∂t + U · ∇ is the material deriva-
tive, and

ji = mi

∫
dv V fi(v) (23)

is the mass flux for the component i relative to the local flow
U. A consequence of the definition (23) of the fluxes ji is that
j1 = −j2. The pressure tensor P(r, t ) and the heat flux q(r, t )
have both kinetic and collisional transfer contributions:

P = Pk + Pc, q = qk + qc. (24)

The kinetic contributions Pk and qk are given by

Pk =
2∑

i=1

∫
dv miVV fi(v), (25)

qk =
2∑

i=1

∫
dv

mi

2
V 2V fi(v). (26)

The collisional transfer contributions are [22]

Pc =
2∑

i=1

2∑
j=1

σ d
i jmi j

1 + αi j

2

∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)2σ̂σ̂

∫ 1

0
dx

× f (2)
i j [r − xσ i j, r + (1 − x)σ i j, v1, v2, t], (27)

qc =
2∑

i=1

2∑
j=1

σ d
i jmi j

1 + αi j

8

∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)2σ̂[4(̂σ · Gi j )

+ (μ ji − μi j )(1 − αi j )(σ̂ · g12)]
∫ 1

0
dx

× f (2)
i j [r − xσ i j, r + (1 − x)σ i j, v1, v2; t]. (28)
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Here mi j = mimj/(mi + mj ) is the reduced mass, Gi j =
μi jV1 + μ jiV2 is the velocity of the center of mass, and

f (2)
i j (r1, r2, v1, v2, t ) ≡ χi j (r1, r2) fi(r1, v1, t ) f j (r2, v2, t ).

(29)
Finally, the (total) cooling rate ζ is due to inelastic collisions
among all components. It is given by

ζ = 1

2dnT

2∑
i=1

2∑
j=1

σ d−1
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)3 f (2)
i j [r, r + σ i j, v1, v2; t]. (30)

As expected, the balance equations (20)–(22) are not a
closed set of equations for the fields n1, n2, U, and T . To
turn these equations into a set of closed equations, one has
to express the fluxes and the cooling rate in terms of the
hydrodynamic fields and their gradients. The corresponding
constitutive equations can be obtained by solving the Enskog
kinetic equation (13) from the Chapman-Enskog method [15]
adapted to dissipative dynamics. This will be worked out in
Sec. IV.

III. HOMOGENEOUS STEADY STATES

A. Time-dependent state

Before considering inhomogeneous states, we will study
first the homogeneous problem. This state has been widely
analyzed in Ref. [10] for a similar suspension model. In
the homogeneous state, the partial densities ni(r, t ) ≡ ni are
constant, the granular temperature T (r, t ) ≡ T (t ) is spatially
uniform, the gas velocity Ug is assumed to be uniform, and,
with an appropriate selection of the reference frame, both
mean flow velocities vanish (U = Ug = 0). Under these con-
ditions and in the absence of gravity (g = 0), Eq. (13) reads

∂t fi − γi
∂

∂v
· v fi − γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j], (31)

where

Ji j[ fi, f j] = χi jσ
d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [α−2
i j fi(v′′

1 ) f j (v′′
2 ) − fi(v1) f j (v2)

]
(32)

is the Boltzmann collision operator multiplied by the (con-
stant) pair correlation function χi j . For homogeneous states,
the fluxes vanish, and so the only nontrivial balance equation
is that of the temperature (22):

∂t T = 2
2∑

i=1

xiγi(Tex − Ti ) − ζT, (33)

where, according to Eq. (30), the expression of ζ for homoge-
neous states can be written as

ζ = π (d−1)/2

2d�
(

d+3
2

) 1

nT

2∑
i=1

2∑
j=1

σ d−1
i j mi jχi j

(
1 − α2

i j

)
×
∫

dv1

∫
dv2 g3

12 fi(v1) f j (v2). (34)

Analogously, the evolution equation for the partial temper-
atures Ti can be obtained from Eq. (31) as

∂t Ti = 2γi(Tex − Ti ) − ζiTi, (35)

where we have introduced the partial cooling rates ζi for the
partial temperatures Ti. They are defined as

ζi = − mi

dniTi

2∑
j=1

∫
dv V 2Ji j[ fi, f j]. (36)

The total cooling rate ζ can be rewritten in terms of the partial
cooling rates ζi when one takes into account the constraint
(17) and the evolution equations (33) and (35). The result is

ζ =
2∑

i=1

xiτiζi, (37)

where τi = Ti/T is the temperature ratio of the component i.
As usual, for times longer than the mean-free time, the

system is expected to reach a hydrodynamic regime where
the distributions fi depend on time through the only time-
dependent hydrodynamic field of the problem: the granular
temperature T [36]. In this regime,

∂t fi = ∂ fi

∂T
∂t T =

[
2

2∑
i=1

xiγi(θ
−1 − τi ) − ζ

]
T

∂ fi

∂T
, (38)

and the homogeneous Enskog equation (31) becomes[
2

2∑
i=1

xiγi(θ
−1 − τi ) − ζ

]
T

∂ fi

∂T
− γi

∂

∂v
· v fi

− γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j], (39)

where θ = T/Tex.

B. Steady state

In the steady state (∂t Ti = 0), Eq. (35) gives the following
set of coupled equations for the (asymptotic) partial tempera-
tures Ti,s:

2γi(Tex − Ti,s) − ζi,sTi,s = 0, (40)

where the subscript s means that all the quantities are evalu-
ated in the steady state. To determine these temperatures one
has to get the steady-state solution to Eq. (39). By using the
relation

2
2∑

i=1

xiγi(θ
−1 − τi ) − ζ = 0, (41)

Eq. (39) reads

−γi
∂

∂v
· v fi,s − γiTex

mi

∂2 fi,s

∂v2
=

2∑
j=1

Ji j[ fi,s, f j,s]. (42)

As shown for dilute driven multicomponent granular gases
[10], dimensionless analysis requires that fi,s has the scaled
form

fi,s(ni, v, γi, Tex) = niv
−d
0 ϕi,s(c, x1, γ

∗
i,s, θs), (43)

012904-5

122 5.3 Article 5



GONZÁLEZ, KHALIL, AND GARZÓ PHYSICAL REVIEW E 101, 012904 (2020)

where the unknown scaled function ϕi,s depends on the di-
mensionless parameters

c = v
v0s

, γ ∗
i,s = γi

nσ d−1
12 v0s

. (44)

Here v0s = √
2Ts/m is the thermal speed and m =∑i mi/2.

Note that the time-dependent velocity distribution function
fi(v, t ) also admits the scaling form (43).

The (reduced) drift parameters γ ∗
i,s can be easily expressed

in terms of the mole fraction, the volume fractions φi and φ,
and the (reduced) temperature θs as

γ ∗
i,s = λiθ

−1/2
s , λi =

√
2πd/2

2d d�
(

d
2

) Ri(φi, φ)√
T ∗

ex

∑
j (σ12/σ j )dφ j

,

(45)
T ∗

ex ≡ Tex/(mσ 2
12γ

2
0 ) being the (dimensionless) background

gas temperature. Note that λ1/R1 = λ2/R2. As expected from
previous works [10,14,37,38], the dependence of the scaled
distribution ϕi,s on the temperature is not only through the
dimensionless velocity c but also through the dimensionless
parameter θs. This scaling differs from the one assumed in free
cooling systems [31,39] where all the temperature dependence
of ϕi,s is encoded through c.

The scaling given by Eq. (43) is equivalent to the one
proposed in Ref. [10] when one makes the mapping ξ ∗

s →
2λθ

−3/2
s , where λ1 = λ2 = λ and R1 = R2 = 1. The dimen-

sionless parameter ξ ∗
s is defined by Eq. (34) of Ref. [10]. Thus,

in the particular case of λi = λ and Ri = 1, the results for
homogeneous states are consistent with those derived before
[10] in the dilute regime (φ → 0).

In reduced form, Eq. (42) can be rewritten as

−γ ∗
i,s

∂

∂c
· cϕi,s − γ ∗

i,s

2Miθs

∂2ϕi,s

∂c2
=

2∑
j=1

J∗
i j[ϕi,s, ϕ j,s], (46)

where Mi = mi/m and J∗
i j = �Ji j/niv

1−d
0s , � = 1/nσ d−1

12 be-
ing proportional to the mean-free path of hard spheres. The
knowledge of the distributions ϕi allows us to get the partial
temperatures and the partial cooling rates. In the case of
elastic collisions (αi j = 1), T1,s = T2,s = Ts = Tex and hence,
Eq. (46) admits the simple solution ϕi,s = π−d/2Md/2

i e−Mic2
.

However, the exact form of the above distributions is not
known for inelastic collisions, and, hence, one has to consider
approximate forms for ϕi,s. In particular, previous results
derived for driven granular mixtures [34,40,41] have shown
that the partial temperatures can be well estimated by using
Maxwellian distributions at different temperatures for the
scaled distributions ϕi,s(c):

ϕi,s(c) → ϕi,M(c) = π−d/2β
d/2
i e−βic2

, (47)

where βi = MiTs/Ti,s. The (reduced) cooling rate ζ ∗
i,s =

�ζi,s/v0s can be determined by taking the approximation (47)
in Eq. (36). The result is

ζ ∗
i,s = 4π (d−1)/2

d�
(

d
2

) 2∑
j=1

x jχi jμ ji

(
σi j

σ12

)d−1(
βi + β j

βiβ j

)1/2

× (1 + αi j )

[
1 − μ ji

2
(1 + αi j )

βi + β j

β j

]
. (48)

The (reduced) partial temperatures θi,s = Ti,s/Tex can be
obtained from the steady-state condition (40) for i = 1, 2.
In reduced form, the equation for θi,s can be written
as

2λiθ
−1/2
s (1 − θi,s) − ζ ∗

i,sθi,s = 0. (49)

Note that Eq. (17) imposes the constraint x1θ1,s + x2θ2,s = θs.
Substitution of Eq. (48) into the set of equations (49) allows
us to get the partial temperatures in terms of the concentration
x1, the solid volume fraction φ, the (reduced) background
temperature T ∗

ex, and the mechanical parameters of the mixture
(mass and diameter ratios and coefficients of restitution). In
the low-density limit, Eq. (49) is consistent with the one
obtained in Ref. [10] after making the change 2λiθ

−1/2
s = ξ ∗

s .
Figure 1 shows the dependence of the temperature ratio

T1,s/T2,s on the (common) coefficient of restitution α (α ≡
α11 = α22 = α12) for a binary granular suspension of hard
spheres (d = 3). The lines are the theoretical results derived
from the Enskog equation, and the symbols refer to the results
obtained via event-driven MD simulations [42,43]. We have
simulated a system constituted by a total number of N = 203

inelastic, smooth hard spheres. The system is inside a three-
dimensional box of size L with periodic boundary conditions.
In addition to the interparticle collisions, particles of each
component change their velocities due to the interactions
with the bath (with Ug = 0), as explained in Ref. [41]. Three
different values of the solid volume fractions φ have been
analyzed: φ = 0.00785, φ = 0.1, and φ = 0.2. The first sys-
tem corresponds to a very dilute granular suspension, while
the two latter can be considered as moderately dense granular
suspensions. Two different values of the common coefficient
of restitution have been chosen, α = 0.8 and α = 0.9. Both
values of α represent a moderate degree of inelasticity. The
symbols are the simulation data where the squares are for α =
0.8 and the triangles are for α = 0.9. The Enskog theoretical
predictions are given by the solid (α = 0.8) and dashed (α =
0.9) lines.

Figure 1 highlights the excellent agreement found between
the Enskog theory and simulations in both the low-density
limit (φ = 0.00785) and moderate density (φ = 0.1). This
agreement is kept for both values of inelasticity and over
the whole range of mass ratios studied. The agreement is
also excellent for φ = 0.2 and α = 0.9; more quantitative
discrepancies appear for α = 0.8, especially for large values
of the mass ratio. These differences between the Enskog
theory and MD simulations for moderate densities and strong
inelasticity could be due to the fact that the impact of the
cumulants (which have been neglected in our solution) on
the temperature ratio could be non-negligible in this region of
the parameter space or due to a failure of the Enskog theory
(namely, molecular chaos hypothesis fails at high densities
and strong inelasticity). In any case, the good performance
of the Enskog results found here for the temperature ratio
contrasts with the results obtained in freely cooling granular
mixtures [33] where significant differences between theory
and simulations were found at φ = 0.2 (see, for instance,
Fig. 2 of Ref. [33]).

In summary, the comparison performed here for the tem-
perature ratio in homogeneous steady states for granular sus-
pensions shows again that the range of densities for which
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FIG. 1. Plot of the temperature ratio T1,s/T2,s versus the mass
ratio m1/m2 for a binary mixture of hard spheres (d = 3) with x1 =
1
2 , σ1/σ2 = 1 and two different values of the (common) coefficient of
restitution α: α = 0.8 (solid lines and squares) and α = 0.9 (dashed
lines and triangles). The lines are the theoretical Enskog results,
and the symbols refer to the MD simulation results. From top to
bottom, panel (a) corresponds to φ = 0.00785, panel (b) to φ = 0.1,
and panel (c) to φ = 0.2. The value of the (reduced) background
temperature is T ∗

ex = 1.

the Enskog kinetic equation becomes reliable likely decreases
with increasing inelasticity. This finding has been already
achieved in some previous works [41,44–48]. However, de-
spite this limitation, the Enskog theory can be still considered
as a remarkable theory for describing transport properties for
fluids with elastic and inelastic collisions.

IV. CHAPMAN-ENSKOG SOLUTION OF THE
ENSKOG EQUATION

We assume now that the homogeneous steady state is
slightly perturbed by the presence of spatial gradients. These
gradients induce fluxes of mass, momentum, and energy. The
knowledge of these fluxes allows us to identify the relevant
transport coefficients of the bidisperse granular suspension.
As in previous works on granular mixtures [10,22,23,49], we
consider states that deviate from the reference state (homo-
geneous time-dependent state) by small spatial gradients. In
this situation, the set of Enskog equations (13) can be solved
by means of the Chapman-Enskog method [15] conveniently
adapted to take into account the inelasticity in collisions.

As usual, for times longer than the grain-grain mean-free
time and distances larger than the grain-grain mean-free path,
we assume that the granular suspension has reached the so-
called hydrodynamic regime [15,50]. In this regime, (1) the
system has completely “forgotten” the details of the initial
conditions and in addition (2) the hydrodynamic description
is limited to the bulk domain of the system (namely, a region
far away from the boundaries). Under these conditions, the
Chapman-Enskog method seeks a special solution to the En-
skog kinetic equation: the so-called normal or hydrodynamic
solution. This type of solution is characterized by the fact that
all space and time dependence of the distributions fi(r, v, t )
occurs only via a functional dependence on the hydrodynamic
fields.

On the other hand, as noted in previous papers of granular
mixtures [22,49,51], there is more flexibility in the choice of
the hydrodynamic fields for the mass and heat fluxes of multi-
component granular fluids. Here, to compare with the results
previously derived for undriven dense granular mixtures [22],
we take the partial densities n1 and n2, the temperature T , and
the d components of the local flow velocity U as the d + 3
independent fields of the binary mixture. Therefore, in the
hydrodynamic regime, the distributions fi(r, v, t ) adopt the
normal form

fi(r, v, t ) = fi[v|n1(t ), n2(t ), T (t ), U(t )]. (50)

The notation on the right-hand side of Eq. (50) indicates a
functional dependence on the partial densities, temperature,
and flow velocity. Note that the functional dependence means
that in order to determine fi at the point r we need to know
the fields not only at r but also at the remaining points of the
system. This is formally equivalent to knowing n1, n2, T , and
U and their spatial derivatives at r.

Since we are perturbing the reference state with small
spatial gradients, we can simplify the functional dependence
(50) by expanding the distributions fi in powers of the spatial
gradients. In practice, in order to generate this expansion, fi

is expressed as a series expansion in a formal or bookkeeping
parameter ε:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (51)

where each factor ε means an implicit spatial gradient. More-
over, in ordering the different level of approximations in the
Enskog kinetic equation, one has to characterize the magni-
tude of the friction coefficients γi, the gravity field g, and
the term �U relative to the spatial gradients. As in the case
of elastic collisions [15], since the gravity field induces a
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pressure gradient ∇p (the so-called barometric formula), it is
assumed first that the magnitude of g is at least of first order in
the perturbation expansion. In addition, since γi does not give
rise to any flux in the mixture, it is considered to be to zeroth
order in gradients. Finally, with respect to the term �U, it is
expected that this term is at least to first order in gradients
because U relaxes to Ug in the absence of gradients.

As in the conventional Chapman-Enskog method [15], the
time derivative ∂t is also expanded as

∂t = ∂
(0)
t + ε∂

(1)
t + · · · . (52)

These expansions lead to similar expansions for the Enskog
operators Ji j :

Ji j = J (0)
i j + εJ (1)

i j + · · · , (53)

and the fluxes and the cooling rate when substituted into
Eqs. (23)–(30):

ji = j(0)
i + εj(1)

i + · · · , P = P(0) + εP(1) + · · · , (54)

q = q(0) + εq(1) + · · · , ζ = ζ (0) + εζ (1) + · · · . (55)

In addition, although the partial temperatures Ti are not hydro-
dynamic quantities, they must be also expanded in powers of
the gradients as [17,21]

Ti = T (0)
i + εT (1)

i + · · · . (56)

As usual, the hydrodynamic fields ni, U, and T are defined
in terms of the zeroth-order approximation:∫

dv
(

fi − f (0)
i

) = 0, (57)

2∑
i=1

∫
dv
{

miv,
mi

2
V 2
}(

fi − f (0)
i

) = {0, 0}. (58)

Since the constraints (57) and (58) must hold at any order in
ε, one has ∫

dv f (�)
i = 0 (59)

and
2∑

i=1

∫
dv
{

miv,
mi

2
V 2
}

f (�)
i = {0, 0} (60)

for � � 1. A consequence of Eq. (60) is that j(�)
1 = −j(�)

2 and
n1T (�)

1 = −n2T (�)
2 for � � 1. This is the usual application of

the Chapman-Enskog method to solve kinetic equations. Here
we will restrict our calculations to first order in ε, the so-called
Navier-Stokes hydrodynamic order.

A. Zeroth-order approximation

To zeroth order in ε, the Enskog kinetic equation (13) for
f (0)
i reads

∂
(0)
t f (0)

i − γi
∂

∂v
· V f (0)

i − γi
Tex

mi

∂2 f (0)
i

∂v2
=

2∑
j=1

J (0)
i j

[
f (0)
i , f (0)

j

]
,

(61)

where the collision operator J (0)
i j [ f (0)

i , f (0)
j ] is given by

Eq. (32) with the replacement fi → f (0)
i (r, v, t ). The balance

equations at this order give

∂
(0)
t ni = 0, ∂

(0)
t U = 0 (62)

and

∂
(0)
t T = 2

2∑
i=1

xiγi
(
Tex − T (0)

i

)− ζ (0)T, (63)

where ζ (0) is determined by Eq. (34) to zeroth order. In terms
of ζ

(0)
i , ζ (0) is given by Eq. (37). An accurate estimate of

ζ
(0)
i is obtained by considering the Maxwellian approximation

(47) to ϕi. In this case, ζ (0)
i = v0ζ

∗
i,0/� where v0(T ) = √

2T/m
and ζ ∗

i,0 is given by Eq. (48) with the replacements xi →
xi(r, t ), χi j → χ

(0)
i j (r, t ), Ti,s → T (0)

i (r, t ), and Ts → T (r, t ).

Here χ
(0)
i j is obtained from the functional χi j (r, r ± σ i j |{n�})

by evaluating all the densities n� at the point of interest
r. Furthermore, in Eqs. (62) and (63), use has been made
of the isotropy in velocity of the zeroth-order distributions
f (0)
i which lead to j(0)

i = q(0) = 0 and Pλβ = pδλβ , where the
hydrostatic pressure p is [22]

p = nT + πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ jinin jσ
d
i jχ

(0)
i j T (0)

i (1 + αi j ). (64)

Since f (0)
i is a normal solution and the zeroth-order time

derivatives of ni and U are zero, then ∂
(0)
t f (0)

i = (∂T f (0)
i )∂ (0)

t T
where ∂

(0)
t T is given by Eq. (63). With this result, Eq. (61) can

be rewritten as

�(0)T
∂ f (0)

i

∂T
− γi

∂

∂v
· V f (0)

i − γiTex

mi

∂2 f (0)
i

∂v2

=
2∑

j=1

J (0)
i j

[
f (0)
i , f (0)

j

]
, (65)

where

�(0) ≡ 2
2∑

i=1

xiγi(θ
−1 − τi ) − ζ (0). (66)

Although Eq. (65) has the same form as the one corresponding
Enskog equation (39) for a strictly homogeneous state, the
zeroth-order solution f (0)

i (r, v, t ) is a local distribution func-
tion. In fact, the stationary solution to Eq. (65) corresponds to
�(0) = 0 and has been previously studied in Sec. III. However,
as noted in previous works [10,14,37,52], since the densities
ni(r, t ) and the granular temperature T (r, t ) are defined sep-
arately in the local reference state f (0)

i , then the temperature
is in general a time-dependent function (∂ (0)

t T �= 0). Thus, the
distribution f (0)

i depends on time through its dependence on
the temperature.

The solution to Eq. (65) can be expressed in the form
(43) (with the replacements γ ∗

i,s → γ ∗
i and θs → θ ) where the

scaled distribution ϕi verifies the unsteady equation[
2

2∑
i=1

xiγ
∗
i (θ−1 − τi ) − ζ ∗

0

]
θ
∂ϕi

∂θ
+
[
ζ ∗

0

2
−

2∑
i=1

xiγ
∗
i

× (θ−1 − τi ) − γ ∗
i

]
∂

∂c
· cϕi − γ ∗

i

2Miθ

∂2ϕi

∂c2

=
2∑

j=1

J∗
i j[ϕi, ϕ j]. (67)
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Here the derivative ∂ϕi/∂θ is taken at constant c, ζ ∗
0 =

�ζ (0)/v0, γ ∗
i = λiθ

−1/2, and upon deriving Eq. (67) use has
been made of the property

T
∂ f (0)

i

∂T
= −1

2

∂

∂V
· V f (0)

i + niv
−d
0 θ

∂ϕi

∂θ
. (68)

The evolution of the temperature ratios τi may be easily
obtained by multiplying Eq. (67) by c2 and integrating over
c. In compact form, the result can be written as

�∗θ
∂τi

∂θ
= −τi�

∗ + �∗
i , (69)

where τi = T (0)
i /T ,

�∗ = ��(0)

v0
= x1�

∗
1 + x2�

∗
2, (70)

and

�∗
i = 2γ ∗

i (θ−1 − τi ) − τiζ
∗
i,0. (71)

In the steady state (�∗ = �∗
i = 0), Eqs. (69) are consistent

with Eqs. (49) for i = 1, 2. Beyond the steady state, Eq. (69)
must be numerically solved to obtain the dependence of τ1

and τ2 on θ . In addition, as will be shown in Sec. V, to de-
termine the diffusion transport coefficients in the steady state
one needs to know the derivatives �θ,1 ≡ (∂τ1/∂θ )s, �λ1,1 ≡
(∂τ1/∂λ1)s, �x1,1 ≡ (∂τ1/∂x1)s, and �φ,1 ≡ (∂τ1/∂φ)s. Here,
as before, the subscript s means that all the derivatives are
evaluated at the steady state. Since λ2 = (R2/R1)λ1, then
(∂τ1/∂λ2)s = (R1/R2)(∂τ1/∂λ1)s. Analytical expressions of
these derivatives are provided in Appendix A.

The dependence of the derivatives �θ,1, �λ1,1, �x1,1, and
�φ,1 on the common coefficient of restitution αi j ≡ α is plot-
ted in Fig. 2. We have considered a three-dimensional system
(d = 3) with x1 = 1

2 , m1/m2 = 10, σ1/σ2 = 1, φ = 0.2, and
T ∗

ex = 0.1. We observe that in general the magnitude of the
derivatives is not negligible, especially the derivatives �θ,1

and �φ,1 at strong inelasticity.

B. First-order approximation

The analysis to first order in spatial gradients is more
complex than that of the zeroth order. It follows similar steps
as those worked out for undriven dense granular mixtures
[22,23] and driven dilute granular mixtures [10]. Some
technical details are displayed in Appendix B for the sake of
completeness. The first-order velocity distribution functions

FIG. 2. Plot of the derivatives �θ,1 (a), �λ1,1 (b), �x1,1 (c), and
�φ,1 (d) for d = 3, x1 = 1

2 , m1/m2 = 10, σ1/σ2 = 1, φ = 0.2, and
T ∗

ex = 0.1.

f (1)
i are given by

f (1)
i = Ai · ∇ ln T +

2∑
j=1

Bi j · ∇ ln n j + Ci,λβ

1

2

(
∂λUβ

+ ∂βUλ − 2

d
δλβ∇ · U

)
+ Di∇ · U + E i · �U, (72)

where ∂β ≡ ∂/∂rβ . The unknowns Ai(V), Bi j (V), Ci,λβ (V),
Di(V), and E i(V) are functions of the peculiar velocity,
and they are the solutions of the linear integral equations
(B19)–(B23).

On the other hand, as already pointed out in previous
works [10,14,37], the evaluation of the transport coefficients
under unsteady conditions requires one to know the complete
time dependence of the first-order corrections to the mass,
momentum, and heat fluxes. This is quite an intricate problem.
A more tractable situation occurs when one is interested in
evaluating the transport coefficients in steady-state conditions.
In this case, since the fluxes j(1)

1 , P(1)
λβ , and q(1) are of first

order in gradients, then the transport coefficients must be
determined to zeroth order in the deviations from the steady
state (namely, when the condition �(0) = 0 applies). In this
situation, the set of coupled linear integral equations (B19)–
(B23) becomes, respectively,

−
⎡⎣2

2∑
j=1

γ jx j

(
θ−1 + θ

∂τ j

∂θ

)
+ 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ

⎤⎦Ai − γi
∂

∂v
· VAi − γiTex

mi

∂2

∂v2
Ai

+ (γ2 − γ1)DT
1

∂ f (0)
i

∂V
−

2∑
j=1

(
J (0)

i j

[Ai, f (0)
j

]+ J (0)
i j

[
f (0)
i ,A j

]) = Ai, (73)

− γi
∂

∂v
· VBi j − γiTex

mi

∂2

∂v2
Bi j + (γ2 − γ1)

m1ρ j

ρ2
D1 j

∂ f (0)
i

∂V
−

2∑
�=1

(
J (0)

i�

[Bi j, f (0)
�

]+ J (0)
i�

[
f (0)
i ,B� j

]) = Bi j

+
(

n j
∂ζ (0)

∂n j
− 2n j

2∑
�=1

{
γ�x�

[
(θ−1 − τ�)

(
∂ ln γ�

∂n j
+ ∂ ln x�

∂n j

)
−
(

∂τ�

∂x1

∂x1

∂n j
+ ∂τ�

∂λ1

∂λ1

∂n j
+ ∂τ�

∂φ

∂φ

∂n j

)]})
Ai, (74)
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− γi
∂

∂v
· VCi,λβ − γiTex

mi

∂2

∂v2
Ci,λβ −

2∑
j=1

(
J (0)

i j

[
Ci,λβ, f (0)

j

]+ J (0)
i j

[
f (0)
i , C j,λβ

]) = Ci,λβ, (75)

− γi
∂

∂v
· VDi − γiTex

mi

∂2

∂v2
Di −

⎛⎝ζ (1,1)T + 2
2∑

j=1

γ jx j� j

⎞⎠∂ f (0)
i

∂T
−

2∑
j=1

(
J (0)

i j

[
Di, f (0)

j

]+ J (0)
i j

[
f (0)
i ,D j

]) = Di, (76)

− γi
∂

∂v
· VE i − γiTex

mi

∂2

∂v2
E i + ρ−1(γ2 − γ1)DU

1
∂ f (0)

i

∂V
−

2∑
j=1

(
J (0)

i j

[E i, f (0)
j

]+ J (0)
i j

[
f (0)
i ,E j

]) = Ei. (77)

The explicit forms of the coefficients Ai, Bi j , Ci,λβ , Di, and
Ei are given by Eqs. (B11)–(B15), respectively. These coeffi-
cients are functions of V and the hydrodynamic fields.

When writing Eqs. (73), (74), and (77), use has been made
of the constitutive equation of the mass flux j(1)

1 to first order
in spatial gradients:

j(1)
i = −

2∑
j=1

miρ j

ρ
Di j∇ ln n j − ρDT

i ∇ ln T − DU
i �U. (78)

In Eq. (78), Di j are the mutual diffusion coefficients, DT
i

are the thermal diffusion coefficients, and DU
i are the ve-

locity diffusion coefficients. Since j(1)
1 = −j(1)

2 , then D21 =
−(m1/m2)D11, D22 = −(m1/m2)D12, DT

2 = −DT
1 , and DU

2 =
−DU

1 . In addition, the form of the first-order contribution ζ (1)

to the cooling rate has been also employed to obtain Eq. (76).
This coefficient can be written as

ζ (1) = ζU ∇ · U, (79)

where

ζU = ζ (1,0) + ζ (1,1). (80)

The coefficient ζ (1,0) is defined by Eq. (B8), while ζ (1,1) is a
functional of the unknowns Di. Its form is given by Eq. (B25).
Also, in Eq. (76), use has been made of the first-order contri-
bution to the partial temperatures T (1)

1 = −n2T (1)
2 /n1. Since

T (1)
i is a scalar, it is coupled to ∇ · U and has the form [17,21]

T (1)
i = �i∇ · U, (81)

where

�i = mi

dni

∫
dv V 2Di(V). (82)

The direct integration of Eqs. (B11)–(B15) for the functions
Ai, Bi j , Ci,λβ , Di, and Ei yields the following conditions:∫

dv(Ai, Bi j,Ci,λβ, Di, Ei ) = (0, 0, 0, 0, 0), (83)

2∑
i=1

∫
dvmiVμ

⎛⎜⎜⎜⎝
Ai,λ

Bi,λ

Ci,λβ

Di

Ei,λ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎠, (84)

2∑
i=1

∫
dv

1

2
miV

2

⎛⎜⎝Ai

Bi

Di

Ei

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠, (85)

and

2∑
i=1

∫
dv

1

2
miV

2Ci,λβ

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
= 0.

(86)
Since Ai ∝ Ai, Bi j ∝ Bi j , Ci,λβ ∝ Ci,λβ , Di ∝ Di, and E i ∝
Ei, then the solubility conditions (59) and (60) are fulfilled,
and, so, there exist solutions to the integral equations (73)–
(76); this is the so-called Fredholm alternative [53].

V. NAVIER-STOKES TRANSPORT COEFFICIENTS

The forms of the constitutive equations for the irreversible
fluxes to first order in spatial gradients can be written using
simple symmetry arguments [18]. While the mass flux j(1)

i of
the component i is given by Eq. (78), the pressure tensor P(1)

λβ

has the form

P(1)
λβ = −η

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
− δλβηb∇ · U,

(87)
while the heat flux q(1) can be written as

q(1) = −
2∑

i=1

2∑
j=1

T 2Dq,i j∇ ln n j − T κ∇ ln T + κU �U.

(88)
In Eqs. (87)–(88), η is the shear viscosity coefficient, ηb is
the bulk viscosity coefficient, κ is the thermal conductivity
coefficient, κU is the velocity conductivity, and Dq,i j are the
partial contributions to the Dufour coefficients Dq,i defined
as [18]

Dq,i =
2∑

�=1

Dq,�i. (89)

The transport coefficients associated with the mass flux are
defined as

DT
i = − mi

dρ

∫
dv V · Ai(V), (90)

Di j = − ρ

dρ j

∫
dv V · Bi j (V), (91)

DU
i = −mi

d

∫
dv V · E i(V). (92)
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As said in Sec. II, in contrast to the mass flux, the pressure
tensor and heat flux have kinetic and collisional contributions.
To first order, their kinetic contributions are

Pk(1)
λβ =

2∑
i=1

∫
dv miVλVβ fi(V), (93)

qk(1) =
2∑

i=1

∫
dv

mi

2
V 2V fi(V). (94)

According to Eqs. (87) and (93), the kinetic contribution ηk

to the shear viscosity can be written as ηk =∑2
i=1 ηk

i , where
[18]

ηk
i = − 1

(d − 1)(d + 2)

∫
dv miVλVβCi,λβ (V). (95)

In the case of the heat flux, according to Eqs. (88) and (94),
the kinetic contribution Dk

q,i j to the Dufour coefficient is

Dk
q,i j = − 1

dT 2

∫
dv

1

2
miV

2V · Bi j (V), (96)

while the kinetic contributions κk and κk
U to the thermal and

velocity conductivity coefficients, respectively, can be written
as κk =∑2

i=1 κk
i and κk

U =∑2
i=1 κUk

i , where

κk
i = − 1

dT

∫
dv

1

2
miV

2V · Ai(V). (97)

κUk
i = − 1

d

∫
dv

1

2
miV

2V · E i(V). (98)

Collisional contributions to the pressure tensor and heat
flux can be obtained by expanding Eqs. (27) and (28) to
first order in spatial gradients. A careful analysis shows that
those collisional contributions are formally the same as those
obtained in the dry granular case [18,21–23]. In particular, the
bulk viscosity (which has only collisional contributions) can
be written as

ηb = η′
b + η′′

b, (99)

where

η′
b = π (d−1)/2

�
(

d+3
2

) d + 1

2d2

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j σ d+1

i j

×
∫

dv1

∫
dv2 f (0)

i (V1) f (0)
j (V2)g12 (100)

and

η′′
b = − πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ ji(1 + αi j )χ
(0)
i j nin jσ

d
i j�i. (101)

The second contribution η′′
b to ηb was neglected in the pre-

vious works on granular mixtures [18,22,23] because it was
implicitly assumed that its contribution to the bulk viscos-
ity was quite small. On the other hand, this influence was
already accounted for in the pioneering studies on ordinary
(elastic collisions) hard-sphere mixtures [54–56] and has been
recently calculated [21] in the case of (dry) polydisperse dense
granular mixtures.

The collisional contribution ηc to the shear viscosity is

ηc = 2πd/2

d (d + 2)�
(

d
2

) 2∑
i=1

2∑
j=1

μi j (1 + αi j )χ
(0)
i j niσ

d
i jη

k
j

+ d

d + 2
η′

b. (102)

The expressions of the collisional contributions to the heat
flux transport coefficients are more intricate than that of ηb

and ηc. Their explicit forms can be found in Ref. [18].

VI. APPROXIMATE RESULTS: LEADING SONINE
APPROXIMATIONS

The evaluation of the complete set of transport coefficients
of the binary granular suspension is a quite long task. In this
paper, we will focus on our attention in obtaining the transport
coefficients associated with the mass flux (Di j , DT

i , and DU
i ),

the shear viscosity coefficient η, and the partial temperatures
T (1)

i . To determine them, one has to solve the set of coupled
linear integral equations (73)–(77) as well as to know the
forms of the zeroth-order distributions f (0)

i . With respect to
the latter, as noted in Sec. III, f (0)

i is well represented by the
Maxwellian velocity distribution function

f (0)
i (V) → fi,M(V) = ni

(
mi

2πT (0)
i

)d/2

exp

(
−miV 2

2T (0)
i

)
.

(103)
This means that we neglect here non-Gaussian corrections to
the distributions f (0)

i , and, hence, one expects to get simple
but accurate expressions for the transport coefficients. By
using the Maxwellian approximation (103), the collisional
contribution η′

b is

η′
b = π (d−1)/2

d2�
(

d
2

) v0

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j nin jσ

d+1
i j

×
(

βi + β j

βiβ j

)1/2

. (104)

Regarding the unknowns (Ai,Bi j, Ci,λβ,Di,E i ), as usual
we will expand them in a series expansion of orthogonal
polynomials (Sonine polynomials) [35], and we will truncate
this expansion by considering only the leading term (lowest
degree polynomial). In particular, the collisional contribution
η′′

b will be estimated later when we determine �i in the first
Sonine approximation.

