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ABSTRACT

Multi-Pitch Estimation, or multiple fundamental frequency estimation, is the process of
extracting the musical notation (pitches) from a given acoustic signal. Multi-Pitch Es-
timation is one of the tasks that belong to Content-based Music Information Retrieval.
Music Information Retrieval has been drawing more attention due to the exponential
growth of digital music. Nevertheless, there is a significant gap between the high-level
human perception and the low-level signal features. Some music features, like rhythm
and pitch, have an important role in helping bridge this gap, given that they are more
closely related to the human perception of music. Among all musical instruments, piano
is one of the most popular worldwide, and one of the most complex concerning pitch
variety and number of simultaneous notes. These are the main reasons that motivate us
to research on Multi-Pitch Estimation of piano sounds. Multiple Pitch Estimation refers
to the determination of the underlying pitches of the obtained polyphonic sound. Unlike
mono-pitch estimation, Multi-Pitch Estimation has to deal with issues such as the source
number ambiguity and the octave ambiguity. Therefore, multi-pitch estimation is a chal-
lenging problem. Even though there has been significant research devoted to Multi-Pitch
Estimation, it still remains largely unsolved.

The problem of Multi-Pitch Estimation is addressed as classification problem, with
the main objective being to find the musical notes that are present in an observed sound
signal. This problem is tackled using one of the most prominent and recent methodologies
of the family of Evolutionary Algorithms – Cartesian Genetic Programming. Cartesian
Genetic Programming is a subclass of Genetic Programming in which, programs are en-
coded as graphs of nodes; basically Cartesian Genetic Programming is an Evolutionary
Algorithm that uses the evolutionary process to evolve mathematical expressions and
functions by employing graph theory to solve a specific problem. This methodology is
called “Cartesian” because it represents a program using a two-dimensional grid of nodes.
It has already proved its capability when applied to classification problems in the field of
image processing and signal processing.

To the best of our knowledge, there are no Cartesian Genetic Programming approaches
for addressing the Multi-Pitch Estimation problem of piano sounds or any other musical
instrument. This thesis presents a novel approach to the problem of Pitch Estimation,
using Cartesian Genetic Programming. We take advantage of evolutionary algorithms, in
particular Cartesian Genetic Programming, to search for complex mathematical functions
that act as classifiers. These classifiers are used to identify piano notes or pitches in an
audio signal.

This thesis describes a research that started with the need of developing a generic
toolbox for Matlab, capable of aiding users to encode problems using Cartesian Genetic
Programming. Using a small step iterative approach, we tackled the problem of Multi-
Pitch Estimation, starting with a first approach to the problem for piano sounds. We
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developed an architecture based on multiple classifiers, in which there is one classifier
for each piano note. The system has undergone several improvements in order to become
more accurate, flexible and faster. We developed an adapted an on set detection system to
perform data augmentation for the training stage, as well as a novel binarization process
to calculate the fitness named “Harmonic Mask”. Taking advantage of the multi-classifier
architecture we reached the real time performance using a several core processor with the
classifiers distributed. We also extended the technique used for multi-pitch Estimation of
piano sounds to other musical instruments like guitar and we showed its feasibility with
the supported of experiments and results.

KEYWORDS

Cartesian Genetic Programming, Multiple Pitch Estimation, Automatic Music Transcrip-
tion



RESUMEN

La estimación multitonal, o estimación de frecuencias fundamentales múltiples, es el pro-
ceso de extracción de la notación musical (tonos) de una señal acústica dada. La es-
timación de múltiples tonos es una de las tareas que pertenecen a la recuperación de
información musical basada en el contenido. La recuperación de información musical
ha atraído mucha atención debido al crecimiento exponencial de la música digital. Sin
embargo, existe una brecha significativa entre la percepción humana de alto nivel y las
características de la señal de bajo nivel. Algunas características de la música, como el
ritmo y el tono, tienen un papel importante para ayudar a salvar esta brecha, dado que
están más estrechamente relacionadas con la percepción humana de la música. Entre
todos los instrumentos musicales, el piano es uno de los más populares en todo el mundo
y uno de los más complejos en cuanto a variedad de tonos y número de notas simultáneas.
Estas son las principales razones que nos motivan a investigar sobre la Estimación Tonal
Múltiple de los sonidos del piano. La estimación de la afinación múltiple se refiere a la
determinación de los tonos subyacentes del sonido polifónico obtenido. A diferencia de
la estimación monofónica, la estimación multitono tiene que lidiar con problemas como
la ambigüedad del número de fuentes y la ambigüedad de la octava. Por lo tanto, la
estimación multitonal es un problema difícil. A pesar de que se ha investigado mucho
sobre la estimación multitonal, sigue sin resolverse en gran medida.

El problema de la Estimación Multitono se aborda como un problema de clasificación,
siendo el objetivo principal encontrar las notas musicales que están presentes en una señal
sonora observada. Este problema se aborda utilizando una de las metodologías más desta-
cadas y recientes de la familia de los Algoritmos Evolutivos – la Programación Genética
Cartesiana. La Programación Genética Cartesiana es una subclase de la Programación
Genética en la que, los programas se codifican como grafos de nodos; básicamente la Pro-
gramación Genética Cartesiana es un Algoritmo Evolutivo que utiliza el proceso evolutivo
para evolucionar expresiones y funciones matemáticas empleando la teoría de grafos para
resolver un problema específico. Esta metodología se denomina “cartesiana” porque rep-
resenta un programa mediante una cuadrícula bidimensional de nodos. Ya ha demostrado
su capacidad cuando se aplica a problemas de clasificación en el campo del procesamiento
de imágenes y de señales.

Hasta donde sabemos, no existen enfoques de Programación Genética Cartesiana para
abordar el problema de la Estimación Multitono de los sonidos del piano o de cualquier
otro instrumento musical. Esta tesis presenta una aproximación novedosa al problema de
la Estimación de Tonos, utilizando la Programación Genética Cartesiana. Aprovechamos
los algoritmos evolutivos, en particular la Programación Genética Cartesiana, para buscar
funciones matemáticas complejas que actúan como clasificadores. Estos clasificadores se
utilizan para identificar las notas o tonos de un piano en una señal de audio.

Esta tesis describe una investigación que comenzó con la necesidad de desarrollar
una caja de herramientas genérica para Matlab, capaz de ayudar a los usuarios a codificar
problemas utilizando la Programación Genética Cartesiana. Utilizando una aproximación
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iterativa de pequeños pasos, abordamos el problema de la Estimación Multitono, comen-
zando con una primera aproximación al problema para sonidos de piano. Desarrollamos
una arquitectura basada en clasificadores múltiples, en la que hay un clasificador para
cada nota de piano. El sistema ha sufrido varias mejoras para ser más preciso, flexible y
rápido. Hemos desarrollado un sistema adaptado de detección de conjuntos para realizar
el aumento de datos para la etapa de entrenamiento, así como un novedoso proceso de
binarización para calcular la aptitud denominado “Máscara armónica”. Aprovechando la
arquitectura de multiclasificadores alcanzamos el rendimiento en tiempo real utilizando
un procesador de varios núcleos con los clasificadores distribuidos. También extendimos
la técnica utilizada para la estimación multitono de sonidos de piano a otros instrumentos
musicales como la guitarra y demostramos su viabilidad con el apoyo de experimentos y
resultados.

PALABRAS CLAVES

Programación genética cartesiana, estimación de tonos múltiples, transcripción automática
de música
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Chapter 1

Introduction

The problem:

Multi-Pitch Estimation (MPE) or multiple fundamental frequency, F0 esti-
mation

Multiple pitch estimation is a sub-problem of Automatic Music Transcription AMT; it
has been a popular research topic for many years and still is investigated nowadays.

The general term “Music Transcription” means to produce the notation of a musical
piece or a sound which was previously unanotated or which the notation is unknown.
This process transforms an acoustic sound signal into human readable notation (e.g. a
music score). Therefore, when this task is performed by a software or a computer program
without human interference, it is considered Automatic Music Transcription. Hence, Au-
tomatic Music Transcription is the process of converting acoustic music signals to some
form of human readable notation, using computer algorithms. Automatic transcription of
music is a challenging research task which covers several areas besides computer science.
It includes artificial intelligence and machine leaning, signal processing, psychoacoustics,
music rules and theory among others. AMT is also considered one task of music informa-
tion retrieval (MIR), among MIR tasks are:

• Genre Classification;

• Recommender systems

• Music Mood Classification;

• Classical Composer Identification;

• Onset Detection;

1
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Figure 1.1: Wolfgang Amadeus Mozart’s Piano Sonata No. 16 - Music score

Figure 1.2: Wolfgang Amadeus Mozart’s Piano Sonata No. 16 - Piano-roll.

• Real-time Audio to Score Alignment;

• Beat Tracking;

• Music generation;

• Music source separation and instrument recognition

• Music Similarity and Retrieval;

• Query by Singing/Humming;

• Melody Extraction;

• Multiple F0 Estimation;

The music transcription process, when made by human hand, is a very complex task,
requiring several human capabilities and requisites, and it is only within the reach of the
most talented musicians. It is also a process which consumes a large amount of time. AMT
systems try to address the task of transforming an acoustic music signal into a readable
document (e.g. music score) in a less time consuming way, making it more accessible for
common people. Besides its main goal, AMT can be also used in other MIR tasks like
plagiarism detection, music composition or artist recognition.

2
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A musical score is a sort of guide to play a musical work and it can be represented in
multiple forms. Among them, the most common is the modern notation widely used in
Western tonal music, (see Figure 1.1). This representation is the desirable output for an
AMT system. However, in order to extract a traditional musical score AMT leads with
a set of sub problems, being the most prominent and crucial for the success of the entire
system the process of estimating the multiple pitches present. Besides Multiple-Pitch
Estimation, an AMT system should also estimate onset1 time, note duration using offset,
depending on the methodology used (note tracking or frame based). According to the
process used, it might be also necessary to infer the meter and tonality of a music. Usually,
transcription processes include two stages: the generation of a piano-roll, illustrated in
Figure 1.2, from the acoustic signal of the music piece or part of it; and another stage
that is responsible for transforming the piano roll into a music score. In general AMT
systems focus only on generating the piano roll leaving the second stage; the conversion
of a roll to a score, to other systems, considering it a separated problem.

