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Abstract : Let G be an arbitrary abelian group and let R be a commutative unitary ring of
arbitrary characteristic. A necessary and sufficient condition is given for when all units in
the group ring RG are trivial provided that either supp(G)∩ inv(R) 6= ∅ or RG is modular.
In particular, we establish a comprehensive characterization by finding a criterion when RG
has only trivial units provided that char(R) is a positive number greater than 1. These
achievements strengthen results due to Karpilovsky (Arch. Math. Basel, 1983), Herman-Li-
Parmenter (Can. Math. Bull., 2005) and the author (Math. Commun., 2005).
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1. Introduction

Let G be a multiplicatively written abelian group with the subgroup of
torsion Gt =

∐
∀p Gp, where p is a prime integer, and with the set supp(G) =

{p : Gp 6= 1}. Let R be a commutative ring with identity 1R (such a ring is
often called an unitary ring), with the multiplicative group U(R) consisting of
all invertible elements in R, also called units of R, with characteristic char(R)
and with the set inv(R) = {p : p · 1R ∈ U(R)}. If there is no confusion
in some concrete situations, for facilitating of the exposition, we shall simply
write 1 instead of 1R. Traditionally, RG will always denote the group algebra
of G over R with the group of normalized (i.e., of augmentation 1) units
V (RG). For any set M , the symbol |M | denotes its cardinality. Using the
standard terminology, R is said to be indecomposable if it has no non-trivial
idempotents, that are idempotents different from 0 and 1, and R is said to be
reduced if it does not have non-trivial nilpotents, that are nilpotents different
from 0. As usual we shall say that the units in RG are trivial precisely when
V (RG) = G.

We will further quote only those results which are closely related on the
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theme presented (the complete bibliography on that subject both in commu-
tative and non-commutative aspects the readers can see in [10], [13], [14] and
[15]). And so, the first monumental study on trivial units in commutative
group rings was started by G. Higman in [7]. He proved that if F is a field
and G is torsion-free (that is Gt = 1), then V (FG) = G. In [2], because
of applicable purposes, we have incidentally extended this result by showing
that if F is a field and G is an infinite abelian group, V (FG) = G holds
uniquely when Gt = 1. Later on, we also have further generalized in [3] this
assertion by finding a necessary and sufficient condition when V (FG) = G

holds true for an arbitrary abelian group G (see also [13, p. 583, Lemma 1.1]);
another strengthening of such a criterion over a field of positive characteristic
is established again by us in [4].

On the other hand, Karpilovsky obtained in [8] and [9] a criterion when
a group ring element of a torsion-free group over an arbitrary commutative
coefficient ring must be a unit. Moreover, in [9] he enlarged the Higman’s
attainment by arguing that if G 6= 1 is torsion-free, then V (RG) = G holds
only when R is reduced and indecomposable. Here we shall try to improve
this statement of Karpilovsky for an arbitrary abelian group G. To this goal,
we shall use a theorem due to Nachev-Mollov from [12] which describes the
isomorphic structure of V (RG) when G is finite and R is indecomposable such
that exp(G) · 1R ∈ U(R). So, the aim of the present paper is to provide an
almost final analysis of the trivial units in commutative group rings, namely
to describe when V (RG) = G holds valid exclusively only in terms of R and
G, where R possesses some minimal limitations and G is arbitrary; especially
we shall require the set inv(R) ∩ supp(G) to be non-empty (whence in RG

there are non-trivial idempotents (e.g. [1] or [11])) or the characteristic of R

is a positive integer ≥ 2 or RG is a modular group ring. We thus answer
[4, Problem 1]. The essence in the proof of our main affirmation is that in
the group ring there exist idempotents which complicated its structure. It is
worthwhile noticing that in [14] is considered a special situation of group rings
without idempotents, named G-adapted, that are extensions of the integral
group ring ZG, when G is a finite abelian group (see [6] too). Specifically, the
ring of coefficients is taken to be an integral domain of characteristic zero and
if p/|G| then p·1R 6∈ U(R), i.e., p 6∈ inv(R) and therefore supp(G)∩inv(R) = ∅.
By the way, note that in [16] is posed the following terminology: the abelian
group G is said to be R-favorable provided that GR =

∐
p∈inv(R) Gp = 1 or,

equivalently, supp(G) ∩ inv(R) = ∅.
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2. The main result

Before stating our general criterion for trivial units in RG under some
restrictions on R and G, we formulate the major instrument needed for the
finite case of G in our theorem (see [12]).