A. Diffusion transport coefficients

In the case of the transport coefficients Di j , DT
i , and DU

i ,
the leading Sonine approximations to Ai, Bi j , and E i are,
respectively,

Ai(V) → − ρ

niTi
DT

i fi,M(V)V, (105)

Bi j (V) → − miρ j

ρniTi
Di j fi,M(V)V, (106)

E i(V) → − DU
i

niTi
fi,M(V)V. (107)
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In order to determine the above diffusion coefficients, we
substitute first Ai, Bi j , and E i by their leading Sonine approx-
imations (105)–(107) in Eqs. (73), (74), and (77), respectively.
Then we multiply these equations by miV and integrate over
velocity. The final forms of the set of algebraic equations
defining the transport coefficients DT

i , Di j , and DU
i are given

by Eqs. (C1)–(C3) in Appendix C.
The solution to the set of Eqs. (C1)–(C3) provides the de-

pendence of the (relevant) diffusion coefficients D11, D12, DT
1 ,

and DU
1 on the coefficients of restitution αi j , the concentration

x1, the solid volume fraction φ, the masses and diameters of
the constituents of the mixture, and the (reduced) background
temperature T ∗

ex. In particular, the expression of DU
1 is

DU
1 = ρ1ρ2

γ1 − γ2

ρνD + ρ1γ2 + ρ2γ1
, (108)

where νD is defined by Eq. (C11). The explicit form of the
thermal diffusion coefficient DT

1 is given by Eq. (C10). The
expressions of D11 and D12 can be obtained by solving the set
of Eqs. (C2). Their forms are very large and will be omitted
here for the sake of simplicity.

Equations (108) and (C10) show that DU
1 and DT

1 are
antisymmetric with respect to the change 1 ↔ 2 as expected.
This can be easily verified since x1τ1 + x2τ2 = 1, �θ,1 =
−(x2/x1)�θ,2 and

∂ p∗

∂θ
= πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ jixin jσ
d
i jχ

(0)
i j �θ,i(1 + αi j ), (109)

where p∗ ≡ p/(nT ) is the reduced hydrostatic pressure. Fur-
thermore, in the case of mechanically equivalent particles
(m1 = m2, σ1 = σ2, χ

(0)
i j = χ (0), and αi j = α), Eqs. (C2)

and (C10) yield x1D∗
11 + x2D∗

12 = 0 and DT ∗
1 = 0, as ex-

pected. Here we have introduced the scaled coefficients D∗
i j ≡

Di j (α)/Di j (1) and DT ∗
1 ≡ DT

1 (α)/DT
1 (1) where Di j (1) and

DT
1 (1) refer to the values of Di j and DT

1 , respectively, for elas-
tic collisions. The above relations confirm the self-consistency
of the expressions for the diffusion coefficients reported in this
paper.

B. Shear viscosity coefficient

The kinetic contribution to the shear viscosity ηk = ηk
1 +

ηk
2, where the partial contributions ηk

i are defined by Eq. (95).
To determine the kinetic coefficients ηk

i , the function Ci,λβ (V)
is estimated by its leading Sonine approximation

Ci,λβ (V) → − fi,M(V)Ri,λβ (V)
ηk

i

niT
(0)

i
2 , (110)

where

Ri,λβ (V) = mi

(
VλVβ − 1

d
δλβV 2

)
. (111)

As in the case of the diffusion coefficients, the partial
contributions ηk

i are obtained by substituting Eq. (110) into the
integral equation (75), multiplying it by Ri,λβ , and integrating
over the velocity. After some algebra, one achieves the set
of algebraic equations (C12). The solution to the set (C12)
provides the partial contributions ηk

i . Their sum then gives the
kinetic coefficient ηk. Finally, by adding this to the collisional
contribution (102) we have the total shear viscosity.

C. First-order contributions to the partial temperatures

Finally, we consider the first-order contribution T (1)
i to the

partial temperature Ti. This coefficient is defined by Eqs. (81)
and (82). As said before, the coefficients T (1)

i (i = 1, 2) have
been recently determined for dry granular mixtures [21]. To
determine �i, we consider the leading Sonine approximation
to Di(V) given by

Di(V) → fiM(V)Wi(V)
�i

T (0)
i

, Wi(V) = miV 2

2T (0)
i

− d

2
. (112)

The coefficients �i are coupled with the coefficients ζ (1,1)

through Eq. (B25). The explicit relation between ζ (1,1) and
�i can be easily obtained by substitution of Eq. (112) into
Eq. (B25), with the result

ζ (1,1) =
2∑

i=1

ξi�i, (113)

where

ξi = 3π (d−1)/2

2d�
(

d
2

) v3
0

nT T (0)
i

2∑
j=1

nin jσ
d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

)
× (βi + β j )

1/2β
−3/2
i β

−1/2
j . (114)

As usual, in order to obtain the coefficients �i, one
substitutes first Eq. (112) into Eq. (76) and then multiplies
it with miV 2 and integrates over the velocity. After some
algebra, one gets the set of coupled equations (C18). A
careful inspection to the set of Eqs. (C18) shows that �1 =
−(x2/x1)�2 as the solubility condition (60) requires. This
is because x1τ1 + x2τ2 = 1, �θ,2 = −(x2/x1)�θ,1, and ω11 −
(x1/x2)ω12 + T ξ1/x1 = ω22−(x2/x1)ω21 + T ξ2/x2. The con-
dition x1�1 + x2�2 = 0 guarantees that the temperature T is
not affected by the spatial gradients.

The solution to Eq. (C18) gives �1 in terms of the param-
eters of the mixture. On the other hand, its explicit form is
relatively long and is omitted here for the sake of brevity. A
simple but interesting case corresponds to elastic collisions
(molecular or ordinary suspensions) where ξi = 0, τi = 1,
β1 = 2μ12, β2 = 2μ21, �θ,i = �x1,i = �λ1,i = �φ,i = 0, and
so �1 is simply given by

�1 = 4πd/2

d2�
(

d
2

)T
n2σ

d
12χ

(0)
12 (x2μ21 − x1μ12) + 1

2 x2
(
n1σ

d
1 χ

(0)
11 − n2σ

d
2 χ

(0)
22

)
ω11 − x1

x2
ω12 − 2(x2γ1 + x1γ2)

. (115)

Equation (115) is consistent with the one derived many years ago by Karkheck and Stell [55] for ordinary hard-sphere mixtures
(γ1 = γ2 = 0).
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Once the first-order contributions to the partial tempera-
tures are known, the first-order contribution ζU to the cooling
rate can be explicitly obtained from Eqs. (80), (B8), and (113).
In addition, the contribution η′′

b to the bulk viscosity ηb can
be obtained from Eq. (101), and, hence, the bulk viscosity is
completely determined by Eqs. (101) and (104).

VII. SOME ILLUSTRATIVE SYSTEMS

The results derived in Sec. VI for the diffusion transport
coefficients, the shear and bulk viscosities, and the first-order
contributions to the partial temperatures and the cooling rate
depend on the background temperature Tex, the concentration
x1, the density or volume fraction φ, and the mechanical pa-
rameters of the binary mixture (masses, diameters, and coef-
ficients of restitution). As in our previous paper [10] on dilute
granular suspensions, given that the new relevant feature is
the dependence of the transport coefficients on inelasticity, we
scale these coefficients with respect to their values for elastic
collisions. Thus, the scaled transport coefficients depend on
the parameter space: {T ∗

ex, x1, m1/m2, σ1/σ2, φ, α11, α22, α12}.
Moreover, for the sake of simplicity, the case of a com-
mon coefficient of restitution (α11 = α22 = α12 ≡ α) of an
equimolar hard-sphere mixture (x1 = 1

2 and d = 3) with a
background temperature T ∗

ex = 0.1 is considered. This reduces
the parameter space to four quantities: {m1/m2, σ1/σ2, φ, α}.

To display the dependence of the transport coefficients on
the coefficient of restitution, we have to provide the form for
the pair distribution function χ

(0)
i j . In the case of spheres (d =

3), a good approximation of χ
(0)
i j is [57–59]

χ
(0)
i j = 1

1 − φ
+ 3

2

φ

(1 − φ)2

σiσ jM2

σi jM3

+ 1

2

φ2

(1 − φ)3

(
σiσ jM2

σi jM3

)2

, (116)

where M� =∑i xiσ
�
i . In addition, the functions Ri are defined

by Eq. (11).
Figure 3 shows the α dependence of the reduced diffusion

coefficients D∗
i j , DT ∗

1 , and DU∗
1 for m1/m2 = 4, σ1/σ2 = 1,

and φ = 0.1. We recall that D∗
i j ≡ Di j (α)/Di j (1), DT ∗

1 ≡
DT

1 (α)/DT
1 (1), and DU∗

1 ≡ DU
1 (α)/DU

1 (1), where Di j (1),
DU

1 (1), and DT
1 (1) are the values of the diffusion transport

coefficients for elastic collisions. It is quite apparent first
that the effect of inelasticity on diffusion coefficients is in
general significant since the forms of the scaled coefficients
D∗

i j , DU∗
1 , and DT ∗

1 differ clearly from their elastic counter-
parts. This is especially relevant in the case of the thermal
diffusion coefficient DT ∗

1 . In addition, a comparison with the
results obtained for dry granular mixtures (see, for instance,
Figs. 5.5, 5.6, and 5.7 of Ref. [18] for the same mixture
parameters) reveals significant differences between dry (no
gas phase) and gas-solid flows when grains are mechanically
different. Thus, while D∗

11 and D∗
12 increase with inelasticity

for dry granular mixtures, the opposite happens for granular
suspensions since they decrease as increasing inelasticity. The
qualitative α dependence of DT ∗

1 is similar in both dry and
gas-solid flows, although the influence of inelasticity on DT ∗

1
is much more important in the latter case.

FIG. 3. Plot of the (reduced) diffusion coefficients DT ∗
1 (a), DU∗

1

(b), D∗
11 (c), and D∗

12 (d) as a function of the common coefficient
of restitution α for an equimolar mixture (x1 = 1

2 ) of hard spheres
(d = 3) with σ1/σ2 = 1, m1/m2 = 4, φ = 0.2, and T ∗

ex = 0.1.

We consider now the (reduced) shear viscosity η∗ ≡
η(α)/η(1). Figure 4 shows η∗ versus α for σ1/σ2 = 1, φ =
0.2 and two different values of the mass ratio. As with the
diffusion coefficients, the effect of inelasticity on the shear
viscosity is again significant since the inelasticity hinders the
transport of momentum. Regarding the comparison with dry
granular mixtures, we find qualitative differences since both
theory [24,39,60,61] and simulations [18,62] have shown that
while for relatively dilute dry granular gases η∗ increases with
inelasticity, the opposite occurs for sufficiently dense granular
mixtures. This nonmonotonic behavior with density contrasts
with the results obtained here for multicomponent granular

FIG. 4. Plot of the (reduced) shear viscosity coefficient
η(α)/η(1) as a function of the common coefficient of restitution
α for an equimolar mixture (x1 = 1

2 ) of hard spheres (d = 3) with
σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1. Two different values of the mass
ratio are considered: m1/m2 = 0.5 (a) and m1/m2 = 4 (b).
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FIG. 5. Plot of the (reduced) coefficient � ∗
1 as a function of the

common coefficient of restitution α for an equimolar mixture (x1 =
1
2 ) of hard spheres (d = 3) with σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1.
Three different values of the mass ratio are considered: m1/m2 = 0.5
(a), m1/m2 = 4 (b), and m1/m2 = 10 (c).

suspensions since the scaled coefficient η∗ always decreases
with increasing inelasticity regardless of the value of the solid
volume fraction φ. With respect to the influence of the mass
ratio on the shear viscosity, we see that its impact on η∗
is relatively small. In particular, at a given value of α, η∗
decreases with decreasing the mass ratio m1/m2.

An interesting quantity is the first-order contribution �1

to the partial temperature T1. The reduced coefficient � ∗
1 ≡

(nσ 2
12v0/T )�1 is plotted in Fig. 5 as a function of α for

σ1/σ2 = 1, φ = 0.2, and three different values of the mass
ratio. We observe that the influence of inelasticity on � ∗

1 is
important, especially for high mass ratios. However, Fig. 5
highlights that the magnitude of � ∗

1 is much smaller than
the other transport coefficients, and, hence, the impact of
the first-order contribution T (1)

1 on both the bulk viscosity ηb

(through the coefficient η′′
b) and the first-order contribution ζU

(through the coefficient ζ (1,1)) to the cooling rate is expected
to be small. This is confirmed by Figs. 6 and 7 for the
reduced coefficients ηb(α)/ηb(1) and ζU , respectively. It is
quite apparent that the theoretical predictions for the above
coefficients with and without the contribution of � ∗

1 are prac-
tically identical, especially in the case of the bulk viscosity. As
with the shear viscosity coefficient, we also see that the bulk
viscosity decreases with increasing inelasticity (independent
of the mass ratio considered). Moreover, as for dry granular
mixtures [21], the coefficient ζU is always negative, and its
magnitude increases with inelasticity.

In summary, the mass and momentum transport coeffi-
cients for a multicomponent granular suspension differ signif-
icantly from those for dry granular mixtures. In most of cases,
the differences become greater with increasing inelasticity,
and depending on the cases, there is a relevant influence of
the mass ratio.

VIII. DISCUSSION

This paper has been focused on the determination of
the Navier-Stokes transport coefficients of a binary granular

FIG. 6. Plot of the (reduced) bulk viscosity coefficient
ηb(α)/ηb(1) as a function of the common coefficient of restitution
α for an equimolar mixture (x1 = 1

2 ) of hard spheres (d = 3) with
σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1. Two different values of the mass
ratio are considered: m1/m2 = 0.5 (a) and m1/m2 = 10 (b). The
dashed lines are the results for the (reduced) bulk viscosity when the
contribution η′′

b to ηb is neglected.

suspension at moderate densities. The starting point of our
study has been the set of Enskog kinetic equations for the
velocity distribution functions fi(r, v, t ) of the solid parti-
cles. The effect of the gas phase on the solid particles has
been accounted for by an effective force constituted by two
terms: a viscous drag force proportional to the velocity of the
particles and a stochastic Langevin-like term. Therefore, we
have considered a simplified model where the effect of the
interstitial gas on grains is explicitly accounted for but the

FIG. 7. Plot of the magnitude of the (reduced) coefficient ζU as a
function of the common coefficient of restitution α for an equimolar
mixture (x1 = 1

2 ) of hard spheres (d = 3) with σ1/σ2 = 1, φ = 0.2,
and T ∗

ex = 0.1. Two different values of the mass ratio are considered:
m1/m2 = 0.5 (a) and m1/m2 = 10 (b). The dashed lines are the
results for the coefficient ζU when the contribution ζ (1,1) to ζU is
neglected.
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state of the surrounding gas is assumed to be independent of
the solid particles. On the other hand, this model is inspired
in numerical and experimental results that can be found in the
granular literature [29]. This fact is reflected in the functional
dependence of the friction coefficients γi on both the partial φi

and global φ = φ1 + φ2 volume fractions and the mechanical
properties of grains (masses mi and diameters σi).

We have derived the Navier-Stokes hydrodynamic equa-
tions in two steps. First, the macroscopic balance equations
(20)–(22) have been obtained from the Enskog equation (1).
Particularly, these equations include terms that account for the
impact of the gas phase on grains, and the kinetic and colli-
sional contributions to the fluxes are expressed as functionals
of the velocity distribution functions fi. Second, the mass,
momentum, and heat fluxes, together with the cooling rate ap-
pearing in the hydrodynamic equations, have been evaluated
by solving the Enskog equation by means of the Chapman-
Enskog method up to first order in the spatial gradients. The
constitutive equation for the mass flux is given by Eq. (78)
where the diffusion coefficients DT

i , Di j , and DU
i are defined

by Eqs. (90)–(92), respectively. The pressure tensor is given
by Eq. (87), where the bulk viscosity ηb is defined by Eq. (99)
and the shear viscosity η is defined by Eqs. (95) (kinetic
contribution) and (102) (collisional contribution). Finally, the
constitutive equation for the heat flux is given by Eq. (88)
where the kinetic contributions to the Dufour coefficients
Dq,i j , the thermal conductivity κ , and the velocity conductivity
κU are given by Eqs. (96), (97), and (98), respectively. Within
the context of small gradients, all the above results apply in
principle to an arbitrary degree of inelasticity and are not
restricted to specific values of the parameters of the mixture.
The present work extends to moderate densities a previous
analysis carried out for dilute bidisperse granular suspensions
[10,17].

Before considering inhomogeneous situations, the homo-
geneous steady state has been studied. In this state, the distri-
butions fi,s adopt the form (43) where the scaled distributions
ϕi,s depend on the steady temperature Ts through the dimen-
sionless velocity c = v/v0(Ts) and the (scaled) temperature
θ = Ts/Tex. This scaling differs from the one assumed for
dry granular mixtures [36] where the temperature dependence
of ϕi is encoded only through the dimensionless velocity c.
Although the exact form of the distributions ϕi,s is not known,
in order to estimate the partial temperatures Ti,s/Tex, the
distributions ϕi,s have been approximated by the Maxwellian
distributions (47). This has allowed us to explicitly get the
partial temperatures in terms of the parameters of the mixture.
In spite of the crudeness of the above approximation, the
theoretical predictions for T1,s/T2,s agree well with MD sim-
ulations, especially for moderately dense systems. The good-
ness of the comparison supports the use of the Maxwellian
approximation (47) in the evaluation of the transport coeffi-
cients. However, we find some discrepancies between theory
and simulations that could be mitigated if one would consider
the influence of the fourth cumulants on the distributions
ϕi,s. We plan to calculate these cumulants in the near future
and perform more simulations to assess the reliability of the
Enskog theoretical predictions for homogeneous steady states.

Once the steady reference state is well characterized, the
diffusion coefficients, the bulk and shear viscosities, and

the first-order contributions to the partial temperatures and
the cooling rate have been determined. As usual, in order to
achieve explicit expressions for the above transport coeffi-
cients, the leading terms in a Sonine polynomial expansion
have been considered. The explicit forms of the transport
coefficients have been displayed in Sec. VI and Appendix C:
the coefficients D11 and D12 are the solutions of the algebraic
equations (C2), the coefficients DU

1 and DT
1 are given by

Eqs. (108) and (C10), respectively, the shear viscosity η and
the first-order coefficients �i are the solutions of Eqs. (C12)
and (C18), respectively, and the first-order contribution ζU =
ζ (1,0) + ζ (1,1) to the cooling rate is given by Eqs. (B8), (113),
and (114). An interesting point is that not only are these
coefficients defined in terms of the hydrodynamic fields in
the steady state, but, in addition, there are contributions to
the transport coefficients coming from the derivatives of the
temperature ratio in the vicinity of the steady state. These con-
tributions can be seen as a measure of the departure of the per-
turbed state from the steady reference state. The inclusion of
the above derivatives introduces conceptual and practical diffi-
culties not present in the case of dry granular mixtures [22,23].

In reduced forms, the diffusion transport coefficients and
the shear viscosity coefficient of the granular suspension
exhibit a complex dependence on the parameter space of
the problem. In particular, Fig. 3 highlights the significant
impact of the gas phase on the mass transport since the α

dependence of the Navier-Stokes transport coefficients DT
1 ,

DU
1 , and Di j is in general different from the one found in

the case of dry granular mixtures [18]. Regarding the shear
viscosity coefficient η, a comparison with the dry granular
results [18] shows a qualitative agreement between dry and
granular suspensions for not quite high densities, although
important quantitative differences are found. Apart from these
coefficients, the first-order contributions �i to the partial
temperatures Ti have been also computed. The evaluation of
these coefficients is interesting by itself and also because they
are involved in the calculation of both the bulk viscosity ηb

and the first-order contribution ζU to the cooling rate. The
results obtained here show that the magnitude of �1 is in
general very small (in fact, much smaller than the one recently
found [21] in the absence of gas phase), and hence, its impact
on ηb and ζU is very tiny (see Figs. 6 and 7). This conclusion
contrasts with recent findings for dry granular mixtures [21]
where the influence of �1 on both the bulk viscosity and the
cooling rate must be taken into account for strong inelasticities
and disparate masses.

In a subsequent paper, we plan to determine the heat flux
transport coefficients and to perform a linear stability analysis
of the homogeneous steady state as a possible application. In
particular, given that the homogeneous steady state is stable
in the dilute limit, we want to see if the density corrections to
the transport coefficients can modify the stability of the above
homogeneous state. In addition, it is also quite apparent that
the reliability of the theoretical results derived here (which
have been obtained under certain approximations) should be
assessed against computer simulations. As happens for dry
granular mixtures [40,48,63–68], we expect that the present
results stimulate the performance of appropriate simulations
for bidisperse granular suspensions. In particular, we plan to
undertake simulations to obtain the tracer diffusion coefficient
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(namely, a binary mixture where the concentration of one
of the components is negligible) in a similar way as in the
case of granular mixtures [40,63,67]. Moreover, we also plan
to carry out simulations to measure the Navier-Stokes shear
viscosity η by studying the decay of a small perturbation to
the transversal component of the velocity field [69]. Another
possible project for the next future is to consider inelastic
rough hard spheres in order to assess the impact of friction
on the transport properties of the granular suspension. Studies
along these lines will be worked out in the near future.
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APPENDIX A: DERIVATIVES OF THE TEMPERATURE
RATIO IN THE VICINITY OF THE STEADY STATE

In this Appendix, the derivatives of the temperature ratio
τ1 = T (0)

1 /T with respect to θ , λ1, x1, and φ in the vicinity of
the steady state are evaluated.

Let us consider first the derivative (∂τ1/∂θ )x1,λ1,φ . To get
it, we consider Eq. (69) for i = 1:

�∗θ
∂τ1

∂θ
= −τ1�

∗ + �∗
1, (A1)

where �∗ and �∗
1 are defined by Eqs. (70) and (71), respec-

tively. According to Eq. (48), the (reduced) partial cooling rate
ζ ∗

1,0 can be written as

ζ ∗
1,0 = τ

1/2
1 M−1/2

1 ζ ′
1(x1, β ), (A2)

where β = β1/β2 = m1τ2/(m2τ1), τ2 = (1 − x1τ1)/x2, and

ζ ′
1(x1, β ) =

√
2π (d−1)/2

d�
(

d
2

) x1χ
(0)
11

(
σ1

σ12

)d−1(
1 − α2

11

)
+ 4π (d−1)/2

d�
(

d
2

) x2χ
(0)
12 μ21(1 + β )1/2(1 + α12)

×
[

1 − μ21

2
(1 + α12)(1 + β )

]
. (A3)

At the steady state, �∗ = �∗
1 = �∗

2 = 0, and hence, according
to Eq. (A1), the derivative ∂τ1/∂θ becomes indeterminate.
On the other hand, as for dilute multicomponent granular
suspensions [10], the above problem can be fixed by applying
l’Hôpital’s rule. In this case, we take first the derivative with
respect to θ in both sides of Eq. (A1) and then take the
steady-state limit. After some algebra, one easily achieves
the following quadratic equation for the derivative �θ,1 =
(∂τ1/∂θ )s:

θ�
(θ )
1 �2

θ,1 + (θ�
(θ )
0 + τ1�

(θ )
1 − �

(θ )
11

)
�θ,1 − �

(θ )
10

+ τ1�
(θ )
0 = 0, (A4)

where �
(θ )
0 = x1�

(θ )
10 + x2�

(θ )
20 and �

(θ )
1 = x1�

(θ )
11 + x2�

(θ )
21 .

Here we have introduced the quantities

�
(θ )
10 = γ ∗

1 θ−1τ1 − 3γ ∗
1 θ−2, �

(θ )
20 = γ ∗

2 θ−1τ2 − 3γ ∗
2 θ−2,

(A5)

�
(θ )
11 = −2γ ∗

1 − 3

2
ζ ∗

10 + τ
−1/2
1

M1/2
1

x2M2

(
∂ζ ′

1

∂β

)
x1,φ

, (A6)

�
(θ )
21 = 2

x1

x2
γ ∗

2 + 3

2

x1

x2
ζ ∗

20 + M1

x2M3/2
2

τ
3/2
2

τ 2
1

(
∂ζ ′

2

∂β

)
x1,φ

. (A7)

In Eqs. (A4)–(A7), although the subscript s has been omitted
for the sake of simplicity, it is understood that all the quantities
are evaluated in the steady state. As for dilute driven granular
mixtures [10], an analysis of the solutions to Eq. (A4) shows
that in general one of the roots leads to unphysical behavior
of the diffusion coefficients. We take the other root as the
physical root of the quadratic equation (A4).

Once the derivative �θ,1 is known, we can determine
the remaining derivatives in a similar way. In order to get
(∂τ1/∂λ1)θ,x1,φ , we take first the derivative of Eq. (A1) with
respect to λ1 and then consider the steady-state conditions.
The final result is

�λ1,1 = −τ1�
(λ1 )
0 − �

(λ1 )
10 + θ�

(λ1 )
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A8)

where �
(λ1 )
0 = x1�

(λ1 )
10 + x2�

(λ1 )
20 , and

�
(λ1 )
10 = 2θ−1/2(θ−1 − τ1),

�
(λ1 )
20 = 2

R2

R1
θ−1/2(θ−1 − τ2). (A9)

Analogously, the derivative (∂τ1/∂x1)θ,λ1,φ in the steady
state is

�x1,1 = −τ1�
(x1 )
0 − �

(x1 )
10 + θ�

(x1 )
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A10)

where �
(x1 )
0 = x1�

(x1 )
10 + x2�

(x1 )
20 , and

�
(x1 )
10 = −τ

3/2
1 M−1/2

1

(
∂ζ ′

1

∂x1

)
β,φ

, (A11)

�
(x1 )
20 = 2

γ ∗
1

x2
(θ−1 − τ1) − 2

γ ∗
2

x2
(θ−1 − τ2)

− 1 − τ1

x2
2

γ ∗
2 + 3

2

τ1 − τ2
3

x2
ζ ∗

2,0 − τ1

x2
ζ ∗

1,0

−τ
3/2
2 M−1/2

2

(
∂ζ ′

2

∂x1

)
β,φ

. (A12)

Finally, in the steady state, the derivative (∂τ1/∂φ)θ,x1,λ1 is

�φ,1 = −τ1�
(φ)
0 − �

(φ)
10 + θ�

(φ)
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A13)

where �
(φ)
0 = x1�

(φ)
10 + x2�

(φ)
20 , and

�
(φ)
10 = −τ

3/2
1 M−1/2

1

(
∂ζ ′

1

∂φ

)
x1,β

, (A14)

�
(φ)
20 = −τ

3/2
2 M−1/2

2

(
∂ζ ′

2

∂φ

)
x1,β

. (A15)
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APPENDIX B: SOME TECHNICAL DETAILS ABOUT THE FIRST-ORDER CHAPMAN-ENSKOG SOLUTION

To first order in the spatial gradients, the distribution function f (1)
i obeys the Enskog kinetic equation

∂
(0)
t f (1)

i − γi
∂

∂v
· V f (1)

i − γiTex

mi

∂2 f (1)
i

∂v2
= −(D(1)

t + V · ∇) f (0)
i + γi�U · ∂ f (0)

i

∂v
− g · ∂ f (0)

i

∂v
+

2∑
j=1

J (1)
i j [ fi, f j], (B1)

where D(1)
t ≡ ∂

(1)
t + U · ∇ and J (1)

i j [ fi, f j] denotes the first-order contribution to the expansion of the Enskog collision operator

in spatial gradients. To obtain J (1)
i j [ fi, f j] one needs the expansions [18,22]

χi j (r, r ± σ i j |{n�}) →
2∑

�=1

χ
(0)
i j

[
1 ± 1

2

(
n�

∂ ln χ
(0)
i j

∂n�

+ Ii j�

)
σ i j · ∇ ln n�

]
, (B2)

f (0)
j (r ± σ i j ) →

2∑
�=1

n�

∂ f (0)
j

∂n�

σ i j · ∇ ln n� − ∂ f (0)
j

∂Vβ

(σ i j · ∇)Uβ + T
∂ f (0)

j

∂T
σ i j · ∇ ln T . (B3)

In Eq. (B3) the quantities Ii j� are defined in terms of the functional derivative of the (local) pair distribution function χi j with
respect to the (local) partial densities n�. These quantities are the origin of the primary difference between the so-called standard
and revised Enskog kinetic theories for ordinary mixtures [56,70]. The explicit forms of Ii j� for a binary mixture of hard disks
(d = 2) or spheres (d = 3) have been provided in Appendix A of Ref. [71]. Taking into account the expansions (B2) and (B3),
the operator J (1)

i j [ fi, f j] can be written as

2∑
j=1

J (1)
i j [ fi, f j] → −

2∑
j=1

2∑
�=1

{
Ki j

[
n�

∂ f (0)
j

∂n�

]
+ 1

2

(
n�

∂ ln χ
(0)
i j

∂n�

+ Ii j�

)
Ki j
[

f (0)
j

]} · ∇ ln n�

−
2∑

j=1

Ki j

[
T

∂ f (0)
j

∂T

]
· ∇ ln T + 1

2

2∑
j=1

Ki j,λ

[
∂ f (0)

j

∂Vβ

](
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)

+ 1

d

2∑
j=1

Ki j,λ

[
∂ f (0)

j

∂Vλ

]
∇ · U +

2∑
j=1

(
J (0)

i j

[
f (1)
i , f (0)

j

]+ J (0)
i j

[
f (0)
i , f (1)

j

])
, (B4)

where the operator Ki j[Xj] is given by [18,22]

Ki j[Xj] = σ d
i jχ

(0)
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12 )̂σ

[
α−2

i j f (0)
i (v′′

1 )Xj (v′′
2 ) + f (0)

i (v1)Xj (v2)
]
. (B5)

As for monocomponent granular suspensions [14], upon deriving Eq. (B4) use has been made of the symmetry property
Ki j,λ[∂Vβ

f (0)
j ] = Ki j,β [∂Vλ

f (0)
j ], which follows from the isotropy in velocity space of the zeroth-order distributions f (0)

i .
To first order, the balance equations are

D(1)
t ni = −ni∇ · U, D(1)

t U = −ρ−1∇p − �U
2∑

i=1

ρi

ρ
γi + g + ρ−1(γ1 − γ2)j(1)

1 , (B6)

D(1)
t T = −2p

dn
∇ · U − ζ (1)T − 2

2∑
i=1

γixiT
(1)

i . (B7)

Here p is given by Eq. (64), and ζ (1) is the first-order contribution to the cooling rate. Since ζ (1) is a scalar, corrections to
first order in the gradients can arise only from ∇ · U since ∇ni and ∇T are vectors and the tensor ∂λUβ + ∂βUλ − 2

d δλβ∇ · U
is a traceless tensor. Thus, ζ (1) = ζU ∇ · U, where ζU can be decomposed as ζU = ζ (1,0) + ζ (1,1). The coefficient ζ (1,0) can be
evaluated explicitly with the result [23]

ζ (1,0) = − 3

nT

πd/2

d2�
(

d
2

) 2∑
i=1

2∑
j=1

nin jμ jiσ
d
i jχ

(0)
i j T (0)

i

(
1 − α2

i j

)
. (B8)

012904-17

134 5.3 Article 5



GONZÁLEZ, KHALIL, AND GARZÓ PHYSICAL REVIEW E 101, 012904 (2020)

On the other hand, the coefficient ζ (1,1) is given in terms of the first-order distributions f (1)
i . Its expression will be displayed later.

In addition, according to Eq. (64), ∇p can be written as

∇p =
2∑

i=1

ni
∂ p

∂ni
∇ ln ni + p

(
1 + θ

∂ ln p∗

∂θ

)
∇ ln T, (B9)

where we recall that p∗ = p/nT .
The right-hand side of Eq. (B1) can be evaluated by using Eqs. (B6)–(B9) and the expansion (B4) of the Enskog operator.

With these results, the corresponding kinetic equation for f (1)
i reads

∂
(0)
t f (1)

i − γi
∂

∂v
· V f (1)

i − γiTex

mi

∂2 f (1)
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where
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Ci,βλ(V) = Vλ

∂ f (0)
i
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+
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j=1
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[
∂ f (0)

j
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, (B13)

Di(V) = 1
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∂
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∂ f (0)
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, (B14)

Ei(V) =
⎛⎝γi −

2∑
j=1

ρ j

ρ
γ j

⎞⎠∂ f (0)
i

∂V
. (B15)

Note that in Eq. (B10), ζ
(1)
1 and �i are functionals of the first-order distributions f (1)

i . In Eq. (B12) the derivative ∂ f (0)
i /∂n j can

be more explicitly written when one takes into account the scaling solution (43):

n j
∂ f (0)

i

∂n j
= δi j f (0)

j + n j f (0)
i

(
∂ ln ϕi

∂x1

∂x1

∂n j
+ ∂ ln ϕi
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∂n j
+ ∂ ln ϕi

∂φ

∂φ
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)
, (B16)

where

n j
∂x1

∂n j
= x j (x2δ1 j − x1δ2 j ), n j
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∂n j
= φ j, (B17)
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∂ ln R1

∂φ
+ ∂ ln R1

∂x1
n j

∂x1

∂n j

)
− λ1x j − λ1

ρ j

ρ
. (B18)

The solution to Eq. (B10) is given by Eq. (72). Because of the gradients ∇ni, ∇T , and ∇ · U as well as the traceless tensor
∂λUβ + ∂βUλ − 2

d δλβ∇ · U are all independents, substitution of the form (72) into Eq. (B10) leads to the following set of linear
integral equations for the unknowns Ai(V), Bi j (V), Ci,λβ (V), and Di(V):
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mi
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]+ J (0)
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]) = Ai, (B19)
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�(0)T ∂T Bi j − γi
∂

∂v
· VBi j − γiTex

mi
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where �(0) is defined by Eq. (66). Upon deriving the above integral equations use has been made of the constitutive equation
(78) for the mass flux j(1)

1 and the result
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Moreover, since ζ (1,1) is coupled to Di, its explicit form can be easily identified after expanding the expression (30) of the cooling
rate to first order. The result is [23]

ζ (1,1) = 1

nT

π (d−1)/2

d�
(

d+3
2

) 2∑
i=1

2∑
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σ d−1
i j χ

(0)
i j mi j
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i j

) ∫
dv1

∫
dv2 g3

12 f (0)
i (V1)D j (V2). (B25)

The integral equations (73)–(76) can be obtained from Eqs. (B19)–(B22) when the steady-state condition (�(0) = 0) is assumed.