Moreover, obtaining a score from an acoustic audio music signal might be an ambiguous
task, because music is also a subjective task that depends on the performer and his mood
or feelings. Therefore, musical scores may be considered general guidelines for a musician
to play a musical piece. Furthermore, the process of converting a piano roll to a score,
requires some high-level tasks: tempo estimation, rhythm quantization, key detection or
pitch spelling. Due to these reasons, music transcription systems start with an acoustic
signal and finish their job generating a piano roll. The transcription process can be applied
to any musical instrument, and it can even be applied to voice, although transcription of
piano music makes a bigger impact and is more complex than the majority of the common
musical instruments. Pianos are classical instruments, used in almost any musical genre,
being also widely used and studied. There are two basic piano configurations: grand and
upright. There is also a considerable diversity in what concerns to a piano’s amount of keys
and sound generation process (electric, electronic, etc.). Another important feature when
compared with other musical instruments is that pianos have a high level of polyphony; it
is possible to press several keys at the same instant generating the same amount of notes.
Taking all into account piano is considered the most challenging and complex musical
instrument for music transcription.

The AMT of piano sound can be stripped of all high-level features like the metrical
structure or tempo information and reduced to the fundamental task of transforming an
acoustic signal into a piano roll, in which a piano roll is a simple representation of the
notes present in a time instant and in a sequential form. Therefore, multiple fundamental
frequency (F0) estimation is the main task and the core of the AMT process that generates
the piano-roll. This main job is also denominatedMulti-Pitch Estimation; it estimates
the number of sources sounding at each time and their corresponding pitches.

The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital
recording of a speech or musical note. It plays an important role, because it is the key to
identify which notes are being played and at what time.

1Time instant in which a musical note starts.
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1.1. OBJECTIVES AND SCOPE OF THE THESIS

Signals in which several sounds are played simultaneously are called polyphonic sig-
nals, in contrast to monophonic signals, in which at most one note is present at a time.
Conversely, Single-Pitch Estimation identifies pitches on monophonic signals and Multi-
Pitch Estimation identifies multiple pitches in polyphonic signals. Pitch Estimation of
real instruments is a very hard task to address. Each instrument has its own physical char-
acteristics, which reflects in different spectral characteristics. Furthermore, the recording
conditions can vary from studio to studio and background noise must be considered.

After disclosing the problem, it is important to introduce the main methodology.
Artificial Intelligence (AI) is a field of study which focuses on systems and machines that
mimic human intelligence to perform some tasks; these systems are able to perceive their
environment and iteratively improve themselves in a way to pursue their goal, maximizing
the success chances.

All these AI features fit perfectly in the problem of Multi-Pitch Estimation. Artificial
Intelligence covers many fields, like deep learning and Evolutionary Algorithms (EA).
Among EAs there is a quite recent methodology, with many similarities with Genetic
Programming, denominated Cartesian Genetic Programming CGP. CGP is a technique of
evolving mathematical chained functions in the form of graphs, starting from a population
of unfit (usually random) programs, that during the evolutionary process become fitter
for a particular task. This methodology seems suitable for developing an approach to the
presented problem.

1.1 Objectives and Scope of the Thesis

To the best of our knowledge, there are no Cartesian Genetic Programming (CGP) ap-
proaches for addressing the Multi-Pitch Estimation problem of pianos sounds or any other
musical instrument. This thesis presents a novel approach to the problem of Pitch Es-
timation, using CGP. We take advantage of the EAs, and in particular CGP, to search
for complex mathematical functions that act as classifiers. These classifiers are used to
identify piano notes pitches in an audio signal. For example, given an audio recording of
a C3 piano note, the classifier for that note should recognize that a C3 is present in that
sound. There will be one classifier for each piano note. Our system’s architecture is also
described to show the feasibility of its parallelization and its implementation as a real-time
system. Our methodology is also a white-box optimization approach that allows for the
clear analysis of the solutions found and for researchers to learn and test improvements
based on the new findings.

1.2 Thesis Contributions

The main contributions contained within this dissertation are summarized below:

• A CGP Toolbox for Matlab was built and it is freely available. This toolbox is
generic enough to encode different problems with different requirements and it is

4
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available for public use.

• A novel approach for multi-pitch estimation of polyphonic piano sounds using CGP
is presented. The results show the feasibility of the approach and validate the
evolution of classifiers using CGP for Pitch Estimation.

• A multi-classifier system for multi-pitch estimation based on a distributed and paral-
lel architecture where each evolved classifier may work independently and in parallel
with the others.

• The developed approach achieves real-time using parallel capabilities of contempo-
raneous processors with several cores; and is also applicable for another instrument
sounds, such as guitars

• The technique used for MPE of piano music is extendable to another types of musical
instruments

1.3 Thesis Outline

This dissertation is organized as follows.

Chapter 2 This chapter starts by presenting a brief explanation of terminology and
concepts, ranging from waves and sampling to audio signal processing. Single-Pitch
Estimation approaches are presented and the problem of Multi-Pitch Estimation is
also discussed.

Chapter 3 In this chapter a literature review of previous studies on multiple-F0 estima-
tion is presented.

Chapter 4 This chapter describes the CGP technique in the context of EAs, presenting
the algorithm and its main features.

Chapter 5 This chapter describes the Cartesian Genetic Programming Toolbox devel-
oped from scratch. It is shown how this toolbox can encode multiple programs, and
how to configure it. An example of the application of the toolbox to a symbolic
regression problem is also presented.

Chapter 6 During this chapter the methodology used to apply Cartesian Genetic Pro-
gramming to the problem of Multi Pitch Estimation is presented. The developed
work described is the first approach to the problem. Preliminary results are also
detailed.

Chapter 7 This chapter details all the improvements made to the first approach which
led to the final system version. It also presents a complete study of the obtained
results and main features.

Chapter 8 The last chapter presents the main conclusions of the developed research.
Suggestions to future work are also presented.
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Finally, additional specific information is presented, in the form of appendices, at
the end of this document: publications, details on the configuration files, examples of
implementation, detailed experimental results.
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Chapter 2

Signals and Sounds Background

During this chapter a brief explanation of most important background topics is presented,
from waves, sound, signal sampling and more complex concepts on signal processing. This
chapter was written for readers that are not contextualized with signals and systems the-
ory. In this chapter, crucial terminology and theoretical background towards the frequency
estimation of acoustic signals are presented.

2.1 Waves and Sounds

Sound is the propagation of disturbances in pressure in a medium, regardless of whether
the substance of the medium is gaseous, liquid or solid, some of which can be detected by
the human ear. Those disturbances are called sound waves, and propagate by repetitive
variations of compression (high pressure) and rarefaction (low pressure) of the medium.
The most important properties of sound waves are: wavelength (λ), frequency (f), and
amplitude. The wavelength is the distance between any point in the wave and the equiv-
alent point in the next cycle. Frequency is the number of cycles per second and it is
measured in hertz (Hz).Thus, frequency is the number of times the wavelength occurs
in one second. The hertz symbol (Hz) represents one cycle per second, more commonly
addressed as frequency. There is a relation between frequency and wavelength and it is
related with the velocity of propagation (v) of the wave (sound) in a medium:

v = λ× f (2.1)

The frequency range of the human ear is:

20Hz ≤ f ≤ 20kHz. (2.2)
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This means that humans can hear vibrations occurring between 20 and 20 000 times per
second. Any sound with a frequency below 20 Hz known as infrasound and above than
20 kHz ultrasound.

The amplitude is the strength of a wave signal. The more amplitude the wave signal
has, the more loud the volume will sound. The decibel (dB) is relative measure unit that
uses a logarithmic scale:

dB = 10 log(
I

I0
) , I0 = 10−12w/m2 (2.3)

where I is the sound intensity measured and I0 is the intensity of the audible threshold.

Shotgun - 170

Handgun - 160

Threshold of Pain - 130

Motorcycle - 100

Vacuum Cleaner - 80

Conversation - 65

Rusting Leaves - 30

Pin Falling - 15

Jet Takeoff - 140

Pneumatic Riveter - 124

Rock Concert - 105

City Traffic - 78

Air Conditioning Unit - 60

Electrical Transformer - 45

Decibel Scale

Figure 2.1: Sound intensity measured by the Decibel (dB) unit.

Among all its applications dB is used to measure sound intensity. Our ear has a
logarithmic sensitivity, thus the decibel scale is commonly used to measure sound levels.

2.2 Digital Audio Signal

The process of recording and playing sound from a digital device, such as a computer, is a
very complex task. It includes several stages since the sound capture until the digitization
and storage.

8



CHAPTER 2. SIGNALS AND SOUNDS BACKGROUND

2.2.1 AD/DA Converters

The first stage is to acquire a sound signal from the medium and transform it into an
electric signal. Microphones convert acoustical energy into electrical energy, sound waves
into audio signals.

The microphone essential part is a membrane that vibrates due to air pressure varia-
tions. That vibrations are converted into electric signals by an an electric circuit, nested
in the microphone. The electric signal voltage varies over the time according to the mem-
brane’s vibrations. Thus, all the sound that propagates trough the air is transformed into
a voltage signal due to the microphone’s membrane capability of capture the air vibrations
(see Figure 2.2).

1 - Sound waves

2 - Front Plate (Diaphragm)

3 - Back Plate

4 - Battery

5 - Output Audio Signal 

4 5321

Figure 2.2: Condenser microphone scheme

The sound of an instrument reaches an acoustic-to-electric transducer (e.g. micro-
phone) and the vibrations are converted into an electric signal which is then amplified.

The acquired electric signal is continuous in time. An analog-to-digital converter
(ADC) converts the electric signal into digital data, represented by discrete numbers
which are stored on a hard-drive, or any other data storage device (see Figure 2.3).

 IN           ADC       OUT

Analog Input Digital Output

Figure 2.3: Analog-Digital converter.

To play the recorded sound, the data previously stored is transformed back to an
analog signal with a digital-to-analog converter (DAC) (see Figure 2.4). The analog signal
is amplified and converted to sound by an electroacoustic transducer (e.g. loudspeaker).

2.2.2 Signal Sampling

In order to convert the electrical signal into digital data, a AD converter is used. The
analog-to-digital converter samples the input signal periodically in time (sampling fre-
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Analog OutputDigital Input

IN          DAC      OUT

Figure 2.4: Digital-Analog converter.

quency) based on its voltage level. The voltage level is continuous in time, which means
some information is lost, during the sampling process (see Figure 2.5).
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(a) - Continous-Time Signal
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(b) - Discrete-Time Signal

Figure 2.5: Signal sampling: (a) Continuous signal in time. (b) Sampled signal.