Theorem. (Mollov-Nachev, 2004) Let G be a finite abelian group
with exponent n and let R be a commutative indecomposable ring with iden-
tity in which the number n is an invertible element. Then

U(R)× V (RG) ∼=
∐

d/n

∐

a(d)

U(R[ζd])

where a(d) = |{g ∈ G : order(g) = d}|/(R[ζd] : R) with (R[ζd] : R) the
dimension of the free R-module R[ζd] over R, and ζd is a fixed root of an
irreducible divisor of the cyclotomic polynomial Φd(x) over R.

Since the above isomorphism can be taken to be canonical, i.e., that maps
U(R) isomorphically onto U(R) or, in other words, to preserve the augmen-
tation (see, for instance, [11]) hereafter, under the above circumstances on R

and G,
V (RG) ∼=

∐

2≤d,d/n

∐

a(d)

U(R[ζd]).

The object here is to find a suitable criterion in appropriate terms associ-
ated only with R and G. Before doing that, we need the following preparatory
technicality.

Proposition. Let |G| = 3 and char(R) = 2. Then V (RG) = G if and
only if U(R) = 1 and for each pair (a, b) ∈ R the equality a2 + b2 + ab + 1 = 0
implies that (a, b) = (1, 1) or (a, b) = (1, 0) or (a, b) = (0, 1).

Proof. Firstly, suppose that V (RG) = G. If assume in a way of contra-
diction that there is 1 6= r ∈ U(R), then it is an easy technical exercise to
check that ur = 1 + (1 + r)g + (1 + r)g2 is a non-trivial unit with the inverse
u−1

r = 1+(1+r−1)g+(1+r−1)g2 = ur−1 . On the other hand, each normalized
element in RG is of the form 1 + r + f + rg + fg2 for some r, f ∈ R. It is a
straightforward matter to verify that

(1 + r + f + rg + fg2)(1 + r + f + fg + rg2)

= 1 + (r + r2 + f + f2 + rf)g + (r + r2 + f + f2 + rf)g2 .
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Thus 1 + r + f + rg + fg2 is a unit with inverse element 1 + r + f + fg + rg2

precisely when r + r2 + f + f2 + rf = 0. To be a trivial unit, it must be that
both r and f are either 0 or 1. Moreover, this equation can be equivalently
written as (1 + r)2 + (1 + f)2 = (1 + r)(1 + f) + 1. Consequently, a = 1 + r
and b = 1 + f do work.

Conversely, by modifying the same well-known idea as in [6, Proposition
3] (see [5, Proposition 3.1] too), we conclude that the identity V (RG) = G
holds. In fact, write G = 〈g : g3 = 1〉 whence RG = R〈g〉. It is plainly seen
that all normed units in RG are of the type u = 1 + a + b + ag + bg2 for some
a, b ∈ R. In the quotient ring R〈g〉/〈1 + g + g2〉 ∼= R[y], where y3 = 1, y 6= 1
and 1 + y + y2 = 0, we observe that the isomorphic image of u is the unit

v = 1 + a + b + ay + by2 = 1 + a + b + ay + b(1 + y) = 1 + a + (a + b)y .

Now, since v is a unit, for any element r + fy ∈ R[y] with r, f ∈ R we can
find c + dy ∈ R[y] with c, d ∈ R such that v(c + dy) = r + fy. But

v(c + dy) = (1 + a + (a + b)y)(c + dy)

= (1 + a)c + (a + b)d + ((a + b)c + (1 + b)d)y = r + fy

implies that the system

(1 + a)c + (a + b)d = r

(a + b)c + (1 + b)d = f

in the variables c and d has a solution in R for each r ∈ R and f ∈ R.
Therefore, the determinant D of the coefficient matrix arising from the above
system must be a unit of R. Thus D = 1 + a + b + ab + a2 + b2 ∈ U(R) = 1,
hence a + b + ab + a2 + b2 = 0. Finally, we replace a with 1 + a and b with
1+ b and thereby the foregoing conditions are necessary for the existence only
of trivial units.

Now, we are ready to proceed by proving the following chief affirmation
(notice that when supp(G) = ∅, i.e., Gt = 1, we wish apply [9] to get the
claim when V (RG) = G).