APPENDIX C: ALGEBRAIC EQUATIONS DEFINING THE TRANSPORT COEFFICIENTS

In this Appendix, we display the set of algebraic equations defining the diffusion transport coefficients, the shear viscosity
coefficient, and the first-order contributions to the partial temperatures. In the case of the diffusion coefficients DT

i , Di j , and DU
i ,

the set of algebraic equations are, respectively, given by

2∑
j=1

{
νi j + (γ2 − γ1)

ρi

ρ
δ1 j −

[
2

2∑
�=1

γ�x�(θ−1 − θ�θ,�) + 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ
− γi

]
δi j

}
DT

j

= − pρi

ρ2

(
1 + θ

∂ ln p∗

∂θ
− ρniT

(0)
i

pρi

)
+ T

ni

ρ
θ�θ,i + πd/2

d�
(

d
2

) niT

ρ

2∑
j=1

n jμi jχ
(0)
i j σ d

i j (1 + αi j )(τ j + θ�θ, j ), (C1)

2∑
�=1

[
νi� + (γ2 − γ1)

ρi

ρ
δ1� + γiδi�

]
m�D� j = ρT

ρ j

{
n jτ jδi j + n

[
n j

∂x1

∂n j
xi�x1,i + n j

∂λ1

∂n j
xi�λ1,i + xiφ j�φ,i

]}

+ ρ2

mj

(
∂ζ (0)

∂n j
− 2

2∑
�=1

{
γ�x�

[(
θ−1 − τ�

)(∂ ln γ�

∂n j
+ ∂ ln x�

∂n j

)
−
(

∂x1

∂n j
�x1,� + ∂λ1

∂n j
�λ1,� + φ j

n j
�φ,�

)]})
DT

i
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− ρi

m j

∂ p

∂n j
+ ρT

ρ j

πd/2

d�
(

d
2

) 2∑
�=1

nin�σ
d
i�χ

(0)
i� mi�(1 + αi�

{[
δ j� + 1

2

(
n j

∂ ln χ
(0)
i�

∂n j
+ Ii� j

)](
τi

mi
+ τ�

m�

)

+ nj

m�

∂x1

∂n j
�x1,� + n j

m�

∂λ1

∂n j
�λ1,� + φ j

m�

�φ,�

}
, (C2)

2∑
j=1

[
νi j + (γ2 − γ1)

ρi

ρ
δ1 j + γiδi j

]
DU

j = ρi

⎛⎝γi −
2∑

j=1

ρ j

ρ
γ j

⎞⎠. (C3)

Here the derivatives ∂x1/∂n j and ∂λ1/∂n j are given by Eqs. (B17) and (B18), respectively, and the collision frequencies νi j

appearing in Eqs. (C1)–(C3) are defined as

νii = − mi

dniTi

∫
dv V · J (0)

i j

[
fi,MV, f (0)

j

]
, (C4)

νi j = − mi

dn jTj

∫
dv V · J (0)

i j

[
f (0)
i , f j,MV

]
, (C5)

for i �= j. Note that the self-collision terms of νii arising from J (0)
ii [ fiMV, f (0)

i ] do not occur in Eq. (C4) since they conserve
momentum for the component i. In addition, upon deriving Eqs. (C1) and (C2), use has been made of the results∫

dvmiV · Ki j

[
T

∂ f (0)
j

∂T

]
= πd/2

�
(

d
2

)nin jσ
d
i jχ

(0)
i j μi j (1 + αi j )T

(0)
j

(
1 + θ

τ j
�θ, j

)
, (C6)∫

dvmiV ·
{

Ki�

[
n j

∂ f (0)
�

∂n j

]
+ 1

2

(
n j

∂ ln χ
(0)
i�

∂n j
+ Ii� j

)
Ki�
[

f (0)
�

]} = πd/2

�
(

d
2

)niT n�σ
d
i�χ

(0)
i� mi�(1 + αi�)

×
{[

δ j� + 1

2

(
n j

∂ ln χ
(0)
i�

∂n j
+ Ii� j

)](
τi

mi
+ τ�

m�

)
+ n j
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∂x1

∂n j
�x1,� + n j

m�

∂λ1

∂n j
�λ1,� + φ j

m�

�φ,�

}
, (C7)

where f (0)
i has been replaced by fi,M. The explicit forms of the collision frequencies νii and νi j also can be easily obtained by

considering the latter replacement. They are given by [72]

νii = 2π (d−1)/2

d�
(

d
2

) n jσ
d−1
i j χ

(0)
i j μ jiv0(1 + αi j )

(
βi + β j

βiβ j

)1/2

, (C8)

νi j = −2π (d−1)/2

d�
(

d
2

) niσ
d−1
i j χ

(0)
i j μi jv0(1 + αi j )

(
βi + β j

βiβ j

)1/2

. (C9)

We recall that i �= j in Eqs. (C8) and (C9). With these results, the explicit form of DT
1 can be written as

DT
1 =

[
νD + ρ1γ2 + ρ2γ1

ρ
− 2

2∑
j=1

x jγ j (θ
−1 − θ�θ, j ) − ζ (0)

(
1

2
+ θ

∂ ln ζ ∗
0

∂θ

)]−1{T n1

ρ
θ�θ,1

− pρ1

ρ2

(
1 + θ

∂ ln p∗

∂θ
− ρn1T (0)

1

pρ1

)
+ πd/2

d�
(

d
2

) n1T

ρ

[
n1

2
χ

(0)
11 σ d

1 (1 + α11)(τ1 + θ�θ,1)

+ n2μ12χ
(0)
12 σ d

12(1 + α12)(τ2 + θ�θ,2)

]}
, (C10)

where νD is

νD = ν11 − ν12 = 2π (d−1)/2

d�
(

d
2

) nσ d−1
12 χ

(0)
12 v0(1 + α12)

(
β1 + β2

β1β2

)1/2

(x1μ12 + x2μ21). (C11)

We consider now the kinetic contribution ηk to the shear viscosity coefficient η. The kinetic coefficient ηk = ηk
1 + ηk

2, where
the partial contributions ηk

i (i = 1, 2) obey the set of equations

2∑
j=1

(τi j + 2γiδi j )η
k
j = niT

(0)
i + ρiT πd/2

d (d + 2)�
(

d
2

) 2∑
j=1

n jμ jiσ
d
i jχ

(0)
i j (1 + αi j )

[
μ ji
(
3αi j − 1

)( τi

mi
+ τ j

m j

)
− 4

τi − τ j

mi + mj

]
, (C12)

012904-20

5. Enskog Kinetic Theory for Bidisperse Suspensions 137



ENSKOG KINETIC THEORY FOR MULTICOMPONENT … PHYSICAL REVIEW E 101, 012904 (2020)

where the collision frequencies τi j are defined as

τii = − 1

(d − 1)(d + 2)

1

niT
(0)2

i

⎛⎝∫ dvRi,λβJ (0)
ii

[
f (0)
i , fiMRi,λβ

]+
2∑

j=1

∫
dvRi,λβJ (0)

i j

[
fi,MRi,λβ, f (0)

j

]⎞⎠, (C13)

τi j = − 1

(d − 1)(d + 2)

1

n jT
(0)2
j

∫
dvRi,λβJ (0)

i j

[
f (0)
i , f j,MRj,λβ

]
, (i �= j). (C14)

Upon deriving Eq. (C12) use has been made of the result [23]∫
dv Ri,λβKi j,λ

[
∂ f (0)

j

∂Vβ

]
= −πd/2(d − 1)

d�
(

d
2

) ρin jT μ jiσ
d
i jχ

(0)
i j (1 + αi j )

[
μ ji(3αi j − 1)

(
τi

mi
+ τ j

m j

)
− 4

τi − τ j

mi + mj

]
. (C15)

Explicit expressions of the collision frequencies τii and τi j can be obtained by considering the Maxwellian approximation
(103) to f (0)

i . The results are [23]

τii = 2π (d−1)/2

d (d + 2)�
(

d
2

)v0

{
niσ

d−1
i χ

(0)
ii (2βi )

−1/2(3 + 2d − 3αii )(1 + αii ) + 2n jχ
(0)
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i j μ ji(1 + αi j )β
3/2
i β

−1/2
j

×
[

(d + 3)βi jβ
−2
i (βi + β j )

−1/2 + 3 + 2d − 3αi j

2
μ jiβ

−2
i (βi + β j )

1/2 + 2d (d − 1) − 4

2(d − 1)
β−1

i (βi + β j )
−1/2

]}
, (C16)

τi j = 4π (d−1)/2

d (d + 2)�
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d
2

)v0niχ
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i j μi jβ
3/2
j β
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−2
j (βi + β j )

1/2 − 2d (d + 1) − 4

2(d − 1)
β−1

j (βi + β j )
−1/2

]
, (C17)

where βi j = μi jβ j − μ jiβi and i �= j.
Finally, the first-order contributions T (1)

i to the partial temperatures are defined as T (1)
i = �i∇ · U. The set of algebraic

equations defining the coefficients �i are given by

2∑
j=1

[
ωi j + 2γ jx j (τi + θ�θ,i ) − 2γiδi j + (T (0)

i + T θ�θ,i
)
ξ j
]
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d
T (0)

i −
(

ζ (1,0) + 2

d
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)

+ T
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− 4
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− n j

(
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∂n j
�λ1,i + ∂φ

∂n j
�φ,i

)}
, (C18)

where ζ (1,0) is defined by Eq. (B8) and the collision frequencies ωi j are

ωii = 1

dniT
(0)

i

⎛⎝ 2∑
j=1

∫
dvmiV

2J (0)
i j

[
fi,MWi, f (0)

j

]+
∫

dvmiV
2J (0)

ii

[
f (0)
i , fi,MWi

]⎞⎠, (C19)

ωi j = 1

dniT
(0)
j

∫
dvmiV

2J (0)
i j

[
f (0)
i , f j,MWj

]
(i �= j). (C20)

Upon deriving Eq. (C18), we have accounted for that
∑

j n j∂n j x1 = 0, and use has been made of the result [21]∫
dvmiV

2Ki j,λ

[
∂ f (0)

j

∂Vλ

]
= − πd/2

�
(

d
2
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d
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j
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− 4

T (0)
i
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]
. (C21)

Moreover, in the Maxwellian approximation (103), the collision frequencies ωii and ωi j read [27]

ωii = − π (d−1)/2

2dT (0)
i �

(
d
2

)v3
0

{
3√
2

niσ
d−1
i miχ

(0)
ii β

−3/2
i

(
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ii

)− n jmi jσ
d−1
i j χ
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i j (1 + αi j )

× (βi + β j )
−1/2β
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i β
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j [3μ ji(1 + αi j )(βi + β j ) − 2(2βi + 3β j )]

}
, (C22)

ωi j = π (d−1)/2

2dT (0)
j �

(
d
2

)v3
0n jmi jσ

d−1
i j χ

(0)
i j (1 + αi j )(βi + β j )

−1/2β
−1/2
i β

−3/2
j [3μ ji(1 + αi j )(βi + β j ) − 2β j]. (C23)

In Eqs. (C22)–(C23) it is understood that i �= j.
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Chapter 6

Non-Newtonian Rheology in

Inertial Suspensions Under

Simple Shear Flow

6.1 Summary

The non-Newtonian transport properties of a dilute granular suspension under uniform

shear flow are determined in the framework of the Boltzmann equation. Particles are

modeled as d-dimensional hard particles of mass m and diameter σ. As in previous

chapters, the effect of the interstitial fluid on solid particles is accounted for by a

drag force proportional to the instantaneous velocity of the particles and a Langevin-

like term. In the USF, the system is characterized by a constant density profile n, a

uniform granular temperature T , and a flow velocity Ux = ay, where a is the shear

rate. In addition, as usual in uniform sheared suspensions [127, 128, 133, 249], the mean

flow velocity U follows that of the gas phase Ug. Thus, the viscous heating term due

to shear plus the energy gained by grains due to collisions with the interstitial fluid is

exactly compensated for by the cooling terms arising from collisional dissipation and the

drag term. A steady state is still possible even when the collisions are elastic (ζ = 0).

An important feature of the USF is that the one-body distribution function f(r,v; t)

depends on space only through its dependence on the peculiar velocity V = v − U

[250]. As a consequence, the velocity distribution function becomes homogeneous in

the reference frame moving with V: f(r,v; t) → f(V; t). Hence, following symmetry
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considerations, the heat flux vanishes q = 0 and the pressure tensor P is the relevant

flux. Three alternative but complementary routes are used to study the rheology of

inertial suspensions: Grad’s moment method [200], BGK-type kinetic model [57] and

Inelastic Maxwell Models [240].

The first objective of this chapter is to analyze the USF state of granular suspen-

sions composed of smooth hard spheres. In this case, the inelasticity of collisions is

modeled by a constant (positive) coefficient of restitution α ≤ 1 and only the transla-

tional degrees of freedom of grains are involved in the collisional process. As a first step

towards achieving this objective, the non-Newtonian transport coefficients measuring

the departure from their corresponding Navier–Stokes forms are derived. These prop-

erties had been already obtained by solving the Enskog equation by means of Grad’s

moment method [142, 143]. Given that Grad’s method requires a pertinent truncation

in the velocity moment hierarchy, it is interesting to revisit the problem and get exact

expressions of the rheological properties by considering both the Boltzmann equation

for IMM and a BGK-type kinetic model for IHS. The determination of the rheological

properties can allow us to assess the degree of reliability of IMM and BGK-like kinetic

equations to capture the main trends observed for IHS. The (dimensionless) expressions

for the steady granular temperature T , the non-Newtonian shear viscosity η, and the

viscometric function Ψ = Pxx − Pyy are displayed as functions of the shear rate (note

that Pzz = Pyy in all the above analytical methods). The analytical expressions of

the above quantities obtained from the IMM Boltzmann equation and from the BGK

equation match those derived by solving the Boltzmann equation for IHS via Grad’s

moment method and event-driven Langevin simulations [142, 143]. In particular, both

theoretical approaches clearly show that the temperature and non-Newtonian viscosity

exhibit an S-shape in a plane of stress–strain rate (DST effect).

Once the reliability of the IMM and BGK models is guaranteed, higher degree

velocity moments are also computed. The importance of their knowledge relies on the

information that it can provide on the velocity distribution function, especially in the

high velocity region. In the USF, the first nontrivial moments beyond the rheological

properties (which are related with the second-degree velocity moments) are the fourth-

degree moments. We find that while those moments have unphysical values for IMM in a

certain region of the parameter space of the system, they are well defined functions of in

the case of the BGK kinetic model. The divergence of the fourth-degree moments of the
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USF is analyzed in terms of the eigenvalues of the matrix that couples their equations.

The results obtained for IMM are compared against the results derived from the BGK

equation in the region of the parameter space where all the moments are well defined.

Both theoretical predictions are tested with available DSMC simulations [249].

The second part of the chapter extends the previous study to rough spheres. Two

coefficients of restitution capture the main trends of dissipative collisions: (i) a coeffi-

cient of normal restitution α ≤ 1 and (ii) another of tangential restitution −1 ≤ β ≤ 1.

The impact of the roughness is assessed by two complementary routes: Grad’s mo-

ment method and a BGK-type kinetic model adapted to rough spheres [204]. First, we

study the rheological properties. It is worth bearing in mind that the total temperature

T = (Tt+Tr)/2 is composed of the translational Tt and rotational Tr temperatures. As

in the case of smooth spheres, a discontinuous shear thickening emerges for a critical

value of the shear rate a. Although the effect of roughness slightly enhances the tran-

sition in the viscosity η, the opposite occurs in the case of the rotational temperature

Tr. As expected, the fourth-degree velocity moments also exhibit an S-shape which is

not qualitatively influenced by the value of β.

As a complement of the previous results, we also analyze the stability of the steady

shear flow solution for non-Newtonian rheology. Surprisingly, the analysis shows that

there are some regions of the parameter space of the system where the steady solution

is linearly unstable.
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The Boltzmann kinetic equation for low-density granular suspensions under simple shear flow is
considered to determine the velocity moments through the fourth degree. The influence of the inter-
stitial gas on solid particles is modeled by a viscous drag force term plus a stochastic Langevin-like
term. Two independent but complementary approaches are followed to achieve exact results. First,
to keep the structure of the Boltzmann collision operator, the so-called inelastic Maxwell models
(IMM) are considered. In this model, since the collision rate is independent of the relative veloc-
ity of the two colliding particles, the forms of the collisional moments can be obtained without the
knowledge of the velocity distribution function. As a complement of the previous effort, a BGK-type
kinetic model adapted to granular gases is solved to get the velocity moments of the velocity distri-
bution function. The analytical predictions of the rheological properties (which are exactly obtained
in terms of the coefficient of restitution α and the reduced shear rate a∗) show in general an excellent
agreement with event-driven simulations performed for inelastic hard spheres. In particular, both
theoretical approaches show clearly that the temperature and non-Newtonian viscosity exhibit an
S shape in a plane of stress-strain rate (discontinuous shear thickening effect). With respect to
the fourth-degree velocity moments, we find that while those moments have unphysical values for
IMM in a certain region of the parameter space of the system, they are well defined functions of
both α and a∗ in the case of the BGK kinetic model. The explicit shear-rate dependence of the
fourth-degree moments beyond this critical region is also obtained and compared against available
computer simulations.

I. INTRODUCTION

One of the most challenging problems in non-Newtonian gas-solid suspensions is the so-called discontinuous shear
thickening, namely, when the non-Newtonian shear viscosity of the suspension drastically increases with increasing
the shear rate. This problem (which mainly occurs in concentrated suspensions of particles such as mixtures of
cornstarch in water [1]) has attracted the attention of physicists [1–10] in the last few years as a typical nonequilibrium
discontinuous transition between a liquid-like phase and a solid-like phase. As pointed out by Brown and Jaeger
[4], there are essentially three different possible mechanisms to explain this dramatic version of shear thickening.
One mechanism is hydroclustering where the particles tend to move together into clusters under shear and hence,
lubrication drag forces between particles are increased due to this type of rearrangement [11, 12]. A second mechanism
[13, 14] is related to a transition in the microstructure from ordered layers at small shear rates to disordered layers at
higher shear rates (order-disorder transition). Finally, a third mechanism is dilatancy in which the packing volume
of particles dilates (expands) with increasing the shear rate [15, 16].
Although most of the studies on shear thickening have been focused on very dense systems, it would be conve-

nient to analyze relatively low-density systems where kinetic theory tools conveniently adapted to account for the
dissipative character of collisions can be employed to unveil in a clean way the microscopic mechanisms involved
in the discontinuous shear thickening. In particular, some previous papers [17–19] demonstrated the existence of a
nonequilibrium discontinuous transition for the granular temperature between a quenched state (a low-temperature
state) and an ignited state (a high-temperature state) in a granular suspension under simple shear flow described by
the Boltzmann equation.
A more recent work has been performed by Hayakawa et al. [20] in the context of the Enskog kinetic equation

for a moderately dense gas-solid suspension under simple shear flow. In contrast to the previous attempts [17–19],
the effect of the interstitial gas on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like

∗ Electronic address: ruben@unex.es
† Electronic address: vicenteg@unex.es; URL: http://www.unex.es/eweb/fisteor/vicente/
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term. The Enskog equation is solved by means two complementary routes: (i) Grad’s moment method and (ii)
event-driven Langevin simulations for inelastic hard spheres (IHS). Both approaches clearly show a transition from
the discontinuous shear thickening (observed for very dilute gases) to the continuous shear thickening as the density
of the system increases.
On the other hand, as in the case of elastic collisions [21–23], a limitation of the theoretical results obtained in Ref.

[20] is that they were approximately obtained by means of Grad’s moment method (namely, by considering the leading
terms in a Sonine polynomial expansion of the velocity distribution function). The source of this limitation comes
mainly from the form of the collision rate for hard spheres (which is proportional to the magnitude of the normal
component of the relative velocity of the two colliding spheres) appearing inside the Boltzmann collision operator.
As for elastic collisions, the lack of exact analytical results of the Boltzmann equation has stimulated the use of the
so-called inelastic Maxwell models (IMM), where the collision rate is independent of the relative velocity. IMM have
received a lot of attention in the last few years since they allow to assess the influence of inelasticity on the dynamic
properties of the system without introducing additional approximations.
Another possible way of overcoming the mathematical difficulties of the Boltzmann collision operator is to consider

a kinetic model. The kinetic models retain the relevant physical properties of the Boltzmann kinetic equation and
are more tractable than the true kinetic equation. This kind of approach has been widely employed in the case of
dilute gases with elastic collisions [24], where several exact solutions in far from equilibrium states have been obtained
in the past and shown to be in good agreement with numerical solutions of the Boltzmann equation. Here, we will
consider a Bhatnagar–Gross–Krook (BGK) model kinetic equation [25] for granular suspensions to complement the
theoretical results derived from the Boltzmann equation for IMM.
The objective of this paper is to determine the dynamic properties of a granular suspension under simple or

uniform shear flow (USF). This state is characterized by a constant density, a uniform granular temperature, and
a linear velocity profile Ux = ay, where a is the constant shear rate. We are interested here in the steady state
where the system admits a non-Newtonian hydrodynamic description characterized by shear-rate dependent viscosity
and normal stress differences. The evaluation of the rheological properties is one of the most important goals of the
present contribution. However, although these transport properties (which are related with the second-degree velocity
moments) are physically important, higher degree velocity moments offer also an important piece of information
about the velocity distribution function, especially in the high velocity region. By symmetry reasons, the third-degree
moments vanish in the steady state in the USF problem. Thus, beyond the rheological properties, the first nontrivial
moments are the fourth-degree moments. Their knowledge allows us to gauge partially the joint effect of shearing,
interstitial gas, and inelasticity on the velocity distribution function.
The efforts of computing the second- and fourth-degree moments for IMM in the USF problem may be justified

at least for three different reasons. First, the determination of the rheological properties can allow us to assess the
degree of reliability of IMM to capture the main trends observed previously in sheared granular suspensions of IHS.
As a second reason, it is interesting to explore whether or not the divergence of the fourth-degree moments for elastic
[26, 27] and inelastic [28] Maxwell gases beyond a certain critical shear rate is also present in granular suspensions
and, if so, to what extent. Finally, the knowledge of the fourth-degree moments is needed to evaluate the relevant
transport coefficients characterizing states close to the USF state [29]. This knowledge will allow us to analyze the
stability of the (steady) USF state in granular suspensions.
The plan of the paper is as follows. In section II, the Boltzmann equation for granular suspensions under USF is

introduced and the corresponding balance equations for the densities of mass, momentum, and energy are deduced.
Section III deals with the calculations carried out for IMM for the second- and fourth-degree moments. Since the
(scaled) granular temperature θ is a multi-evaluated function of the (reduced) shear rate a∗, it is more convenient
to analyze the divergence of the fourth-degree moments taking θ as input parameter instead of a∗. Therefore, in a
way similar to the case of elastic Maxwell molecules [26, 27] and dry granular gases (namely, when the effect of gas
phase on solid particles is neglected) [28], we find that, for a given value of α, those moments tend to infinity for

certain critical values θ
(1)
c and θ

(2)
c of the granular temperature. More specifically, those moments have unphysical

values in the region θ
(1)
c < θ < θ

(2)
c . The results derived from the BGK kinetic model are displayed in section IV

where it is shown first that the BGK predictions of the rheological properties coincide with those obtained by solving
the Boltzmann equation by means of Grad’s moment method [20]. In addition and in contrast with IMM, the BGK
moments are well defined functions in the complete parameter space of the system. Comparison between theory and
computer simulations at the level of the rheological properties is performed in section V. The excellent agreement
found here among the different tools confirms again the reliability of both theoretical approaches (Boltzmann equation
for IMM and BGK model for IHS) for studying non-Newtonian transport properties in sheared granular suspensions.
Finally, the paper is closed in section VI with some concluding remarks.
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II. BOLTZMANN KINETIC EQUATION FOR SHEARED GRANULAR SUSPENSIONS

A. Boltzmann kinetic equation for granular suspensions

Let us consider a set of solid particles of diameter σ and mass m immersed in a viscous gas. Since the grains
which make up a granular material are of a macroscopic size, their collisions are inelastic. In the simplest model, the
inelasticity of collisions is characterized by a (positive) constant coefficient of normal restitution α ≤ 1, where α = 1
corresponds to elastic collisions (ordinary gases). In the low-density regime, the one-particle velocity distribution
function of solid particles f(r,v; t) obeys the Boltzmann kinetic equation

∂f

∂t
+ v · ∇f + Ff = J [v|f, f ], (1)

where J [f, f ] is the Boltzmann collision operator [30] and F is an operator representing the fluid-solid interaction force
that models the effect of the viscous gas on solid particles. In order to fully account for the influence of the interstitial
molecular fluid on the dynamics of grains, a instantaneous fluid force model is employed [20, 31, 32]. For low Reynolds
numbers, it is assumed that the external force F acting on solid particles is composed by two independent terms.
One term corresponds to a viscous drag force Fdrag proportional to the (instantaneous) velocity of particle v. This
term takes into account the friction of grains on the viscous gas. Since the model attempts to mimic gas-solid flows,
the drag force is defined in terms of the relative velocity v − Ug where Ug is the (known) mean flow velocity of the
surrounding molecular gas. Thus, the drag force is defined as

Fdrag = −mγ (v − Ug) , (2)

where γ is the drag or friction coefficient. The second term in the total force corresponds to a stochastic force that
tries to simulate the kinetic energy gain due to eventual collisions with the (more rapid) molecules of the background
fluid. It does this by adding a random velocity to each particle between successive collisions [33]. This stochastic
force Fst has the form of a Gaussian white noise with the properties [34]

〈Fst
i (t)〉 = 0, 〈Fst

i (t)F
st
j (t

′)〉 = 2m2γTexIδijδ(t− t′), (3)

where I is the unit tensor and i and j refer to two different particles. Here, Tex can be interpreted as the temperature of
the background (or bath) fluid. In the context of the Boltzmann equation, the stochastic external force is represented
by a Fokker–Planck operator of the form F stf → −(γTex/m)∂2f/∂v2 [34, 35]. Note that the strength of correlation in
Eq. (3) has been chosen to be consistent with the fluctuation-dissipation theorem for elastic collisions [34]. In addition,
although the drift coefficient γ is in general a tensor, in the case of very dilute suspensions it may be assumed to be
an scalar proportional to the square root of Tex because the drag coefficient is proportional to the viscosity of the
solvent [36].
Therefore, according to Eqs. (2) and (3), the forcing term Ff can be written as

Ff = −γ∆U
∂f

∂v
− γ

∂

∂v
· Vf − γ

Tex
m

∂2f

∂v2
, (4)

and the Boltzmann equation (1) reads

∂f

∂t
+ v · ∇f − γ∆U

∂f

∂v
− γ

∂

∂v
· Vf − γ

Tex
m

∂2f

∂v2
= J [V|f, f ]. (5)

Here, ∆U = U − Ug, V = v − U is the peculiar velocity,

U(r, t) =
1

n(r, t)

∫
dv vf(r,v, t) (6)

is the mean particle velocity, and

n(r, t) =

∫
dv f(r,v, t) (7)

is the number density. Another relevant hydrodynamic field is the granular temperature T (r, t) defined as

T (r, t) =
m

dn(r, t)

∫
dv V 2f(r,v, t). (8)
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The suspension model (5) is a simplified version of the model proposed in Ref. [31] for monodisperse gas-solid flows
at moderate density. In this latter model, the friction coefficient of the drag force and the strength of the correlation
are considered to be different. Here, both coefficients are assumed to be the same for the sake of simplicity. Another
relevant point of the model (3) is that the form of the Boltzmann collision operator J [f, f ] is assumed to be the same
as for a dry granular gas (i.e., when the influence of the interstitial gas is neglected) and hence, the collision dynamics
does not contain any parameter of the environmental gas. This means that while the inertia of particles is assumed
to be relevant, the inertia of the gas phase is considered to be negligible. As has been previously discussed in several
papers [17, 18, 36–38], the above assumption requires that the mean-free time between collisions is assumed to be
much less than the time needed by the fluid forces to significantly affect the dynamics of solid particles. Thus, the
suspension model (3) is expected to be reliable in situations where the gas phase has a weak impact on the motion of
grains. This assumption fails for instance in the case of liquid flows (high density) where the stresses exerted by the
background fluid on grains are expected to be important and hence, the presence of fluid should be accounted for in
the collision process.
The Boltzmann collision operator conserves the mass and momentum but the energy is not conserved:

∫
dvJ [v|f, f ] = 0,

∫
dv mvJ [v|f, f ] = 0, (9)

∫
dv

m

2
V 2J [v|f, f ] = −d

2
nTζ, (10)

where ζ is the cooling rate due to inelastic collisions between the particles. From Eqs. (5), (9), and (10), the
macroscopic balance equations for the granular suspension can be obtained. They are given by

Dtn+ n∇ · U = 0, (11)

ρDtU+ ∇ · P = −ργ∆U, (12)

DtT +
2

dn
(∇ · q+ P : ∇U) = 2γ (Tex − T ) − ζ T. (13)

Here, Dt ≡ ∂t +U · ∇, ρ = mn is the mass density,

P =

∫
dv m VVf(v) (14)

is the pressure tensor, and

q =

∫
dv

m

2
V 2Vf(v) (15)

is the heat flux.
To completely define the suspension model (5), it still remains to explicitly write the form of the Boltzmann

collision operator J [f, f ]. The prototypical model of granular gases consists of a gas of IHS and hence, the collision
rate appearing in the Boltzmann operator is proportional to the relative velocity of colliding spheres. Although this is
an interaction model widely used in granular literature, it is generally not possible to get exact analytical results from
the Boltzmann equation for IHS, especially in far from equilibrium states such as the USF. As a consequence, most of
the analytical results reported in the literature in the context of the Boltzmann equation for IHS have been obtained
by introducing additional, and sometimes uncontrolled, approximations. In particular, the rheological properties of
granular suspensions under USF have been recently determined [20] by means of Grad’s moment method. Therefore,
from a theoretically oriented point of view, if one desires to overcome the mathematical intricacies associated with the
Boltzmann operator for IHS and derive exact results, one has at least two fruitful routes. One of them is to retain the
mathematical structure of the Boltzmann equation but consider IMM. For this interaction model the collision rate is
independent of the relative velocity of the colliding pair. This allows for a number of nice mathematical properties of
the Boltzmann collision operator. The second possibility is to consider a kinetic model of the Boltzmann equation,
namely, one replaces the operator J [f, f ] by a simpler collision model that otherwise retains the most relevant physical
properties of the true Boltzmann collision operator. IMM will be considered in Sec. III while the kinetic model will
be employed in Sec. IV.
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B. Steady uniform shear flow

Let us assume that the granular suspension is under USF. As said in the Introduction, this state is macroscopically
defined by a constant density n, a spatially uniform temperature T (t), and a flow velocity Ui = aijrj , where aij =
aδixδjy , a being the constant shear rate. In addition, as usual in uniform sheared suspensions [17–19, 39], the average
velocity of particles follows the velocity of the fluid phase and so, U = Ug. One of the main advantages of the USF
at a microscopic level is that in this state all the space dependence of the one-particle velocity distribution function
f(r,v, t) occurs through its dependence on the peculiar velocity V = v − U(r) [40]. Thus, at a more fundamental
level, the USF is defined as that which is spatially homogeneous when the velocities of particles are referred to a
Lagrangian frame moving with the linear velocity field Ui. In this frame, the distribution function adopts the form

f(r,v; t) = f(V; t), (16)

and hence, in the steady state, the Boltzmann equation (5) reduces to

− aVy
∂f

∂Vx
− γ

∂

∂V
· Vf − γ

Tex
m

∂2f

∂V 2
= J [V|f, f ]. (17)

Equation (17) is invariant under the transformations (Vx, Vy) → (−Vx,−Vy) and Vj → −Vj for j 6= x, y.
In the USF problem, the heat flux vanishes (q = 0) and the (uniform) pressure tensor P is the relevant flux.

Moreover, the conservation equations (11) and (12) hold trivially and in the steady state the balance equation (13)
for the granular temperature becomes

− 2

dn
aPxy − ζT + 2γ (Tex − T ) = 0. (18)

Equation (18) implies that in the steady state the viscous heating term (−aPxy > 0) plus the energy gained by grains
due to collisions with the interstitial fluid (γTex) is exactly compensated by the cooling terms arising from collisional
dissipation (ζT ) and viscous friction (γT ). Thus, for a given value of the environmental temperature Tex, the (steady)
scaled temperature θ ≡ T/Tex is a function of the coefficient of restitution α and the (scaled) shear rate a∗ ≡ a/γ.
Of course, in the absence of shear flow (a = 0), the solution to Eq. (18) is T = Tex for elastic collisions (α = 1 and
so, ζ = 0) as expected. Note that in contrast to dry granular gases (γ = 0), a steady state is still possible for sheared
suspensions when the collisions between the solid particles are elastic.
The USF state is in general non-Newtonian. This can characterized by generalized transport coefficients measuring

their departure from their corresponding Navier–Stokes forms. Thus, a non-Newtonian shear viscosity coefficient
η(α, a) is defined as

η = −Pxy

a
. (19)

Moreover, while in the Navier–Stokes domain Pxx = Pyy = Pzz, normal stress differences are expected in the USF
state (Pxx 6= Pyy 6= Pzz). All the above properties may be easily identified from the knowledge of the (reduced) shear
stress P ∗

xy and the (reduced) diagonal elements P ∗
xx, P

∗
yy, and P

∗
zz, where

P ∗
ij ≡ Pij

nTex
. (20)

It is quite apparent that the determination of the rheological properties requires to solve the Boltzmann equation
(17). As said before, Grad’s moment method [41] has been used to solve Eq. (17) for IHS [20]. Grad’s moment
method is based on the expansion of the velocity distribution function in a complete set of orthogonal polynomials
(generalized Hermite polynomials), the coefficients being the corresponding velocity moments. However, given that
the (infinite) hierarchy of moment equations is not a closed set of equations, one has to truncate the above expansion
after a certain order. After this truncation, the above hierarchy of moment equations becomes a closed set of coupled
equations which can be recursively solved. Thus, given that the results derived in Ref. [20] are approximated, it
is interesting to revisit the problem and get exact expressions of the rheological properties by considering both the
Boltzmann equation for IMM and a BGK-type kinetic model for IHS. This will be carried out in the next two sections.

III. INELASTIC MAXWELL MODELS

We consider in this section the Boltzmann equation (17) for IMM. In this case, the Boltzmann collision operator
JIMM[f, f ] is given by [42]

JIMM [v1|f, f ] =
νM
nΩd

∫
dv2

∫
dσ̂

[
α−1f(v′′

1 )f(v
′′
2 ) − f(v1)f(v2)

]
, (21)
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where Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions and νM is a collision frequency. In addition, the
double primes on the velocities denote initial values {v′′

1 ,v
′′
2} that lead to {v1,v2} following a binary collision:

v′′
1 = v1 − 1

2

(
1 + α−1

)
(σ̂ · g)σ̂, v′′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g)σ̂, (22)

where g = v1 − v2 is the relative velocity of the colliding pair and σ̂ is a unit vector directed along the centers of
the two colliding particles. The collision frequency νM(r, t) is independent of velocity but depends on space and time
through its dependence on density and temperature. It can be seen as a free parameter of the model that can be
chosen to optimize agreement with the properties of interest of the original Boltzmann equation for IHS. For instance,
in order to correctly describe the velocity dependence of the original IHS collision rate, we can assume that the IMM
collision rate is proportional to T 1/2.
As noted in previous works on IMM [28, 43], the main advantage of the Boltzmann equation for Maxwell models

(both elastic and inelastic) is that the moments of the operator J [f, f ] can be exactly expressed in terms of the velocity
moments of the velocity distribution f , without the knowledge of the latter. This property has been exploited to
determine for arbitrary dimensions the explicit forms for all the second, third, and fourth-degree collisional moments
as functions of the coefficient of restitution α [43]. In the steady USF problem, the relevant velocity moments are
the second- and fourth-degree moments since the third-degree moments vanish by symmetry. In particular, the
second-degree collisonal moment (which is needed to get the rheological properties) is given by [43]

∫
dVmViVjJIMM[V|f, f ] = −ν0|2Πij − pζδij , (23)

where Πij = Pij − pδij is the traceless part of the pressure tensor, p = (Pxx + Pyy + · · · )/d = nT is the hydrostatic
pressure, and

ζ =
1 − α2

2d
νM, (24)

ν0|2 = ζ +
(1 + α)2

2(d+ 2)
νM =

(d+ 1 − α)(1 + α)

d(d+ 2)
νM. (25)

The expressions of the fourth-degree collisional moments are displayed in the Appendix A for the sake of completeness.
Equation (24) provides the exact form of the cooling rate for IMM. This form can be used to fix the value of the free
parameter νM. This is chosen under the criterion that ζ of IMM is the same as that of IHS of diameter σ. Given that
the cooling rate cannot be exactly evaluated for IHS, we take here for ζIHS its expression when f is replaced by the
Maxwellian distribution. In this approximation, ζIHS is given by [35]

ζIHS → d+ 2

4d
(1 − α2)ν0, (26)

where

ν0 =
8

d+ 2

π(d−1)/2

Γ
(
d
2

) nσd−1

√
T

m
(27)

is the collision frequency of the shear viscosity coefficient of a dilute ordinary gas. Comparing Eqs. (24) and (26), one
gets the relationship

νM =
d+ 2

2
ν0. (28)

A. Rheological properties

The hierarchy of equations defining the elements of the pressure tensor Pkℓ can be easily obtained by multiplying
both sides of Eq. (17) (replacing J by JIMM) by mVkVℓ and integrating over V. The result is

a (δkxPℓj + δℓxPky) + 2γ (Pkℓ − nTexδkℓ) = −ν0|2Pkℓ − p
(
ζ − ν0|2

)
δkℓ, (29)
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where use has been made of Eq. (23). From Eq. (29) is easy to prove that the diagonal elements of the pressure tensor
orthogonal to the shear plane xy are equal to Pyy (i.e., Pyy = Pzz = . . . = Pdd). As a consequence, Pxx = dp−(d−1)Pyy

and the elements Pyy and Pxy obey the equations
(
ν0|2 + 2γ

)
Pyy = nTex

[
2γ −

(
ζ − ν0|2

)
θ
]
, (30)

(
ν0|2 + 2γ

)
Pxy = −aPyy, (31)

where we recall that θ ≡ T/Tex. The solution to Eqs. (30) and (31) is

Pyy =
2γ −

(
ζ − ν0|2

)
θ

ν0|2 + 2γ
nTex, (32)

Pxy = − a

ν0|2 + 2γ
Pyy = −2γ −

(
ζ − ν0|2

)
θ

(
ν0|2 + 2γ

)2 anTex. (33)

The element Pxx can be easily obtained from Eq. (32) as

Pxx =
d
(
ν0|2 + 2γ

)
θ − (d− 1)

[
2γ −

(
ζ − ν0|2

)
θ
]

ν0|2 + 2γ
nTex. (34)

The (reduced) temperature θ can be finally determined by substituting Eq. (33) into the steady-state condition (18).
In order to compare our theoretical results with those obtained in Ref. [20] by computer simulations, it is convenient
to scale the shear rate with the friction coefficient γ (i.e., a∗ ≡ a/γ) and introduce the (reduced) background gas
temperature T ∗

ex ≡ Tex/mσ
2γ2. In terms of these quantities, the solution to Eq. (18) can be written as

a∗ =

√√√√d

2

√
θζ∗ + 2(1 − θ−1)√
θ(ν∗0|2 − ζ∗) + 2θ−1

(2 +
√
θν∗0|2), (35)

where we have introduced the dimensionless quantities

ζ∗ ≡ ζ√
θγ

=
2π(d−1)/2

dΓ
(
d
2

) (1 − α2)n∗√T ∗
ex, (36)

ν∗0|2 ≡ ν0|2√
θγ

=
4π(d−1)/2

d(d+ 2)Γ
(
d
2

) (d+ 1 − α)(1 + α)n∗√T ∗
ex. (37)

Since γ ∝ √
Tex, then ζ

∗ and ν∗0|2 are independent of both the granular temperature T and the background temperature

Tex. In Eqs. (36) and (37), n∗ = nσd is the reduced density. Note that this explicit dependence on density comes
from the scaling of the shear rate a and the bath temperature Tex. If we had reduced the shear rate for instance with
the collision frequency ν0(T ), then the above density dependence had been removed. On the other hand, since we
want to make a close comparison with the simulation data reported in Ref. [20], our theory must employ the same
input parameters as in the simulation results.
As happens for IHS [20], it is quite apparent that we cannot express the (reduced) temperature θ in Eq. (35) as an

explicit function of both the coefficient of restitution α and the (reduced) shear rate a∗. However, the dependence
of θ on the latter parameters can implicitly be obtained from the physical solution to Eq. (35) as a∗2(θ, α). Once θ
is known, the remaining rheological functions can be determined from Eqs. (32) and (33) in terms of α and a∗. In
particular, the (dimensionless) non-Newtonian shear viscosity

η∗ ≡ −P ∗
xy

a∗
(38)

can be easily identified from Eq. (33) with the result

η∗ =
2 +

(
ν∗0|2 − ζ∗

)√
θθ

(√
θν∗0|2 + 2

)2 . (39)
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FIG. 1: Plot of the ratios η∗
NS(α)/η

∗
NS(1) (a) and η∗

NS,dry(α)/η
∗
NS,dry(1) (b) as functions of the coefficient of restitution α for a

three-dimensional system.