The AD converter uses a sampling process to transform sound oscillations into numeric
values, Figure 2.5 illustrates the process with 2 graphs. This process has a frequency, i.e
happens many times per second: the sampling rate. If that sequence of numbers is
represented graphically it is achieved a signal wave with a similar shape to the original
analog sound signal. In fact with a closer look it is possible to see that the signal is not
continuous in time neither in amplitude. If the sample rate is increased (i.e. the number
of samples per second) a denser graph is obtained which turns the signal more similar to
the original.

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-
time signal. A common example is the conversion of a sound wave (a continuous signal)
to a sequence of samples (a discrete-time signal), as depicted in Figure 2.6. The output
of the sampler varies only in periodic intervals of time, when it assumes the instant value
of the input signal.

A sample is a value or set of values at a point in time and/or space. A sampler is
a subsystem or operation that extracts samples from a continuous signal. A theoretical
ideal sampler produces samples equivalent to the instantaneous value of the continuous
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CHAPTER 2. SIGNALS AND SOUNDS BACKGROUND

signal at the desired points. Sampling is the key concept for the real-time digital signal
processing. The variations that may happen between adjacent samples are discarded and
ignored (see Figure 2.7).

              

v
Analog signal

v

Sampled Signal

sampling intervals

Figure 2.6: Analog signal sampled into a sampled signal

Sampling becomes the key concept for the real-time digital signal processing.

              

Figure 2.7: A signal composed by 2 sin waves with different frequencies, sampled with a
low sampling rate, losing the higher frequency component.

Nyquist Theorem

The Nyquist theorem also known as sampling theorem, [Shannon, 1949] is as a funda-
mental bridge between continuous-time signals and discrete-time signals. It establishes a
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sufficient condition for a sample rate that permits a discrete sequence of samples to cap-
ture all the information from a continuous-time signal of finite bandwidth. The sampling
theorem states: “If a low pass-band signal has the highest frequency equal to Fmax, then
for its exact reconstruction it must be sampled at least at Fs sample rate, where Fs is
equal to or greater than the double of Fmax”. Equation 2.4 describes the theorem.

Fs ≥ 2Fmax (2.4)

Hence, in order to a sound signal preserve its frequencies into the range from 20Hz to
20kHz, the sampling rate to use should be equal or greater than 40kHz. Therefore, the
common representation is 44.1kHz, which means 44100 samples per second, for the digital
music because with those values it incorporates all the audible spectrum.

44.1kHz ≥ 2× 20kHz (2.5)

Sampling Depth

Each digital sample is a point on a 2 dimension space that can be represented in a cartesian
graph were the abscissa is the discrete time and the ordinate is the signal amplitude on
that precise time instant. The analog/digital converter samples the analog signal from
time to time, (in the CD technologies at each 1

44100
of second or 0.000023s) and extracts the

signal amplitude value and expresses it as a numeric value. However in digital medium,
the possible values are also discrete and represented in a binary base. Not every values
are available for representing a wave amplitude, the number of levels is finite and each
level value is represented through a binary number using sequence of “bits” This way, each
value of amplitude suffers an approximation to the nearest binary value, quantization.

Figure 2.8: Quantization process of a signal amplitude using small bit depth. (a) -
A 2 bit depth origins 4 levels (b) - A 3 bit depth origins 9 levels. Source: https:
//en.wikipedia.org/wiki/Quantization_(signal_processing), October 2021.
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CHAPTER 2. SIGNALS AND SOUNDS BACKGROUND

Depending on the number of available bits more levels of amplitude are available
to represent the sound amplitude and the difference between 2 consecutive quantization
levels is smaller. Therefore, a sound sample with n bits only has 2n possible levels. Figure
2.8 illustrates the digitalization process of a sound using 2 and 3 bit depth. An 8 bit
signal representation only allow 256 amplitude levels, however the precision of the human
ear is much more detailed. A human can distinguish sounds from flapping wings of a fly
to an airplane’s turbine, which is millions of times stronger. Using 16 bits - the common
format used in audio CDs - it is possible to represent 65,536 different levels, which implies
a immeasurable gain in sound precision and quality compared to the 8 bits resolution. In
DVDs the amplitudes are represented by 24 bits which gives 16 777 216 distinct amplitude
levels.

2.2.3 Music

There are many definitions for “Music”, the Concise Oxford English [Dictionary, 2002]
defines music as:

“The art of combining vocal or instrumental sounds (or both) to produce beauty of
form, harmony, and expression of emotiom”.

Although, according to Merriam-Webster dictionary online edition music is:

“The science or art of ordering tones or sounds in succession, in combination, and in
temporal relationships to produce a composition having unity and continuity”.

This definition includes two fundamental key words: “art” and “science”.

As mentioned before, sound phenomena according to physic is vibrations that travel
through a medium, commonly air. The music sounds include four basic characteristics:
dynamics, duration, timbre and pitch.

Dynamics
The sound dynamics is related with the perception of the sound wave amplitude.
Therefore, it is physically described as the amount of energy transported in a sound
wave, due to the the vibration of the particles through a medium. It is often referred
to as the loudness or volume of a sound. A common dynamic indications in music,
which are also referenced by their Italian words, are very soft (pianissimo), soft
(piano), loud (forte) and very loud (fortissimo).

Duration
A sound produced by a musical instrument has a duration - it is audible during
a period of time. Each sound has a starting instant (onset) and a ending instant
(offset). The time between this two instants is known as duration. In music notation
there are many symbols to represent time fractions - tempo. The tempo is the speed
or pace of a music piece, it is related with the beat time (number of beats per second
- bpm) or the music’s rhythm.
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Timbre
In music, timbre is the sound characteristic that allows us to distinguish sounds
of the same frequency that were produced by different sound sources, e.g. a piano
from a guitar. Humans recognize a sound of a given instrument in a music by
its timbre. The physical characteristics of sound that determine the perception of
timbre include frequency spectrum and envelope.

Pitch
The pitch is the fundamental frequency - F0, The F0 is the physical feature
of the pitch. The F0 can be obtained through a physical measurement, however
this may differ from the perceived pitch due to general loudness and other sound
characteristics. It is a subjective attribute of sound, that is closely related to the
frequency, an objective physical property. It is related to how low or how high a
note sounds. Pitch is an auditory sensation that maps the vibrations of a sound
wave to a tone in a musical scale.

Pitched musical instruments are generally based on a harmonic oscillator. “When
an oscillator is displaced from its resting position position or equilibrium, it applies a
restoring force proportional to the displacement suffered”, Hooke’s Law. For instance, a
string instrument, when a string is plucked it suffers a restoring force proportional to the
displaced relative to its equilibrium position. This physical concept causes an oscillation
in the string. The string oscillation origins variations of pressure in the air and they
are modeled by many frequencies. These resonant frequencies, propagate in the medium,
along the string or the air and they are are self-filtered, reinforcing and also canceling
each other forming standing waves. Therefore, because of the resonances physical prop-
erties including spacing, the resulting frequencies are integer multiples or harmonics of
the fundamental frequency which is the lowest observable. All these multiples and the
fundamental compose a series of frequecies, this is the basic ground of the harmonic series.
The lowest frequency of any vibrating object is called the fundamental frequency F0. The
fundamental frequency provides the sound with its strongest audible pitch reference - it
is the predominant frequency in any complex waveform. It is applicable to periodic or
quasi-periodic signals also representable by an harmonic series. In ambiguous situations,
the period corresponding to the perceived pitch is chosen [Klapuri, 2004b].

A pitch corresponds to a a musical note (A, B, C, etc.) or more precisely to a letter
and a number. An “A”played in the middle of a piano has the F0 frequency of 440 Hz.
That note is represented by A440 or more usually as A4. A3 and A5 are also A’s however
they are one octave lower or higher respectively. According with the logarithmic scale of
the octaves A4 has a F0 of A440, A3 and A5 have 220 Hz and 880 Hz, respectively. The
humans pitch perception is also in a logarithmic frequency scale. This means that the
distance perceived between 2 pitches A220 and A440 (separated by 220 Hz) is equal to
the pitches A440 and A880, which have a difference of 440 Hz.

The pitch is commonly represented in a numeric scale based on the F0’s logarithm.
This way, we can adapt the MIDI standard [Association, 2008] to map the F0 f to a
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Table 2.1: Pitches’ values

Note Octave
0 1 2 3 4 5 6 7 8

C 12 24 36 48 60 72 84 96 108
C# 13 25 37 49 61 73 85 97 109
D 14 26 38 50 62 74 86 98 110
D# 15 27 39 51 63 75 87 99 111
E 16 28 40 52 64 76 88 100 112
F 17 29 41 53 65 77 89 101 113
F# 18 30 42 54 66 78 90 102 114
G 19 31 43 55 67 79 91 103 115
G# 20 32 44 56 68 80 92 104 116
A 21 33 45 57 69 81 93 105 117
A# 22 34 46 58 70 82 94 106 118
B 23 35 47 59 71 83 95 107 119

Table 2.2: MIDI pitches’ frequencies.

Note Octave
0 1 2 3 4 5 6 7 8

C 16 33 65 131 262 523 1047 2093 4186
C# 17 35 69 139 278 554 1109 2218 4435
D 18 37 73 147 294 587 1175 2349 4699
D# 20 39 78 156 311 622 1245 2489 4978
E 21 41 82 165 330 659 1319 2637 5274
F 22 44 87 175 349 699 1397 2794 5588
F# 23 46 93 185 370 740 1475 2960 5920
G 25 49 98 196 392 784 1568 3136 6272
G# 26 52 104 208 415 831 1661 3322 6645
A 28 55 110 220 440 880 1760 3520 7040
A# 29 58 117 233 466 932 1865 3729 7459
B 31 62 124 247 494 988 1976 3951 7902
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integer value p (see Equation 2.6).

p = 12× log2

(
f

440Hz

)
+ 69 (2.6)

This way we may consider a linear distribution for pitches, where each octave contains
12 notes (piano keys) and each note differs one semitone. Taking as example the note A4,
it has the F0 frequency 440 Hz and corresponds to pitch number 69. The numeric scale
of pitches is shown in Table 2.1 and Table 2.2 presents the correspondence in frequencies
where C0 frequency ≈ 16Hz and B8 has ≈ 7902Hz.