Main Theorem. Suppose that G is an abelian group and R is a commu-
tative unitary ring such that either supp(G) ∩ inv(R) 6= ∅ or char(R) divides
the orders of torsion elements in G. Then, V (RG) = G ⇐⇒

(1) G = 1; or
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(2) G 6= 1, R is indecomposable and reduced, and one of the following
conditions holds:

(2.1) |G| = |U(R)| = 2;

(2.2) |G| = 3, |U(R)| = 1, char(R) = 2 and for each pair (a, b) ∈ R the
equality a2 + b2 + ab + 1 = 0 implies (a, b) = (1, 1) or (a, b) = (1, 0)
or (a, b) = (0, 1);

(2.3) |G| = |R| = 2.

Proof. Foremost, we clearly observe that V (RG) = 1 if and only if G = 1.
Assume now that G 6= 1. If there is e ∈ R so that e2 = e and e 6= {0, 1},
we construct the element ue = 1 + e(g − 1) = 1 − e + eg where 1 6= g ∈ G.
Apparently, u−1

e = 1 − e + eg−1 exists and ue ∈ V (RG) but ue 6∈ G. So,
R must be indecomposable provided that V (RG) = G. Note that in [9]
it was considered the normed unit e + (1 − e)g to show that R has to be
indecomposable.

Let us now there exists 0 6= r ∈ R such that rk = 0 for some natural k.
We choose the element vr = 1− rg where 1 6= g ∈ G. Since 1− (rg)k = 1, one
can decompose

(1− rg)(1 + rg + r2g2 + · · ·+ rk−1gk−1) = 1 .

Hence 1−rg is a unit in RG different from r′g′ for any r′ ∈ U(R) and g′ ∈ G. In
fact, assume the contrary that 1− rg = r′g′. Hence, 1 = rg + r′g′. Thus r = 0
or r = 1 if g 6= g′ whereas r + r′ = 1 if g = g′. Then 1− rg = (1− r)g = g− rg
implies that g = 1. But all of these variants are impossible and that is why
R must be reduced as well provided V (RG) = G.

Proof of “⇒” in semi-simple case . Let now V (RG) = G with supp(G) ∩
inv(R) 6= ∅, whence Gt 6= 1. Suppose for a moment, in a way of contradiction,
|G| ≥ ℵ0, hence G must be mixed or infinite torsion. Choose C ≤ Gt with
|C| < ℵ0 so that supp(C) ∩ inv(R) 6= ∅. Clearly, such a choice is possible
because otherwise supp(G) ∩ inv(R) = ∅ which is a contradiction with our
initial assumption. Since there is {0, 1} 6= e ∈ RC so that e2 = e (e.g. cf. [1]
or [11]), one can construct the element ue = 1 + e(g − 1) where g ∈ G \ C. It
is readily seen that eg 6= e and that ue 6∈ G because ue is written in canonical
form. Moreover, it is easily checked that u−1

e = 1 + e(g−1 − 1) exists and
hence ue ∈ V (RG) secures V (RG) > G which is the wanted contradiction.
Thus, we conclude that this implies |G| < ℵ0, whence G = Gt. We claim
that |G| is of prime order, say p. In fact, once again we assume in a way
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of contradiction that there exists a proper subgroup P < G, hence one may
choose g ∈ G \ P . Furthermore, we repeat the same procedure as above
demonstrated. Indeed, since P can be chosen so that supp(P ) ∩ inv(R) 6= ∅,
we construct ug = 1 + e(g − 1), where {0, 1} 6= e2 = e ∈ RP . It is apparent
that eg 6= e, whence ug is written canonically. It is obvious that ug 6∈ G and a
simple technical exercise to verify that u−1

g = ug−1 exists in an explicit form.
Thus ug ∈ V (RG) \G, which is against our assumption V (RG) = G. Finally,
we infer that G does not possess proper subgroups, as claimed. Thus, owing
to the listed above formula from Mollov-Nachev’s theorem, we conclude that
either

V (RG) ∼= ×p−1U(R)

when ζp ∈ R since simple calculations lead us to a(p) = p− 1 bearing in mind
that (R[ζp] : R) = 1 or

V (RG) ∼= U(R[ζp])

when ζp 6∈ R since plain computations lead us to a(p) = 1 taking into account
that (R[ζp] : R) = p−1. In fact, we know from module theory that (R[ζp] : R)
divides p−1, whence (R[ζp] : R) ≤ p−1. If we assume that (R[ζp] : R) < p−1,
we obtain in virtue of the above Mollov-Nachev’s theorem that V (RG) ∼=
×a(p)U(R[ζp]) where a(p) ≥ 2. Because U(R[ζp]) has at least p totally different
units, that are 1, ζp, . . . , ζ

p−1
p , we observe by this isomorphism formula that

V (RG) has at least p2 totally different units which contradicts our assumption
that V (RG) = G. Thus (R[ζp] : R) = p−1 holds, indeed. (Note that the same
reasoning was applied but not in an explicit form in [3, p. 145, Case 2]. There,
under the requirement that V (FG) = G, the polynomial 1 + x + · · · + xq−1

was irreducible over the finite field F of non-zero characteristic p 6= q, where
q = |G|.)