Since Pyy = Pzz , the only nonzero (reduced) viscometric function is given by

Ψ∗ =
Pxx − Pyy

nTex
= dθ

2
(
1 − θ−1

)
+

√
θζ∗

2 +
√
θν∗0|2

, (40)

where use has been made of Eqs. (32) and (34). It must be remarked that although the theoretical prediction Pyy = Pzz

disagrees with computer simulations [20], the magnitude of the difference Pyy −Pzz is in general very small; therefore
the expressions (32)–(34) can be still considered as reliable. A careful comparison with the theoretical results obtained
for dense granular suspensions of IHS [20] by means of Grad’s moment method shows that these expressions differ
from those derived here for IMM in the dilute limit. On the other hand, this discrepancy is only due to the different
α dependence of the eigenvalue ν0|2 with respect to the one found for IHS.
For illustrative purposes, it is interesting to consider the limits of small and large shear rates. For small shear rates

(a∗ → 0), η∗ → η∗NS, where the Navier–Stokes shear viscosity of the granular suspension is

η∗NS =
θNS

2 +
√
θNSν∗0|2

. (41)

Here, θNS is a real solution of the equation

θNS =
1

1 + 1
2

√
θNSζ∗

. (42)

For large shear rates (a∗ → ∞), the asymptotic forms for α < 1 are

θ∞ → 2

d

ν∗0|2 − ζ∗

ν∗20|2ζ
∗ a∗2, η∗∞ →

√
d

2

(
ν∗0|2 − ζ∗

)3/2

ν∗30|2
√
ζ∗

a∗, (43)

while for elastic collisions (α = 1), one gets

θ∞ → a∗4

d2ν∗20|2
, η∗∞ → a∗2

dν∗20|2
. (44)

It is interesting at this point to compare the behaviors of the non-Newtonian shear viscosity obtained here for
granular suspensions in the limit of small and high shear rates with those derived before for dilute ordinary [24] and
dry inelastic [28] Maxwell gases. In both cases, while η∗ ≡ finite when a∗ → 0, η∗ ∝ a∗−4/3 when a∗ → ∞. This
means that η∗ is a monotonically decreasing function of the shear rate and so, the shearing produces an inhibition
of the momentum transport (shear thinning effect) in the sense that the actual value of the shear stress |Pxy| is
smaller than the one predicted by Newton’s law. On the other hand, a completely different behavior is found here
for granular suspensions, since while η∗ ≡ finite when a∗ → 0, this coefficient diverges in the limit a∗ → ∞ [see Eqs.
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(43) and (44)]. Thus, the fact that the ratio η∗(a∗ → ∞)/η∗(a∗ → 0) becomes very large could explain the existence
of discontinuous shear thickening in a structurally simple system due to the connection between the Newtonian and
Bagnoldian branches. This behavior changes as the density of the system increases since kinetic theory results predict
continuous shear thickening for both ordinary gases [44] and granular suspensions [20].
Before considering the shear-rate dependence of the rheological functions, it is worthwhile to compare the α-

dependence of the Navier–Stokes shear viscosity (41) with the one obtained in the dry granular case. In dimensionless
form, the expression of the Navier–Stokes shear viscosity of a granular gas can be written as ηNS,dry = (p/νM)η∗NS,dry,

where [45]

η∗NS,dry =
4d(d+ 2)

(1 + α) [3d+ 2 − (d− 2)α]
. (45)

Figure 1 shows the ratios η∗NS(α)/η
∗
NS(1) and η

∗
NS,dry(α)/η

∗
NS,dry(1) as functions of the coefficient of restitution α for

d = 3. Here, η∗NS(1) and η∗NS,dry(1) refer to the values of the shear viscosity coefficients for elastic collisions for the
suspension and dry granular cases, respectively. It is quite apparent that the α dependence of both viscosities is
qualitatively different since while the shear viscosity of a granular suspension decreases (with respect to its value
for elastic collisions) with increasing inelasticity, the opposite happens for granular gases. Moreover, the impact of
inelasticity on both shear viscosity coefficients is quite significant.

B. Fourth-degree moments

As mentioned in section I, although the rheological properties are the most important transport properties of the
granular suspension, the determination of higher degree velocity moments is also an appealing problem. Since the
third-degree moments vanish in the steady USF by symmetry reasons, the fourth-degree moments are the first nonzero
moments beyond the second-degree moments. Here, we will focus on a three-dimensional system (d = 3). As for
ordinary gases [24, 27], for d = 3, there are 15 independent fourth-degree moments; 6 are asymmetric (in the sense
that they vanish in the steady state) and 9 are symmetric (they are different from zero in the steady state). The
symmetric and asymmetric moments are uncoupled. Since we are not interested in this paper in analyzing the time
evolution of the fourth-degree moments, we will address here only the study of the (steady) symmetric moments.
In parallel to the elastic case [24, 27], we choose the following set of 9 symmetric moments:

{
M4|0,M2|xx,M2|yy,M2|xy,M0|xxxx,M0|yyyy,M0|zzzz,M0|xxxy,M0|xyyy

}
. (46)

Here, we have introduced the velocity moments

(
M4|0,M2|ij,M0|ijkℓ

)
=

∫
dV

(
Y4|0, Y2|ij , Y0|ijkℓ

)
f(V), (47)

where the fourth-degree Ikenberry polynomials are defined as [46]

Y4|0(V) = V 4, Y2|ij(V) = V 2

(
ViVj − 1

3
V 2δij

)
, (48)

Y0|ijkℓ(V) = ViVjVkVℓ − V 2

7

(
ViVjδkℓ + ViVkδjℓ + ViVℓδjk + VjVjkδiℓ + VjVℓδik

+VkVℓδij

)
+
V 4

35

(
δijδkℓ + δikδjℓ + δiℓδjk

)
. (49)

As for ordinary gases [24, 27], it is easy to prove that the combination

3M0|xxxx − 4
(
M0|yyyy +M0|zzzz

)
= 0 (50)

in the steady USF state. This means that we really have 8 independent fourth-degree symmetric moments since
for instance M0|xxxx = 4

3

(
M0|yyyy +M0|zzzz

)
. As expected, the eight independent moments are coupled. The

corresponding equations obeying those eight moments can be determined by multiplying both sides of Eq. (17) by
the set of velocity polynomials

{
Y4|0, Y2|xx, Y2|yy, Y2|xy, Y0|yyyy, Y0|zzzz, Y0|xxxy, Y0|xyyy

}
(51)
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and integrating over velocity. In addition, to explicitly obtain the hierarchy of moment equations, one needs the
collisional moments (A3)–(A7) associated with the above fourth-degree polynomials. In dimensionless form, the set
of coupled equations for the fourth-degree moments can be written in matrix form as

LµνMν = Nµ, µ = 1, 2, . . . , 8. (52)

Here, M is the column matrix defined by the set
{
M∗

4|0,M
∗
2|xx,M

∗
2|yy,M

∗
0|yyyy,M

∗
0|zzzz,M

∗
2|xy,M

∗
0|xxxy,M

∗
0|xyyy

}
, (53)

and L is the square matrix

L = 4I + L′, (54)

where I is the 8 × 8 unit matrix and

L′ =




√
θν∗4|0 0 0 0 0 4a∗ 0 0

0
√
θν∗2|2 0 0 0 32

21a
∗ 2a∗ 0

0 0
√
θν∗2|2 0 0 − 10

21a
∗ 0 2a∗

0 0 0
√
θν∗0|4 0 − 96

245a
∗ 0 − 12

7 a
∗

0 0 0 0
√
θν∗0|4

24
245a

∗ 12
7 a

∗ 12
7 a

∗

7
15a

∗ 2
7a

∗ 9
7a

∗ − 7
3a

∗ − 1
3a

∗ √
θν∗2|2 0 0

0 15
49a

∗ − 6
49a

∗ − 5
2a

∗ − 5
14a

∗ 0
√
θν∗0|4 0

0 − 6
49a

∗ 15
49a

∗ 2a∗ 1
7a

∗ 0 0
√
θν∗0|4




. (55)

The scaled moments M∗
4|0, M

∗
2|ij , and M

∗
0|ijkℓ are defined as

{
M∗

4|0,M
∗
2|ij ,M

∗
0|ijkℓ

}
= n−1

(
m

Tex

)2 {
M4|0,M2|ij ,M0|ijkℓ

}
, (56)

and in Eq. (55), ν∗4|0 ≡ ν4|0/(
√
θγ), ν∗2|2 ≡ ν2|2/(

√
θγ), and ν∗0|4 ≡ ν0|4/(

√
θγ). The expressions of ν4|0, ν2|2, and

ν0|4 are given by Eqs. (A8) and (A9), respectively. In addition, the elements of the column matrix N are made of
second-degree moments:

N1 = 9θ2
√
θλ∗1 − 2

√
θλ∗2

(
3Π∗2

yy +Π∗2
xy

)
+ 60θ, (57)

N2 = −6θ
√
θλ∗3Π

∗
yy −

√
θ

3
λ∗4

(
2Π∗2

yy − Π∗2
xy

)
− 28Π∗

yy, (58)

N3 = 3θ
√
θλ∗3Π

∗
yy +

√
θ

3
λ∗4

(
3Π∗2

yy +Π∗2
xy

)
+ 14Π∗

yy, (59)

N4 =
3

35

√
θλ∗5

(
27Π∗2

yy − 16Π∗2
xy

)
, (60)

N5 =
3

35

√
θλ∗5

(
27Π∗2

yy + 4Π∗2
xy

)
, (61)

N6 = 3θ
√
θλ∗3Π

∗
xy +

√
θλ∗4Π

∗
yyΠ

∗
xy + 14Π∗

xy, (62)

N7 = −36

7

√
θλ∗5Π

∗
yyΠ

∗
xy, (63)

N8 =
27

7

√
θλ∗5Π

∗
yyΠ

∗
xy, (64)

where λ∗i ≡ λi/(
√
θγ) and Π∗

ij ≡ Πij/nTex. The quantities λi(i = 1, · · · , 5) are defined by Eqs. (A10) and (A11).
The solution to Eq. (52) is

M = L−1 · N . (65)

Equation (65) provides the dependence of the (symmetric) fourth-degree moments on both the (reduced) shear rate
a∗ and the coefficient of restitution α. This dependence will be analyzed in section V.
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IV. BGK-TYPE KINETIC MODEL OF THE BOLTZMANN EQUATION

We consider now the results derived for the USF from a BGK-type kinetic model of the Boltzmann equation [25].
In the USF problem, the steady kinetic model for the granular suspension described by the Boltzmann equation (17)
reads

− aVy
∂f

∂Vx
− γ

∂

∂V
· Vf − γTex

m

∂2f

∂V 2
= −χ(α)ν0 (f − fL) +

ζ

2

∂

∂V
· Vf, (66)

where ν0 is the effective collision frequency defined by Eq. (27), ζ is defined by Eq. (24) [or equivalently, by Eq. (26)]
and

fL(V) = n
( m

2πT

)d/2

e−mV 2/2T (67)

is the local equilibrium distribution function In addition, χ(α) is a free parameter of the model chosen to optimize
the agreement with the Boltzmann results.
One of the main advantages of using a kinetic model instead of the Boltzmann equation is that it lends itself to

determine all the velocity moments of the velocity distribution function. For the sake of convenience, let us define the
general velocity moments

Mk1,k2,k3 =

∫
dV V k1

x V k2
y V k3

z f(V). (68)

As for IMM, although we are mainly interested in the three-dimensional case, we will perform our results for d = 3
and d = 2. Of course, for hard disks (d = 2), k3 = 0 since the z-axis is meaningless. To get Mk1,k2,k3 , we multiply
both sides of Eq. (66) by V k1

x V k2
y V k3

z and integrate over velocity to achieve the result

ak1Mk1−1,k2+1,k3 + (χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (69)

where λ = γ + ζ/2, k = k1 + k2 + k3, and

Nk1,k2,k3 =
γTex
m

Rk1,k2,k3 + χν0M
L
k1,k2,k3

. (70)

In Eq. (70), we have introduced the quantities

Rk1,k2,k3 =

∫
dV f(V)

∂2

∂V 2

(
V k1
x V k2

y V k3
z

)

= k1(k1 − 1)Mk1−2,k2,k3 + k2(k2 − 1)Mk1,k2−2,k3 + k3(k3 − 1)Mk1,k2,k3−2, (71)

and

ML
k1,k2,k3

= n

(
2T

m

)k/2

π−d/2Γ

(
k1 + 1

2

)
Γ

(
k2 + 1

2

)
Γ

(
k3 + 1

2

)
(72)

if k1, k2, and k3 are even, being zero otherwise. The solution to Eq. (69) can be cast into the form (see the Appendix
B)

Mk1,k2,k3 =

k1∑

q=0

k1!

(k1 − q)!

(−a)q
(χν0 + kλ)

1+qNk1−q,k2+q,k3 . (73)

The first nontrivial moments are related with the pressure tensor Pij . The expressions of its nonzero elements are

Pyy = Pzz = nTex
θχν0 + 2γ

χν0 + 2λ
, Pxy = −nTex

θχν0 + 2γ

(χν0 + 2λ)
2 a, (74)

Pxx = dnT − (d− 1)Pyy = nTex
θχν0 + 2γ

χν0 + 2λ

[
1 +

2a2

(χν0 + 2λ)
2

]
. (75)
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The non-Newtonian shear viscosity η∗ and the viscometric function Ψ∗ defined by Eqs. (38) and (39), respectively,
can be easily identified from Eqs. (74) and (75). Their expressions in the BGK model are

η∗ =
2 + χν∗0

√
θθ

[√
θ (χν∗0 + ζ∗) + 2

]2 , (76)

Ψ∗ = dθ
2
(
1 − θ−1

)
+

√
θζ∗

2 +
√
θ (χν∗0 + ζ∗)

, (77)

where ζ∗ is given by Eq. (36) and

ν∗0 ≡ ν0√
θγ

=
8

d+ 2

π(d−1)/2

Γ
(
d
2

) n∗√T ∗
ex. (78)

Finally, the steady granular temperature θ ≡ T/Tex can be obtained from the steady-state condition (18). After some
algebra, one gets the implicit equation

a∗ =

√
d

2

√
θζ∗ + 2(1 − θ−1)√
θχν∗0 + 2θ−1

[
2 +

√
θ (χν∗0 + ζ∗)

]
. (79)

Comparison of Eqs. (76), (77), and (79) with those obtained by solving the Boltzmann equation via Grad’s moment
method [20] shows that the BGK results for the rheological properties agree with the Boltzmann ones when the
parameter χ(α) is given by

χ(α) =
1 + α

2

[
1 − d− 1

2d
(1 − α)

]
. (80)

Furthermore, for elastic collisions, Eqs. (76), (77), and (79) agree with previous results [47] obtained by solving the
BGK model for ordinary dilute gases by means of Grad’s moment method.
The expressions of the fourth-degree moments can be easily obtained from Eq. (73) with the choice (80). The

shear-rate dependence of these moments will be compared with the ones derived before for IMM for d = 3 in section
V.

A. Transport properties at Tex = 0

Apart from getting the velocity moments, the use of the BGK equation allow us in some cases to obtain explicitly
the velocity distribution function f . On the other hand, we have not been able to derive an expression for f for
the suspension model (66). An exception corresponds to the simple limit case Tex = 0 but keeping γ ≡ const. It
corresponds to a situation where the background temperature Tex is much smaller than the granular temperature T
and hence, the model ignores the effects of thermal fluctuations on solid particles and the impact of the gas phase is
only accounted for by the drag force term. Of course, it is also understood that γ does not depend on the background
temperature. This simple model has been employed in several previous works to study simple shear flows in gas-solid
flows [17–19, 39], particle clustering due to hydrodynamic interactions [48], steady states of particle systems driven
by a vibrating boundary [49] and more recently [8, 9, 50, 51] to analyze the rheology of frictional sheared hard-sphere
suspensions.
Note that, in spite of the absence of the Langevin-like term Tex∂

2f/∂v2 in this suspension model, the Boltzmann
equation (5) still admits a simple solution in the homogeneous state (zero shear rate) for elastic collisions (α = 1).
Thus, if one chooses a convenient selection of frame then U = Ug = 0, and Eq. (5) admits the time-dependent solution

fL(v, t) = n

(
m

2πT (t)

)d/2

e−mv2/2T (t), (81)

where T (t) verifies the equation

∂ lnT

∂t
= −2γ. (82)
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An H-theorem has been also proved [52] for this time-dependent Maxwellian distribution in the sense that, starting
from any initial condition and in the presence of the viscous drag force γv, the velocity distribution function f(r,v, t)
reaches in the long time limit the Maxwellian form with a time-dependent temperature.
In this limit case (Tex = 0), according to Eqs. (74) and (75), the elements of the pressure tensor can be written in

a more compact form as [53]

Pyy = Pzz =
nT

1 + 2ξ
, Pxx = dnT − (d− 1)Pyy, Pxy = − nT

(1 + 2ξ)2
ã, (83)

where ã = a/(ν0χ), and ξ is the real root of the cubic equation

dξ(1 + 2ξ)2 = ã2, (84)

namely,

ξ(ã) =
2

3
sinh2

[
1

6
cosh−1

(
1 +

27

d
ã2
)]

. (85)

The friction coefficient γ obeys the steady-state condition (18):

γ = χν0ξ − 1

2
ζ. (86)

Since γ ≥ 0, at a given value of α, there is a critical value ãc(α) of the (reduced) shear rate such that physical
solutions to Eq. (80) only exist for ã ≥ ãc(α). The critical value ãc is obtained from the condition 2χν0ξ = ζ. Thus,
if α 6= 1, then ãc > 0 and the expression for the Newtonian shear viscosity cannot be recovered when ã → 0. This is
a drawback of this suspension model (Tex = 0). It must be remarked that Tsao and Koch [17] solved time ago this
simple model and showed the existence of a discontinuous transition for the temperature between a “quenched” state
(a low temperature state) and an “ignited” state (a high temperature state).
Finally, the velocity distribution function f(V) can be also determined explicitly in this limit case. When Tex = 0,

the BGK equation (66) becomes

− aVy
∂f

∂Vx
− λ

∂

∂V
· Vf + χν0f = χν0fL. (87)

This equation can be rewritten as
(
1 − dλ̃− ãVy

∂

∂Vx
− λ̃V · ∂

∂V

)
f = fL, (88)

where λ̃ = λ/(χν0). The hydrodynamic solution to Eq. (88) is

f =

(
1 − dλ̃− ãVy

∂

∂Vx
− λ̃V · ∂

∂V

)−1

fL

=

∫ ∞

0

ds e−(1−dλ̃)s eãsVy
∂

∂Vx eλ̃sV· ∂
∂V fL(V). (89)

The action of the velocity operators eãsVy
∂

∂Vx and eλ̃tV· ∂
∂V on an arbitrary function g(V) is

eãsVy
∂

∂Vx g(Vx, Vy, Vz) = g(Vx + ãsVy , Vy, Vz), (90)

eλ̃sV· ∂
∂V g(Vx, Vy , Vz) = g

(
eλ̃sVx, e

λ̃sVy , e
λ̃sVz

)
. (91)

Taking into account these operators, the velocity distribution function f can be finally written as

f(V) = n
( m
2T

)d/2

ϕ(c), (92)

where c = (m/2T )1/2V is the reduced peculiar velocity and the reduced velocity distribution function ϕ(c) is

ϕ(c) = π−d/2

∫ ∞

0

ds e−(1−dλ̃)s exp
[
−e2λ̃s (c+ s ã · c)2

]

= π−d/2

∫ ∞

0

ds e−(1−dλ̃)s exp
{

− e2λ̃s
[
(cx + ãscy)

2 + c2y + c2z)
]}
. (93)

Here, we have introduced the tensor ãij = ãδixδjy .
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FIG. 2: Plots of the steady granular temperature θ, the non-Newtonian shear viscosity η∗, and the viscometric function Ψ∗

versus the (reduced) shear rate a∗ for n∗ = 0.01 and T ∗
ex = 0.9. Two different values of the coefficient of restitution α have

been considered: α = 1 (a), and α = 0.9 (b). The solid and dotted lines correspond to the results obtained from the Boltzmann
equation for IMM. The dashed and dash–dotted lines correspond to the results obtained from the BGK equation for IHS.
Symbols refer to computer simulation results: empty circles for α = 1 and filled circles for α = 0.9.

V. RHEOLOGICAL PROPERTIES AND FOURTH-DEGREE MOMENTS. COMPARISON WITH
COMPUTER SIMULATIONS

In sections IV and V we have solved the Boltzmann and BGK kinetic equations to obtain the shear-rate dependence
of the second- and fourth-degree moments of a sheared granular suspension. In dimensionless form, those moments
are given in terms of the coefficient of restitution α, the reduced density n∗ ≡ nσd, the (reduced) background
temperature T ∗

ex ≡ Tex/(mσ
2γ2), and the (reduced) shear rate a∗ ≡ a/γ. The theoretical results obtained for the

steady (scaled) granular temperature θ and the rheological functions η∗ and Ψ∗ are compared here against recent
event-driven simulations [20] performed for a three-dimensional system (d = 3). In the simulations, n∗ = 0.01 and
T ∗
ex = 0.9. Henceforth, we will consider these values for n∗ and T ∗

ex for the remaining plots displayed in this section.
The shear-rate dependence of θ, η∗, and Ψ∗ is plotted in Fig. 2 for two different values of the coefficient of

restitution α: α = 1 (elastic collisions) and α = 0.9 (inelastic collisions). The analytical expressions of the above
quantities obtained from the Boltzmann equation for IMM are given by Eqs. (35), (39), and (40) while Eqs. (76),
(77), and (79) correspond to the results derived from the BGK equation for IHS. Recall that the latter results coincide
with those derived by solving the Boltzmann equation for IHS [20] via Grad’s moment method [41]. First, it is quite
apparent that the agreement of both theoretical results with simulations is excellent in the complete range of (scaled)
shear rates analyzed. As in previous works on sheared granular flows [54], the good agreement found here between
IMM and simulations of IHS confirms again the reliability of IMM to reproduce the main trends observed for IHS.
Moreover, as remarked in previous studies [20, 47], Fig. 2 highlights the existence of a discontinuous shear thickening
effect, namely, the non-Newtonian shear viscosity η∗ discontinuously increases/decreases (at a certain value of a∗) as
the (scaled) shear rate gradually increases/decreases. The origin of this saddle-node bifurcation is a consequence of
the connection between the behaviors of the non-Newtonian shear viscosity for small [Newtonian branch, Eq. (41)] and
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FIG. 3: Phase diagram for the behavior of the (symmetric) fourth-degree moments for IMM. The hatched regions below the
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(1)
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c (α) (region III) correspond to states with well-defined values of the scaled fourth-

degree moments. The region II [θ
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values. Here, n∗ = 0.01 and T ∗
ex = 0.9.
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FIG. 4: Plot of the smallest eigenvalue, ℓmin, associated with the time evolution of the (symmetric) fourth-degree moments for
IMM as a function of the (scaled) temperature θ for α = 0.5 (solid line), α = 0.7 (dashed line), and α = 1 (dash-dotted line).

The circles indicate the location of the corresponding values of the critical temperatures θ
(1)
c (α) and θ

(2)
c (α). Here, n∗ = 0.01

and T ∗
ex = 0.9.

large [Bagnoldian branch, Eqs. (43) and (44)] shear rates. At a more quantitative level, in the case of the viscosity η∗,
we also observe that simulation data suggest a sharper transition than the one obtained from the analytical results.
These discrepancies (which are qualitatively small) could be in part due to the limitations of the molecular chaos
ansatz of the Boltzmann equation which are of course avoided in the molecular dynamics method.
It must be remarked that the results (both theory and simulations) reported in Ref. [20] have shown that there is a

transition from discontinuous shear thickening in dilute suspensions to continuous shear thickening at relatively low
density. This finding is consistent with previous works [17, 18] where only the transition between the quenched and
the ignited states for the steady temperature θ was analyzed but it contrasts with typical experimental observations
in dense suspensions. With respect to the impact of the coefficient of restitution α on rheology, we see that the effect
of α on the viscometric function Ψ∗ is smaller than the one found for the temperature θ and the shear viscosity η∗.
We consider now the (symmetric) fourth-degree moments. They are given by Eq. (65) for the Boltzmann equation

for IMM and Eq. (73) for the BGK kinetic model for IHS. As Fig. 2 shows, the function θ(a∗) becomes a multi-valued
function in a certain interval (in the vicinity of the saddle point) of values of the shear rate, namely, in this region
there are two or three different values of θ leading to the same value of a∗. Thus, in order to detect the possible
singularities of the fourth-degree moments, it is more convenient to use θ as input parameter instead of the (scaled)
shear rate a∗. Once θ is known, a∗(θ) can be easily determined from Eqs. (35) and (79) for IMM and the BGK model,
respectively. An inspection of the (simple) BGK-forms of these moments shows that they are well defined functions
of both α and θ for any value of the coefficient of restitution α. However, as occurs in dry granular gases [28], for
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FIG. 5: Plot of the scaled moment M∗
4|0(a

∗)/M∗
4|0(0) as a function of a∗ for α = 0.7 (solid and dotted lines) and 1 (dashed

and dash-dotted lines). The solid and dashed lines correspond to the results obtained from the Boltzmann equation for IMM
while the (indistinguishable) dotted and dash-dotted lines refer to the results obtained from the BGK equation for IHS. Here,
n∗ = 0.01 and T ∗

ex = 0.9.

any given value of α, the matrix L becomes singular (detL = 0) for two certain “critical” values θ
(1)
c (α) and θ

(2)
c (α),

where θ
(2)
c (α) > θ

(1)
c (α). This means that the (symmetric) fourth-degree moments tend to infinity when θ → θ

(i)
c

(i = 1, 2). Moreover, for θ
(1)
c (α) < θ < θ

(2)
c (α), the solutions to Eq. (65) are unphysical (e.g., M∗

4|0 < 0) and hence,

the stationary USF is limited to the regions 0 < θ < θ
(1)
c (α) and θ > θ

(2)
c (α). The phase diagram associated with the

singular behavior of the fourth-degree moments is plotted in Fig. 3 for n∗ = 0.01 and T ∗
ex = 0.9. The curves θ

(1)
c (α)

(bottom curve) and θ
(2)
c (α) (top curve) split the parameter space in three regions: the regions I and III correspond

to states (θ, α) with finite values of the fourth-degree moments while the region II defines the states where those
moments have no physical values. Figure 3 highlights the fact that the boundaries of the region II are nontrivial since
at a given value of α there is a reentrance feature: we first find a transition from the region I (where the moments are
well defined) to region II (unphysical values) by increasing the temperature θ, followed by a subsequent transition to

a well defined region (the region III). Moreover, while θ
(2)
c (α) > θ

(1)
c (α), a

(1)∗
c (α) > a

(2)∗
c (α) where a

(i)∗
c denotes the

critical shear rate associated with θ
(i)
c . As said before, a

(i)∗
c is determined from Eq. (35) by the replacement θ → θ

(i)
c .

As an example, at α = 0.7, θ
(1)
c = 43.573 and θ

(2)
c = 238.639 while a

(1)∗
c = 7.437 and a

(2)∗
c = 6.441. Similar behaviors

are found for other values of α.
It is important to recall that the divergence of the fourth-degree moments of the USF is also present for both

elastic [24, 26, 27] and inelastic [28] Maxwell models. In both cases, an analysis of the time evolution of the fourth-
degree moments shows that the eigenvalue ℓmin of the matrix L with the smallest real part governing the long time
behavior of those moments becomes negative for shear rates larger than a critical value. Consequently, those moments
exponentially grow in time (and so, they diverge in time) for a∗ > a∗c . To check if actually the origin of the singular
behavior of the fourth-degree moments found here for granular suspensions is linked to the change of sign of the
eigenvalue ℓmin, Fig. 4 shows the dependence of ℓmin on the (scaled) temperature θ for three different values of α.
At a given value of α, we observe that ℓmin exhibits a non-monotonic dependence on θ since it first decreases with

increasing θ, then it becomes negative in the region θ
(1)
c (α) < θ < θ

(2)
c (α), and eventually becomes positive for θ > θ

(2)
c

where it increases with increasing θ. The corresponding critical values θ
(1)
c and θ

(2)
c are the same as those obtained

from the condition detL = 0, confirming the above expectation.

On the other hand, for states with θ < θ
(1)
c (α) and θ > θ

(2)
c (α) the (symmetric) fourth-degree moments have well-

defined values and hence, one can study their shear-rate dependence. Here, for the sake of illustration, we consider the
region 0 < a∗ < 1 where all the moments are well defined functions of the shear rate and in addition, nonlinear effects
are still significant. Figure 5 shows the ratio M∗

4|0(a
∗)/M∗

4|0(0) versus a∗ for α = 1 and 0.7. The results obtained

for IMM from the Boltzmann equation are compared against the results derived for IHS from the BGK equation.
This figure highlights that both theories agree perfectly well each other, even for quite relatively high values of the
shear rate. Regarding the influence of collisional dissipation, we observe that the effect of α on the the moment
M∗

4|0 is very tiny since all the results collapse in a common curve. It is appealing to remark the good performance

of the BGK theoretical predictions for granular suspensions since previous comparisons [55] made for ordinary gases
at the level of the fourth-degree moments have shown significant discrepancies between the Boltzmann (obtained for
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FIG. 7: Plot of the reduced moment M4|0/M
L
4|0 as a function of the coefficient of restitution α for three different values of the

(reduced) friction coefficient γ̃ = γ/ν0: γ̃ = 0 (black lines and circles), γ̃ = 0.1 (blue lines and squares), and γ̃ = 0.5 (red lines
and triangles). The solid lines correspond to the results obtained from the Boltzmann equation for IMM while the dashed lines
refer to the results derived from the BGK equation for IHS. Symbols refer to computer simulation results obtained in Ref. [39].

Maxwell molecules) and BGK results for large shear rates (say, a∗ ≥ 0.2). This disagreement is especially important
for moments in which the component Vx is the most relevant one. As a complement of Fig. 5, Fig. 6 shows the
shear-rate dependence of the magnitude of the (reduced) moment M∗

2|xy. This moment vanishes in the absence of

shear rate (a∗ = 0). Similar conclusions to those made for the moment M∗
4|0 can be done for the moment M∗

2|xy.
We consider now the special limit case Tex = 0 where computer simulations for the moment M4|0 are available

in the literature [39]. In this limit case, the (reduced) shear rate a∗ is a function of the coefficient of restitution α.
Moreover, the (reduced) parameter γ̃ ≡ γ/ν0 is employed as input parameter in the DSMC results reported in Ref.
[39] instead of the background temperature T ∗

ex. Figure 7 shows the ratioM4|0/ML
4|0 versus α for three different values

of γ̃. Here,

ML
4|0 =

∫
dVV 4fL(V), (94)

where fL is defined in Eq. (67). The solid and dashed lines refer to the results obtained from the Boltzmann equation
for IMM and from the BGK equation for IHS, respectively. Symbols correspond to the computer simulation results
obtained by numerically solving the Boltzmann equation for IHS by means of the DSMC method [56]. In the case
of low values of the (reduced) friction coefficient γ̃, we see that while the BGK results agree well with simulations in
the full range of values of α represented here, more significant discrepancies between theory and simulations appear
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−1/2e−c2x) versus the (scaled) velocity cx for γ̃ = 0.1 and three different values of

the coefficient of restitution α: α = 1 (solid line), α = 0.7 (dotted line), and α = 0.5 (dashed line).

for IMM. On the other hand, the agreement between the BGK results and simulations is only qualitative for higher
values of γ̃ since the BGK predictions clearly underestimate the simulation results. Finally, Fig. 8 plots the ratio

Rx(cx) = ϕx(cx)/(π
−1/2e−c2x) for γ̃ = 0.1 and three different values of the coefficient of restitution α. Here, the

marginal distribution function ϕx(cx) is defined as

ϕx(cx) =

∫ ∞

−∞
dcy

∫ ∞

−∞
dcz ϕ(c)

=
1√
π

∫ ∞

0

ds
e−(1−λ̃)s

√
1 + ã2s2

exp

(
−e2λ̃s c2x

1 + ã2s2

)
, (95)

where the scaled distribution ϕ(c) is given by Eq. (93). It is quite apparent that the distortion from equilibrium
(Rx 6= 1) is more significant as the inelasticity increases. Although not shown here, comparison between theory and
simulations (see Figs. 7 and 8 of Ref. [39]) shows that while the BGK solution agrees very well with simulation data in
the region of thermal velocities (|cx| ∼ 1), it exhibits quantitative discrepancies with simulations for larger velocities
and strong collisional dissipation.

VI. CONCLUDING REMARKS

In spite of the simplicity of the USF, this state has been widely studied to shed light on the non-linear response of
the system to strong shear rates. This response is accounted for by non-Newtonian transport properties such as the
(scaled) temperature θ, the (reduced) nonlinear shear viscosity η∗, and the (reduced) viscometric function Ψ∗. These
properties are related to the second-degree velocity moments (pressure tensor). An interesting feature in sheared
granular suspensions (not shared by dry granular gases) is the so-called discontinuous shear thickening effect, namely,
the flow curve η∗(a∗) has an S-shape, a∗ being the (reduced) shear rate. This means that, at a certain value of the
shear rate, η∗ discontinuously increases/decreases if a∗ is gradually increased/decreased. This phenomena has been
usually observed in dense systems and (apart from other factors) it has been recognized that the mutual friction
between grains ( rough inelastic hard spheres) plays an important role [6–9]. On the other hand, a more recent study
[20] based on the Enskog kinetic equation has shown that the discontinuous shear thickening can be also found for
smooth IHS in the dilute regime. The theoretical predictions for the rheological properties (which were obtained from
Grad’s moment method) were shown to compare very well with computer simulations, even for moderate densities. On
the other hand, although the momentum transport is the most relevant phenomenon in a sheared suspension, higher
degree moments are also important since they provide an indirect information of the velocity distribution function.
Given the intricacies embodied in the hard sphere kernel of the Boltzmann collision operator, to study the above

issue one has to consider simplified collision models where velocity moments can be obtained without having to use
approximate methods. In the context of the Boltzmann equation, the inelastic Maxwell model (IMM) allows us to
determine higher-degree moments in the USF problem. In particular, the fourth-degree moments have been exactly
determined for dry IMM [28, 43]. An appealing problem is to extend the previous efforts to the case of granular
suspensions, namely, when the effect of the interstitial gas phase on solid particles is accounted for. This has likely
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FIG. 9: Shear-rate dependence of the scaled moment M∗
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4|0(0) for α = 1 (solid line, (a)) and 0.9 (dashed line, (b)).