2.3 Signals

According to [Chakravorty, 2018] a signal may be defined as an observable change in a
quality such as quantity. Examples of signals are gestures, images, human voice, sounds,
etc. Technically, signals can be represented as a function of time, space or other observa-
tion variable that transfers information. In audio, signals are a form of sound representa-
tion usually based on electrical quantities such as voltage and expressed in time dimension
(Figure 2.9).
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Figure 2.9: Sound signal as a time function: 2 simultaneous piano notes pitch 59 and 79

2.3.1 Fundamental Concepts

There are fundamental concepts about signals in what concerns to signal analysis and
processing. Some of them are related with the signal classification depending on their
specific characteristics. Some characteristics like periodicity and nature of the independent
variable (typically time) are important to understand signal processing concepts. We will
present a brief description of the main signal characteristics and classifications possibilities
which we think that are more important for a easier understanding of this thesis.
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Continuous-Time Signals
A signal is continuous in time if the independent variable (t) is continuous, and
theres is a x(t) for all t values in an interval: ∃x(t) : ∀t, t ∈ R. The analog audio
signals are defined as continuous time signals(see Figure 2.5-a).

Discrete-Time Signals
The sampling process of an analog signal x(t) leads to a discrete time signal x[n].
Instead of a continuous independent variable t, where all the values in an interval
[a; b] have a corresponding image x(t), we have only a set of possible values for n
and the corresponding images x[n], this way we may consider n ∈ Z. Considering
the same interval [a; b], we have a finite number of possible values for n depending
on the the sampling frequency fs, (see Figure 2.5-b).

Periodic Signals
A signal is considered a periodic signal if it completes a pattern within a measur-
able time frame, called a period and repeats that pattern over identical subsequent
periods. The completion of a full pattern is called a cycle. In time based signals
a period is defined as the amount of time required to complete one full cycle. The
periodicity is independent of the time nature of the signal, continuous or discrete.
For continuous time signals:

x̃(t) = x̃(t+mT ), ∀t ∈ R (2.7)

Equation 2.7 defines a periodic signal where the lowest positive T values is called
period of the fundamental frequency, and it is represented by T0. The fundamental
frequency ω0 is defined, according to the period of the fundamental by:

ω0 =
2π

T0
. (2.8)

2 4 6 8 t

Figure 2.10: Periodic signal with period T0 = 2

In Figure 2.10 is represented a periodic signal x̃(t) = sin(πt), with fundamental
frequency ω0 = π, which corresponds to the period T0 = 2.
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The periodicity definition for discrete time signals is similar to the continuous one.
A discrete time signal x̃[n] is said to be periodic with n,m ∈ N, such that:

x̃[n] = x̃[n+mN ], ∀n ∈ Z (2.9)

The period of the signal is the smallest value of N for which the above relation holds
true.

Quasi-Periodic Signals
In mathematics, a quasi-periodic function is a function that has a certain similarity
to a periodic function. The discrete signals that have some periodicity properties
and follow the representation:

x̃[n] ≈ x̃[n+mN ] (2.10)

are considered quasi-periodic signals. Quasi-periodic signals are a generalization of
periodic signals. The general waveshape of a quasi periodic signal is nearly the same
as if it were a periodic signal.
Whereas a sound or music signal has a F0 that is not constant in the time domain,
a typical assumption is made: in a very short time interval the signal is assumed
stationary. Therefore it is possible to determine the F0 of a non-stationary periodic
signal, using the approximation 2.10, in the interval. Figure 2.11 illustrates an
example of a quasi-periodic signal, with distinctive periods.
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Figure 2.11: Waveform of a quasi-periodic sound signal, of saxophone: F0 = 237Hz T0 =
4.2ms, adapted from [Reis, 2012]

2.3.2 Signal Processing

Signal processing uses measurements techniques to extract information from a signal that
represents some kind of phenomena. It involves the manipulation of real-world signals
(for instance, audio signals, video signals, medical or geophysical data signals etc. It can
be seen from different perspectives: acoustically, it is a tool to turn measured signals into
useful information, to an electrical engineer, it is often restricted to digitization, sampling,
filtering, and spectral operations. Signal processing systems include the following.

• Digitization (sampling and quantizing);
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• Transforms (Fourier, Laplace, Z);

• Spectral analysis;

• Filtering (time, space frequency);

• Detection, Classification, tracking.

A broader view of modern signal processing can be found by considering its theoretical
foundations, which come from mathematics. The signal processing can be applied to
continuous and discrete time signals, using similar mathematical foundations. However
we will see more detailed the discrete time signal processing that along with quantization
transforms a continuous time signal into a digital one. Therefore we will describe the
fundamentals and techniques used in Digital Signal Processing (DSP).

2.4 Digital Signal Processing

Digital Signal Processing comprises the application of computational methods and tech-
niques on signals that are digital, i.e. discrete in the independent variable or variables
and quantized to analyse, recognize, classify or transform them. It involves the manip-
ulation of real-world signals ( audio signals, video signals, medical or geophysical data
signals etc.) within a digital computer. To transform natural signals into digital it is
used the digitization process that includes analog to discrete conversion and quantization.
Nowadays, every representations and most of the ways of communications of sound and
image are digital resulting from Digital Signal Processing techniques, such as the JPEG,
MPEG, MP3 and GSM.

Audio signal processing is one of the applications of DSP and makes use of several
transforms, being the most relevant to our work the Fourier Transform, which will be
introduced in the next section.

2.4.1 Fourier Analysis

Independently of the source of a sound wave or even the medium where it propagates itself
the particles constituting the medium vibrate back and forth at a given frequency. As
mentioned before a sound wave has two major quantities Period and Frequency, one is
the inverse of the other. Thus, a sound wave with a longer period has a lower frequency,
whereas a sound wave with a shorter period implies a higher frequency (see Figure 2.12).

Jean-Baptiste Joseph Fourier (1768 - 1830) had the clairvoyance to see that a signal
could be represented as a sum or linear combination of harmonically related sinusoidal
functions, where each component is called harmonic, with a frequency multiple of the fun-
damental frequency. According to Joseph Fourier, any periodic signal can be represented
by a Fourier series, later demonstrated by P. L. Dirichlet [Oppenheim et al., 1997]. In a
simple form, Fourier analysis is the process of decomposing any periodic signal into the
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Figure 2.12: Low and high frequencies representation, adapted from [Reis, 2012]

sum of several, even infinite complex exponential functions, that are also a combination
of sines and cosines :

ejθ = cos θ + j sin θ (2.11)

Conversely Fourier synthesis is the process of converting those sinusoidal set of func-
tions into the original periodic function (see Figure 2.13). Consider a simple sinusoidal
function sine as a mathematical curve that models an oscillation, the sinusoid is repre-
sented as a time function, x(t):

x(t) = A sin (2πft+ φ) = A sin(wt+ φ), (2.12)

where A is the amplitude of the wave, f is the frequency in Hz (oscillations per second),
2πf = w is the angular frequency, and φ is the phase.

As stated before, any periodic signal can be represented by a sum of sinusoidal func-
tions. Considering a square wave, the ideal square wave can be expressed as a sum of
only components of odd-integer harmonic frequencies of the form:

fk = 2π (2k − 1)× f , k ∈ N (2.13)

where f is the square wave and each component with fk frequency with diminishing
amplitude, Figure 2.13 depicts the process.
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Figure 2.13: Square wave as an approximation of a sum of multiple sinusoids: (a) square
wave and a sine function with the same F0 (2Hz). (b) sum of two sine waves with F0
and an integer multiple of the F0. (c) sum of three sine waves oscillating with frequency
F0 and integer multiples of the F0. (d) a square wave approximation using multiple sine
functions.

Figure 2.13-a, shows the square wave in blue and a sin function in red. The red curve
is described by the Equation 2.14, both functions have the same frequency F0, 2Hz.

x(t) = 1.3 sin (2π2t) . (2.14)

In Figure 2.13-b, we introduced another sine function with a multiple frequency of the
initial sine. The sum of the two sine functions (see Equation 2.15), shows an approxima-
tion to the square wave function.

x(t) = 1.3 sin (2π2t) + 0.42 sin (2π6t) . (2.15)
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Depicted in Figure- 2.13-c, is the addition of another partial, the third one (see Equa-
tion 2.16), it becomes more clear the progressive approximation to the form of the original
square wave.

x(t) = 1.3 sin (2π2t) + 0.42 sin (2π6t) + 0.24 sin (2π10t) . (2.16)

In Figure 2.13-d, we have a sum of almost infinite sines with multiple frequencies
and and multiple amplitudes or gains. The resulting sound signal is almost identical
to the original, without any difference for human eyes or ear. All those multiple sine
wave functions with multiple frequencies are denominated as partials or components.
The major concepts related to this idea applied to sound are: each wave varies with a
different frequency; the lowest frequency presented in a certain note is classified as the
Fundamental Frequency (F0); Fundamental frequency is the inverse of the fundamental
period or P0 and corresponds to the perceived pitch. All the waves are called partials;
frequencies of the partials are mostly limited to integer multiples of the lowest frequency
(Fundamental Frequency - F0), forming the harmonic series; a harmonic is a partial
that is an integer number multiple of F0; F0 is also considered an harmonic partial, with a
multiplier equals to one. Excluding the fundamental frequency, all the partials are called
overtones (over F0).

Nowadays, the Fourier analyses is more than a set of equations or definitions, in tribute
to Joseph Fourier. Fourier analysis is considered all the study of signals and systems based
on their sinusoidal representation as well as the mathematical techniques used for signal
decomposition into a family off sinusoidal functions with a range of frequencies. We have
already seen that signals are classified according periodicity an time continuity. Among
all the Fourier equations for periodic, non-periodic continuous and discrete functions, one
stands up for the context of this thesis: The Discrete Fourier Transform DFT which is
used on periodic signals with discrete independent variable, in our case time. The Discrete
Fourier Transform is specially suitable for Digital Signal Processing due to discrete and
digital computers architecture.