That is why, in the first case, |V (RG)| = |U(R)|p−1 and consequently
V (RG) = G being equivalent to |V (RG)| = |G| is possible only when p =
|U(R)|p−1. This diophantine equation has unique solutions p = |U(R)| = 2.

As for the second case, one can illustrate the following trick. Note that our
approach used here is totally different from this in [3] because the concrete
estimation of |U(R[ζp])| in the case when R is not a field is difficult. And
so, since ζp 6∈ R, we derive that p ≥ 3; otherwise if p = 2 we observe that
ζ2 = ±1 ∈ R which is impossible. Moreover, if we assume that −1 6= 1,
we observe that ζp

s 6= −1 whenever 0 ≤ s ≤ p − 1. This is so because p
is odd. Consequently, there are p + 1 different units in U(R[ζp]), namely
−1, 1, ζp, . . . , ζp

p−1, and thus V (RG) 6= G. That is why, V (RG) = G yields
that −1 = 1 whence char(R) = 2. Therefore, L = {0, 1} is a subfield of R and
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V (RG) = G obviously forces that V (LG) = G. Furthermore, [3] applies to
show that |G| = 3. Notice also that p ·1R = 1R ∈ U(R), i.e., p ∈ inv(R), since
(2, p) = 1 and p = 2k+1 where k ≥ 1. Henceforth, we wish apply Proposition
to infer the validity of this point.

Proof of “⇐ ” in semi-simple case . That conditions (2.1) and (2.2) will
imply V (RG) = G follows either by the previously listed isomorphism descrip-
tion of V (RG) or by Proposition.

Modular case. Finally, let char(R) divides the orders of elements in Gt.
For instance, let char(R) = q whence Gq 6= 1 while Gp = 1 for each other
prime p 6= q. By considering the element 1 + r(1 − g), where r ∈ R and
g ∈ Gq, we infer that V (RG) = G is true when and only when r = {0, 1},
hence char(R) = 2 with |R| = 2, and |G| = 2.

Remark. First of all, we note that in condition (2.1) we must have
char(R) = 3 since 2 · 1R ∈ U(R) = {1,−1} and thus 2 = −1, that is, 3 = 0.

Second, an interesting example of a ring R of characteristic 0 for which
supp(G) ∩ inv(R) 6= ∅, i.e., whose satisfies the condition from Theorem, is
R = Z[1p ], where Gp 6= 1.

It is also noteworthy that V (RG) being only with trivial units implies that
R is indecomposable and reduced, even in the case where G is not commuta-
tive. One only needs to observe that the above two constructions of nontrivial
units in these different situations do not make use of commutativity of G, but
only the fact that R commutes with G in RG.

As a major consequence of Main Theorem we deduce the following.

Corollary. Let G be an abelian group and R a commutative unitary ring
of prime characteristic p. Then V (RG) = G if and only if R is indecomposable
and reduced and at most one of the following conditions holds:

(a) Gt = 1;

(b) |G| = |U(R)| = 2;

(c) |G| = 3, |U(R)| = 1 and for each pair (a, b) ∈ R the equality a2 + b2 +
ab + 1 = 0 possesses only trivial solutions in R;

(d) |G| = |R| = 2.

Proof. That R has to be without idempotents and nilpotents follows as
given above.