The results are obtained from the BGK equation for IHS. Here, n∗ = 0.01 and T ∗
ex = 0.9.

been one of the main goals of the present contribution. In addition, to complement the results derived from the
Boltzmann equation for IMM, a BGK-type kinetic model for granular suspensions [25] has been also solved to get all
the velocity moments of the velocity distribution function.
As mentioned in the Introduction section, the motivation of our work is twofold. First, the comparison between the

theoretical predictions for θ, η∗, and Ψ∗ with computer simulations allow us to assess the accuracy of both approaches
(IMM and BGK results) in conditions of practical interest. Thus, the results displayed in Fig. 2 highlight the excellent
performance of both theories in reproducing the shear-rate dependence of the rheological properties. In particular,
the exact results derived from the Boltzmann equation for IMM shows the existence of the so-called discontinuous
shear thickening behavior where several mechanisms [4] have been proposed in the literature to explain the origin of
this behavior. What is interesting here is the existence of this shear thickening in a structurally simple system. In
this case, these non-Newtonian properties are associated with both the behavior of the granular suspension in far
from equilibrium situations as well as the impact of the interstitial fluid on the dynamics properties of the granular
gas. As a second aspect, the determination of the fourth-degree moments provides information on the combined effect
of both the (reduced) shear rate and inelasticity on the high velocity population. In particular, an important result
is that, for a given value of the coefficient of restitution α, the (symmetric) fourth-degree moments of IMM have
unphysical values in a certain region of the parameter space of the system. This singular behavior contrasts with
the BGK results where all velocity moments are regular functions of both a∗ and α. Since θ(a∗) is a multi-valued
function (i.e., two or three values of θ correspond to the same value of a∗ for a certain range of values of a∗), it is more
convenient to carry out the study on the divergence of the fourth-degree moments of IMM taking θ as independent
parameter (input) instead of a∗. In this case, our results show that those moments are not well-defined in the region

θ
(1)
c (α) < θ < θ

(2)
c (α) where the critical values θ

(i)
c (α) are obtained from the condition detL = 0, where the matrix L

is defined by Eqs. (54) and (55). Although this singularity of the fourth-degree moments for IMM is also present in
elastic [26, 27] and inelastic [28] systems, the phase diagram showing the regions where those moments are finite in
granular suspensions is completely different to the one previously found for the above systems.

On the other hand, for states θ < θ
(1)
c and θ > θ

(2)
c , the fourth-degree moments of IMM are well-defined functions.

In particular, a comparison between the BGK and IMM results for those moments in the region 0 ≤ a∗ ≤ 1 (where
non-Newtonian effects are still important) surprisingly shows an excellent agreement between both theoretical results
(see, for instance, Figs. 5 and 6). This good performance of the BGK model contrasts with a previous comparison
made for elastic Maxwell molecules [55] where the BGK predictions differ appreciably from the Boltzmann results for
not too large shear rates (say, for instance, a∗ & 0.2). In addition, the shear-rate dependence of the fourth-degree
moments is practically independent of inelasticity. It would be interesting to perform computer simulations to assess
the accuracy of the above theoretical predictions for the fourth-degree moments.
Although most of the previous works have focused on the study of discontinuous shear thickening effect of the non-

Newtonian shear viscosity, a natural question is to see if actually the above behavior is also present in the fourth-degree
moments. Since the BGK moments are well defined functions of both the coefficient of restitution and the shear rate,
one may analyze the shear-rate dependence of those moments for high values of a∗. As an illustration, Fig. 9 shows
the scaled moment M4|0(a∗)/M4|0(0) versus a∗ for α = 1 and 0.9. It is quite apparent that M4|0(a∗)/M4|0(0) exhibits
an S-shape since, at a given value of the shear rate, a small change in the shear rate produces a drastic increase of
the fourth-degree moment M∗

4|0. This behavior has been also observed in the remaining (symmetric) fourth-degree
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moments. We expect that this theoretical prediction of the BGK model encourages the development of computer
simulations to confirm this interesting result.
As in many previous studies on granular gases, in this paper we have assumed that the coefficient of restitution α

is a positive constant. It is well known that experimental observations [57] have shown that α depends on the impact
velocity. The simplest model accounting for this velocity dependence of α is the model of viscoelastic particles [58–60].
A possible extension of the results presented here along this direction could be an interesting problem. However, given
that the discontinuous shear thickening for elastic suspensions is qualitatively similar to that of inelastic suspensions,
we guess that the effect of the velocity dependence of α on the above phenomenon would be irrelevant. Another
possible project would be to consider the model of inelastic rough spheres [61, 62] where apart from the coefficient
of normal restitution, a constant coefficient of tangential restitution is introduced. This is a more realistic model
than the model of smooth inelastic hard sphere since the inelasticity of collisions not only affects to the translational
degrees of freedom but also to the rotational ones. The extension of the present results to this model would allow us
to assess the impact of roughness on the discontinuous shear thickening problem. Finally, it would be also appealing
to study the case of multicomponent granular suspensions where problems like segregation can be addressed. Work
along these lines are underway.
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Appendix A: Fourth-degree collisional moments of IMM

In this Appendix, the expressions of the relevant fourth-degree collisional moments in a three-dimensional system
are displayed. The explicit forms of these moments were obtained in Ref. [43]. As mentioned in section III, there are
eight independent symmetric (or nonvanishing) moments in the geometry of the steady USF state. They are given
by the set

{
M4|0,M2|xx,M2|yy,M2|xy,M0|yyyy,M0|zzzz,M0|xxxy,M0|yyyx

}
. (A1)

where the moments M4|0, M2|ij , and M0|ijkℓ are defined by Eq. (47). Their corresponding collisional moments are
given by

(
J4|0, J2|ij , J0|ijkℓ

)
=

∫
dV

(
Y4|0, Y2|ij , Y0|ijkℓ

)
JIMM[V|f, f ]. (A2)

The explicit expressions for the collisional moments are [43]

J4|0 = −ν4|0M4|0 + 9
p2

nm2
λ1 − λ2

nm2
ΠkℓΠkℓ, (A3)

J2|xx = −ν2|2M2|xx + 3λ3
p

nm2
Πxx − λ4

nm2

(
ΠxkΠkx − 1

3
ΠkℓΠℓk

)
, (A4)

J2|xy = −ν2|2M2|xy + 3λ3
p2

nm2
Πxy − λ4

nm2
ΠxkΠky , (A5)

J0|yyyy = −ν0|4M0|yyyy + 3
λ5
nm2

(
Π2

yy − 4

7
ΠykΠky +

2

35
ΠkℓΠℓk

)
, (A6)

J0|xxxy = −ν0|4M0|xxxy + 3
λ5
nm2

(
ΠxxΠyy − 2

7
ΠxkΠky

)
. (A7)
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The collisional moments J2|yy, J0|zzzz, and J0|yyyx can be easily obtained from Eqs. (A4), (A6), and (A7), respectively.
In Eqs. (A3)–(A7), the usual Einstein summation convention over repeated indices is assumed. Moreover, we have
introduced the effective collision frequencies

ν4|0 = 2ζ +
(1 + α)2(5 + 6α− 3α2)

120
νM, ν2|2 = 2ζ +

(1 + α)2(34 + 21α− 6α2)

420
νM, (A8)

ν0|4 = 2ζ +
(1 + α)2(50 + 7α− α2)

315
νM, (A9)

where ζ = (1 − α2)νM/6. Finally, the cross coefficients λi in Eqs. (A3)–(A7) are given by

λ1 =
(1 + α)2(11 − 6α+ 3α2)

72
νM, λ2 =

(1 + α)2(1 + 6α− 3α2)

60
νM, λ3 =

(1 + α)2(22 − 21α+ 6α2)

180
νM, (A10)

λ4 =
(1 + α)2(21α− 3α2 − 1)

210
νM, λ5 =

(1 + α)2(39 − 21α+ 3α2 − 1)

945
νM. (A11)

Appendix B: Results from the BGK-type kinetic model

The results derived from the BGK kinetic model are displayed in this Appendix. Let us consider first Eq. (69):

ak1Mk1−1,k2+1,k3 + (χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (B1)

where Nk1,k2,k3 is defined by Eq. (70). Given that Rk1,k2,k3 is a linear combination of velocity moments of degree
k − 2, the quantity Nk1,k2,k3 is assumed to be known in the equation defining the moments Mk1,k2,k3 of degree k. To
solve the hierarchy of moment equations (B1), we introduce the operators L1 and L2 acting on functions ψ(k1, k2, k3)
as

L1ψ(k1, k2, k3) = ψ(k1 − 1, k2, k3), L2ψ(k1, k2, k3) = ψ(k1, k2 + 1, k3). (B2)

Thus, Eq. (B1) can be written as

(ak1L1L2 + χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 . (B3)

Its formal solution is

Mk1,k2,k3 = (ak1L1L2 + χν0 + kλ)−1Nk1,k2,k3 . (B4)

Since

L1L2 [χν + (k1 + k2 + k3)λ] = χν0 + (k1 + k2 + k3)λ, (B5)

then, the solution (B4) can be written more explicitly as

Mk1,k2,k3 =
1

χν0 + kλ

(
1 +

ak1
χν0 + kλ

L1L2

)−1

Nk1,k2,k3

=

∞∑

q=0

(−a)q
(χν0 + kλ)

1+q (k1L1L2)
q
Nk1,k2,k3 . (B6)

On the other hand, it is straightforward to prove that

(k1L1L2)
q
Nk1,k2,k3 =

k1!

(k1 − q)!
Nk1−q,k2+q,k3 , (B7)

if q ≤ k1, being zero otherwise. Thus, Eq. (B6) can be finally written in the form

Mk1,k2,k3 =

k1∑

q=0

k1!

(k1 − q)!

(−a)q
(χν0 + kλ)

1+qNk1−q,k2+q,k3 . (B8)
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Santos A, Garzó V, Brey J J and Dufty J W, 1994 Phys. Rev. Lett. 72, 1392 (erratum)
[27] Santos A and Garzó V, 1995 Physica A 213
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ABSTRACT

Non-Newtonian transport properties of an inertial suspension of inelastic rough hard spheres under simple shear flow are determined by
the Boltzmann kinetic equation. The influence of the interstitial gas on rough hard spheres is modeled via a Fokker–Planck generalized
equation for rotating spheres accounting for the coupling of both the translational and rotational degrees of freedom of grains with the
background viscous gas. The generalized Fokker–Planck term is the sum of two ordinary Fokker–Planck differential operators in linear v
and angular ω velocity space. As usual, each Fokker–Planck operator is constituted by a drag force term (proportional to v and/or ω) plus
a stochastic Langevin term defined in terms of the background temperature Tex. The Boltzmann equation is solved by two different but
complementary approaches: (i) by means of Grad’s moment method and (ii) by using a Bhatnagar–Gross–Krook (BGK)-type kinetic model
adapted to inelastic rough hard spheres. As in the case of smooth inelastic hard spheres, our results show that both the temperature and
the non-Newtonian viscosity increase drastically with an increase in the shear rate (discontinuous shear thickening effect) while the fourth-
degree velocity moments also exhibit an S-shape. In particular, while high levels of roughness may slightly attenuate the jump of the viscosity
in comparison to the smooth case, the opposite happens for the rotational temperature. As an application of these results, a linear stability
analysis of the steady simple shear flow solution is also carried out showing that there are regions of the parameter space where the steady
solution becomes linearly unstable. The present work extends previous theoretical results (H. Hayakawa and S. Takada, “Kinetic theory of
discontinuous rheological phase transition for a dilute inertial suspension,” Prog. Theor. Exp. Phys. 2019, 083J01 and R. G. González and
V. Garzó, “Simple shear flow in granular suspensions: Inelastic Maxwell models and BGK-type kinetic model,” J. Stat. Mech. 2019, 013206)
to rough spheres.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015241., s

I. INTRODUCTION

Needless to say, shear thickening (a rheological process in
which the viscosity increases with the shear rate) in non-Newtonian
gas–solid flows is likely one of the most challenging and open
problems in suspensions of particles in gases or liquids. Apart
from its practical interest (it has been broadly found in nature1

and industry2,3), its understanding from a more fundamental

point of view has attracted the attention of many researchers in
the last few years.4–21 Shear thickening can occur as a smooth
increase in the viscosity with an increase in the shear rate;
this effect is usually referred to as continuous shear thickening
(CST). On the other hand, it can also be observed as a drastic
increase in the viscosity at a specific shear rate; this dramatic ver-
sion of CST is known as discontinuous shear thickening (DST).
These two different phenomena can be observed, for instance,

Phys. Fluids 32, 073315 (2020); doi: 10.1063/5.0015241 32, 073315-1
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in a suspension of cornstarch on water at different cornstarch
concentrations.

On the other hand, although the shear-induced solid-like
behavior produced in DST has generated significant interest, most
of the studies have been focused on densely packed suspensions
where extensive simulations have been carried out to disclose the
origin of this unexpected phenomenon. As has been widely dis-
cussed in the review of Brown and Jaeger,12 the above-mentioned
studies propose three main mechanisms based on particle reorga-
nization to explain the shear thickening phenomena: hydrocluster-
ing, order–disorder transition, and/or dilatancy. However, DST has
been shown to appear also at relatively low-density regimes22–30

where specific structural characteristics that influence the stress
transmission are not apparently substantial enough to explain such
a sharp transition. Thus, in order to unveil in a clean way the
microscopic mechanisms involved in DST, it would be also con-
venient to consider relatively low-density systems where kinetic
theory can provide a quantitative theoretical description. In the
context of kinetic theory, some previous works22–26 have shown
the existence of a DST-like process for the temperature between
a quenched state (a low-temperature state) and an ignited state
(a high-temperature state) in homogeneously sheared gas–solid
suspensions.

However, all the above works22–26 consider a suspension model
where the effects of thermal fluctuations on the dynamics of grains
were neglected. A more accurate suspension model where the effect
of the interstitial gas on solid particles is accounted for via a viscous
drag force plus a stochastic Langevin term31 has been recently con-
sidered27–29 for obtaining the shear-rate dependence of the kinetic
temperature and the stress tensor. The theoretical results27–30 have
been compared against event-driven Langevin simulation for hard
spheres (EDLSHS),32 showing very good agreement, especially for
low-density systems. Both approaches (kinetic theory and simula-
tions) conclude that there is a transition from DST (found for very
dilute systems) to CST as the volume fraction of the granular gas
increases.

An important limitation of the above-mentioned theoretical
works22–30 is that the solid particles were modeled as smooth inelas-
tic hard spheres. This means that the effects of tangential friction
and rotation induced by each binary collision on rheology were
ignored in the above attempts. The purpose of the present paper
is to extend the previous theoretical efforts of smooth spheres to
rough spheres in order to assess the impact of roughness on the
rheological properties of the suspension. Thus, we want to uncover
the whole range values of the normal α and tangential β restitu-
tion coefficients and derive explicit expressions for the rotational
Tr and translational Tt temperatures as well as for the relevant ele-
ments of the pressure tensor Pkℓ. Given the mathematical difficulties
involved in the general problem, as in Refs. 29 and 30, we consider
here very dilute systems for which the Boltzmann kinetic equation
offers a reliable description. To the best of our knowledge, only
three previous papers5,13,17 have addressed the role of roughness in
the rheological phenomena. However, given that these works5,13,17

consider concentrated colloidal suspensions at the jamming transi-
tion, no analytical results were derived since they combine exper-
imental and computer simulation results of spherical colloids. In
this sense, the present contribution complements these previous
attempts5,13,17 since our results allows us to unveil the combined

effect of both α and β on the shear-rate dependence of the pressure
tensor.

As said before, our goal here is to determine the rheological
properties of an inertial suspension of inelastic rough hard spheres
under simple shear flow. This state is macroscopically characterized
by a constant density n, a uniform temperature T, and an homo-
geneous shear field Ux = ay, where a is the constant shear rate. As
usual, we are interested here in steady state conditions. In addition,
as in previous works,29,30 the influence of the viscous gas on solid
particles is modeled by means of an operator representing the gas–
solid interaction force. In the limit case of purely smooth spheres
(α = 1 and β = −1), only translational degrees of freedom play a
role in the dynamics of grains. In this special case, the fluid-force
is composed of a viscous drag force proportional to the (instanta-
neous) velocity of particles v (the coefficient of proportionality is the
translational drift coefficient γt) plus a Langevin-like term defined
in terms of the background temperature Tex. On the other hand,
beyond the smooth case, one has to take into account the coupling
between the rotational degrees of freedom of grains and the inter-
stitial gas. Following a model introduced years ago by Hess33 for
Brownian motion of rotating particles, we assume that the struc-
ture of the rotational part of the fluid-force is similar to that of
the translational part: a drag force term proportional to the angu-
lar velocity ω (the coefficient of proportionality is the rotational
drift coefficient γr) plus a stochastic Langevin-like term defined in
terms of Tex. The coefficients γt and γr are proportional to the shear
viscosity of the interstitial gas, and hence, both coefficients are pro-
portional to

√
Tex. This suspension model has been more recently

considered to study a segregation problem of microswimmer
mixtures.34

The suspension model for inelastic rough hard spheres is
solved by two different but complementary theoretical tools. First,
Grad’s moment method35 is considered to approximately get the
explicit forms of both the (reduced) translational Tt/Tex and rota-
tional Tr/Tex temperatures and the (reduced) elements Pkℓ/(nTex)
of the pressure tensor in terms of the restitution coefficients α
and β and the (reduced) shear rate a∗ ≡ a/γt . Then, as a sec-
ond alternative and to overcome the mathematical difficulties of
the Boltzmann collision operator, a Bhatnagar–Gross–Krook (BGK)
model kinetic equation recently proposed for inelastic rough hard
spheres36 is considered. This kinetic model retains the essential
physical properties of the Boltzmann equation and allows one to
obtain all the velocity moments of the velocity distribution func-
tion. In particular, the results derived for the pressure tensor from
the kinetic model coincide with those derived from the Boltz-
mann equation when one conveniently chooses a free parameter
of the model. Apart from the second-degree velocity moments, the
shear-rate dependence of the fourth-degree moments is also widely
analyzed.

The plan of the paper is as follows. Section II is devoted to the
definition of the suspension model for inelastic rough hard spheres
in the low-density limit. Starting from the Boltzmann kinetic equa-
tion, the exact balance equations for the densities of mass, momen-
tum, and energy are derived with expressions for the momentum
and heat fluxes. These expressions are defined in terms of the veloc-
ity distribution function. Section III deals with the simple shear
flow state where the time evolution of the elements of the pres-
sure tensor Pkℓ is exactly obtained. The above set of equations for
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Pkℓ is solved by estimating the collisional moment associated with
the transfer of momentum by means of Grad’s moment method.
This permits to achieve explicit forms for Tr , Tt , and Pkℓ under
steady state conditions. The results obtained from the BGK-like
model are discussed in Sec. IV. Before considering the results for
inertial suspensions, Sec. V analyzes the results in the so-called dry
granular gases, namely, when the influence of the interstitial gas is
neglected (i.e., when γt = γr = 0). Although these results are inter-
esting by themselves, they offer the opportunity to compare the
present theory with the results derived many years ago by Lun37 for
nearly elastic collisions (α ≲ 1) and nearly perfectly rough particles
(β ≲ 1). The results for the rheological properties and the fourth-
degree velocity moments of inertial suspensions are illustrated in
Sec. VI for several values of the coefficients α and β. It is clearly
shown that the roughness does not substantially change the con-
clusions found in the smooth limit case since DST is also present
for inelastic rough spheres. In addition, the BGK results also show
that the fourth-degree moments increase dramatically with the shear
rate in a certain region of values of the shear rate. A linear stabil-
ity analysis of the steady simple shear flow solution is carried out
in Sec. VII. As expected from the previous analysis performed for
smooth spheres,29 the homogeneous steady sheared solution can be
linearly unstable in certain regions of the parameter space. The paper
is closed in Sec. VIII with a brief discussion on the results reported
here.

II. BOLTZMANN KINETIC EQUATION
FOR GAS–SOLID FLOWS OF INELASTIC
ROUGH HARD SPHERES

A. Boltzmann equation for inertial suspensions

We consider a set of solid particles of diameter σ, mass m,
and moment of inertia I immersed in a molecular gas of viscosity
ηg . The solid particles are modeled as inelastic rough hard spheres.
We assume that the collisions among particles are inelastic and are
characterized by constant coefficients of normal restitution (α) and
tangential restitution (β). While the coefficient α ranges from 0 (per-
fectly inelastic collisions) to 1 (perfectly elastic collisions), the coef-
ficient β ranges from −1 (perfectly smooth spheres) to 1 (perfectly
rough spheres). Kinetic energy is, in general, dissipated by collisions,
except in the cases α = 1 and β = ±1. An interesting feature of this
model is that inelasticity affects both translational and rotational
degrees of freedom of the spheres.

In the low-density regime (nσ3 ≪ 1, where n is the number
density), all the relevant information on the state of the suspen-
sion is given through the one-particle velocity distribution function
f (r, v, ω; t), where v and ω are the (instantaneous) linear (trans-
lational) and angular velocities, respectively. Neglecting the effects
of the gravity field, the velocity distribution f obeys the Boltzmann
kinetic equation,38–42

∂f
∂t

+ v ⋅ ∇f + Ff = J[v,ω∣ f (t), f (t)], (1)

where F is an operator characterizing the influence of the interstitial
gas on grains and J[f, f ] is the Boltzmann collision operator given
by41,42

J [v1,ω1∣ f , f ] = σ2 ∫ dv2 ∫ dω2 ∫ dσ̂ Θ(σ̂ ⋅ g)(σ̂ ⋅ g)
× [ 1

α2β2 f (r, v′′1 ,ω′′1 ; t)f (r, v′′2 ,ω′′2 ; t)
− f (r, v1,ω1; t)f (r, v2,ω2; t)]. (2)

Here, Θ(x) is Heaviside’s step function, σ̂ is the unit collision vec-
tor joining the centers of the two colliding spheres and pointing
from the sphere labeled by 1 to the sphere labeled by 2, and g
= v1 − v2 is the relative translational velocity. In Eq. (2), the double
primes on the linear and angular velocities denote the initial veloc-
ities {v′′1 ,ω′′1 , v′′2 ,ω′′2 } that lead to the final velocities {v1,ω1, v2,ω2}
following a binary restituting collision. The restituting (or inverse)
collision rules are37–40,43

v′′1 = v1 −Q′′, v′′2 = v2 + Q′′, (3)

ω′′1 = ω1 − 2
σκ

σ̂ ×Q′′, ω′′2 = ω2 − 2
σκ

σ̂ ×Q′′, (4)

where Q
′′

reads

Q′′ = 1 + α−1

2
σ̂(σ̂ ⋅ g) − κ

1 + κ
1 + β−1

2

× [σ̂(σ̂ ⋅ g) − g +
σ
2
σ̂ × (ω1 + ω2)]. (5)

In Eqs. (4) and (5), κ = 4I/mσ2 is a dimensionless parameter char-
acterizing the mass distribution within a sphere. It runs from the
extreme values κ = 0 (namely, when the mass is concentrated on
the center of the sphere) and κ = 2

3 (namely, when the mass is con-
centrated on the surface of the sphere). In the case that the mass is
uniformly distributed, κ = 2

5 .
Similarly, the collisional rules for the direct collision (v1,ω1,

v2,ω2)→ (v′1,ω′1, v′2,ω′2) are

v′1 = v1 −Q, v′2 = v2 + Q, (6)

ω′1 = ω1 − 2
σκ

σ̂ ×Q, ω′2 = ω2 − 2
σκ

σ̂ ×Q, (7)

where Q is given by

Q = 1 + α
2

σ̂(σ̂ ⋅ g) − κ
1 + κ

1 + β
2

× [σ̂(σ̂ ⋅ g) − g +
σ
2
σ̂ × (ω1 + ω2)]. (8)

Equations (6) and (8) allow us to evaluate the variation of the total
energy (translational plus rotational energy). After some algebra,
one gets

ΔE = m
2
(v′21 + v′22 − v2

1 − v2
2) +

I
2
(ω′21 + ω′22 − ω2

1 − ω2
2)

= −m
1 − β2

4
κ

1 + κ
[σ̂ × (σ̂ × g + σ

ω1 + ω2

2
)]2

−m
1 − α2

4
(σ̂ ⋅ g)2. (9)
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The right hand side of Eq. (9) vanishes (and so the total energy is
conserved in a collision) when α = 1 and β = −1 (perfectly smooth
spheres) and α = 1 and β = 1 (perfectly rough spheres).

As in our previous works on granular suspensions,27–30,44 the
effect of the interstitial gas on the inelastic rough hard spheres is
accounted for by the operator F acting on the velocity distribution
function f. In the case that the spheres are perfectly smooth (and so
inelasticity only affects the translational degrees of freedom of the
spheres), for low Reynolds numbers, the instantaneous fluid force is
usually constituted by two terms: (i) a drag force term proportional
to the relative velocity v −Ug (Ug being the known mean flow veloc-
ity of the background gas) and (ii) a stochastic Langevin-like term
modeled as a Gaussian white noise.45 While the first term (Stokes’
law) takes into account the dissipation of energy due to the fric-
tion of grains on the viscous gas, the stochastic force gives energy
to the solid particles in a random way. This latter term mimics the
interaction between the solid particles and the particles of the sur-
rounding (bath) gas. Both terms account for the coupling between
the translational degrees of freedom of the spheres and the back-
ground gas. Needless to say, one might expect similar effects with the
rotational degrees of freedom of grains in the case of inelastic rough
spheres.

Therefore, following a generalized Fokker–Planck equation for
rotating spheres proposed many years ago by Hess,33 we write the
operator F acting on f as

Ff = F trf + F rotf , (10)

where Ftr and Frot denote the corresponding Fokker–Planck terms
associated with the translational and rotational degrees of free-
dom of spheres. As usual, the translational part Ftrf can be written
as27,28,30

F trf = −γt
∂

∂v
⋅ (v −Ug)f − γt

Tex

m
∂2f
∂v2 , (11)

where γt is a drag coefficient associated with the translational degrees
of freedom and Tex is the temperature of the interstitial molecu-
lar gas. Although γt is, in general, a tensor, it may be considered
as a scalar proportional to the viscosity of the background fluid
ηg ∝ √Tex in the case of very dilute suspensions. More specifically,
if the diameter of the sphere is very large compared with the mean
free path of the viscous gas, then γt = 3πσηg/m. It must be noted that
the strength of the correlation in the stochastic term of Eq. (11) has
been chosen to be consistent with the fluctuation-dissipation theo-
rem when collisions are elastic.45 Similarly, the rotational part F rotf
has an analogous structure to Eq. (11), except that the linear velocity
v is replaced by the angular velocity ω. It is given by33

F rotf = −γr
∂

∂ω
⋅ ωf − γr

Tex

m
∂2f
∂ω2 , (12)

where γr = πσ3ηg/I. Note that in contrast to F tr, the “drag” term of
F rot is proportional to the (instantaneous) angular velocity ω; we are
assuming for simplicity that the mean angular velocity of the sur-
rounding gas is zero. Moreover, in Eqs. (11) and (12), we are also
neglecting a term which takes into account the coupling of transla-
tional and rotational motions. This term stems from the transverse

force v × ω and was originally proposed in the Brownian model of
rotating particles.33 A consequence of this decoupling is that the
solution to the Boltzmann equation from Grad’s method35 in the
uniform shear flow problem is defined in terms of a two-temperature
Maxwellian distribution [see Eqs. (38) and (40)] where the transla-
tional and rotational degrees of freedom are not correlated. By using
this simple approach, the corresponding contributions to the stress
tensor coming from the above transverse force term vanish by sym-
metry. A simpler version of the generalized Fokker–Planck model
(10) has been recently employed to study the colloidal Brazil nut
effect in microswimmer mixtures.34

According to Eqs. (11) and (12), the Boltzmann kinetic equa-
tion (1) can be written as

∂f
∂t

+ v ⋅ ∇f − γtΔU ⋅ ∂f
∂v
− γt

∂

∂v
⋅Vf − γt

Tex

m
∂2f
∂v2

− γr
∂

∂ω
⋅ ωf − γr

Tex

I
∂2f
∂ω2 = J[ f , f ]. (13)

Here, ΔU = U − Ug ,

U(r; t) = 1
n(r; t) ∫ dv∫ dω v f (r, v,ω; t) (14)

is the mean flow velocity of spheres, V = v − U is the translational
peculiar velocity, and

n(r; t) = ∫ dv∫ dω f (r, v,ω; t) (15)

is the number density.
It is quite apparent that the collision dynamics of the suspen-

sion model (13) is not affected by the presence of the background gas
(namely, the form of the Boltzmann collision operator is the same as
that of a dry granular gas), and hence, we neglect the inertia of the
gas phase. As has been widely discussed in several papers on suspen-
sions,22,23,46–48 the above-mentioned approximation requires that the
stresses exerted by the molecular gas on the inelastic rough spheres
are sufficiently small to assume that they have a mild impact on the
motion of grains. As the particle density decreases with respect to
the gas/fluid density (for instance, glass beads in liquid water), the
inertia of the gas phase is not negligible, and hence, the presence of
the background gas must be considered in the Boltzmann collision
operator.

B. Balance equations

The transfer equation for an arbitrary dynamic property ψ(r,
v, ω, t) can be obtained by multiplying both sides of the Boltzmann
equation (13) by ψ and integrating over v and ω. In order to obtain
the transfer equation, an useful property of the Boltzmann collision
operator is42

J [ψ∣ f , f ] ≡ ∫ dv1 ∫ dω1ψ(r, v1,ω1)J[v1,ω1∣ f , f ]
= σ2 ∫ dv1 ∫ dω1 ∫ dv2 ∫ dω2 ∫ dσ̂Θ(σ̂ ⋅ g)
× (σ̂ ⋅ g)[ψ(r, v′1,ω′1) − ψ(r, v1,ω1)], (16)
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where the collisional rules for the direct collision are given by
Eqs. (6) and (8).

The evolution equation for the average

⟨ψ⟩ = 1
n(r, t) ∫ dv∫ dω ψ(r, v,ω; t)f (r, v,ω; t) (17)

can be now easily obtained with the result

∂

∂t
(n⟨ψ⟩) − n⟨∂ψ

∂t
⟩ +∇ ⋅ (n⟨vψ⟩) − n⟨v ⋅ ∇ψ⟩

+ nγtΔU ⋅ ⟨∂ψ
∂v
⟩ + nγt⟨V ⋅ ∂ψ

∂v
⟩ − n

γtTex

m
⟨∂2ψ
∂v2 ⟩

+ nγr⟨ω ⋅ ∂ψ
∂ω
⟩ − n

γrTex

I
⟨∂2ψ
∂ω2 ⟩ = J [ψ∣ f , f ]. (18)

The macroscopic balance equations for the densities of mass,
momentum, and energy can be obtained from the transfer equation
(18) when ψ ≡ {1, mv, mV2/2 + Iω2/2}. They are given by

Dtn + n∇ ⋅U = 0, (19)

ρDtU = −ργtΔU −∇ ⋅P, (20)

DtT + γt(Tt − Tex) + γr(Tr − Tex)
= −ζT − 1

3n
(∇ ⋅ q + P : ∇U). (21)

In Eqs. (19)–(21), ρ = mn is the mass density, Dt ≡ ∂t + U ⋅ ∇ is
the material time derivative, and the granular temperature T(r, t) is
defined as

T = 1
2
(Tt + Tr), (22)

where the (partial) translational Tt and rotational Tr temperatures
are defined as

Tt = m
3
⟨V2⟩, Tr = I

3
⟨ω2⟩, (23)

where the averages ⟨⋯⟩ are defined by Eq. (17). Moreover, the
pressure tensor P(r, t) is

P = ρ⟨VV⟩, (24)

while the heat flux vector q(r, t) is given by

q = qt + qr , (25)

where the translational qt and rotational qr contributions are defined
as

qt = ρ2 ⟨V2V⟩, qr = In
2
⟨ω2V⟩. (26)

Moreover, the cooling rate ζ (which gives the rate of energy dissipa-
tion due to inelasticity) is

ζ = Tt

2T
ζt +

Tr

2T
ζr , (27)

where the partial energy production rates associated with the trans-
lational (ζ t) and rotational (ζr) degrees of freedom are

ζt = − m
3nTt

J [v2∣ f , f ], ζr = − I
3nTr

J [ω2∣ f , f ]. (28)

One third of the trace of the pressure tensor P defines the hydrostatic
pressure p as

p = nTt . (29)

At a kinetic theory level, it is also convenient to derive the bal-
ance equations for the partial temperatures Tt and Tr . They are given
by

DtTt + 2γt(Tt − Tex) + ζtTt = − 2
3n
(∇ ⋅ qt + P : ∇U), (30)

DtTr + 2γr(Tr − Tex) + ζrTr = − 2
3n
∇ ⋅ qr . (31)

Combination of Eqs. (30) and (31) leads to Eq. (21).
Before finishing this section, it is worth remarking that in the

definition of Tr [second relation of Eq. (23)], we have not referred
the angular velocities ω to the mean value Ω = ⟨ω⟩. This contrasts
with the definition of Tt [first relation of Eq. (23)] where the (instan-
taneous) velocity v has been referred to U. As noted in previous
works,43 we have not defined Tr in terms of the difference ω − Ω
because Ω is not a conserved quantity. In the case that we defined
the rotational temperature as T̃r = I

3 ⟨(ω −Ω)2⟩, the granular tem-
perature T̃ = (T̃t + T̃r)/2 would not be a conserved hydrodynamic
field in the case of elastic (α = 1) and completely rough (β = 1)
spheres, although the total energy is conserved in collisions [see
Eq. (9), where ΔE = 0 if α = β = 1].

III. SIMPLE SHEAR FLOW

We assume that the inertial suspension is under simple (uni-
form) shear flow. As described in many previous works,42 this state
is macroscopically characterized by a constant number density n, a
uniform granular temperature T(t), and a macroscopic velocity field

Ui = aijrj, aij = aδixδjy, (32)
with a being the constant shear rate. We also assume that the mean
angular velocity Ω = 0 and, as usual in uniform sheared suspensions,
the average (linear) velocity of particles follow the velocity of the
fluid phase: U = Ug . At a microscopic level, the main advantage of
the simple shear flow is that this state becomes spatially homoge-
neous when the velocities of the particles v are referred to the frame
moving with the linear velocity field U.49,50 In this frame, the distri-
bution function has the form f (r, v, ω; t) = f (V, ω; t), and hence, the
Boltzmann equation (13) becomes

∂f
∂t
− aVy

∂f
∂Vx

− γt
∂

∂v
⋅Vf − γt

Tex

m
∂2f
∂v2

− γr
∂

∂ω
⋅ ωf − γr

Tex

I
∂2f
∂ω2 = J[ f , f ]. (33)
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Since ∇n = ∇T = 0, the heat flux vanishes (q = 0) in the sim-
ple shear flow and the (uniform) pressure tensor P is the relevant
irreversible flux of the problem. The knowledge of P allows us to
identify the most significant non-Newtonian transport properties of
the suspension.

In the simple shear flow problem, the conservation equations
(19) and (20) apply trivially while the balance equations (30) and
(31) for the translational Tt and rotational Tr temperatures, respec-
tively, yield

∂Tt

∂t
+ 2γt(Tt − Tex) + ζtTt = − 2a

3n
Pxy, (34)

∂Tr

∂t
+ 2γr(Tr − Tex) + ζrTr = 0. (35)

Note that the (partial) energy production rates ζ t and ζr are defined
in terms of the velocity distribution function f (V, ω) [see Eq. (28)].
This means that one has necessarily to get a solution of the Boltz-
mann equation (33) to determine ζ t and ζr and the stress tensor Pxy.
Once the above quantities are known, then the partial temperatures
Tt and Tr can be obtained by solving Eqs. (34) and (35).