Fourier Series

The Fourier Series (FS) is used for continuous and periodic signals. As it names suggests
it is a series, i.e a sum of components. Furthermore any periodic signal represented by a
continuous function x̃(t) can be written as a series, a sum of harmonically related complex
exponential functions (can be an infinite series):

x̃(t) =
∞∑

k=−∞

ake
jkw0t, k ∈ Z (2.17)

where:
w0 = 2πF0 =

2π

T0
. (2.18)
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The Fourier Series representation allows the definition of the linear space L2([−π, π]) of
square-integrable functions of [−π, π] where the set of complex exponential functions form
an orthonormal basis. The coefficients of the Fourier Series can be calculated using the
analysis equation:

ak =
1

T0

∫
T0

x̃(t)e−jkw0tdt. (2.19)

This way Equation 2.17 is known as synthesis equation and Equation 2.19 as the analysis
equation. The synthesis Equation 2.17 can be rewritten in the form::

x̃(t) = a0 +
+∞∑
k=1

(
ake

jkw0t + a−ke
−jkw0t

)
(2.20)

Taking into account that a∗k = a−k, Equation 2.20 can rearranged as follows:

x̃(t) = a0 +
+∞∑
k=1

(
ake

jkw0t + a∗ke
−jkw0t

)
(2.21)

Considering that ak ∈ C and using the Euler Equation 2.11 we can express ak in its polar
form, ak = Ak

2
ejφk , by that we obtain the following expression based on a a sum of cosine

functions:

x̃(t) = a0 +
+∞∑
k=1

Ak cos(kw0t+ φk). (2.22)

Equation 2.22 expresses the Fourier Series used for periodic signals. In sound processing
any sound signal representable by the previous equations is denominated harmonic sound.
Oppositely, the quasi-periodic signals do not have frequencies exactly multiples of the
fundamental frequency F0, those frequencies are simply referred to as partials, instead of
harmonic partials. For this kind of signals and for practical usage, a typical approximation
is made, it is considered only a finite number of harmonic partials H:

x̃(t) ≈ a0 +
H∑
k=1

Ak cos(kw0t+ φk). (2.23)

Fourier Transform

The Fourier transform (FT) is a mathematical transform that decomposes functions de-
pending on space or time into functions depending on spatial or temporal frequency.
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Sound waveforms use time as domain, i.e the independent variable of the function that
represents the waveform is time. The time-domain representation is useful for several tasks
although the time domain information is not the most appropriate for some important
tasks that require another kind of information and signal representation. Through the
Fourier Transform (FT), a signal is transformed into the frequency-domain. Con-
sidering sound waves, they are represented in time-domain, and a graph shows how the
signal value varies along the time variable. Otherwise, by applying the FT we obtain a
mathematical function in frequency domain. Thus, plotting a graph we are able to see
how the signal lies in the frequency range, or frequency spectrum. Figure 2.14 illustrates
the FT domain change and common pairs.

Figure 2.14: Time to frequency domain changes and 4 common pairs, being d a size
parameter and T the period.

The term Fourier transform refers to both the frequency domain representation and
the mathematical operation that associates the frequency domain representation to a
function of space or time. Hence, is widely used on tasks that depend of frequency or
spectral analysis. The FT is defined as follows for continuous time signals and aperiodic
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with infinite length:

FTx̃(f) = X̃(f) =

∫ +∞

−∞
x̃(t)e−j2πftdt. (2.24)

As it is possible to conclude by the Equation 2.24 the FT of a function of time is a
complex-valued function of frequency, whose magnitude (absolute value) represents the
amount of that frequency present in the original function, and whose argument is the
phase offset of the basic sinusoid in that frequency.

Discrete Fourier Transform

When we are using discrete time signals the FT is not applicable, instead the discrete
Fourier transform DFT) should be applied. This transform can be seen as the sampled
version (in frequency-domain) of the Discrete time Fourier Transform output.

As well as FT, DFT is used to calculate the frequency spectrum. However, it uses
as input a discrete-time signal. Thus, for a domain transformation of a discrete signal
the Discrete Fourier Transform is suitable. Therefore, for Digital Signal Processing the
Discrete Fourier Transform is applied. Equation 2.25 shows the mathematical expres-
sion used for compute DFT obtaining a frequency domain signal X[k], where k is the
independent variable expressed in frequency. Each k is considered a spectral bin:

DFTx̃[k] = X̃[k] =
+∞∑

n=−∞

x̃[n]e−j2πkn. (2.25)

Due to the obvious fact that computers can only handle a finite number of values it
was necessary to rearrange Equation 2.25 applicably to finite time signals. The DFT for
finite signals was defined as follows:

DFTx̃[k] = X̃[k] =
N−1∑
n=0

x̃[n]e−j
2π
N
kn, k = 0, · · · , N − 1 (2.26)

where N is length of the signal corresponding to the number of samples used, Figure 2.15,
shows the DFT applied to a piano sound signal in time and the correspondent signal
resultant in frequency domain.

The Discrete Fourier Transform takes a signal in the so called time domain (where each
sample in the signal is associated with a time) and maps it into the frequency domain. The
inverse process is also possible using the Inverse Discrete Fourier Transform (IDFT). The
inverse Discrete Fourier Transform takes the frequency series of complex values and maps
them back into the original time series (discrete time signal). Assuming that the original
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time series consisted of real values, the result of the IDFT will be complex numbers where
the imaginary part is zero and follows the equation:

IDFTx̃[n] = x̃[n] =
N−1∑
k=0

X̃[k]ej
2π
N
kn, n = 0, · · · , N − 1 (2.27)

When a domain swap occurs due to a transformation, it is crucial to calculate the
new domain resolution. Typically. each signal is represented using a vector and each
vector’s element is considered a bin. Each bin as a resolution in time domain and also a
resolution in frequency domain. Hence, following the Nyquist-Shannon sampling theorem,
[Shannon, 1949] when a DFT of a sound signal occurs a frequency domain signal vector
is generated. The range of usable frequencies is majored by the Nyquist frequency Fs

2
.

Therefore N frequency bins is uniformly distributed, the frequency of each spectral bin k
is fk where fk = kFs

N
. Thereby, the frequency resolution of the DFT is ∆f = Fs

N
.

Let us consider the Figure 2.15 example, of a piano chord signal. As a sound signal
it may be considered a quasi-periodic signal x̃[t] and it has 4096 samples1 at a sampling
rate is 44100 Hz ( similar to digital music like CD quality). After applying the DFT to
the signal x̃[t] in time domain, it is transformed into the signal X̃[k] in frequency domain.
This signal has a frequency resolution ∆f = Fs

N
= 44100

4096
= 10.77Hz. Therefore each two

consecutive bins in frequency differ if 10.77Hz and the frequency of each spectral bin k
is fk = k × 10.77Hz.

Fast Fourier Transform

To transform a time-domain signal x[n] with N samples using DFT it is required N2

complex multiplications and N2 − N complex additions in order to obtain a N sized
frequency domain signal X[k]. This huge number of operations becomes a very hard
and resource consumption computational task, therefore a real time DFT of a considered
sized signal is almost impossible. To smooth this problem Cooley and Turkey proposed
an algorithm called fast Fourier transform (FFT) [Cooley et al., 1967]. The main idea
re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size in terms
of smaller DFTs of smaller sizes, recursively, to reduce the computation time to N log2N .

The simplest and most common form of FFT algorithm uses radix 2 decimation in
time assuming the number of sample N as a power of 2. Each DFT Can be re-written as

1The sound signal has 4096 samples, the graph only shows a part of it time and frequency for a better
observation.
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Figure 2.15: Discrete time Fourier Transform - DFT of a piano chord with 90ms composed
by 3 pitches (38, 49 and 70): (top) piano signal in time domain x[n], (middle) <{X[k]}
Real part of the DFT of the piano sound and (bottom) |X[k]| the module of the DFT.
Last 2 graphs in frequency domain expressed in Hz

sum of two summations, equation 2.28 using a variable change and vector decomposition:

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn ⇔

⇔ X[k] =

N
2
−1∑

m=0

x[2m]e−j
2π
N
k2m +

N
2
−1∑

m=0

x[2m+ 1]e−j
2π
N
k(2m+1)

(2.28)

the 2 summations can be seen as 2 DFTs of 2 parts of the original time signal:

X[k] =

N
2
−1∑

m=0

x[2m]e−j
2π
N
k2m

︸ ︷︷ ︸
DFT of even indexed part of x[n]

+

N
2
−1∑

m=0

x[2m+ 1]e−j
2π
N
k(2m+1)

︸ ︷︷ ︸
DFT of odd indexed part of x[n]

(2.29)
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Thus, using equation 2.29 FFT algoritm first computes the DFTs of the even-indexed
inputs and of the odd-indexed inputs, and then combines those two results to produce the
DFT of the whole sequence this idea can then be performed recursively until N = 1. The
schematic algorithm for FFT with radix-2 decimation in time is usually called Butterfly
and it is depicted in Figure 2.16

Figure 2.16: Butterfly scheme for implementation of the fast Fourier transform algorithm
for N = 8

In a nutshell the FFT is an algorithm for fast implementation of the DFT with effi-
ciency. For N structured as a power of 2, the computational effort consumed is propor-
tional to N log2N , thus it is a O(N log2N) in what concerns to mathematical operations,
allowing DFT computation in real-time.

2.4.2 Convolution

In signal processing the discrete convolution is by far the most commonly used operation,
but also most commonly misused and confused. In the maths context, convolution is a
mathematical operation on two functions f and g that produces a third function f ∗ g
that expresses how the shape of one is modified by the other. The term convolution refers
to both the result function and to the process of computing it.

In the DSP context the convolution is defined over discrete time signals, considering
two functions or signal f [n] and g[n] defined in time discrete domain where time n is the
discrete convolution operation is defined as follows:

f [n] ∗ g[n] =
∞∑

m=−∞

f [m] · g [n−m] (2.30)
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we may see the convolution between 2 discrete signals as a process of sliding one mirrored
signal, in this case g, and the inner product2 between that signal for each slide and the
other signal f . In DSP the convolution is widely used to perform the output of system to
any kind of input, Figure 2.17.

Figure 2.17: Discrete time system with an impulse response h[n]

Considering the discrete time system in Figure 2.17, the output y[n] can be calculated
through the convolution between the input x[n] and the system impulse response h[n]:

y[n] = (x ∗ h)[n] =
∞∑

m=−∞

x [m] · h [n−m] (2.31)

However, in practice this is not a simple way to visualize the output or the influence of
the system on the input besides it is also hard to compute. The convolution theorem
is a fundamental tool to solve some DSP problems. The convolution theorem states that
the Fourier transform of a convolution of two signals is the point wise product of their
Fourier transforms, this states true for continuous and discrete signals. In a another
way, convolution in time domain equals point-wise multiplication in frequency domain,
therefore for the system in Figure 2.17 the convolution theorem can be written as follows:

Y [k] = F{x[n] ∗ h[n]} = X[k].Y [k] (2.32)

where3:
F{x[n]} = DFTx[n][k] = X[k] (2.33)

thus, we may obtain the Figure 2.17 output y[n]:

y[n] = x[n] ∗ h[n] = F−1{X[k].Y [k]}} (2.34)

where F−1 is the inverse Fourier transform defined in equation 2.32. This form is of-
ten used to efficiently implement numerical convolution by a computer and consequently
calculate the resulting output of a system for a particular input.