Condition (a) was done in [9].
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Let us now for a moment G is infinite with Gt 6= 1. We claim that
supp(G)∩ inv(R) = ∅. In fact, assume the converse, i.e., that the intersection
is non-empty. By what we have demonstrated in the corresponding part of
Main Theorem, we obtain that this contradicts V (RG) = G, thus substantiat-
ing our claim. Since inv(R) contains all primes but p, we derive that Gt = Gp.
Furthermore, we appeal to [8] (see also [10]) to infer that V (RG) = GVp(RG).
Thus, V (RG) = G is obviously equivalent to Vp(RG) = Gp. By considering
the elements 1+g−ggp where 1 6= g ∈ G\Gp and 1 6= gp ∈ Gp when G 6= Gp,
and 1 + g − h where g, h ∈ G \ {1} with g 6= h when G = Gp, we deduce
that our assumption that G is infinite is impossible. That is why, G must
be of necessity finite, hence G = Gt. As showed in the corresponding part
of Main Theorem, we may conclude that G is cyclic of prime order q 6= p
when Gq 6= 1 for some prime q, because inv(R) contains all primes but p
and, therefore, supp(G) ∩ inv(R) 6= ∅ guarantees the existence of nontrivial
idempotents in RG. Henceforth, the method described in the proof of Main
Theorem works to derive that (b) and (c) hold. Note that in (c) it follows
that char(R) = 2, i.e., p = 2 since otherwise p ≥ 3 will force that 2 ∈ inv(R),
that is, 2 · 1R ∈ U(R) = 1R and hence 1 = 0 which is wrong.

As for (d), if G = Gp is finite, it is readily checked that |R| = |G| = 2 is
the only possible situation.

We are now able to extend the last consequence to the following

Theorem. Suppose that G is an abelian group and R is a commutative
unitary ring of finite characteristic more than 1. Then V (RG) = G if and
only if R is indecomposable and reduced and precisely one of the conditions
holds:

(a’) Gt = 1;

(b’) |G| = 2 and for each pair (a, b) ∈ R the relation a2 − b2 ∈ U(R) implies
(a, b) = (1, 0) or (a, b) = (0, 1);

(c’) |G| = 3 and for each pair (a, b) ∈ R the relation 3(a2+b2+ab−a−b)+1 ∈
U(R) implies (a, b) = (0, 0) or (a, b) = (1, 0) or (a, b) = (0, 1);

(d’) |G| = |R| = 2.

Proof. As previously demonstrated R does not have idempotents and nil-
potents. The case when G is torsion-free was handled in [9]. Let us now we
assume incidentally that G is infinite with non-identity Gt. Since char(R) is
finite, there exists a natural n with the property nR = 0. Therefore, there is
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a subring P ≤ R, containing the same identity, so that char(P ) is a prime;
specifically P is of the form mR for some positive integer m that depends
on n. Furthermore, V (RG) = G forces at once that V (PG) = G which, as
we have seen in the proof of Corollary, is impossible. That is why, G has
to be finite. Hereafter, we wish apply [6, Proposition 1, Proposition 3 and
Proposition 8] by replacing in Proposition 3 elements a → a− 1 and b → −b
to deduce that points (a’) – (d’) are true.

Comments. Here we shall give some more detailed explanations for the
validity of the equality (R[ζp] : R) = p − 1 outside the equality V (RG) = G.
Indeed, let me denote the finite field with m elements (m a prime power) by
F (m) and let z be a primitive p-th root of unity for whatever prime p is being
discussed above (p not dividing m). Galois theory tells us that the degree
(F (m)(z) : F (m)) of F (m)(z) over F (m) divides p− 1. Our question is: if z

is not in F (m), when will it be true that the degree is precisely p− 1?
For p = 2, the question does not arise since z lies in F (m).
For p = 3, it is always true. The degree must be greater than 1 but less

than 3. We emphasize that this is actually the case in our Main Theorem.
Notice also the well-known classical fact that the polynomial 1 + x + x2 is
irreducible over the field Z/2Z.

For p = 5, we get various behaviors depending on m. For example, for
F (2) the degree must be 4 since F (16) is the lowest degree extension of F (2)
whose multiplicative group (cyclic of order 15) has order divisible by 5. On
the other hand, the reader can verify that 19 is the first prime q such that
we get a false result for F (q) since F (361) has a multiplicative group of order
divisible by 5 and is the smallest prime q such that q − 1 is not divisible by 5
and q2 − 1 is divisible by 5; thus the degree is 2.

In general, for a prime p, if we want degree p−1 over F (m), then p should
not divide md − 1 for any divisor d of p− 1 smaller than p− 1.

For R an indecomposable reduced ring of characteristic q, R will contain a
maximal algebraic extension field F of F (q). The question for R would then
be the same as for F . It depends on how much of F (q)(z) lies in F .

Note that by results on primes in arithmetic sequences, for a fixed prime p

no smaller than 5, there will be infinitely many primes q for which the degree
over F (q) is p− 1 and infinitely many for which it is smaller.