According to Eqs. (34) and (35), there are two competing mech-
anisms in the time evolution of the temperature. On the one hand,
there are cooling terms arising from inelastic cooling and the fric-
tion of grains on viscous gas. On the other hand, there are heating
terms arising from the viscous heating and the energy provided to
the particles by the stochastic driving term. After a transient period,
one expects that both mechanisms compensate for each other and a
steady state is achieved.

In the absence of shear rate (a = 0) and in the steady state (∂tf
= 0), for α = 1 and |β| = 1, the total kinetic energy is conserved, and
the solution to Eq. (33) is given by the following Maxwellian velocity
distribution:

fM(V,ω) = n( mI
4π2T2

ex
)3/2

exp(−mv2

2Tex
) exp(− Iω2

2Tex
). (36)

On the other hand, beyond the above-mentioned two special cases,
the solution to Eq. (33) is not known.

The relevant elements of the pressure tensor may be obtained
by multiplying both sides of Eq. (33) by mVkVℓ and integrating over
V and ω. The result is

∂tPkℓ + akjPℓj + ajℓPjk + 2γt(Pkℓ − nTexδkℓ)= mJ [VkVℓ∣ f , f ]. (37)

On the other hand, the exact form of J [VkVℓ∣ f , f ] is not known,
even in the simplest case α = 1 and β = ±1 where the kinetic energy
is conserved in collisions. Thus, one has to resort to alternative
approaches for computing the pressure tensor Pij. As mentioned in
the Introduction, we will determine the elements of the pressure ten-
sor by using two different but complementary routes: (i) by solving
the Boltzmann equation by means of Grad’s moment method and
(ii) by considering a BGK-like kinetic model recently proposed36 for
inelastic rough hard spheres.

IV. GRAD’S MOMENT METHOD

As has been clearly shown in several previous works,24,27,28,51

Grad’s moment method can be considered an accurate tool
to estimate the collisional moment J [VkVℓ∣ f , f ]. In the same
way as in molecular fluids,35 the idea of Grad’s method is to
expand the velocity distribution function in powers of gener-
alized Hermite polynomials, the coefficients of the expansion
being the corresponding velocity moments. This expansion is trun-
cated at a given order k; therefore, the moments of degree higher
than k are neglected in the corresponding solution. In the case of
a three-dimensional gas, the usual thirteen-moment approximation
includes the density n, the three components of the mean flow veloc-
ity U, the six elements of the pressure tensor P [recall that Tt =
(1/3n)(Pxx + Pyy + Pzz)], and the three components of the heat flux
vector q.35,52 Since the heat flux vanishes in the simple shear flow
problem, Grad’s solution is given by37,53

f (V,ω)→ f0(V,ω)[1 +
m

2nT2
t
(ViVj − 1

3
V2δij)Πij], (38)

where

Πij = Pij − pδij (39)

is the traceless part of the pressure tensor and f0 is the two-
temperature Maxwellian velocity distribution,

f0(V,ω) = n( mI
4π2TtTr

)3/2
exp(−mV2

2Tt
) exp(− Iω2

2Tr
). (40)

Upon writing the distribution (38), we have ignored the possible
contributions to f coming from the combination of traceless dyadic
products of the three vectors V, (V ⋅ ω), and V × ω with unknown
scalar coefficients.54 These contributions are absent because we have
neglected the orientational correlations between V and ω in the
Fokker–Planck operator F [see Eqs. (10)–(12)]. Thanks to this sim-
plification, we resort to the weight distribution f0, which is isotropic
in velocity space. In addition, we have also neglected in Grad’s solu-
tion (40) the contribution of the fourth-degree velocity moments
(cumulants) to the distribution f. These cumulants have been deter-
mined in homogeneous situations,55–57 showing that, in general,
these quantities are small, especially when the system is driven by
a white-noise stochastic thermostat.55,57 On the other hand, despite
the above-mentioned approximations, it is worth noting that the
theoretical predictions for the temperature ratio Tr/Tt obtained by
replacing f by f0 in homogeneous states have been shown to compare
very well with Monte Carlo and molecular dynamics simulations.56

We expect that this fair agreement is also kept in the simple shear
flow state.

The collisional moment J [VkVℓ∣ f , f ] can be computed when
the trial distribution (38) is inserted into the definition of this
moment. The calculations are long but standard and are based on
the relationship (16). After some algebra, one gets37,54

mJ [VkVℓ∣ f , f ] = −νηΠkℓ − pζtδkℓ, (41)

where we recall that p = nTt , and
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νη = [(α̃ + β̃)(2 − α̃ − β̃) +
β̃2

6κ
Tr

Tt
]νt , (42)

ζt = 5
3
[α̃(1 − α̃) + β̃(1 − β̃) − β̃2

κ
Tr

Tt
]νt . (43)

In Eqs. (42) and (43),

α̃ = 1 + α
2

, β̃ = κ
1 + κ

1 + β
2

, (44)

and νt is the effective collision frequency

νt = 16
5

nσ2

√
πTt

m
. (45)

In addition, the cooling rate ζr associated with the rotational degrees
of freedom [defined by the second relation of Eq. (28)] can be also
determined from Grad’s distribution (38) with the result37,54

ζr = 5
6
β̃
κ
[1 − β + 2β̃(1 − Tt

Tr
)]νt . (46)

Upon deriving Eq. (41), nonlinear terms in the tensor Πkℓ have been
neglected. Equation (37) can be more explicitly written when the
expression (41) is accounted for. The result is

∂tPkℓ + akjPjℓ + aℓjPjk + 2γt(Pkℓ − nTexδkℓ)= −νηPkℓ − p(ζt − νη)δkℓ. (47)

Equation (47) clearly shows that Pyy = Pzz , and hence, the con-
straint (29) yields Pxx = 3p − 2Pyy. The equality Pyy = Pzz does not
agree with computer simulation results obtained for smooth granu-
lar suspensions.22,24 The above-mentioned drawback could be fixed
if one would retain nonlinear terms in Πkℓ in the evaluation of
J [VkVℓ∣ f , f ]. The inclusion of these nonlinear corrections provides
nonzero contributions to the normal stress differences in the plane
orthogonal to the shear flow (namely, Pyy − Pzz ≠ 0).24 However, the
difference Pyy − Pzz is, in general, very small; therefore the expression
(41) can be still considered as a good approximation.

It is convenient now to introduce dimensionless quantities.
Among the different possibilities, as in previous works on sheared
granular suspensions,27,28,30 we scale the quantities associated with
the solid particles with those referring to the gas phase, namely, γt ,
γr , and Tex. Since the pressure tensor (which is the most relevant flux
in the simple shear flow state) is mainly related to the translational
degrees of freedom, we reduce here the shear rate and the external
temperature with respect to the (translational) friction coefficient γt ,
namely,

a∗ ≡ a
γt

, T∗ex ≡ Tex

mσ2γ2
t

. (48)

In addition, the translational and rotational temperatures are scaled
with respect to Tex (θt ≡ Tt/Tex and θr ≡ Tr/Tex), and we introduce
the dimensionless quantities

ζ∗t ≡ ζt√
θtγt
= 16

3
√
π[α̃(1 − α̃) + β̃(1 − β̃) − β̃2

κ
θr

θt
]n∗√T∗ex, (49)

ν∗η ≡ νη√
θtγt
= 16

5
√
π[(α̃ + β̃)(2 − α̃ − β̃) +

β̃2

6κ
θr

θt
]n∗√T∗ex. (50)

Here, n∗ ≡ nσ3 is the reduced density. As already noted in previ-
ous studies,30 the explicit dependence of ζ∗t and ν∗η on density comes
from the dimensionless quantities a∗ and T∗ex. This way of reducing
the above-mentioned quantities is closer to the one made in com-
puter simulations for smooth inelastic hard spheres.27,28 Needless to
say, if you had reduced a and Tex with the collision frequency νt
(this sort of scaling is usual in sheared molecular gases58), the above-
mentioned density dependence had been removed. Note that ζ∗t and
ν∗η are independent of both the (translational) temperature Tt and
the background temperature Tex because γt ∝√Tex.

In terms of the above-mentioned dimensionless variables,
Eq. (47) becomes

∂τP∗kℓ + a∗kjP
∗
jℓ + a∗ℓjP

∗
jk + 2(P∗kℓ − δkℓ)

= −ν∗η√θtP∗kℓ − θt
√
θt(ζ∗t − ν∗η )δkℓ, (51)

where we have introduced the (scaled) time variable τ defined as
dτ = γtdt.

A. Steady state solution

As said before, after a transient regime, one expects that the
suspension reaches a steady state. The interesting point is that this
steady sheared state is inherently non-Newtonian.59 The main goal
of this paper is to determine the rheological properties of the inertial
suspension in the steady uniform shear flow.

An inspection of the results derived in the smooth case30 shows
that Eq. (51) (with ∂τP∗kℓ = 0) is formally equivalent to that of
this limit case when one makes the changes θ → θt , ζ∗ → ζ∗t , and
ν∗0∣2 → ν∗η , where the quantities θ, ζ∗, and ν∗0∣2 are defined in Ref. 30.
Consequently, the expressions of P∗yy, P∗xy, and a∗ can be obtained
from comparison with those obtained in the smooth case [see Eqs.
(32), (33), and (35) of Ref. 30]. They are given by

P∗yy = P∗zz = 2 + (ν∗η − ζ∗t )θt
√
θt

2 +
√
θtν∗η , P∗xx = 3θt − 2P∗yy, (52)

P∗xy = −2 + (ν∗η − ζ∗t )θt
√
θt(2 +

√
θtν∗η )2

a∗, (53)

a∗ =
¿ÁÁÀ3

2

√
θtζ∗t + 2(1 − θ−1

t )√
θt(ν∗η − ζ∗t ) + 2θ−1

t
(2 +
√
θtν∗η ). (54)

The steady (reduced) temperatures θt and θr can be determined from
Eqs. (34) and (35) (with ∂tθt = ∂tθr = 0) as
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2(θt − 1) +
√
θtθtζ∗t = −2

3
a∗P∗xy, (55)

2
γr

γt
(θr − 1) +

√
θtθrζ∗r = 0, (56)

where γr/γt = 4/(3κ) and

ζ∗r ≡ ζr√
θtγt
= 8

3
√
π
β̃
κ
[1 − β + 2β̃(1 − θt

θr
)]n∗√T∗ex. (57)

On the other hand, as already happens in smooth granular suspen-
sions,27,28,30 it is not possible to express in Eq. (54) θt in terms of
a∗ and the remaining parameters of the suspension. Thus, for given
values of α, β, κ, n∗, and T∗ex, one can consider θt , for instance, as
an input parameter and determine a∗ and θr as the solutions to
Eqs. (54) and (56).

Once the (scaled) translational temperature θt is known, the
rheological properties of the suspension are obtained from Eqs. (52),
(53), and (56). In particular, the (dimensionless) non-Newtonian
shear viscosity

η∗ = P∗xy

a∗ (58)

is given by

η∗ = 2 + (ν∗η − ζ∗t )√θtθt

(2 +
√
θtν∗η )2 . (59)

Since (linear) Grad’s solution (51) yields P∗yy = P∗xx, the only nonvan-
ishing viscometric function is the one associated with the difference
P∗xx −P∗yy. In the dimensionless form, the first viscometric function is
defined as

Ψ∗ = P∗xx − P∗yy = 3θt
2(1 − θ−1

t ) +
√
θtζ∗t

2 +
√
θtν∗η . (60)

As expected, the expressions (54), (59), and (60) agree with the ones
derived for inelastic Maxwell models30 [see Eqs. (35), (39), and (40)
of Ref. 30] when one makes the replacements θt → θ, ζ∗t → ζ∗, and
ν∗η → ν∗0∣2, where the quantities θ, ζ∗, and ν∗0∣2 are defined in Ref. 30.

B. Navier–Stokes results

In order to get analytical results, it is illustrative to consider the
limits of small and large shear rates. First, when a∗ → 0, Eq. (54)
yields the following relation for determining the (translational)
temperature θ(0)t :

θ(0)t (1 +
1
2
ζ∗t
√
θ(0)t ) − 1 = 0. (61)

The rotational temperature θ(0)r is easily obtained from Eq. (56) as

θ(0)r = (1 +
1
2
γt

γr
ζ∗r
√
θ(0)t )−1

. (62)

Substitution of Eq. (61) into Eq. (59) gives the following form of the
Navier–Stokes shear viscosity η∗NS:

η∗NS = θ(0)t

2 +
√
θ(0)t ν∗η

. (63)

In the opposite limit (a∗ →∞), the asymptotic expressions for
ζ∗t ≠ 0, α < 1, and |β| ≠ 1 are

θ(∞)t = 2
3
ν∗η − ζ∗t
ν∗2
η ζ∗t a∗2, η∗∞ =

√
3
2
(ν∗η − ζ∗t )3/2
ν∗3/2
η
√
ζ∗t

a∗. (64)

When ζ∗t = 0, one has θ(∞)t = a∗4/(9ν∗2
η ) and η∗∞ = a∗2/(3ν∗2

η ).
The corresponding expressions for η∗∞ can be obtained from (63) by
replacing θ(0)t by θ(∞)t .

Similarly to suspensions of smooth inelastic hard spheres,27,28,30

Eqs. (63) and (64) clearly show that while η∗ is finite in the Navier–
Stokes domain, it diverges for very large shear rates. In fact, the
ratio η∗(a∗ → ∞)/η∗(a∗ → 0) becomes very large as the shear
rate increases; this could explain the existence of DST of the shear
viscosity coefficient. As mentioned in Sec. I, this behavior gradu-
ally changes as the density increases since the theoretical results
derived from the Enskog kinetic theory (and confirmed by molecular
dynamics simulations) show CST for finite densities.27,28

Although we are mainly in this paper interested in non-
Newtonian transport properties, Eq. (63) gives the expression of the
Navier–Stokes shear viscosity coefficient of a suspension of inelas-
tic rough hard spheres. We are not aware of any previous deriva-
tion of this relevant transport coefficient. On the other hand, in the
absence of the interstitial gas (dry granular gas), the Navier–Stokes
shear viscosity coefficient was obtained in Ref. 54. Its explicit form is

FIG. 1. Plot of the ratio η∗NS(α)/η∗NS(1) vs the coefficient of normal restitution α
for granular suspensions (a) and dry granular gases (b). Here, we have assumed
spheres with a uniform mass distribution (κ = 2

5 ) and a coefficient of tangential
restitution β = 0.
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FIG. 2. Plot of the ratio η∗NS(α, β)/η∗NS(1, β) vs the coefficient of normal restitution
α for κ = 2

5 and four different values of the coefficient of tangential restitution β:
β = −1 (a), β = −0.5 (b), β = 0.5 (c), and β = 1 (d). Here, η∗NS(1, β) is given by
Eq. (63) with α = 1.

provided in the Appendix for the sake of completeness. It is quite
apparent that the form of the Navier–Stokes shear viscosity of a
dry gas of inelastic rough hard spheres [see Eq. (A1)] differs from
the one derived here [see Eq. (63)], as expected. To illustrate these
differences with and without interstitial gas, Fig. 1 shows the α-
dependence of the ratios η∗NS(α)/η∗NS(1) for granular suspensions
[line (a)] and dry granular gases [line (b)]. In the dry case, η∗NS= ηNSνt/(nTt). In Fig. 1, κ = 2

5 , β = 0, and η∗NS(1) refers to the value
of the shear viscosity at α = 1. We observe that the dependence of
the ratio η∗NS(α)/η∗NS(1) on α is very different in both systems, even
at a qualitative level since, while this ratio exhibits a non-monotonic
dependence on the coefficient of normal restitution in the case of
granular suspensions, it increases with decreasing α in the dry gran-
ular case. Regarding granular suspensions and to show the combined
effect of α and β on η∗NS, Fig. 2 plots the ratio η∗NS(α,β)/η∗NS(1,β) as
a function of α for different values of β. We observe that, at fixed
α, the above ratios present a monotonic β-dependence since those
coefficients decrease from β = −1 to β = 1. In addition, at fixed β, we
see that while those coefficients increase with decreasing α when β
is negative, they exhibit a non-monotonic dependence on α when
β is positive. In any case, Fig. 2 highlights the intricate interplay
between the coefficients of restitution α and β on the behavior of
the Navier–Stokes shear viscosity coefficient.

V. BGK-LIKE KINETIC MODEL
OF THE BOLTZMANN EQUATION

To complement the results derived from the Boltzmann equa-
tion from Grad’s moment method, we consider now a BGK-like
kinetic model for a granular gas of inelastic rough hard spheres.36

As usual in kinetic models, the intricate mathematical structure of
the Boltzmann collision operator J[v, ω| f, f ] is replaced by a simpler
term K[v, ω| f ] that retains the basic physical properties of the true

Boltzmann operator. More specifically, J[f, f ] is substituted by the
sum of three terms:36 (i) a relaxation term toward a two-temperature
local equilibrium distribution, (ii) a nonconservative drag force pro-
portional to V, and (iii) a nonconservative torque equal to a linear
combination of ω and Ω. In the context of the simple shear flow
problem, the operator K[v, ω| f ] becomes

K[v,ω∣ f ] = −χ(α,β)νt( f − f0) +
ζt

2
∂

∂V
⋅ (Vf )

+
ζr

2
∂

∂ω
⋅ (ωf ), (65)

where νt is the collision frequency defined by Eq. (45), f0 is given
by Eq. (40), and the forms of ζ t and ζr are provided by Eqs. (43) and
(46), respectively. Moreover, the quantity χ(α, β) can be seen as a free
parameter of the model to be adjusted to agree with some property
of interest of the Boltzmann equation. With the replacement (65),
the BGK-like model for the granular suspension in the steady state
reads

−aVy
∂f
∂Vx

− λt
∂

∂v
⋅Vf − γt

Tex

m
∂2f
∂v2 − λr

∂

∂ω
⋅ ωf − γr

Tex

I
∂2f
∂ω2

= −χνt( f − f0), (66)

where

λt ≡ γt +
ζt

2
, λr ≡ γr +

ζr

2
. (67)

The use of the BGK-like model allows us to determine not only
the rheological properties (which are connected with the elements of
the pressure tensor) but also all the velocity moments of the velocity
distribution function. For a three-dimensional system, it is conve-
nient in the simple shear flow problem to define the general velocity
moments

Mk1 ,k2 ,k3 = ∫ dω∫ dV Vk1
x Vk2

y Vk3
z f (V,ω). (68)

Note that here we are essentially interested in computing the veloc-
ity moments of f involving the translational (peculiar) velocities V.
To obtain these moments, we multiply both sides of Eq. (37) by
Vk1

x Vk2
y Vk3

z and integrate over V and ω. The result is

ak1Mk1−1,k2+1,k3 + (χνt + kλt)Mk1 ,k2 ,k3 = Nk1 ,k2 ,k3 , (69)

where k = k1 + k2 + k3, and

Nk1 ,k2 ,k3 = γtTex

m
Rk1 ,k2 ,k3 + χνtML

k1 ,k2 ,k3
. (70)

The quantities Rk1 ,k2 ,k3 and ML
k1 ,k2 ,k3

are defined, respectively, as

Rk1 ,k2 ,k3 = ∫ dω∫ dV f (V,ω) ∂2

∂V2 (Vk1
x Vk2

y Vk3
z )

= k1(k1 − 1)Mk1−2,k2 ,k3 + k2(k2 − 1)Mk1 ,k2−2,k3

+ k3(k3 − 1)Mk1 ,k2 ,k3−2, (71)
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and

ML
k1 ,k2 ,k3

= n(2Tt

m
)k/2

π−3/2Γ(k1 + 1
2
)Γ(k2 + 1

2
)Γ(k3 + 1

2
) (72)

if k1, k2, and k3 are even, being zero otherwise. As expected, the
structure of Eq. (69) is the same as in the smooth case,30 and hence,
the solution to Eq. (69) can be written as

Mk1 ,k2 ,k3 = k1∑
q=0

k1!(k1 − q)! (−a)q

(χνt + kλt)1+q Nk1−q,k2+q,k3 . (73)

The (reduced) nonzero elements of the pressure tensor P∗kℓ and
the (reduced) shear rate a∗ can be easily obtained from Eqs. (70)–
(73). Their expressions are

P∗yy = 2 + χν∗t √θtθt

2 + (χν∗t + ζ∗t )√θt
, (74)

P∗xy = − 2 + χν∗t √θtθt

[2 + (χν∗t + ζ∗t )√θt]2 a∗, (75)

P∗xx = 2 + χν∗t √θtθt

2 + (χν∗t + ζ∗t )√θt

⎡⎢⎢⎢⎢⎣1 +
2a∗2

[2 + (χν∗t + ζ∗t )√θt]2
⎤⎥⎥⎥⎥⎦, (76)

a∗ =
¿ÁÁÀd

2

√
θtζ∗t + 2(1 − θ−1

t )√
θtχν∗t + 2θ−1

t
[2 +
√
θt(χν∗t + ζ∗t )], (77)

where ζ∗t is defined by Eq. (49) and

ν∗t ≡ νt√
θtγt
= 16

5
√
πn∗√T∗ex. (78)

Upon deriving Eqs. (74)–(77), use has been made of the first identity
of Eq. (67).

Comparison between Eqs. (43)–(54) (derived from Grad’s solu-
tion to the Boltzmann equation) and Eqs. (74)–(77) shows that the
BGK results for the non-Newtonian transport properties coincide
with the Boltzmann ones when χ(κ, α, β) is chosen as

χ = ν∗η − ζ∗t
ν∗t = 1

3
α̃(1 + 2α̃) +

1
3
β̃(1 + 2β̃) − 2α̃β̃ +

7
6
β̃2

κ
θr

θt
. (79)

We will take this choice for computing the remaining moments of
the distribution f.

A. Suspension model at T ex = 0 and γr = 0

As happens in the smooth case,30 despite the apparent simplic-
ity of the BGK-like model (66), it is still intricate to get the explicit
form of the velocity distribution function f (V, ω). In order to obtain
f and following the arguments of Ref. 36, we focus our attention in
the marginal distribution function

f tr = ∫ dω f (V,ω). (80)

Given that the rheological properties are essentially linked to the
translational part of the distribution f, one expects that f tr captures
the main properties of the global distribution f. Moreover, as in
Ref. 30, we also assume the simple limit case Tex = 0, γr = 0, but
keeping γt ≡ const. In other words, we are neglecting first the cou-
pling between the rotational degrees of freedom of spheres with
the background gas (γr = 0). In addition, we are also supposing
that Tex is much smaller than the translational temperature Tt in
such a way that the only relevant effect of the surrounding intersti-
tial gas on grains is through the viscous drag force. In the case of
smooth inelastic hard spheres, this simple model has been employed
to analyze rheology in sheared granular suspensions,22–26,60 particle
clustering due to hydrodynamic interactions,61 and driven steady
states62 and to assess the impact of friction in sheared hard-spheres
suspensions.10,11,63,64

The BGK kinetic equation for f tr(V) can be easily obtained from
Eq. (66) by integrating over ω,

− aVy
∂

∂Vx
f tr − λt

∂

∂v
⋅Vf tr + χνtf tr = χνtf tr

0 , (81)

where

f tr
0 (V) = ∫ dωf0(V,ω) = n( m

2πTt
)3/2

e−mV2/2Tt . (82)

Exploiting the analogy with the smooth case,30 the hydrodynamic
solution to Eq. (81) is

f tr(V) = ∫ ∞
0

ds e−(1−3̃λt)s ẽasVy
∂

∂Vx ẽλt sV⋅ ∂
∂V f tr

0 (V), (83)

where λ̃t ≡ λt/(χνt) and ã ≡ a/(χνt). In Eq. (83), the action of the
velocity operators ẽasVy

∂
∂Vx and ẽλt sV⋅ ∂

∂V on an arbitrary function g(V)
is

ẽasVy
∂

∂Vx g(Vx, Vy, Vz) = g(Vx + ãsVy, Vy, Vz), (84)

ẽλsV⋅ ∂
∂V g(Vx, Vy, Vz) = g(ẽλsVx, ẽλsVy, ẽλsVz). (85)

The elements of the pressure tensor can be computed from the
marginal distribution function (83). They are60

Pyy = Pzz = nTt

1 + 2ξ
, Pxy = − nTt(1 + 2ξ)2 ã, (86)

and Pxx = 3p − 2Pyy. Here, ξ is the real root of the cubic equation
3ξ(1 + 2ξ)2 = ã2. More explicitly, it is given by

ξ(̃a) = 2
3

sinh[1
6

cosh−1(1 +
27
3

ã2)]. (87)

Here, the steady balance equation (34) for Tt becomes 2γtTt + ζ tTt
= −(2/3n)aPxy. This equation can be more explicitly written when
one takes into account Eqs. (86) and (87) with the result

γt = χνtξ − 1
2
ζt . (88)

Thus, as noted in previous works,30,60 at given values of α, β, and κ,
the right hand side of Eq. (88) vanishes for a certain value ã0(α,β, κ)
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of the (reduced) shear rate. Since γt is strictly positive (except for a
= 0 and ζ t = 0), physical solutions to (88) are only possible for val-
ues of the shear rate ã larger than or equal to ã0. Thus, in particular,
when α ≠ 1 or |β| ≠ 1|, the constraint (88) prevents the possibility of
obtaining the Navier–Stokes shear viscosity (i.e., when ã→ 0) of the
granular suspension. This is, in fact, a drawback of this simple model
not shared by the generalized Fokker–Planck suspension model
introduced in Sec. II. In the case of smooth inelastic hard spheres,
this drag model has been widely used for many authors22,25,26 to
study the discontinuous transition for the temperature between the
quenched and the ignited state.

VI. RHEOLOGY OF SHEARED DRY GRANULAR GASES

Although the main goal of this paper is to assess the influence
of the interstitial gas on the rheological properties of inelastic rough
hard spheres, it is interesting first to analyze the results obtained in
the dry limit case (namely, when the effect of the background gas is
neglected). To the best of our knowledge, this problem was indepen-
dently studied many years ago for moderately dense gases by Jenkins
and Richman38 for hard disks and by Lun37 for hard spheres. In both
works, the calculations were in principle restricted to nearly elas-
tic collisions (α ≲ 1) and either nearly smooth particles (β ≲ 1) or
nearly perfectly rough spheres (β ≳ −1). A more recent study has
been performed by Santos36 by using the BGK-like kinetic model
defined in Eq. (65). Given that the BGK results for rheology agree
with those derived by solving the Boltzmann equation from Grad’s
moment method, only a comparison with the theoretical predictions
reported by Lun37 for a three-dimensional gas will be offered in this
section.

A way of obtaining the results for the dry case consists in for-
mally setting γt = γr = 0. However, one has to take care in extract-
ing the results for the dry case from those derived in Sec. V since
practically all of them have been expressed in terms of dimension-
less quantities that diverge when γt → 0. Thus, one has to solve
first the set (47) for the nonzero elements Pdry

yy and Pdry
xy (recall that

Pdry
xx = 3p − 2Pdry

yy ) and then substitute these forms into the balance
equation (34). After some simple algebra, one simply gets

Pdry
yy = Pdry

zz = 1 − ζt

νη
, Pdry

xy = −Pdry
yy

νη
a, (89)

a2 = 3
2
ζtνη
Pdry

yy
, (90)

where νη and ζ t are given by Eqs. (42) and (43), respectively. Finally,
the ratio of the rotational to translational temperature can be easily
obtained from the balance equation (35) by taking γr = 0. It leads to
the condition ζr = 0, which according to Eq. (46) yields

(Tr

Tt
)dry = κ 1 + β

1 − β + 2κ
. (91)

Equation (91) was already obtained by Lun.37 As happens in the
homogeneous steady state driven by a white-noise thermostat,57 the
temperature ratio of the steady shear flow problem is independent
of the coefficient of restitution α. This conclusion contrasts with the

results derived in the homogeneous cooling case,40,66–68 where Tr/Tt
depends on both α and β [see Eq. (A3) of the Appendix.]

Contrary to the case of granular suspensions, the balance equa-
tion (34) establishes an intrinsic relation between the (reduced)
shear rate a/νt and the mechanical parameters of the system (the
coefficients of normal restitution α and tangential restitution β and
the dimensionless moment of inertia κ). This means that a/νt is not
an independent parameter and is a function of α, β, and κ.

Since the results derived by Lun37 apply in principle to slightly
inelastic, slightly rough spheres, the normal stress differences van-
ish: Pdry

xx = Pdry
yy = Pdry

zz = p. On the other hand, his expressions for
Pdry

xy and a/νt are formally equivalent to our results when one takes
Pdry

yy = 1 in Eqs. (89) and (90). Figure 3 shows the α-dependence of
the (reduced) yy-element Pdry

yy /nTt for κ = 2
5 and four different values

of β: β = −1 (perfectly smooth spheres), β = −0.5 (moderate rough-
ness), β = 0.5 (medium roughness), and β = 1 (strong roughness).
Results obtained Direct Simulation Monte Carlo (DSMC) method
simulations65 for perfectly smooth spheres are also included. It is
quite apparent first that the combined effect of α and β gives rise
to anisotropic effects in the yy-element of the pressure tensor; these
effects are measured by the departure of the ratio Pdry

yy /nTt from 1.
We also see that, for a given value of β, these non-Newtonian effects
increase monotonically with decreasing α. In addition, for a given
value of α, Pdry

yy /nTt presents a non-monotonic dependence on β; the
impact of roughness is higher for central values of β (let us say |β|∽ 0.5). Comparison with Monte Carlo simulations for β = −1 shows
good agreement; we hope that this agreement is also extended for
the remaining values of β. As a complement of Fig. 3, Fig. 4 plots

FIG. 3. Plot of the (reduced) element Pdry
yy /nTt as a function of the coefficient of

normal restitution α for κ = 2
5 and four different values of the coefficient of tangen-

tial restitution β: β = −1 (a), β = −0.5 (b), β = 0.5 (c), and β = 1 (d). Symbols refer
to DSMC results obtained for spheres perfectly smooth (β = −1).65 Reproduced
with permission from J. M. Montanero and V. Garzó, “Rheological properties in a
low-density granular mixture,” Physica A 310, 17 (2002). Copyright 2002 Elsevier.
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FIG. 4. Plot of the (reduced) element −Pdry
xy /nTt as a function of the coefficient

of normal restitution α for κ = 2
5 and two different values of the coefficient of

tangential restitution β: β =−1 (a) and β = 0.5 (b). The solid lines correspond to the
results obtained here while the dashed lines refer to the results derived by Lun.37

Symbols refer to DSMC results obtained for spheres perfectly smooth (β = −1).65

Reproduced with permission from J. M. Montanero and V. Garzó, “Rheological
properties in a low-density granular mixture,” Physica A 310, 17 (2002). Copyright
2002 Elsevier.

−Pdry
xy /nTt vs α for β = −1 and β = 0.5. The theoretical predictions of

Lun37 are also represented. As expected, we observe that the agree-
ment between Lun’s predictions and our results is excellent for α ≲ 1
and |β| ≲ 1. On the other hand, the discrepancies between both the-
ories increase as inelasticity increases (at a given value of roughness)
or as roughness increases (at a given value of inelasticity). As in the
case of Fig. 3, Fig. 4 highlights again the good performance of Grad’s
solution when α = 1 and β = −1 since the aforementioned solution
compares very well with simulations.

VII. RHEOLOGY AND FOURTH-DEGREE MOMENTS
OF SHEARED INERTIAL SUSPENSIONS

We consider now sheared inertial suspensions (γt ≠ 0 and γr≠ 0). In Sec. IV, we have determined the elements of the (reduced)
pressure tensor P∗kℓ by solving the Boltzmann equation (33) by
means of Grad’s moment method. Then, in Sec. V, we have replaced
the Boltzmann collision operator J[f, f ] by the BGK-like collision
term (65) and have explicitly obtained all the velocity moments of
the velocity distribution function. In dimensionless form, all the
aforementioned quantities (pressure tensor and higher degree veloc-
ity moments) have been expressed in terms of the restitution coef-
ficients α and β, the (reduced) moment of inertia κ, the reduced
density n∗, the (reduced) bath temperature T∗ex, and the (reduced)
shear rate a∗.

We want essentially to assess the shear-rate dependence of η∗,
Ψ∗, θt , θr , and the fourth-degree moments for fixed values of α, β,
κ, n∗, and Tex. Since the theoretical results for θt , η∗, and Ψ∗ will

be compared against event-driven simulations27 carried out for the
case α = 0.9 and β = −1, the values of n∗ and Tex employed in those
simulations (n∗ = 0.01 and Tex = 1) and the value κ = 2

5 will be used
in the remaining plots of this section.

A. Rheology

The dependence of the (steady) translational temperature θt ,
the non-Newtonian shear viscosity η∗, and the viscometric function
Ψ∗ on the (reduced) shear rate a∗ is shown in Fig. 5. The analytical
forms of the above quantities are given by Eqs. (54), (59), and (60),
respectively. We recall that the corresponding expressions of the
BGK equation agree with those derived from Grad’s solution when
one makes the choice (79) for the free parameter χ of the kinetic
model. In addition, as will be discussed in Sec. VIII, depending on
the values of α and β, the steady solution can be linearly unstable.
The thick lines in Fig. 5 denote the linearly unstable regions.

The main conclusion of Fig. 5 is that the roughness does not
change the trends observed in previous works27,28,30 for perfectly
smooth inelastic spheres: there is a drastic increase in all the rheo-
logical properties with an increase in the shear rate. In particular,
panel (c) of Fig. 5 highlights the existence of DST for the shear vis-
cosity η∗, regardless of the value of the coefficient of restitution β.
On the other hand, at a more quantitative level, we observe that,
for a given value of a∗, high levels of roughness can slightly atten-
uate the jump of η∗ relative to the frictionless case. This is a quite
unexpected result since most of the results obtained for concentrated
suspensions have shown that friction enhances DST. However, this
trend is not monotonic since there is a change in the aforementioned
behavior for very high shear rates; in fact, the line corresponding
to strong roughness (β = 1) intersects the curves of β = 0.5, β = 0,
and β = −0.5 for a∗ ≳ 10. In addition, the agreement between the-
ory and simulations for perfectly smooth spheres (α = 0.9 and β
= −1) is relatively good, except in a small region close to the tran-
sition point where simulation data suggest a sharper transition than
the Boltzmann one. We think that this small discrepancy is mainly
due to the limitations of the Boltzmann equation for accounting
small density corrections to η∗ around this transition point. As a
matter of fact, the Enskog predictions for this quite small density (n∗
= 0.01) compare slightly better with simulation data than the ones
obtained from the Boltzmann equation; see, for instance, Fig. 2 of
Ref. 27.

Although similar trends are observed for θt and Ψ∗, it is worth
noting that the combined effect of α and β on the viscometric func-
tion Ψ∗ is quite important since, while this quantity is tiny for small
shear rates, it suddenly increases for not quite large values of the
shear rate (let us say a∗ ≈ 1). It must be recalled that the results
obtained in the context of the Enskog equation for moderately dense
gases have shown a transition from DST for very dilute suspensions
to CST at relatively moderate densities.27,28

More influence of roughness on rheology can be found in the
case of the (steady) rotational granular temperature θr = Tr/Tex. This
quantity does not play any role in the perfectly smooth case. Panel
(b) of Fig. 5 shows the shear-rate dependence of θr . It is quite appar-
ent that, for large shear rates, roughness clearly enhances the value
of θr in contrast to what happens for θt . It must be remarked that
similar features of the rheological properties have been observed for
other values of the coefficient of restitution.
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FIG. 5. Plots of the (steady) translational granular temperature θt [panel (a)], the
(steady) rotational granular temperature θr [panel (b)], the non-Newtonian shear
viscosity η∗ [panel (c)], and the viscometric function Ψ∗ [panel (d)] as a function
of the (reduced) shear rate a∗ for α = 0.9 and different values of the coefficient of
tangential restitution β: β = −1 (black line), β = −0.5 (red line), β = 0 (green line),
β = 0.5 (blue line), and β = 1 (cyan line). Here, κ = 2

5 , n∗ = 0.01, and T∗ex = 1. The
thick lines represent the linearly unstable regions. Symbols refer to computer sim-
ulation results obtained for spheres perfectly smooth (β = −1).27 Reproduced with
permission from H. Hayakawa, S. Takada, and V. Garzó, “Kinetic theory of shear
thickening for a moderately dense gas-solid suspension: From discontinuous thick-
ening to continuous thickening,” Phys. Rev. E 96, 042903 (2017). Copyright 2017
American Physical Society.