2“·”operator in equation 2.30 means inner product.
3“.”operator in equation 2.32 means point-wise product.
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2.4.3 Power Spectrum Density

Analysing equations of the Fourier transform (equations 2.25 and 2.24) we conclude that
the FT or the DFT have codomain in the set of complex numbers C. A Complex number
may be seen as a point in a two dimensional space, known as the Argand diagram. Thus,
any complex number, z = a + jb is represented as a two coordinates point in the plane
space (see Figure 2.18), where a is the real part, and b is the imaginary part often called
Cartesian coordinates. j is the square root of -1: j =

√
−1. We can also represent the

same complex number using polar coordinates, the magnitude or radial coordinate |z|,
and the angular coordinate or phase φ(z). The conversion equations between the two
distinct point representations are: |z| =

√
a2 + b2 and φ(z) = arctan2

(
b
a

)
, where:

φ(z) = arctan2

(
b

a

)
=



arctan
(
b
a

)
a > 0

arctan
(
b
a

)
+ π b ≥ 0, a < 0

arctan
(
b
a

)
− π b < 0, a < 0

+π
2

b > 0, a = 0
−π

2
b < 0, a = 0

undefined b = 0, a = 0

(2.35)

Therefore, any complex number may be represented with Cartesian coordinates or
polar coordinates, thus according to Euler´s equation (equation 2.11) any complex ex-
ponential can be transformed into a Cartesian representation of a complex number with
trigonometrical functions.

Figure 2.18: Complex plane with Cartesian and polar point representation: magnitude
and phase mathematical expression
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The power spectrum of a time series describes the distribution of power into frequency
components composing that signal [Cooley et al., 1967]. When the signal is finite in time
and its total energy is also finite, we are able to compute the energy spectral density
or more commonly the Power Spectral Density PSD. PSD or simply spectrum is a
function of frequency that describes how the energy of a signal is distributed along the
frequency range. Typically is represented by a two axis diagram or graph, depicting the
energy of the signal as a frequency function. Figure 2.19 PSD is computed through squared
magnitude of the DFT of a signal x[n] or |X[k]|2 divided by the frequency resolution fs

N
.
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Figure 2.19: A piano chord with 90ms composed by 3 pitches (38, 49 and 70): (top) piano
signal in time domain x[n], (middle)|X[k]| the module of the DFT or the magnitude
spectrum (bottom) PSD - Power Spectrum Density. Last 2 graphs in frequency domain
using Hz

In Figure 2.19 (bottom), the PSD is represented using the logarithmic scale for signal
amplitude. The “deciBel”(dB) is the logarithmic scale commonly used for representing
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signal amplitude in the field of signal processing:

dB(|X̃[k]|) = 20 log10(|X̃[k]|) = 10 log10(|X̃[k]|2). (2.36)

A logarithmic scale (or log scale) is a way of displaying numerical data over a very
wide range of values in a compact way and it is widely used in signal processing and sound
systems, due to its relation to the human earing perception, which is also logarithmic.

2.4.4 Spectral Leakage

The DFT is a data processing tool whose input is a digital signal and whose output is
its digital spectral analysis. The discrete nature of the DFT yields intrinsic quantization
errors it also assumes that the input signal is periodic and infinite in time. Considering
a simple signal like a sine with a frequency of 10Hz, it is fundamental to calculate the
exact number of samples to represent it in order to calculate the exact period. If we apply
the DFT using the FFT to a signal that due to some reason is not periodic in discrete
time domain, for instance the number of samples used is not a multiple of the period, this
leads to a discontinuity and the frequency representation of the signal will be distorted
(see Figure 2.20). This effect is known as spectral leakage and it describes the process
of the leakage of the energy of a frequency bin to the adjacent spreading the signal energy.

The mismatch between the tone of the signal and the chosen frequency resolution
(result of sampling frequency and the DFT length) leads to spectral leakage as well as
Time-limiting an observation. This effect could interfere with the overall shape of the
magnitude spectrum.

2.4.5 Windowing

Windowing is the process of using smoothing windows in time domain to obtain frequency
domain signal with spectral characteristics improved, compared to the original signal. In
signal processing, the windowing technique is used to minimize the naffest effect in the
spectrum caused by the spectral leakage due to the discontinuities of truncated waveforms.
The windowing process consists on the point wise multiplication of the time signal by a
smoothing window with finite length, defined in samples, and smooth amplitude variation
towards zero values at the edges. According to the convolution theorem explained in
section 2.4.2, multiplication in one domain is equivalent to convolution in the other domain
(i.e. multiplication in time domain is equivalent to convolution in frequency domain).
Thus, the resulting signal Yk in frequency domain of a time windowed signal after applying
the DFT may be computed using the Equation 2.37, where an represents the used window.

Yk =
N−1∑
n=0

anx̃nW
nk
N , W = e−j2π. (2.37)
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Figure 2.20: Spectral leakage illustration for a sine-wave due to windowing and sampling:
(top) Sine-wave of 10Hz, sampled at a 100Hz sampling rate, (middle) magnitude spec-
trum of the signal using FFT with 100 samples and (bottom) the magnitude spectrum
of the same original signal using the FFT with more samples, however not a multiple of
the period leading to a spectral leakage

In signal processing the most commonly used windows are triangular rectangular Han-
ning, Hamming, Nuttal and Blackman. Typically, window functions are mathematical
functions that are zero-valued outside of some chosen interval, normally symmetric around
the middle of the interval, usually near a maximum in the middle, and usually tapering
away from the middle. An important study about the usage of different window functions
was presented by [Harris, 1978].

Windowing, changes the shape of the signal in the time domain, as well as affects the
spectrum, in Figure 2.21 is depicted the windowing process using the Hanning window.

2.4.6 Signal’s Properties Relation

There are some parameters used in signal processing to change the signal domain from
time to frequency using DFT that have significant effect on the signal spectral analysis.
Among them are the window sampling frequency, the length of the window in samples
(N) and the DFT or FFT number of points (typically a power of 2). These parameters
have a direct impact in time resolution and frequency resolution for signal analysis.
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Figure 2.21: Windowing a sound signal: (a) input time signal piano note, (b) Hanning
window, (c) resulting windowed signal, (d) Resulting signal after DFT

The length of a discrete time signal (number of samples n) depends on the sampling
rate Fs and portion of time of the signal that we consider for analysis t:

n = Fs × t (2.38)

as explained before, the DFT (Discrete Fourier Transform) transforms the time signal into
a signal in the discrete frequency domain where k corresponds to a bin with a frequency.
Thus, the signal frequency resolution is inversely proportional to the number of samples
N as follows:

∆F =
Fs
N
, (2.39)

being N the DFT size. Time resolution follows the equation:

∆t =
N

Fs
. (2.40)
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Consider a typical example for audio processing: a piano music with a duration of
1 seconds, acquired using a sampling rate of 44100 samples per second, and we apply a
DFT window size is 4096 samples.

• Time = 1× 44100 = 44100 samples.

• ∆F = 44100
4096

= 10.7 , each bin will correspond to 10.7 Hz.

• ∆t = 4096
44100

= 0.09 , the time window of the stationary is 0.09 seconds long.

With this approach and parameters we have a frequency precision of 10.7Hz = ∆F−,
this means that we are only able to distinguish frequencies that differ more than ∆F ,
frequency resolution. In terms of piano pitches it causes constrains for pitches lower than
54, however we are able to analyse portion of sound with 0.09 seconds. To have a greater
frequency resolution we have to increase the size of the DFT and obviously the amount
of time analyzed, which may cause difficulties to recognize sounds and pitches with short-
time duration. Inversely, we can decrease the size of the DFT and the amount of time
analyzed in one frame, however we will loose precision in frequency domain it will be more
difficult to distinguish near frequencies. This dilemma demands a compromise solution
between time and frequency resolution.

2.5 Pitch and Fundamental Frequency

The frequency of a sound stimulus refers to the number of cycles in the sound wave that
occur in 1 second, it is an objective concept that is possible to measure accurately. The
perceptual correlate of frequency is pitch and it is an auditory sensation, tones with lower
frequencies are heard as being low in pitch, whereas tones that have high frequencies are
heard as high in pitch. We define frequency as the number of cycles in a sound stimulus
that occur during 1 second. Pitch is the subjective experience of sound that is most closely
associated with the frequency of a sound stimulus. Despite of the sound wave vibrations
may be measured to obtain a precise frequency, pitch is not a feature of sound waves. The
human brain is fundamental for mapping quality pitch perception. The brain perceives a
pitch by the fundamental frequency or the periodicity of an audio signal however pitch of
complex tones may become ambiguous: Consider a signal with two pure tones at 1000Hz
and 1300Hz, we might perceive a “missing fundamental” by hearing those two frequencies
and an additional one, created by the difference of the two signals. This phenomenal
also called phantom fundamental is illustrated in Figure 2.22 where besides the 2 original
pitches, appears an additional one corresponding to 300Hz.

According to the American National Standard Institute (ANSI), pitch is defined as
“that auditory attribute of sound according to which sounds can be ordered on a scale
extending from low to high”. Although it still is a subjective definition, [Hartmann, 1997]
gives a more objective and technical definition: “sound has certain pitch if it can be
reliably matched by adjusting the frequency of a sine wave of arbitrary amplitude”.
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Figure 2.22: Missing fundamental phenomenal at 300 Hz, adapted from [Reis, 2012]

For the majority of the authors, the term F0 estimation is equivalent to pitch
estimation. However, some consider F0 estimation, the process of extraction the exact
frequency components of a given signal and the second one the process of estimation the
the musical tones or pitches that are presented in a sound signal. Along this dissertation
we will tackle the problem of multi-pitch estimation and some times we will refer to it as
Automatic Music Transcription, AMT.