In characteristic 0, it depends on how much of the cyclotomic field Q(z)
is contained in the field under consideration.
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We would like to mention also that each finite commutative ring with
identity and without nontrivial nilpotent and idempotent elements is a field.
Indeed, by the classical structure theorem for Artinian rings, any finite com-
mutative ring R is a direct product of finitely many local rings. Because R

has no nontrivial idempotents, there is only one factor, i.e., R must be local,
say with unique maximal ideal M . As finite commutative rings are zero-
dimensional, M must be the only prime ideal of R, and so since R has no
nonzero nilpotent elements M has to be 0. Since 0 is a maximal ideal of R,
any such R is, in fact, a field. Another confirmation of the last fact may be
like this: Since R is Artinian with zero nil-radical, it is semi-simple. Then
it must be a direct product of fields. But it is indecomposable, hence it is a
field, indeed. Thus, even more, every Artinian commutative unitary ring with
no idempotents and nilpotents has to be a field.

Now, if we assume for a moment in our theorem that R is Artinian (in
particular finite), since it is of necessity without nontrivial idempotents and
nilpotents, according to the statements alluded to above, we deduce that R

must be a field. Henceforth, the method in [3] works successfully to obtain
|R| = 2 provided that char(R) = 2.

Let id(R) designate the set of all idempotents in R, that is id(R) = {e ∈
R : e2 = e}. It is easily seen that id(R) is a ring, so that id(R) ≤ R, provided
char(R) = 2. Certainly, | id(R)| = 2 whenever R is indecomposable.

It is noteworthy that the equation a2 + b2 + ab + 1 = 0 perhaps possesses
nontrivial solutions in R (i.e., solutions different from (1, 1), (1, 0) and (0, 1))
even when char(R) = 2, U(R) = 1 and id(R) = {0, 1}. The following example
gives a recent progress in this (compare with the concluding discussion in [6]).
Let G be of order 3 and char(R) = 2. If RG has only trivial solutions of this
equation, and a is an element of R other than 0 or 1, then one can see from
our conditions that a cannot be either an idempotent or a unit, and that a

cannot be algebraic over the field of two elements F2 (because then R would
contain a proper field extension of F2 and hence a nontrivial unit), nor can a

be nilpotent over F2 (because this would imply the existence of a nontrivial
idempotent). So this should force F2[a] to be isomorphic to the polynomial
ring. Now, if we let b be a new variable that commutes with a and we form
the ring R′ = F2[a, b]/(a2 + b2 + ab + 1), then R′G has nontrivial units. So,
an interesting example would be any ring R for which F2[a] < R < P ∼= R′.
Furthermore, any commutative unitary ring S for which SG has nontrivial
units should contain a subring which is isomorphic to a homomorphic image
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of R′ in which a and b do not vanish. So it will be helpful to know whether
R′ has nontrivial units, idempotents, or nilpotent elements.

We also emphasize that the conditions on R listed in Proposition assure
the lack of nontrivial idempotents in R.

A question of ring-theoretical interest is to describe the structure of those
rings whose unit groups are given in the statement of Main Theorem and its
two corollaries. However, this concrete exhibition is the theme of some other
research work.

We close with a discussion concerning certain homomorphisms. Consider
the natural map φ : R → R/I where I / R. It can be linearly extended to a
group ring surjective homomorphism (= epimorphism) Φ : RG → (R/I)G
with kernel IG. This induces the group homomorphisms Φ : V (RG) →
V ((R/I)G) and Φ : Vp(RG) → Vp((R/I)G) which are the identity on G.
Notice that the latter one is an epimorphism for an arbitrary (maximal) ideal
I; besides the first one is also an epimorphism when I is a nil-ideal; for ex-
ample I = N(R). Consequently, in that case, V (RG) = G assures that
V ((R/N(R))G) = G since Φ(G) = G. However, there is no a real advantage
in this, although R/N(R) is without nilpotent elements.

Correction. Although it is clear from the context, we would like to
specify that in [2, Lemma 4] the integral domain R is of non-zero, whence
prime, characteristic.

In closing, we state (see [5], [6] and [14] as well)

Problem. Describe when V (RG) = G provided that supp(G)∩ inv(R) =
∅ or, in particular, inv(R) = ∅. (For instance R = Z is such a ring, and the
question was already settled in [7] and [10], respectively.) According to the
results of this article, the only outstanding case would be when char(R) = 0,
Gt 6= 1 and supp(G) ∩ inv(R) = ∅.
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