B. Fourth-degree velocity moments

We consider now the relevant fourth-degree velocity moments
obtained in the context of the BGK model. They can be easily deter-
mined from Eq. (73). As discussed in Ref. 30, there are eight inde-
pendent fourth-degree (symmetric) moments: five of them are even
functions of the (reduced) shear rate a∗ while the remaining three
are odd functions of a∗. To illustrate the shear-rate dependence of
those moments, we chose the representative moments

M4∣0 = ∫ dv∫ dω V4 f (ω,V)
=M400 + 2(M040 + M220 + M202 + M022), (92)

and

M2∣xy = ∫ dv∫ dω V2VxVyf (ω,V)
=M310 + M130 + M112, (93)

where the canonical moments Mk1 ,k2 ,k3 are given by Eq. (73). Upon
writing Eq. (92), use has been made of the identity M040 = M004.
While the moment M4|0 is an even function of a∗ (and so M4|0 ≠ 0
when a∗ = 0), the moment M2|xy is an odd function of a∗ (and so
M2|xy = 0 when a∗ = 0). To see more clearly the influence of both
α and β on M4|0 and M2|xy, we consider first the region 0 ⩽ a∗ ⩽ 1
where non-Newtonian effects are expected to be still important.

FIG. 6. Shear-rate dependence of the (scaled) fourth-degree moments
M∗4∣0(a∗)/M∗4∣0(0) [panel (a)] and −M∗2∣xy(a∗) [panel (b)] for α = 0.9 and dif-
ferent values of the coefficient of tangential restitution β: β = −1 (black line), β
= −0.5 (red line), β = 0 (green line), β = 0.5 (blue line), and β = 1 (cyan line). Here,
κ = 2

5 , n∗ = 0.01, and T∗ex = 1.
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Figure 6 shows the shear-rate dependence of M∗4∣0(a∗)/M∗4∣0(0) and−M∗2∣xy(a∗) for α = 0.9 and several values of β. Here, we have
introduced the dimensionless moments

{M∗4∣0, M∗2∣xy} = n−1( m
Tex
)2{M4∣0, M2∣xy}. (94)

In Fig. 6, M∗4∣0(0) refers to the value of M∗4∣0 when a∗ = 0, namely,

M∗4∣0(0) = 9

4 +
√
θ(0)t (χν∗t + 2ζ∗t )

×
⎡⎢⎢⎢⎢⎢⎣
χν∗t
√
θ(0)t θ(0)t + 4

2 + χν∗t
√
θ(0)t θ(0)t

2 +
√
θ(0)t (χν∗t + ζ∗t )

⎤⎥⎥⎥⎥⎥⎦
, (95)

where θ(0)t is a real solution of Eq. (61). As expected, we observe first
in Fig. 6 that these fourth-degree moments clearly depart from their
equilibrium values (in the absence of shear rate). Surprisingly, at a
given value of α, the impact of β on those moments is very small since
all the curves collapse in a common one. This feature contrasts with
the results obtained for the rheological properties since the effect of
β on both η∗ and Ψ∗ is remarkable in this range of values of the shear
rate (a∗ ≤ 1). It must be recalled that a similar property appears in the

FIG. 7. Shear-rate dependence of the (scaled) fourth-degree moments
M∗4∣0(a∗)/M∗4∣0(0) [panel (a)] and −M∗2∣xy(a∗) [panel (b)] for α = 0.9 and dif-
ferent values of the coefficient of tangential restitution β: β = −1 (black line),
β = −0.5 (red line), β = 0 (green line), β = 0.5 (blue line), and β = 1 (cyan line).
Here, κ = 2

5 , n∗ = 0.01, and T∗ex = 1.

smooth limit case30 since the effect of α on M∗4∣0(a∗) and −M∗2∣xy(a∗)
was also found very tiny at a given value of the shear rate.

For very large values of the shear rate, it is interesting to see
whether the fourth-degree moments increase also dramatically with
the shear rate in a similar way as the non-Newtonian shear viscosity
η∗. This is illustrated in Fig. 7, where it is clearly shown that both
scaled moments exhibit an S-shape for any value of β. In addition,
we also see that the effect of β on these moments is really significant
for large values of a∗.

FIG. 8. Plot of the ratio Rx(cx) = φ(cx)/(π−1/2e−c2
x) vs the scaled velocity

cx = √m/2TtVx for γ̃t = 0.1 and five different values of the coefficient of tan-
gential restitution β: β = −1 (black line), β = −0.5 (red line), β = 0 (green line),
β = 0.5 (blue line), and β = 1 (cyan line). Three different values of the coefficient
of normal restitution α are considered: α = 1 [panel (a)], α = 0.7 [panel (b)], and
α = 0.5 [panel (c)]. Here, κ = 2

5 , n∗ = 0.01, and T∗ex = 1.
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C. Velocity distribution function

As mentioned in Sec. V, one of the main practical advantages
of kinetic models is the possibility of obtaining the explicit form of
the velocity distribution function. Here, we have obtained it in the
special case Tex = γr = 0 and is given by Eq. (83). To illustrate the
dependence of f tr(V) on the parameter space of the problem, let us
rewrite this distribution as

f tr(V) = n( m
2Tt
)3/2

φ(c), (96)

where c = √m/2TtV is the reduced peculiar velocity and the
reduced velocity distributions function φ(c) is given by

φ(c) = π−d/2 ∫ ∞
0

ds e−(1−3̃λt)s

× exp{−e2̃λt s[(cx + ãscy)2 + c2
y + c2

z)]}. (97)

Upon writing Eq. (97), use has been made of Eqs. (84) and (85). Fig-
ure 8 shows the ratio Rx(cx) = φx(cx)/(π−1/2e−c2

x) for γ̃t = 0.1 and
different values of the restitution coefficients α and β. Here, φx(cx) is
the marginal distribution,

φx(cx) = ∫ ∞
−∞ dcy ∫ ∞

−∞ dcz φ(c)
= 1√

π ∫
∞

0
ds

e−(1−̃λt)s√
1 + ã2s2

exp(−e2̃λt s c2
x

1 + ã2s2 ). (98)

Figure 8 shows that, in general, Rx(cx) is clearly different from 1,
namely, the distribution φx(cx) is highly distorted from its local
equilibrium value (π−1/2e−c2

x ). At a given value of the coefficient of
tangential restitution β, the distortion is more significant as the coef-
ficient of normal restitution α decreases (increasing inelasticity). The
impact of roughness on Rx(cx) increases with decreasing α.

VIII. LINEAR STABILITY ANALYSIS
OF THE STEADY SOLUTION

Although our study has been mainly focused on the determina-
tion of the rheological properties under steady state conditions, an

interesting question is to see if actually the steady state solution pro-
vided by Eqs. (52)–(56) is indeed a (linearly) stable solution. In order
to perform this analysis, we write first the four relevant equations for
P∗yy, P∗xy, θt , and θr from Eq. (51) as follows:

∂τP∗yy + 2(P∗yy − 1) = −ν∗η√θt(P∗yy − θt) −√θtθtζ∗t , (99)

∂τP∗xy + a∗P∗yy + 2P∗xy = −ν∗η√θtP∗xy, (100)

∂τθt + 2(θt − 1) +
√
θtθtζ∗t = −2

3
a∗P∗xy, (101)

∂τθr + 2
γr

γt
(θr − 1) +

√
θtθrζ∗r = 0. (102)

We want to solve the set of Eqs. (99)–(102) by assuming small
deviations from the steady state solution. Thus, we write

P∗yy(τ) = P∗yy,s + δP∗yy(τ), P∗xy(τ) = P∗xy,s + δP∗xy(τ), (103)

θt(τ) = θt,s + δθt(τ), θr(τ) = θr,s + δθr(τ), (104)

where the subscript s means that the quantity is evaluated in the
steady state. Here, for the sake of simplicity, we have assumed that
the interstitial fluid is not perturbed, and hence, the parameters γt ,
γr , and Tex are constant in the time-dependent shear flow problem.
This means that the reduced shear rate a∗ = a/γt is also constant.
Substituting Eqs. (103) and (104) into Eqs. (99)–(103) and neglect-
ing nonlinear terms in the perturbations, after some algebra, one gets
the set of linear differential equations,

∂τ

⎛⎜⎜⎜⎜⎝
P̃yy

P̃xy

θ̃t

θ̃r

⎞⎟⎟⎟⎟⎠
= −L ⋅

⎛⎜⎜⎜⎜⎝
P̃yy

P̃xy

θ̃t

θ̃r

⎞⎟⎟⎟⎟⎠
, (105)

where

P̃yy(τ) = δP∗yy(τ)
P∗yy,s

, P̃xy(τ) = δP∗xy(τ)
P∗xy,s

,

θ̃t(τ) = δθt(τ)
θt,s

, θ̃r(τ) = δθr(τ)
θr,s

.
(106)

The square matrix L is

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 +
√
θtν∗η 0

√
θtθt
⎛⎝ν
∗
η − 2ν̄η

2θt
− 3

2ν
∗
η − ν̄η
P∗yy

+
3
2 ζ
∗
t − ζ̄t

P∗yy

⎞⎠
√
θt(ν̄η − 11ν̄η

P∗yy
θt)

a∗ P∗yy

P∗xy
2 +
√
θtν∗η √

θt(1
2
ν∗η − ν̄η) √

θt ν̄η

0
2
3

P∗xya∗
θt

√
θt(3

2
ζ∗t − ζ̄t) + 2

√
θt ζ̄t

0 0
√
θt(1

2
ζ∗r + ζ̄r) 2

γr

γt
+
√
θt(ζ∗r − ζ̄r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (107)
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where the subscript s has been omitted for the sake of brevity. This
means that it is understood that all the quantities appearing in the
matrix L are evaluated at the steady state. In Eq. (107), we have
introduced the quantities

ν̄η = 8
15
√
π
β̃2

κ
θr

θt
n∗√T∗ex, ζ̄t = −10ν̄η, ζ̄r = θt

θr
ζ̄t . (108)

In the purely smooth case (β = −1), β̃ = ν̄η = ζ̄t = ζ̄r = 0, and hence,
the matrix L is consistent with the one obtained in Ref. 29 for a linear
stability analysis for smooth hard spheres.69

The eigenvalues ℓ of the square matrix L govern the time evolu-
tion of the deviations {P̃yy, P̃xy, θ̃t , θ̃r} from the steady solution given
by the set {P∗yy,s, P∗xy, θt,s, θr,s}. If the real parts of those eigenvalues
are positive, the steady solution is linearly stable, while it is unstable
otherwise.

On the other hand, as already occurs for smooth spheres,30 the
(steady) translational temperature θt(a∗) turns out to be a multi-
valued function of the (reduced) shear rate in a certain interval of
values of a∗ (see the vicinity of the saddle point in Fig. 5). Thus, as
already did in Refs. 29 and 30, in order to analyze the stability of
the steady solution we take θt as an independent parameter instead
of a∗ for the sake of convenience. Of course, once θt(a∗) is known,
a∗ can be determined from Eq. (54). As expected from the previous
stability analysis performed for smooth spheres,29 a careful analysis
of the eigenvalues ℓ shows that, for given values of α and β, the real
part of one of the eigenvalues (the one associated with the rotational
temperature θr) can become negative for values of θt belonging to
the range θ(1)t < θt < θ(2)t . The critical values θ(i)t depend on n∗, T∗ex,
α, β, and κ. This means that the steady simple shear flow solution is
linearly unstable in the region θ(1)t < θt < θ(2)t .

As an illustration, Fig. 9 shows the real part of the eigenvalues
ℓi (i = 1, 2, 3, 4) of the matrix L as a function of the translational
temperature θt for n∗ = 0.01, T∗ex = 1, κ = 2

5 , α = 1, and β = −0.5. We

FIG. 9. Plot of the real part of the eigenvalues ℓi (i = 1, 2, 3, 4) of the matrix L for
n∗ = 0.01, T∗ex = 1, κ = 2

5 , α = 1, and β = −0.5. The green line corresponds to the
real part of the complex conjugate pair (ℓ2, ℓ3). The red and blue lines refer to the
other two eigenvalues (ℓ1, ℓ4), which become a complex conjugate pair for high
values of θt . The region where the real parts of ℓ1 and ℓ4 vanish is shown more
clearly in the inset.

find that two of the eigenvalues (let us denote them, for instance,
by ℓ2 and ℓ3) are complex conjugate while the other two (ℓ1 and ℓ4)
become a complex conjugate pair for high values of θt . It is quite
apparent that while the real part of ℓ2 (or ℓ3 since Re ℓ2 = Re ℓ3)
is always positive, the real parts of ℓ1 and ℓ4 become negative for
certain critical values of θt (see the inset where the position of these
critical values is more clearly shown). This means that there are two
different unstable regions for this system.

The aforementioned feature is clearly confirmed in Fig. 10,
where we plot a phase diagram delineating the regions between sta-
ble and unstable solutions in the {α, θt} plane for smooth inelastic
hard spheres (β = −1) with n∗ = 0.01, T∗ex = 1, and κ = 2

5 . While
the hatched regions refer to values of (α, θt) where the steady shear
flow solution is stable, the unfilled regions correspond to combined
values of α and θt for which the steady solution is unstable. It is
worth noting that the dependence of the boundary line separating
both stable and unstable regions on α is not quite trivial since, at a
given value of α, there is a re-entrance feature as the translational
temperature θt increases: we first find a transition from the stable
to unstable region, followed by a subsequent transition to the stable
region. Surprisingly, the size of the unstable region decreases with
inelasticity. As a complement of Fig. 10, Fig. 11 shows two different
phase diagrams in the {β, θt} plane for two values of the coefficient
of normal restitution α: α = 0.9 [panel (a)] and α = 1 [panel (b)].
We observe first that there are two separate unstable regions around
β = −0.5 in the case of α = 1. This is consistent with the find-
ings of Fig. 9. The second unstable region corresponding to higher
θt ’s is more squeezed than the first one. In addition, we see that
the size of the unstable region decreases with increasing roughness
(β increases). This is more apparent in the case of panel (a) of Fig. 11
where only a single unstable region is found. This means that rough-
ness attenuates the instability of the time-dependent sheared prob-
lem. In fact, at a given value of α, there exists a critical value βc(α) for
which the unstable region is destroyed, and hence, the steady solu-
tion is always linearly stable for β > βc. In particular, βc ≃ 0.75 for
α = 0.9 and βc ≃ 0.94 for α = 1. Figure 11 also highlights the complex

FIG. 10. Phase diagram for the behavior of the eigenvalues of the matrix L in
the case of purely smooth granular gases (β = −1) for n∗ = 0.01, T∗ex = 1, and
κ = 2

5 . The hatched regions correspond to states where the steady simple shear
flow solution is linearly stable, while the unfilled region refers to states where the
steady solution is linearly unstable.
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FIG. 11. Phase diagram for the behavior of the eigenvalues of the matrix L for
n∗ = 0.01, T∗ex = 1, κ = 2

5 , and two different values of α: α = 0.9 [panel (a)] and
α = 1 [panel (b)]. The hatched regions correspond to states where the steady
simple shear flow solution is linearly stable, while the unfilled regions refer to states
where the steady solution is linearly unstable.

dependence of the boundary lines for α = 1 around β = −0.5 since
the following series stable→ unstable→ stable→ unstable→ stable
occurs when θt increases at fixed β.

In summary, our stability analysis shows that there are regions
of the parameter space of the problem where the steady simple shear
flow state can be linearly unstable. This restricts, of course, the anal-
ysis performed here for rheology to specific regions of the parameter
space where the steady solution is stable. Hopefully, the size of the
stable regions is, in general, larger than that of unstable regions.

IX. SUMMARY AND DISCUSSION

The determination of the non-Newtonian transport properties
in inertial suspensions under simple shear flow has stimulated in
the past few years the use of kinetic theory tools. Starting from the
Boltzmann kinetic equation (which holds for very dilute systems)
and/or the Enskog kinetic equation (which applies for moderately
dense systems), several works22–30 have obtained explicit expressions
of the shear-rate dependence of the kinetic temperature, the non-
Newtonian viscosity, and the viscometric functions. In most of the
cases, the analytical results have been validated against computer
simulations showing, in general, good agreement for conditions of
practical interest. An interesting conclusion is that the viscosity
exhibits DST for very dilute systems;29,30 this means that there is a

sudden relative increase in viscosity with an increase in the shear
rate. On the other hand, it has been also shown that DST gradually
becomes CST as the density increases.

However, all previous theoretical works22–30 have considered
inertial suspensions of smooth inelastic hard spheres, and hence, the
effects of tangential friction in particle collisions on non-Newtonian
rheology have been neglected. In the context of kinetic theory, we
are not aware of any previous attempt on addressing the impact
of roughness on the non-Newtonian transport properties. In this
paper, we have addressed this problem; more specifically and due to
the complexity of the problem, we have considered a granular sus-
pension of inelastic rough hard spheres at low density. In this case,
the Boltzmann kinetic equation conveniently adapted for account-
ing the effect of the interstitial gas on grains is a reliable equation
for obtaining the kinetic contributions to the temperature and the
relevant elements of the pressure tensor.

In the case of smooth spheres,27–30 the influence of the gas phase
on solid particles has been usually accounted for by a gas–solid force
constituted by two terms: (i) a drag force term proportional to the
(instantaneous) velocity v plus (ii) a stochastic term represented by a
Fokker–Planck operator of the form −(γtTex/m)∂2f /∂v2. While the
first term models the friction of grains on the continuous gas phase,
the second one takes into account thermal fluctuations. On the other
hand, when the spheres are not completely smooth and there is a cer-
tain friction between both spheres, one has also to take into account
the coupling between the rotational degrees of freedom of grains and
the gas phase. Here, we have assumed that this coupling has a sim-
ilar structure to the one assumed in the smooth case; therefore, one
has to add two new terms in the corresponding suspension model:
a term proportional to the angular velocity ω plus a Fokker–Planck
operator of the form −(γrTex/m)∂2f /∂w2. The coefficients γt and γr
are proportional to the square root of the background temperature
Tex.

Once the suspension model is defined, as a first goal we have
approximately solved it by Grad’s moment method.35 More specif-
ically, we have evaluated the collisional moment J [Vk, Vℓ∣ f , f ]
[defined by Eq. (16)] by using Grad’s distribution (38). The knowl-
edge of this collisional moment allows us to obtain the explicit
forms of the (reduced) rotational θr and translational θt temper-
atures as well as the (reduced) relevant elements of the pressure
tensor P∗k,ℓ in terms of the parameter space of the problem (the resti-
tution coefficients α and β, the reduced moment of inertia κ, the
reduced shear rate a∗, the reduced background temperature T∗ex,
and the reduced density n∗). Although the determination of non-
Newtonian rheological properties (which are directly related with
the second-degree velocity moments) is the most important objec-
tive of the present contribution, higher degree velocity moments are
also relevant since they provide some indirect information on the
velocity distribution function, especially in the high velocity region.
Given that their evaluation from the true Boltzmann equation is
quite intricate, as a second goal we have obtained them by consider-
ing a BGK-like kinetic model36 recently proposed for inelastic rough
hard spheres. Beyond non-Newtonian rheology, the fourth-degree
moments are the first nontrivial moments in the steady simple shear
flow problem. Their knowledge allows us to disclose partially the
combined effect of the different physical mechanisms (shearing, gas
phase, and inelasticity) involved in the problem on the distribution
function.
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Regarding non-Newtonian rheology, the results derived here
for inelastic rough hard spheres show no new surprises relative to
the earlier works for smooth inelastic hard spheres:27–30 the flow
curve for the non-Newtonian viscosity η∗(a∗) exhibits an S-shape,
and hence, DST is present. This means that η∗ discontinuously
increases/decreases if a∗ is gradually increased/decreased [see panel
(c) of Fig. 5]. We have also observed that, at a given value of α,
the dramatic increase in viscosity is slightly mitigated by roughness
(namely, as β increases). The influence of roughness on rheology is
more significant in the case of the (reduced) rotational temperature
θr . Panel (b) of Fig. 5 highlights that, for large shear rates, θr increases
with increasing β.

With respect to the fourth-degree moments, at a given value of
the coefficient of normal restitution α, surprisingly the BGK results
show that the shear-rate dependence of those moments is practi-
cally independent of roughness in the range a∗ ≤ 1, where nonlinear
effects are already important. This feature contrasts with the behav-
ior of η∗(a∗) since the value of η∗ clearly differs from its Navier–
Stokes form in this range of values of the shear rate. For larger
shear rates, we find that the fourth-degree moments also display an
S-shape in a similar way to the viscosity η∗ (see Fig. 7).

As a complement of the previous results, we have also ana-
lyzed the stability of the steady simple shear flow solution for non-
Newtonian rheology. To perform this analysis, since θt(a∗) is a
multi-valued function of a∗, it is more convenient to take θt as an
independent input parameter instead of the (reduced) shear rate. In
this case, as happens for smooth spheres,29 the linear stability anal-
ysis shows regions of the parameter space of the system where the
steady solution is linearly unstable. More specifically, for given val-
ues of the set (n∗, T∗ex, κ, and α), the steady solution becomes unstable
in the region θ(1) < θt < θ(2)t , where the critical values θ(i)t depend
on the coefficient of tangential restitution β. In addition, as panel
(b) of Fig. 11 clearly illustrates, the dependence of the boundary
lines delimitating stable/unstable regimes on β is quite complex, and
in fact, there may be two or more separate unstable regions. It is
worth noting that the unstable region usually belongs to the range of
(reduced) shear rates where DST appears [see the thick lines of panel
(c) of Fig. 5]. Thus, it would be tentative to speculate on the possi-
ble relation between DST and instability although this connection
requires a more rigorous analysis. We plan to elucidate this point
in the near future by considering a time-dependent inhomogeneous
solution.

As mentioned in Sec. I, the origin of DST has received a lot
of attention in the past few years. Several mechanisms12 have been
proposed, most of them directly related to the complex structure of
dense suspensions. On the other hand, as already discussed in Ref.
30, what is surprising here is the existence of DST in a structurally
simple system. In this case, the origin of DST in dilute suspensions of
inelastic hard spheres could be associated with both non-Newtonian
rheology in far from equilibrium states as well as the effect of the
interstitial gas on the dynamics of inelastic rough hard spheres.

The fact that the roughness of spheres does not have a signif-
icant impact on DST (in the sense that the trends observed here
are qualitatively similar to those observed for smooth spheres) could
be in part due to the Fokker–Planck suspension model considered
in this paper. As widely discussed in Sec. II, the above-mentioned
suspension model neglects the coupling between translational and
rotational degrees of freedom of grains in the form of the operator

F rotf . A way of accounting for this coupling in our theory would be
to retain a term proportional to the vectorial product v × ω in the
form of F rot. This would necessarily give rise to new contributions
in Grad’s solution coming from the combination of traceless dyadic
products of V, (V ⋅ω), and V × ω. The extension of the present the-
oretical results by considering the aforementioned terms in Grad’s
solution is a very challenging problem to be carried out in the
future.

It is apparent that the theoretical results presented here are rel-
evant to make a comparison with computer simulations. Previous
simulations27–29 carried out for perfect smooth inelastic spheres (β
= −1) have shown good agreement with kinetic theory results, as is
clearly illustrated in most of the plots presented along the paper. We
expect that this agreement is also extended to the case of inelastic
rough hard spheres. We plan to carry on those simulations in the
near future. Another possible future project is the extension of the
present results to finite densities by considering the Enskog kinetic
equation. In this context, an interesting question is to see if actually
there is a transition from DST to CST as the density increases in a
similar way as in the limit case of perfectly smooth spheres. Work
on this line will be performed in the future.
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APPENDIX: NAVIER–STOKES SHEAR VISCOSITY
COEFFICIENT OF DRY GRANULAR GASES

The explicit expression of the Navier–Stokes shear viscosity
of a dry gas of inelastic rough hard spheres is displayed in this
Appendix.54 It is given by

ηNS = nTt

νt

1
ν∗η − 1

2 ζ∗
, (A1)

where νt and ν∗η are defined by Eqs. (45) and (50), respectively, and
the (reduced) cooling rate ζ∗ is

ζ∗ = 5
12

1
1 + θ

[1 − α2 + (1 − β2)κ + θ
1 + κ

]. (A2)

Here, the temperature ratio θ ≡ Tr/Tt is

θ = h +
√

1 + h2, (A3)

where h is defined by

h = (1 + κ)2

2κ(1 + β)2 [1 − α2 − (1 − β2)1 + κ
1 + κ

]. (A4)
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Chapter 7

Results and Discussion

7.1 Homogeneous States of Granular Suspensions

At a first step, we have analyzed the time-dependent homogeneous states of granular

suspensions. The dynamic properties of grains in homogeneous states have been de-

scribed in the framework of the Enskog–Boltzmann equation. As usual, the influence

of the surrounding viscous gas on the dynamics of grains has been accounted for by

an effective force constituted by two terms: a viscous drag force plus a Langevin-like

term. This suspension model is based on the assumption that, if the gas phase is dilute

enough, the presence of interstitial fluid does not significantly affect the grain-grain

collisions and therefore the collision operator can be approximated to that of the dry

(without gas phase) granular gas. Moreover, when the number density of the gas phase

is greater than that of the granular gas, the state of the interstitial fluid is not affected

by the presence of grains and so, the surrounding fluid can be considered as a thermo-

stat at a given temperature Tex. On the other hand, following the results for gas-solid

simulations [171, 173], the drag coefficients exhibit a complex dependence on density

and have been chosen to be different in the case of bidisperse suspensions [see Eqs.

(2.20) and (2.32)].

The objective of this thesis with regard to the study of homogeneous states is

twofold. First, we want to characterize the time evolution of the system towards the

asymptotic steady state. In particular, we have investigated the existence of a uni-

versal hydrodynamic stage where the evolution of bidisperse granular mixtures only

occurs through its dependence on the global temperature T (t). The existence of the

189
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hydrodynamic or normal solution is the main hypothesis in the application of the

Chapman–Enskog method [122] to obtain the Navier–Stokes transport coefficients of

granular suspensions [4]. Also in the transient regime, we have explored the so-called

Mpemba effect [182, 183] (an initially hotter sample can cool down sooner than a colder

one) in bidisperse molecular and granular suspensions. For times much longer than the

mean free time, the system is expected to reach a steady state. The steady homoge-

neous properties of granular suspensions have been derived as a second objective. In

the case of monocomponent granular suspensions, the steady values for the granular

temperature T and the kurtosis or fourth cumulant a2 have been displayed as functions

of the coefficient of restitution, the volume fraction, and the parameters of the bath.

On the other hand, the extension to bidisperse mixtures has allowed us to assess also

the dependence of the partial temperature ratio T1/T2, the fourth cumulants c1 and

c2 on the mass and size ratios, the concentration, the coefficients of restitution, and

the influence of the bath. The theoretical results obtained in each one of the different

issues covered in the homogeneous state have been confronted against available and

self-made DSMC simulations as well as MD simulations in the case of the temperature

ratio T1/T2.

Concerning the temporal evolution of the distribution functions fi, theory and sim-

ulations have clearly shown that after a kinetic stage, an unsteady hydrodynamic stage

is identified. At this stage of evolution, the response of the system to any deviation

from the local steady distribution is characterized by the evolution of the only relevant

homogeneous hydrodynamic field in the homogeneous time-dependent problem, i.e., the

granular temperature T . As for driven granular gases [97, 140], the “hydrodynamic”

distribution fi(v; t|f (0)i ) has the scaling form

fi(v; t|fi,0) = niv
−d
0 φi [c(t), T (t)/Tex] , (7.1)

where fi,0 denotes the initial distribution function. Therefore, the time dependence of

φi on the temperature occurs through the dimensionless velocity c(t) = v/v0(t), and

the granular to external temperature ratio θ(t) = T (t)/Tex. For the sake of illustration,

Figs. 3 and 4 of Article 2 show that the kinetic velocity moments θi(t) = Ti(t)/Tex and

ci(t) evolve towards a universal hydrodynamic curve characterized by the functions

θi [θ(t)] and ci [θ(t)] regardless of the initial conditions.



7. Results and Discussion 191

The complex dependence of γi on the partial ϕi and total ϕ = ϕ1 + ϕ2 volume

fractions, the masses mi, and diameters σi of the mixture gives rise to the emergence of

a broad range of complex phenomena. For example, we have observed the Mpemba-like

effect in a binary mixture in contact with a thermal reservoir. The bath parameters

couple the evolution of the partial temperature ratio T1(t)/T2(t) to that of the global

temperature T (t) giving rise to the presence of memory effects.

To study this effect, two identical samples A and B characterized by their initial

temperatures (TA,0 and TB,0) and temperature ratios [(T1,0/T2,0)A and (T1,0/T2,0)B]

have been considered. These samples are in contact with a thermal reservoir at a

temperature Tex. We let the systems evolve towards equilibrium where equipartition

holds Ti = Ti,1 = Ti,2 = Tex (i = A,B). The evolution of temperature is determined

by the way of yielding heat from the bath to each one of the species. Since this energy

transmission is completely established by the dependence of γi on the parameters of the

mixture, we can study the energy transmission rate of each species to suitably chose the

initial values of the total and the partial temperatures. An appropriate choice may lead

the evolution of the temperatures TA and TB to cross before reaching the equilibrium

state. In contrast to previous works [183], no cumulants are needed for the crossover

to happen; in fact we have approximated fi by their Maxwellian forms.

To gain some insight, situations near the final asymptotic equilibrium state have

been first considered. This has allowed us to obtain explicit expressions for the (re-

duced) crossing time t∗c and the critical value of the initial temperature difference [see

Eqs. (29) and (30) of Article 3]. An illustration of the above results is displayed in Figs.

1–3 of Article 3 as functions of the massm1/m2 and diameter σ1/σ2 ratios and the com-

position x1, respectively. The comparison between those theoretical predictions with

the DSMC results shows an excellent agreement for both the crossing times t∗c and the

phase diagrams regarding the regions of the parameter space where the Mpemba-like

effect is observed.

For the sake of completeness, we have explored the Mpemba-like effect for situa-

tions far away from equilibrium. The distance to equilibrium of the total and partial

temperatures allow the emergence of a large Mpemba effect. Namely, when the ini-

tial difference between the temperatures of two samples is of the same order than the

temperatures themselves. In this case, no analytical expressions can be obtained and

a more qualitative description has been addressed. The necessary but not sufficient
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conditions for the existence of the crossover have been given in terms of the sign of the

difference γ1 − γ2 [see Eq. (34) of Article 3]. These theoretical conditions have been

compared with MD and DSMC simulations for two different densities: ϕ = 0.00785 and

ϕ = 0.1. Fig. 5 of Article 3 shows that the Mpemba effect and its inverse counterpart

emerge when the conditions (34) are fulfilled. Moreover, the good agreement with the

simulation data ensures the Maxwellian approximation and the validity of the kinetic

equations to model out-of-equilibrium systems.

The Mpemba-like effect has also been investigated in the case of driven granular

mixtures where the inelasticity of collisions increases the possibility to observe such

effect. However, the presence of the cooling term ζ in the evolution equation of T [see

Eq. (11) of Article 2] makes more difficult to find initial conditions for the onset of the

Mpemba effect. In analogy with the molecular case, both close and far from the steady

state situations have been explored. The analytical expression for the crossing time

t∗c and the necessary conditions for the effect to occur have been plotted in Fig. 5 of

Article 2 for situations close to the steady state. These conditions [given in Eq. (47) of

Article 2] have been compared with DSMC simulations with an excellent agreement.

Then, we have explored non-linear situations. The inelasticity of collisions enlarges the

region of parameter where we can observe the effect. Therefore, non-linear effects arise

and non-Monotonic and mixed Mpemba effects can be detected. Fig. 6 of Article 2

illustrates the large, non-monotonic, and mixed Mpemba effects for a given case and

exhibits a good agreement between theory and DSMC simulations.

Finally, the stationary values of the temperatures and fourth cumulants have been

determined and compared with computer simulations. On the one hand, as in previous

works on granular fluids driven by thermostats [97, 148, 149], the way of scaling the

distribution function fs differs from previous works [4, 60, 220] where φs depends on

T only through the scaled velocity c [see Eq. (30) of Article 1]. Thus, the analysis

of the HSS in monocomponent granular gases has allowed us to assess this complex

dependence of the reference distribution function, but also to analyze the additional

effect of density on the stationary velocity moments. Although the exact form of φs is

not known, a good approximation of this distribution is provided by the leading Sonine

approximation [220]. By using this distribution, we have explicitly obtained the fourth

cumulant a2,s, which gives information about the departure of φs from its Maxwellian

form. Once obtained, an expression for the (reduced) steady temperature (Ts/Tex) has
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been derived. In spite of the approximations involved in such derivations, the theoretical

predictions for both quantities agree very well with DSMC simulations performed in

Ref. [148, 149] when setting R(ϕ) → 1 (see Figs. 1-4 of Article 1). With regard to binary

suspensions, the study carried out in this thesis complements a previous comparison

made in Ref. [99] between theoretical results and MD simulations. Since the DSMC

method does not avoid the inherent assumptions of kinetic theory, it was worth to

revisit the problem to analyze whether the origin of the discrepancies found in [99]

is related with the existence of velocity correlations or of the Sonine approximation

employed to get T1/T2, c1, and c2. These results have been displayed in Figs. 7–

9 of Article 2 where we have varied the mass m1/m2, diameter σ1/σ2, and partial

volume fractions ϕ1/ϕ2 ratios. The theoretical results for the temperature ratio T1/T2

agree very well with DSMC simulation in all the cases considered. Conversely, some

discrepancies have been found in the case of the cumulants c1 and c2, specially in c2.

Based on previous results obtained for monocomponent granular gases [251, 252], a

straightforward explanation could be given in terms of a possible lack of convergence of

the Sonine expansion: the effect of inelasticity could increase the value of higher order

cumulants and therefore the truncation in the leading terms of the expansion would not

be longer accurate. Finally, as an application, a linear stability analysis of the steady

state solution for binary suspensions was also carried out showing that the steady state

is always linearly stable.

7.2 Transport Coefficients of Granular Suspensions

Once the reference state is well characterized, we have perturbed the HSS by small

spatial gradients of the hydrodynamic fields. The Chapman–Enskog method [122]

has been applied to solve the Enskog equations for monocomponent and bidisperse

granular suspensions. We have retained in both situations terms up to the first-order

contributions in the perturbation scheme (Navier–Stokes hydrodynamic order). The

main difference between the monocomponent and binary cases has relied on the different

approaches taken to address the reference distribution functions. While the fourth

cumulant a2 of the Sonine polynomial expansion of f (0) has been retained in all the

calculations involving the transport coefficients of monocomponent suspensions, the

added difficulty of having two coupled equations in the case of binary mixtures causes
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that non-Gaussian corrections to the distribution functions f
(0)
i have been neglected.

This assumption is based on the fact that the values of the cumulants c1 and c2 were

shown in general to be small enough. This means that f
(0)
i has been approximated by

its Maxwellian form [see Eq. (47) of Article 5].

Moreover, as noted in previous works [99, 148, 149], since the densities ni and

the granular temperature T fields are defined separately in the local reference state,

then the temperature is in general a time-dependent function
(
∂
(0)
t T ̸= 0

)
. Thus,

the distribution functions depend on time through its dependence on the tempera-

ture. Although we were interested in obtaining analytical expressions of the transport

coefficients under steady state conditions, the fact that ∂
(0)
t T ̸= 0 gives rise to con-

tributions to them that depend not only on the steady hydrodynamic fields, but also

on the values of the fields in the vicinity of the perturbed state to the steady state.

These new contributions are given in terms of the derivatives of the relevant kinetic

variables with respect to the parameters of the suspensions. For example, (∂a2/∂θ)s;

(∂a2/∂λ)s; and (∂a2/∂χ)s for the monocomponent case, and (∂τ1/∂θ)s; (∂τ1/∂λ1)θ,x1,ϕ
;

(∂τ1/∂x1)θ,λ1,ϕ
; and (∂τ1/∂ϕ)θ,λ1,x1

for binary suspensions. The inclusion of the above

derivatives introduces conceptual and practical difficulties not present in the case of

dry granular mixtures [190, 191].

The procedure to obtain the NS transport coefficients has been implemented in two

steps. First, we have computed the balance equations [Eqs. (16)–(18) of Article 1 and

Eq. (20)–(22) of Article 5] from the Enskog equation. These equation include terms that

account for the influence of the bath and the kinetic and collisional contributions to the

cooling rate and the mass, momentum, and heat fluxes. Then, the constitutive equation

for the fluxes and the cooling rate have been derived and the transport coefficients have

been displayed in terms of arbitrary values of the inelasticity and the parameters of the

suspension. As usual, in order to obtain analytical expressions, the leading terms in a

Sonine polynomial expansion have been considered.