2.6 Single Pitch Estimation

Sound signals may be polyphonic if there are more than one sound playing simultaneously
or monophonic when there is only one note at the same time [Klapuri and Davy, 2006].
For instance one piano chord is a polyphonic sound and one piano key pressed is considered
a monophonic one. Therefore, Single Pitch Estimation is applied to sound signals typically
short-time signals where is presented only one tone or note. An important approximation
was stated by [Yeh, 2008a], the observed signal can be expressed as a sum of a quasi-
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periodic part x̃[n] and the residual z[n]:

x[n] = x̃[n] + z[n] ≈
H∑
k=1

Ak cos(kw0t+ φk) + z[n] (2.41)

where Equation 2.23 is used for approximation.

The single pitch estimation problem or the single F0-estimation problem consists on
estimating the the pitch or fundamental frequency of a sound signal in a small time part
or frame of a sound signal. The focus will be on the quasi-periodic part x̃[n] with high
periodicity and harmonicity and the residual part z[n] will be neglected. The major
difficulties and also the most common errors are directly related to the sub-harmonic
and super-harmonic. In both cases the frequencies are strongly related with the correct
fundamental frequency (F0) being sub-multiples or multiples.

One common categorization for single pitch estimation methods is based on the signal
analysis domain: some methods use time domain and others lie on the frequency domain.
The time domain methods depend on estimate or find the correct period of the signal to
estimate the frequency, whereas the frequency domain methods are based on a spectral
analysis. The majority of the algorithms ignore the source model expressed in Equation
2.41, they often try to extract the periodicity or frequency directly in time domain or
from spectral analysis (frequency domain).

2.6.1 Spectral-location Approaches

Time-domain methods take advantage of the periodic properties of signals to perform
fundamental frequency estimation. This methods are based on pattern matching along
time domain, searching for a repetitive pattern in x[n]. Considering the original signal
x[n] and itself delayed in time x[n + τ ], the main goal is to find out the lowest τ that
produces the highest similarity or the best correlation between the 2 signal versions. This
process is usually carried out using point wise multiplications to perform correlation and
the highest correlation value found corresponding to the lower delay is considered the
signal period.

Autocorrelation

The correlation function is statistical function that gives the statistical correlation between
random variables, for the same purpose is used the cross-correlation in signal processing,
and it measures the similarity level between to signals, this way autocorrelation function
(ACF) measures similarities in the signal, it is a cross-correlation between the signal and
a delayed version of itself. Mathematically, ACF is defined as function of τ and it is
computed as the sum of the product between a signal x[n] of finite duration L and its
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delayed version x[n+ τ ], as a function of the lag τ :

ACF[τ ] =
1

L− τ

L−τ−1∑
n=0

x[n]x[n+ τ ]. (2.42)

As expected, sound signals have high values of ACF for τ multiples of the fundamen-
tal period (including fundamental period) due to the quasi-periodic properties of sound
signals. After computing the autocorrelation function the τ corresponding to the highest
peak, excluding zero, is chosen for the estimated value of the fundamental period and
corresponding fundamental frequency. Although this method denotes high sensitive to
several aspects as resonance and others, thus many post-processing techniques are added
[Hess, 1983] to the autocorrelation.

Average Magnitude Difference

The Average Magnitude Difference (AMDF) was used by [Ross et al., 1974] as a pitch
extractor. The main idea is to compute the average of the distance between x[n] and
x[n+ τ ], the signal and itself with a variable time lag τ and this way find the similarities
or in this case dissimilarities between the 2 patterns.

AMDF[τ ] =
1

L− τ

L−τ−1∑
n=0

|x[n]− x[n+ τ ]|. (2.43)

For sound signals the AMDF minima correspond to high similarities between the signal
and its delayed version, those minima occur for τ values equal to fundamental period or
multiples, the deepest local minimum is selected as the estimated fundamental period.

Squared Distance

The Squared distance Function (SDF) is similar to AMDF it is also a function of τ :

SDF[τ ] =
L−τ−1∑
n=0

(x[n]− x[n+ τ ])2. (2.44)

The average value of the SDF is also used for the same purpose:

ASDF[τ ] =
1

L− τ

L−τ−1∑
n=0

(x[n]− x[n+ τ ])2. (2.45)

Both functions show dips for higher similarities between the original signal and the delayed
version.
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This analytic method was used by [De Cheveigné and Kawahara, 2002] on the well
known YIN algorithm for speech and music fundamental frequency estimation. The SDF
was used along with some adaptations as a threshold for average normalization over
shorter values of τ , helping reducing minima at τ near zero and, thus, avoiding super-
harmonic errors. This method is denominated the cumulative mean normalized dif-
ference function. Both referred methods AMDF and SDF are strongly related to the
autocorrelation function. [Hess, 1983] explained and demonstrated that both methods
are error prone when submitted to intensity variations, noise and low-frequency spurious
signals.

Cepstrum

The first paper on cepstrum [Bogert, 1963] defined it as “the power spectrum of the
logarithm of the power spectrum”. The original application was the detection of echoes in
seismic signals, where it was shown to be greatly superior to the autocorrelation function,
because it was insensitive to the colour of the signal.

Actually the Cepstrum is computed taking the Inverse Fourier Transform (IDFT) of
the logarithm of the spectrum of the signal x[n], nowadays known as real Cepstrum:

c(τ) = IDFT{log (|DFT (x[n])|)}. (2.46)

However, “complex cepstrum” was also defined by [Oppenheim and Schafer, 2004] as
a sequence x[n] is calculated by finding the complex natural logarithm of the Fourier
Transform of x[n], then the inverse Fourier Transform of the resulting sequence. It takes
in account the phase of the signal and it can be shown that the real cepstrum is the
even part of the complex cepstrum. One of the earliest applications of cepstrum was
determining the voice pitch of voiced speech [Noll, 1967]. It is used in signal processing
as a tool to estimate fundamental frequency. “When a signal exhibits a periodicity which
is denoted by sinusoidal peaks in its spectrum, it makes sense to apply again the Fourier
analysis on the observed spectrum for analyzing the underlying periodicity.” There are
several cepstrum varieties: a complex cepstrum, a real cepstrum, a power cepstrum,
and phase cepstrum. The analysis and operations based on cepstrum are denominated
cepstral analysis, the name “cepstrum” was derived by reversing the first four letters
of “spectrum” as well as another terms derived from spectrum: cepstra, quefrency or
liftering [Oppenheim and Schafer, 2004].

When we apply the cepstrum to a time signal, it is transformed into another domain
and it becomes function of another independent variable called quefrequency. The que-
frenquency is a measure of time however, the resulting signal is not in time domain. If
we consider a time sound signal acquired with a sampling rate of 44100Hz and apply-
ing cepstrum we find a significant peak in 100 samples, it means that our signal has a
fundamental frequency component 44100

100
= 441Hz. The peak occurs in the cepstrum due

to their periodicity in the spectrum. Thus that period corresponds to the fundamental
frequency, since harmonics are integer multiples of the fundamental frequency.
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The methods used for single-pitch estimation based on cepstrum and on ACF use an
harmonic location of the magnitude spectrum for the frequency partials [Klapuri, 2004a]

Both ACF based and cepstrum-based single-F0 estimation methods are implicit re-
alizations of a model which emphasizes frequency partials at harmonic locations of the
magnitude spectrum [Klapuri, 2004a]. If we rewrite ACF equation 2.42 using Fourier
spectrum X[k] of a real-valued signal:

r(τ) =
1

K

K−1∑
k=0

[
cos

(
2πτk

K

)
|X[k]|2

]
(2.47)

where K represents the length of the analyzed frame, we obtain:

r(τ) = IDFT{|DFT [x[n]] |2}, (2.48)

where we are able to see the similarities between r(τ) (Equation 2.48) and c(τ) expressed
in equation 2.46. The cepstrum definition c(τ) is analog to r(τ) substituting the power
of 2 by a logarithm.

In Figure 2.23 is shown the four time-domain methods based on the four functions
presented on this section: Autocorrelation, AMDF, SDF and cepstrum. All the 4 methods
for single pitch estimation were applied to a piano single pitch sound with a frequency of
F0 = 440Hz and a corresponding period T = 2.3ms represented in graphs with a vertical
dashed line. We are able to sse the efficiency of the 4 methods for the correct estimation
of the fundamental period for this particular case. Despite the existence of a wide range
of methods based on the similarity between a short-time signal and its delayed version
(ACF, SDF, AMDF, etc.), there still remain some ambiguities and problems using them.
The main difficulty is to choose the best period to be estimated one. This ambiguity is a
problem because all the multiples of the a period remain a period and are possible choices
for selection.

2.6.2 Spectral-interval Approaches

Periodic time signals, (not only sinusoidal) have periodicity in frequency domain. This
property can be observed in the magnitude spectrum. The period in the frequency domain
is the signal fundamental frequency F0. The spectral domain approaches estimate F0 or
pitch analysing the spectrum. There are 2 typical methods in this type of approach: one
is measuring the distance in the frequency axis of the spectrum between relevant peaks,
the other is based on the formulation of the salience of the F0 as a function of hypothetical
partials. We can see the F0 as the greatest common divisor of the frequencies of all the
harmonics. The methods based on Frequency domain for F0 estimation analyse or operate
on the spectral representation of the original sound signal transformed using the Fourier
Transform.
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Figure 2.23: (A) time signal; (B) autocorrelation function; (C) average magnitude differ-
ence function; (D) squared difference function; and (E) cepstrum. Figure adapted from
[Reis, 2012], page 26.

Autocorrelation in spectrum

Spectral autocorrelation is analog to the time autocorrelation function (ACF) defined
in Equation 2.42. The main idea relies on searching for repetitive patterns in a signal.
However the analyzed domain is the frequency domain. Thus, the search will take place
in the function spectrum. Therefore, the search for pattern match will be made in the
frequency domain between the signal transformedX[k] and not its delayed version because
we are not in the time domain, but its shifted version X[k +m]. The ACFS or the ACF
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in the spectrum domain can be defined as follows:

ACFS(m) =
2

K − 2m

K
2
−m−1∑
k=0

|X [k] | × |X [k +m] |. (2.49)

where K is the length of the magnitude spectrum and, by taking in account that only a
part of the spectrum is used, the part with negative frequencies is excluded. The local
maxima of the function ACF(m) for m > 0 correspond to high values of autocorrelation.
Typically a maximum occurs when shift equals to m = F0

(
K
FS

)
.