With regard to monocomponent granular suspensions, the explicit forms for the NS

transport coefficients have been provided along section 5 of Article 1. In particular,

the bulk ηb and shear η viscosities are given by equations (69) and (71), respectively,

the thermal conductivity κ is given by equations (73) and (75), the heat diffusive

conductivity µ is given by equations (77) and (78), and the first-order contribution ζU

to the cooling rate is given by equations (81) and (82). It is quite apparent that the
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(reduced) transport coefficients exhibit a complex dependence on both the coefficients

of restitution and the density. In addition, Figs. 6–8 of the same paper highlight the

impact of the gas phase on the granular properties since the α-dependence is clearly

different from that found in dry granular gases (see for instance Figs. 3.1–3.4 of Ref.

[4]). Moreover, the new density dependence of the drag coefficient γ significantly affects

the form of the heat flux transport coefficients and the cooling rate as can be noticed

when comparing with the results obtained in Refs. [148, 149].

As an application of the previous results, a stability analysis of the HSS has been

carried out. For small spatial gradients, we have perturbed the hydrodynamic fields

from their values in the HSS. Moreover, as usual in this sort of stability analysis, we

have assumed that the interstitial gas is not perturbed. Equations (92) and (102) of

Article 1 show that the eigenvalues for the transversal shear and longitudinal modes

have always a positive real part. This means that there are no regions of the parameter

space for which the system becomes linearly unstable. These results are consistent with

those obtained in Refs. [148, 149] indicating that the density dependence of γ does not

affect the stability of the HSS. Nevertheless, it is well worth remembering that the

conclusions drawn for the stability of dry granular gases [66, 69] differs from those

obtained here because it was found that the time-dependent homogeneous reference

state in dry granular gases can turn out to be unstable. This points out again the

relevance of the interstitial fluid on the physical properties of granular gases.

The extension to binary mixtures has allowed us to compute the influence of the

action of the gas phase not only on the transport properties computed above, but also on

those associated to the mass flux. The explicit forms of the transport coefficients have

been displayed in Sec. VI and Appendix C of Article 5: the mutual diffusion coefficients

D11 and D12 are the solutions of the algebraic equations (C2), the velocity DU
1 and

thermal DT
1 diffusion coefficients are given by Eqs. (108) and (C10), respectively, the

shear viscosity η and the first-order coefficients ϖi to the partial temperatures are

the solutions of Eqs. (C12) and (C18), respectively, and the first-order contribution

ζU = ζ(1,0)+ζ(1,1) to the cooling rate is given by Eqs. (B8), (113), and (114). In reduced

forms, the expressions for the transport coefficients are quite complex and hence, here

we only have payed attention to the influence of the inelasticity and the gas phase

on the dynamics of grains. In general, the impact of the interstice is important since

the α-dependence is quite different from that found when the gas phase is neglected
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[4]. For example, comparison of Fig. 3 with Figs. 5.5–5.7 of Ref. [4] clearly shows

that in the dry case the (reduced) mutual diffusion coefficients D∗
11 and D∗

12 exhibit

non-monotonic behaviors whereas the influence of the bath makes their values strictly

decrease with inelasticity. In addition, the behavior of DT
1
∗
is completely different

when the influence of the interstitial gas is taken into account. In the special case

of the shear coefficient η∗, Fig. 4 demonstrates more qualitative similarities between

binary suspensions and granular mixtures (see Fig. 5.8 of Ref. [4]). However, there are

still significant quantitative differences in both approaches.

On the other hand, the coefficients T
(1)
i are usually neglected in many of the previous

works devoted to granular mixtures [186, 190, 191]. Since T
(1)
i = ϖi∇·U, an interesting

question is to assess the impact of the first-order coefficients ϖi on both the bulk

viscosity ηb and the first-order contribution ζU to the cooling rate. This influence has

been evaluated in dry binary mixtures and suspensions. The results obtained in the

case of granular mixtures show that the magnitude of ϖi is in general quite important,

specially for large mass ratios and strong inelasticities (see Fig. 1 of Article 4). Hence, its

impact on ηb and ζU cannot be neglected for disparate masses and/or strong dissipation

(see Figs. 2 and 3 of Article 4). In contrast with the findings reported in Article 4

for freely cooling granular dilute mixtures (ϕ = 0), the results derived for granular

suspensions (Article 5) show that the first-order contributions ϖ1 are different from

zero even when ϕ = 0. A more complete analysis of the influence of the first-order

contributions in dilute regimes can be found in Ref. [253]. However, the gas phase

considerably reduces the magnitude of ϖ1 and hence, its influence on ηb and ζU is very

tiny (see Figs. 6 and 7 of Article 5).

7.3 Non-Newtonian Properties of Granular Suspensions

Under Simple Shear Flow

A widely studied problem in kinetic theory [127, 128, 135, 142–144, 249, 254] is the

determination of the non-Newtonian transport properties in inertial suspensions under

simple (or uniform) shear flow. Starting from the Boltzmann equation, we have char-

acterized the non-linear response of the system by means of the shear-rate dependence

of several properties such as the (scaled) temperature θ, the (reduced) nonlinear shear

viscosity η∗, and the (reduced) viscometric function Ψ∗ for both smooth and rough
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spheres. An interesting conclusion is that the viscosity presents a discontinuous shear

thickening transition for very dilute systems, namely, the shear viscosity exhibits an

abrupt growth at a certain critical shear rate. The same applies to the remaining rhe-

ological properties whose flow curves with respect to the shear rate show an S-shape.

On the other hand, although the rheological properties are the most relevant quantities

in a sheared suspension, higher degree moments are also important since they provide

indirect information on the velocity distribution function.

As usual, the influence of the background gas on smooth spheres has been ac-

counted for by an effective force constituted by two terms: (i) a drag force proportional

to the instantaneous velocity v of particles and (ii) a Langevin-like operator in the

form − (γtTex) ∂
2f/∂v2. For consistency and according to a generalized Fokker–Planck

equation for rotating spheres proposed many years ago by Hess [203], the extension to

rough spheres accounting for the coupling between the rotational degrees of freedom of

grains and the gas phase has been also modeled by two terms: a drag term proportional

to the angular velocity ω plus a Langevin-like operator − (γrTex) ∂
2f/∂ω2. Here, γt

and γr are the translational and rotational friction coefficients, respectively.

One of the main mathematical intricacies in solving the Boltzmann equation comes

from the form of the Boltzmann collision operator (2.2). Thus, to accomplish the deter-

mination of higher-degree moments in the USF problem, one has to consider simplified

collision models where velocity moments can be obtained without having to use approx-

imate methods. In particular, we have obtained the rheological properties using the

IMM [242, 255] and BGK-like [199] kinetic equations for smooth spheres in Article 6. In

particular, the comparison between the exact results for θ, η∗, and Ψ∗ with approximate

Grad’s results and computer simulations displayed in Refs. [142, 143] has allowed us to

assess the accuracy of both approaches (IMM and BGK results) in conditions of prac-

tical interest. The results plotted in Fig. 2 highlight the good performance of IMM and

BGK-type models to reproduce the shear-rate dependence of the rheological properties.

Whereas we have found a perfect match between IMM, BGK, and IHS results, some

discrepancies have been detected in a small region close to the transition point where

the simulation data suggest a sharper transition than the Boltzmann results. We think

that this small discrepancy is mainly due to the limitations of the Boltzmann equation

for accounting small density corrections to η∗ around this transition point. Although

the origin of the DST has been attributed to structural properties and mutual friction
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between grains [256], we have been able to reproduce the DST effect by means of an

extremely simple interaction model, such as the IMM.

However, as well as all previous theoretical works [127, 128, 135, 142–144, 249, 254],

we had originally considered inertial suspensions of smooth inelastic hard spheres, and

hence, the effects of tangential friction in particle collisions on non-Newtonian rheology

had been neglect. To address that question, we have derived the rheological proper-

ties considering also the rotational velocity of particles. To do so, two different but

complementary routes have been used: Grad’s moment expansion of the distribution

function [223] and a BGK-like kinetic model suitably adapted to rough spheres [204].

Both approximations agree when we make the choice given in the Eq. (79) of Arti-

cle 7 for the free parameter χ(κ, α, β) of the kinetic model. Moreover, Fig. 5 shows

the dependence of the (reduced) rheological properties on the shear rate in terms of

the parameter space of the problem (the restitution coefficients α and β, the reduced

moment of inertia κ, and the reduced background temperature T ∗
ex). Note that we

also have a remaining dependence on the reduced density n∗ = nσd that is neccessary

since we want to compare the results for β = −1 with the simulation data reported in

Refs. [142, 143]. Hence, the scaling of the shear rate a and the bath temperature Tex

must be the same as in the simulations. The main conclusion reported here is that the

roughness does not significantly affect the main trends observed in the smooth case;

a sharp transition of the shear viscosity η∗ also emerges at a given value of the shear

rate a∗. At a more quantitative level, we have also observed that while the roughness

slightly smoothes the increase of viscosity η∗ at a given value of α, the transition of

the (reduced) rotational temperature θr is enhanced as β increases. This is a quite

unexpected discovery since most of the results obtained for concentrated suspensions

have shown that friction enhances DST.

Beyond non-Newtonian rheology, the fourth-degree moments are the first nontrivial

moments in the steady simple shear flow problem. As in elastic [257, 258] and inelastic

[255] systems, the symmetric (non-vanishing in the steady state) fourth-degree moments

of IMM have unphysical values in a certain region of the parameter space of the system.

This singularity contrasts with the BGK results where all the moments are well-defined

functions. The phase diagram regarding the regions where the IMM moments are not

physical values has been obtained from the condition detL = 0, where L is the matrix

that couples the equations for the fourth-degree moments. In this case, since the
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(scaled) temperature θ is a multi-valued function of the (reduced) shear rate a∗, we

have taken θ instead of a∗ as the input parameter to find out the different regions of

divergence of the IMM moments. Our results show that those moments diverge in the

region θ
(1)
c (α) < θ < θ

(2)
c (α), where the critical values θ

(i)
c (α) are completely different

from those previously derived for ordinary gases [258] and dry granular gases [255]. At

a given value of the coefficient of normal restitution α, surprisingly the BGK and IMM

results show an excellent agreement in the region θ < θ
(1)
c and θ > θ

(2)
c for values of

a∗ ≤ 1, where nonlinear effects are already important (see, for instance, Figs. 5 and

6 of Article 6). In addition, the shear-rate dependence of the fourth-degree moments

is practically independent of inelasticity and roughness in this range of values of the

shear rate (see Fig. 6 of Article 7). This feature contrasts with the behavior of the

Navier–Stokes form of the viscosity η∗NS(α) since its value clearly differs from its elastic

and smooth counterparts (see Fig. 2 of Article 7). Moreover, the ratio η∗NS(α)/η
∗
NS(1) is

very different from that found in free cooling granular gases (see Figs. 1 of Article 6 and

7). Namely, while this ratio exhibits a non-monotonic dependence on the coefficient

of normal restitution in the case of granular suspensions, it increases with decreasing

α in the dry granular case. That underscores the crucial importance of the effect of

dissipative dynamics and the role of the interstitial fluid on the transport properties of

granular gases.

Since the BGK moments are well defined functions of both α and a∗, we have ex-

plored the shear-rate dependence of the fourth degree moments beyond the region

a∗ ≤ 1. Figures 9 of Article 6 and 7 of Article 7 show that the scaled moment

M4|0(a
∗)/M4|0(0) andM

∗
2|xy(a

∗) also display an S-shape in a similar way to the viscosity

η∗. This behavior has been also observed in the remaining (symmetric) fourth-degree

moments. We plan to assess the reliability of these striking results with computer

simulations in the near future.

As a complement of the previous results, we have also analyzed the stability of

the steady simple shear flow solution for non-Newtonian rheology. It is worth noting

that these instabilities have nothing to do with the divergences of the IMM moments

which stem from inaccuracies inherent in the model and model parameters. In this

case, the linear stability analysis shows the region of the parameter space where the

steady solution is linearly unstable. Figure 11 of Article 7 displays the boundary lines

delimiting the stable/unstable regime θ
(1)
t (β) < θ < θ

(2)
t (β) as a function of β for fixed
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α, κ, n∗, and T ∗
ex. We should underline that the unstable region usually belongs to the

range of (reduced) shear rates a∗ where DST appears [see the thick lines of Fig. 5 of

Article 7]. So it is likely that the emergence of a discontinuous transition in the shear

viscosity arises from or in connection with the former instabilities.



Conclusions and Outlooks

In this work transport properties of granular suspensions have been studied. Within

the context of the kinetic theory, the Boltzmann and Enskog equations have been

conveniently adapted to account for the inelasticity of collisions. While the Boltzmann

equation applies to low-density gases, the Enskog equation holds for moderately dense

gases. As usual, the influence of the gas phase on grains has been introduced in the

Boltzmann and Enskog equations by means of a Fokker–Planck term (drag friction plus

stochastic Langevin-like term). Such forces compensate for the inelastic cooling due

to binary collisions and so, the system reaches a non-equilibrium steady state. The

monocomponent case has been considered as the starting point. Then, the results have

been extended to the case of bidisperse suspensions. As far as possible, theoretical

results have been compared against computer simulations available in the relevant

literature and DSMC data obtained in this thesis.

Firstly, the homogeneous states of monocomponent and binary suspensions have

been investigated. The velocity distribution functions have been approximated in most

of the situations as a truncated expansion in Sonine polynomials. Namely, the scaled

distribution functions have been explicitly written in terms of their fourth velocity

moments (or fourth cumulants). In the transient regime, we have assessed that the

time evolutions of the partial (reduced) temperatures θi and cumulants c1 and c2 of a

binary granular suspension occur over universal hydrodynamic curves where all their

time-dependence is through the scaled temperature θ. This result supports the hydro-

dynamic or normal solution on which the Chapman–Enskog procedure is built. Also

for time-dependent homogeneous situations, we have studied the emergence of the so-

called Mpemba-like effect (a hotter sample can cool down sooner) for granular binary

suspensions. First, we have derived analytical results for the crossing time t∗c and the

necessary initial conditions for the Mpemba effect to happen in situations close to the

201
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non-equilibrium steady state where the non-linear effects are neglected. Moreover, we

also have explored situations far from the asymptotic final steady state where the non-

linear large, non-monotonic, and mixed Mpemba effects have been shown to arise. The

main conclusion is that the Mpemba-like effect arises even in molecular (elastic) sus-

pensions. In this case, neglecting the influence of the cumulants on the distribution

functions, a straightforward explanation in terms of the relative difference of friction

coefficients γ1 and γ2 has been provided. For times longer than the mean free time, the

system reaches a steady state. The steady value of the temperature T , temperature

ratio T1/T2, and mono a2 and bidisperse c1 and c2 cumulants have been compared

against DSMC simulations displaying in general good agreement. Hence, the Sonine

approximation is well-justified.

The Navier–Stokes transport coefficients have been determined by solving the En-

skog equation by means of the Chapman–Enskog expansion. Heat and momentum

fluxes have been determined up to first-order deviations of the hydrodynamic fields

from the homogeneous steady state. In reduced forms, the shear η∗ and bulk η∗b vis-

cosities, the thermal κ∗ and diffusive heat µ∗ conductivities, as well as the first-order

contribution ζU to the cooling rate have been demonstrated to exhibit a complex de-

pendence on the parameters of the granular suspension. In the binary counterpart, we

have also computed the shear η∗ and bulk η∗b viscosities, the diffusion coefficients D∗
ij ,

DT
i
∗
, and DU

i
∗
, and the first-order contributions to the partial temperatures ϖi and

the cooling rate ζU . These latter coefficients clearly differ from previous works where

neither the density dependence of the reference state nor the additional contribution to

the non-equipartition of energy coming from the expansion in gradients of the partial

temperatures were considered. In addition, we have shown that the influence of the

bath can be relevant in conditions of practical interest. For instance, the α-dependence

in the special case of the shear viscosity η∗ shows qualitative differences with respect to

the dry case. While η∗ decreases as α increases for very dilute freely cooling granular

gases (ϕ = 0), the opposite behavior have been found in the suspension counterpart.

For finite values of the solid volume fraction (ϕ = 0.1), η∗ exhibits a non-monotonic

dependence on the inelasticity in the dry case whereas it has been shown that η∗ al-

ways decreases as the inelasticity increases when the interstitial gas is accounted for.

More qualitative similarities between the shear viscosity coefficient of binary suspen-

sions and granular mixtures have been detected. However, there are still significant
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relative differences of up to 50% between the shear viscosity of both systems. Another

important result obtained for granular suspensions has to do with the stability of the

HSS; whereas some instabilities are found in free cooling granular gases, the action of

the bath causes that any small perturbation of the HSS is quickly dissipated.

Finally, a complete theoretical description of the non-Newtonian transport prop-

erties of a dilute granular suspension under uniform shear flow has been presented.

Three different but complementary routes have been used to model the rheology of sus-

pensions composed of smooth and rough spheres: Grad’s moment method, BGK-type

kinetic model, and Inelastic Maxwell Models. The rheological properties of smooth

suspensions (associated with the second-order velocity moments) have been computed

using the IMM and BGK-like model with good agreement with previous Grad’s and

EDLSHS results. A surprising finding is that the discontinuous shear thickening effect

on the viscosity is also present in structurally simple models such as the IMM. Beyond

the second-order regime, we have explored the divergence of the IMM fourth-order mo-

ments. As in previous elastic and inelastic cases, some unphysical regions have been

found and studied in terms of the parameter space of the suspension. Conversely, the

BGK results are always well-defined and have shown to display an S-shape transition in

the (symmetric) fourth-degree moments in the same way as in the case of the shear vis-

cosity η∗. We have also evaluated the impact of roughness in the above non-Newtonian

results. The principal conclusion is that the main trends observed for the smooth

case do not substantially change when the friction is accounted for. Nonetheless, more

quantitative discrepancies have been found: while the roughness slightly smoothes the

increase of viscosity η∗ at a given value of the normal coefficient of restitution α, the

transition of the (reduced) rotational temperature θr is enhanced as the tangential resti-

tution β increases. As an application of the previous results, the stability of the steady

simple shear flow solution for non-Newtonian rheology has been analyzed. An unstable

region appears in the same range of values of the shear rate a∗ where the DST transi-

tion occurs. Hence, there might be a relation between the emergence of a discontinuous

transition in the shear viscosity and the instabilities of the steady solution.
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Outlooks

One of the objectives of the present work has been the determination of the Navier–

Stokes transport coefficients of a binary suspension associated to the mass and mo-

mentum fluxes. In a subsequent paper, we plan to determine the heat flux transport

coefficients and perform a linear stability analysis of the homogeneous steady state as a

possible application. Since no instabilities are found in the dilute case, we want to assess

if the density corrections to the transport coefficients can modify the stability of the

above homogeneous state. Moreover, since the expressions for the transport coefficients

are based on several approximations, it is worth to perform computer simulations to

test the reliability of the theoretical predictions. As happens for dry granular mixtures

[259–266], we expect that the present results stimulate the performance of appropriate

simulations for bidisperse granular suspensions. In particular, we plan to undertake

simulations to obtain the tracer diffusion coefficient (namely, a binary mixture where

the concentration of one of the species is negligible) in a similar way as in the case of

granular mixtures [259, 263, 265]. Moreover, we also plan to carry out simulations to

measure the Navier–Stokes shear viscosity η by studying the decay of a small pertur-

bation to the transversal component of the velocity field [267]. Work along this line

will be done in the near future.

Although the results derived in this thesis have been mainly focused on smooth

inelastic spheres, the extension to inelastic rough hard spheres is a very challenging

problem. This study could allow us to assess the impact of the solid body friction

on the applicability of a hydrodynamic description to granular suspensions and/or the

occurrence of the Mpemba effect. Based on the results of Article 7, we expect that the

effect of roughness on the dynamic properties of grains can play an important role.

Another aim of the present work has been to determine the non-Newtonian trans-

port properties of a granular suspension under simple shear flow. However, the results

derived for the shear viscosity η∗ have shown that the effect of the roughness slightly

mitigates the discontinuous shear thickening effect. This result could be in part due to

the Fokker–Planck suspension model considered in this thesis. As discussed in Section

2.2.3, the above-mentioned suspension model neglects the coupling between transla-

tional and rotational degrees of freedom of grains in the form of the operator Frotf . A

way of accounting for this coupling in our theory would be to retain a term proportional
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to the vector product v × ω in Frot. This would necessarily give rise to new contribu-

tions in Grad’s solution coming from the combination of traceless dyadic products of

V, (V · ω), and V × ω. Nonetheless, these new contributions are constituted by non-

linear terms in the velocity fields and so, the resulting equation would not maintain

the hypothesis of working with low-Reynolds numbers. Thus, they could not probably

be introduced without considering also non-linear terms in the drag force. Anyway, it

would be interesting to revisit the problem to assess the effect of these couplings on

the rheological properties of grains. The above results can be also examined by means

of computer simulations. Previous simulations [142, 143, 254] carried out for perfect

smooth inelastic spheres (β = −1) have shown good agreement with kinetic theory

results, as is clearly illustrated in most of the plots presented along Article 6. We ex-

pect that this agreement is also extended to the case of inelastic rough hard spheres.

Another possible future project is the extension of the present results to finite densities

by considering the Enskog kinetic equation. In this context, an interesting question is

to see if actually there is a transition from DST to CST as the density increases in a

similar way as in the limit case of perfectly smooth spheres.

Outside of the context of the present thesis, it would be interesting to apply the

Chapman–Enskog method to compute the transport coefficients of active matter. In

particular, Marconi et al have investigated in a recent paper [268] how the Fokker–

Planck equation for interacting spherical active particles can be used to predict the

fluctuations of the hydrodynamic fields by employing the methods of linear fluctuating

hydrodynamics. Given that the corresponding forms of the transport coefficients were

not known, the authors used expressions according to the Enskog theory of elastic

hard disks. Thus, it would be desirable to revisit the problem with the appropriate

expressions of the transport coefficients.
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En este último Caṕıtulo presentamos algunas de las conclusiones principales que pueden

extraerse del trabajo realizado en la presente tesis.

Se han estudiado las propiedades de transporte de suspensiones granulares. En el

contexto de la teoŕıa cinética, las ecuaciones de Boltzmann y Enskog se han modificado

para tener en cuenta la inelasticidad de las colisiones. Mientras que la ecuación de

Boltzmann describe gases diluidos, la ecuación de Enskog contempla gases a densidades

moderadas. Como es habitual, la influencia de la fase gaseosa se ha introducido en las

ecuaciones de Boltzmann y Enskog mediante un termino de Fokker–Planck (fuerza de

arrastre más término tipo Langevin). Estas fuerzas compensan el enfriamiento inelástico

debido a colisiones binarias provocando que el sistema alcance un estado estacionario de

no equilibrio. El caso monocomponente se ha considerado como punto de partida para

después extender los resultados a suspensiones bidispersas. En la medida de los posible,

los resultados teóricos se han comparado con resultados de simulación disponibles en la

literatura y con simulaciones numéricas de Monte Carlo realizadas en la propia tesis.

En primer lugar, hemos investigado los estados homogéneos dependientes del tiempo

correspondientes a suspensiones monocomponentes y binarias. Las funciones de distri-

bución se han aproximado en la mayoŕıa de las situaciones conforme a una expansión

en polinomios de Sonine. Es decir, las funciones de distribución escaladas se han escrito

expĺıcitamente en términos de sus momentos de cuarto orden (o cuartos cumulantes).

En el transitorio, nos hemos asegurado de que la evolución temporal de las temperatu-

ras parciales reducidas θi y de los cumulantes c1 y c2 de una suspensión granular binaria

se produce a través de curvas hidrodinámicas universales cuya dependencia temporal se

produce únicamente a través de los valores instantáneos de la temperatura adimensio-

nal θ. Este resultado sustenta el uso de la solución hidrodinámica o normal como base

207
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en la aplicación del método de Chapman–Enskog. Asimismo, hemos estudiado el ori-

gen del llamado efecto Mpemba (una muestra inicialmente a una temperatura superior

puede enfriarse antes que otra muestra idéntica a menos temperatura) en suspensiones

binarias granulares. Para ello, hemos calculado anaĺıticamente el tiempo de corte t∗c y

las condiciones iniciales necesarias para que se produzca el efecto en situaciones cerca-

nas al estado final estacionario de no equilibrio. De esta forma, las contribuciones no

lineales se pueden despreciar y el análisis es mucho más sencillo. Posteriormente, he-

mos ampliado el estudio a situaciones alejadas del estado estacionario donde aparecen

fenómenos no lineales como es el caso de los efectos Mpemba ampliados, no monótonos

o mixtos. La principal conclusión obtenida es que los efectos de tipo Mpemba aparecen

incluso en suspensiones moleculares (elásticas) sin necesidad de cumulantes. Esto ha

posibilitado la descripción del efecto en términos únicamente de la diferencia relativa

entre los coeficientes de fricción γ1 y γ2. Cuando el tiempo de evolución del sistema es

claramente superior a tiempo promedio entre colisiones, el sistema alcanza un estado

estacionario. La sencillez de las ecuaciones en este estado facilita la comparación entre

la temperatura total T ; el cociente de temperaturas parciales T1/T2; y los cumulantes

para suspensiones mono a2 y bidispersas c1 y c2, con resultados de simulación de Mon-

te Carlo. Dado que el acuerdo entre los resultados teóricos y de simulación es óptimo,

podemos concluir que la aproximación de Sonine es adecuada para describir la función

de distribución en situaciones fuera del equilibrio.

Se han obtenido los coeficientes de transporte de Navier–Stokes resolviendo la ecua-

ción de Enskog por el procedimiento de Chapman–Enskog. Los flujos de calor y mo-

mento han sido calculados a primer orden en términos de las desviaciones de los campos

hidrodinámicos de sus estados estacionarios y homogéneos. En forma adimensional, se

ha demostrado que los coeficientes asociados a la viscosidad tangencial η∗ y de vo-

lumen η∗b, aquellos correspondientes a la conductividad térmica κ∗ y difusiva µ∗, aśı

como la contribución de primer order ζU a la frecuencia de enfriamiento muestran una

dependencia compleja con los parámetros de la suspensión granular. Asimismo, se han

calculado los coeficientes de viscosidad tangencial η∗ y de volumen η∗b, los coeficientes

de difusión D∗
ij , D

T
i
∗
y DU

i
∗
, además de las contribuciones a primer orden de la frecuen-

cia de enfriamiento ζU y de las temperaturas parciales ϖ1. Estos coeficientes difieren

claramente de los obtenidos anteriormente despreciando los efectos de densidad en la

función de distribución de referencia y la contribución a la ruptura de la equipartición
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de la enerǵıa procedente de la expansión en gradientes de las temperaturas parciales.

Por otra parte, se ha demostrado que la influencia del baño en las propiedades de los

granos puede ser relevante en situaciones de interés práctico. Por ejemplo, hemos de-

tectado que la dependencia en la inelasticidad en el caso de la viscosidad tangencial

η∗ es cualitativamente diferente al caso seco. Mientras que η∗ decrece con α para ga-

ses granulares muy diluidos (ϕ = 0), lo opuesto ocurre cuando se considera el fluido

intersticial. Además, para densidades más altas (ϕ = 0,1), η∗ se comporta de forma no

monótona con α en el caso seco, mientras que para suspensiones hemos visto que η∗

siempre decrece con la inelasticidad. En el caso de mezclas se han encontrado mayores

similitudes en la dependencia de η∗ con α al considerar la influencia del baño. Sin em-

bargo, las diferencias relativas entre la viscosidad para los sistemas con y sin intersticio

siguen siendo importantes al encontrarse discrepancias de hasta un 50%. Otro resul-

tado interesante tiene que ver con la estabilidad del estado estacionario y homogéneo;

pudiendo ser este estado inestable en gases granulares secos, la acción del baño hace

que cualquier pequeña perturbación de dicho estado sea rápidamente atenuada.

Finalmente, se han estudiado teóricamente las propiedades de transporte no new-

tonianas de una suspensión granular diluida sometida a la acción de un flujo tangencial

uniforme. Para ello, se ha estudiado la reoloǵıa de suspensiones compuestas por esferas

lisas y rugosas a través del método de los momentos de Grad, un modelo cinético tipo

BGK y modelos de Maxwell inelásticos. En primer lugar, se ha comprobado que los

resultados obtenidos mediante los modelos de Maxwell y la ecuación BGK muestran

un buen acuerdo con resultados de Grad y de simulaciones EDLSHS que hab́ıan sido

publicados anteriormente. Un resultado sorprendente es que la transición de espesa-

miento tangencial de carácter discontinuo se ha observado incluso para modelos que

asumen una gran sencillez estructural como son los modelos de Maxwell. Más allá de

los momentos de segundo orden, se ha analizado la divergencia de los momentos de

cuarto orden obtenidos mediante los modelos de Maxwell. En concordancia con estu-

dios previos de sistemas elásticos e inelásticos, se han descubierto regiones del espacio

de parámetros donde estos momentos dan lugar a soluciones no f́ısicas. Por el contrario,

dado que los resultados obtenidos con el modelo BGK son siempre finitos, se han apro-

vechado para estudiar la dependencia de los momentos simétricos de cuarto orden con

respecto a la de cizalladura (o gradiente constante de velocidad) a∗. En concreto, se ha

demostrado que, al igual que en el caso de la viscosidad tangencial η∗, los momentos
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de cuarto orden presentan una transición abrupta en forma de “S”. Para completar

el estudio, se ha evaluado el impacto de la rugosidad en las propiedades no newtonia-

nas. La principal conclusión extráıda es que la rugosidad respeta de manera general el

comportamiento observado para esferas lisas. Sin embargo, a escala más cuantitativa,

se ha demostrado que la rugosidad afecta a la reoloǵıa del sistema. Por ejemplo, sua-

viza la transición para la viscosidad η∗ para un valor de α dado y produce el efecto

contrario en el caso de la temperatura rotacional θr. Como aplicación de los resultados

obtenidos, se ha realizado un análisis de estabilidad de la solución estacionaria de las

propiedades reológicas sometidas a un flujo tangencial uniforme. Sorprendentemente,

se ha detectado una región inestable que coincide en valores de la tasa de cizalladura

a∗ con la zona donde se produce la transición discontinua de espesamiento tangencial.

Es probable, por tanto, que ambos fenómenos estén relacionados.

Ĺıneas futuras

Uno de los objetivos de la presente tesis ha sido calcular los coeficientes de transporte

de Navier–Stokes de una suspensión binaria asociados a los flujos de masa y momento.

En un futuro próximo, esperamos calcular también los asociados al flujo de calor para

aśı poder analizar la estabilidad del estado homogéneo y estacionario. Dado que en

el caso diluido el estado homogéneo es linealmente estable, queremos investigar si los

efectos de densidad pueden provocar la aparición de inestabilidades. Además, como los

resultados teóricos se sustentan en numerosas aproximaciones, conviene comprobar la

veracidad de las expresiones obtenidas para los coeficientes de transporte con resultados

de simulación. Al igual que ocurre para mezclas granulares [259–266], esperamos que

el acuerdo sea favorable. En concreto, se pueden realizar simulaciones para el caso del

coeficiente de difusión en el ĺımite trazador (obtenido cuando uno de los componentes de

la suspensión binaria presenta una concentración despreciable) siguiendo pasos análogos

al caso de mezclas [259, 263, 265]. Del mismo modo, se puede medir la magnitud de la

viscosidad tangencial de Navier–Stokes η mediante el estudio del decaimiento de una

pequeña perturbación en la componente transversal de la velocidad [267].

Al igual que en el estudio de la reoloǵıa de las suspensiones, planeamos extender

los resultados del presente trabajo al caso de esferas rugosas. De esta forma, podremos

evaluar el efecto de la rugosidad en las propiedades hidrodinámicas o incluso en el origen
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del efecto Mpemba. Nuestras expectativas son que este grado de libertad adicional

juegue un papel relevante en las propiedades dinámicas de los granos.

Con respecto a las propiedades no newtonianas de las suspensiones, hemos obser-

vado que la rugosidad atenúa ligeramente la transición de espesamiento tangencial con

respecto al caso liso. Esto puede deberse a la forma del operador de Fokker–Planck

presentado en la Sección 2.2.3. Como ya se ha discutido, este operador desprecia las

contribuciones asociadas con los acoplamientos entre los campos de velocidades lineal

y angular. Una forma de subsanar este problema procedeŕıa mediante la inclusión de

un término proporcional al producto vectorial v × ω en la forma del operador Frot.

Esto dificultaŕıa enormemente el problema ya que habŕıa que añadir en la solución

de Grad nuevas contribuciones provenientes de la combinación de siguientes productos

diádicos de traza nula: V, (V · ω) y V×ω. Sin embargo, estas contribuciones contienen

términos no lineales en los campos de velocidad. Este hecho rompeŕıa la hipótesis de

trabajar a bajos números de Reynolds y, por tanto, posiblemente no puedan incluirse

sin considerar términos cuadráticos en la fuerza de arrastre. De todos modos, seŕıa

interesante analizar el impacto de estas nuevas contribuciones sobre las propiedades

reológicas de los granos. Los resultados que se obtengan pueden examinarse mediante

distintas simulaciones. Al igual que ocurre en el caso de esferas perfectamente lisas

(β = −1) [142, 143, 254], esperamos que se mantenga el buen acuerdo al considerar

esferas inelásticas y rugosas. Otro proyecto futuro relacionado con los fluidos no newto-

nianos podŕıa ser la extensión de los resultados presentados en esta tesis considerando

la ecuación de Enskog. En este contexto, seŕıa interesante analizar si realmente hay

una transición por la que el efecto de espesamiento tangencial discontinuo para a ser

continuo al aumentar la densidad; exactamente como ocurre en el caso liso.

Por último y menos relacionado con el marco principal de la tesis, seŕıa interesante

aplicar el método de Chapman–Enskog para determinar los coeficientes de transporte de

un sistema de materia activa. En particular, Marconi et al. han analizado recientemente

[268] cómo usar la ecuación de Fokker–Planck para esferas activas interaccionantes con

el objetivo de predecir las fluctuaciones de los campos hidrodinámicos. Dado que la

forma de los coeficientes de transporte que han empleado se corresponde con aquellos

obtenidos para discos elásticos mediante la ecuación de Enskog, conviene revisitar el

problema usando los coeficientes de transporte apropiados.
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[42] P. Yu, M. Schröter, and M. Sperl, “Velocity distribution of a homogeneously

cooling granular gas,” Phys. Rev. Lett., vol. 124, p. 208007, 2020.

[43] D. Bi, S. Henkes, K. E. Daniels, and B. Chakraborty, “The statistical physics of

athermal materials,” Annu. Rev. Condens. Matter Phys., vol. 6, pp. 63–83, 2015.
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[83] E. Falcon, R. Wunenburger, P. Èvesque, S. Fauve, C. Chabot, Y. Garrabos, and

D. Beysens, “Cluster formation in a granular medium fluidized by vibrations in

low gravity,” Phys. Rev. Lett., vol. 83, pp. 440–443, 1999.

[84] J. J. Brey, M. J. Ruiz-Montero, F. Moreno, and R. Garćıa-Rojo, “Transversal
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[196] M. López de Haro, E. G. D. Cohen, and J. Kincaid, “The Enskog theory for

multicomponent mixtures. I. Linear transport theory,” J. Chem. Phys., vol. 78,

pp. 2746–2759, 1983.
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Brazil nut effect in microswimmer mixtures induced by motility contrast,” J.

Chem. Phys., vol. 150, p. 114902, 2019.

[226] M.-L. Tan and I. Goldhirsch, “Rapid granular flows as mesoscopic systems,” Phys.

Rev. Lett., vol. 81, pp. 3022–3025, 1998.

[227] J. W. Dufty and J. J. Brey, “Comment on “Rapid granular flows as mesoscopic

systems”,” Phys. Rev. Lett., vol. 82, p. 4566, 1999.

[228] J. W. Dufty and J. J. Brey, “Hydrodynamic modes for granular gases,” Phys.

Rev. E, vol. 68, p. 030302(R), 2003.

[229] J. J. Brey and J. W. Dufty, “Hydrodynamic modes for a granular gas from kinetic

theory,” Phys. Rev. E, vol. 72, p. 011303, 2005.
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