Spectral compression

The main idea is based on an frequency-warped spectra built using compression in fre-
quency. An histogram is made counting the contribution of each peak of the spectrum to
the related F0s that are also common divisors of its frequency. This is called the Schroeder
histogram [Schroeder, 1968], that uses the count process of the contributions of each spec-
tral peak to estimate the F0 of the higher harmonics. This process uses weights for the
spectral components according to their magnitudes: “harmonic product spectrum uses the
log power spectrum and harmonic sum spectrum uses the linear spectrum. By summing
compressed spectra, the energy of higher partials becomes concentrated on distinct peaks.
The absolute maximum infers the related F0”, [Reis, 2012].

Harmonic matching

The Harmonic matching approaches uses pattern matching techniques to estimate the
F0. The principal idea is based on the comparison of the observed spectrum with a given
spectral harmonic pattern based on a F0 hypothesis. The spectral pattern used for the
comparison process can be a specific model or an harmonic comb without specifying the
magnitudes used. The pattern matching process measures the similarity. The similarity
between the spectral of the analyzed signal and the fundamental frequency considered as
an hypothesis is measured using the correlation between the harmonic combinations and
the analysed spectrum [Martin, 1982, Brown, 1992], or calculating the distance between
the frequencies of the harmonics and the frequencies of the matched peaks finding the
minimum. [Goldstein, 1973, Duifhuis et al., 1982].

2.6.3 Unitary model of pitch perception

Perceptual hearing models are used to simulate the human hearing system and the way it
identifies a sound pitch or its fundamental frequency. There are some methods based on
the human hearing system to build a usable model. An unitary model was introduced by
[Meddis and Hewitt, 1991a, Meddis and Hewitt, 1991b]. This model consists on sequen-
tial processing stages such as frequency selectivity, half-wave rectifications and filtering
processes and it measures the period of a signal envelope, in time domain to estimate the
F0 of the analysed signal. The unitary model is accepted and used as a psychoacoustically
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Figure 2.24: From top to bottom: (a) waveform of a signal containing the harmonics from
15 to 19 of a sound with F0 = 220Hz; (b) signal half-wave rectification; and (c) resulting
signal from lowpass filtering. Dashed line in (b) represents the frequency response of the
lowpass filter. (Adapted from [Klapuri, 2004a], page 27).

valid mid-level representation [Klapuri and Astola, 2002]. It is described as set of stages:
it starts with a bank of band-pass filters, then follows a half wave rectification (HWR) and
low pass filter process that simulates the convention of cochlear movements into neural
impulses. Then, a periodicity estimation by frequency channel using ACF and, finally,
a summary aoutocorrelation function (SACF) is used. In Figure 2.24 ([Klapuri, 2004a],
page 27) is illustrated the second step that comprises the half wave rectification and the
low pass filtering. The half-wave rectifier function is represented as follows:

HWR (x) =
x+ |x|

2
=

{
x if x ≥ 0
0 if x < 0

. (2.50)

The final step of the unitary model uses the summary autocorrelation function
(SACF) whitch is computed by summing the ACF across channels. The highest value
calculated by the SACF is the estimated perceived pitch.

2.7 Multi-Pitch Estimation

Multi-pitch Estimation algorithms are used to analyze and estimate the pitches presented
in a sound signal, typically a short-time signal, that includes more than one pitch or
more then one harmonic source in the same instant. According to [Yeh et al., 2010] any
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multi-pitch signal can be written as a sum of harmonic sources Ym[n] and a residual z[n],
where M is the number of harmonic sources:

y[n] =
M∑
m=1

Ym[n] + z[n],M > 0. (2.51)

where n is the discrete time index, M is the number of harmonic sources and z[n] is the
residual. The residual z[n] can be explained by background noise, spurious components
or inharmonic partials. Applying Fourier series to the multi harmonic sources signal we
obtain Equation 2.52.

y[n] =
M∑
m=1

{
∞∑
k=1

Am,k cos(kωmn+ φm,k)

}
+ z[n]

≈
M∑
m=1

Hm∑
k=1

Am,k cos(kωmn+ φm,k) + z[n]. (2.52)

In the context of practical use, a common approximation is made: a quasi periodic signal
is approximated to a finite number of sinusoids H.

Figure 2.25: Comparison between two spectrograms of monophonic and polyphonic sig-
nals.
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(a) Spectrogram of a monophonic piano sig-
nal
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(b) Spectrogram of a polyphonic piano sig-
nal.
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Figure 2.26: Three time-domain salience functions for a polyphonic signal containing
four harmonic sources. The correct periods are marked by vertical dashed lines (from
[Yeh, 2008a], page 19).

2.7.1 Complexity

The problem complexity of polyphonic music signals is far superior to monophonic music
signals. Figure 2.25a shows the representation of a spectrogram of a monophonic piano
signal and Figure 2.25b shows te representation of a spectrogram of a polyphonic piano
signal with 4 pitches or 4 harmonic sources. Comparing the 2 spectrograms, we are able
to see that the polyphonic signal has much more frequencies than the monophonic: the
vertical axis has more color changes.

Extracting multiple pitches from music signals is a complex task due to some known
factors as: overlaping partials, beating, transients and reverberation. The different mu-
sical instruments produce sounds with diverse characteristics, and this is reflected on the
spectral diversity. Moreover, there is the identification related with the number of har-
monic sources presented in the observed sound. The noise model is also more complex
than in monophonic signals and, in real music signals, can be found unpitched sounds like
drums or other percussion sounds. The majority of the single-pitch estimation methods
struggle when applied to polyphonic sounds. A study conducted by [Yeh, 2008a], page 19
shows the poor performance of several single-F0 estimation methods analysing polyphonic
sounds. Figure-2.26 illustrate some time-time domain methods and Figure 2.27 shows the
performace of frequency-domain methods.

Overlapping partials

In polyphonic sound signals interference and overlapping between partials may occur
either in time domain, or either in frequency domain. This process occurs when two
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Figure 2.27: Five frequency-domain salience functions applied to a polyphonic signal with
4 harmonic sources. Vertical dashed lines mark the fundamental frequencies, adapted from
[Yeh, 2008a]

different sources with fundamental frequencies F1 and F2 are harmonically related as in
Equation 2.53:

F1 =
m

n
F1, n,m ∈ N. (2.53)

When there is an m and an n that makes the preposition true, every nth partial of
the source 1 overlaps every mth partial of source 2 [Klapuri, 1998]. This frequently
happens when the sources are harmonically related to each other, since it could re-
sult in partial collisions. When dealing with multi-pitch signals most of the musical
notes are harmonically related, which frequently results in overlapping partials. An-
other issue is that when fundamental frequencies of two notes are multiples of each
other, the partials of the higher note can overlap completely with those that are from
lower note. [Parsons, 1976] addressed the problem of separating the voice of a vocalist
speech, by trying to detect the overlapping components, based on three tests: spec-
tral peak symmetry, distance and well-behaved phase. This technique is restricted to
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two voices and relied on the sinusoidality of stationary sinusoids and is not suitable for
modulated sinusoids. As highlighted by several authors, it still remains very difficult to
decompose the overlapping partials into their original sources, even if the number of con-
current sources is known beforehand [H. Viste and G. Evangelista, 2002, Virtanen, 2003,
Every and Szymanski, 2004] and [Yeh and Roebel, 2009]).

Beating

Quasi-periodic signals have several different periods, as mentioned earlier. This means
that several periods have competitive fitness to the signal, this may cause some ambiguity
in what concerns to determine the correct F0. Besides that, with partials the same
happens too, which results in different partials with slight frequency deviations, changing
over time. Therefore, if two overlapping partials with similar amplitude suddenly have a
small frequency difference, beats can be observed (see Figure 2.28).

In phase Out of phase

s
1
(t) = cos(2 × π × f

1
 × t)

In phase Out of phase

s
2
(t) = cos(2 × π × f

2
 × t)

In phase Out of phase

s(t) = s
1
(t) + s

2
(t)

Figure 2.28: Interference tones of two sinusoidal signals of close frequencies f1 and f2.

[Wood, 2007] explained the dissonance as a physical phenomenon, where it is heard
unpleasant beats. As depicted in Figure 2.28, beats are periodic variations of loudness,
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Figure 2.29: Example spectrum of two piano sounds with fundamental frequencies A3
(220.0 Hz) and E4 (329.6276 Hz). A beating component appears at frequency 110 Hz,
corresponding to a A2 ghost pitch. Adapted from [Reis, 2012]

and the frequency of the beats depend on the frequency difference of the two tones:

s(t) = s1(t) + s2(t) = cos (2πf1t) + cos (2πf2t) (2.54)

which may be simplified using trigonometry:

s(t) = 2 cos

(
2π

∆f

2
t

)
cos

(
2π
f1 + f2

2
t

)
, (2.55)

being ∆f = f1 − f2, resulting in a single sinusoidal wave, with frequency f1+f2
2

and with
a periodic variation of loudness whose frequency is ∆f . This phenomenon introduces
spectral components that are not present in any original source, producing “ghost” funda-
mental frequencies and, also, changing the original partial amplitudes across the spectrum
(see Figure 2.29).

Physical properties of instruments

Commonly, music is a combination of musical sounds produced by more than one instru-
ment. Each instrument has specific spectral characteristics. This diversity increase the
complexity of the problem of multiple-F0 estimation.

1. Spectral envelopes: It is the shape or contour of the signal spectral princi-
pal peaks, which are in general the partials. Many musical instruments produce
sounds with smooth spectral envelopes however with different shapes, Figure 2.30,
[Yeh, 2008a]).
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(a) trumpet (b) piano (c) clarinet

(d) bassoon (e) bowed cello (f) pizzicato cello

Figure 2.30: The spectra of six musical instrument sounds: (a) trumpet A3 note; (b)
piano A3 note; (c) clarinet A3 note; (d) bassoon A3 note; (e) bowed cello A3 note; and
(f) pizzicato cello A3 note. ([Yeh, 2008a], page 17).

2. Inharmonic partials: An ideal harmonic sound, has harmonics with frequencies
multiples of the fundamental frequency F0, although the partials of real musical
instruments do not have frequencies exactly integral multiple of the fundamental
frequency. The frequencies of the partials, for stretched strings, follow the equation:

fh = hF
√

1 + β (h2 − 1), (2.56)

in which F is the fundamental frequency, h represents the harmonic number, and β
is the inharmonicity factor ([Fletcher and Rossing, 1998], page 363).

3. Spurious components: There are some dominant components excited along with
the partials in some instruments. According to[Conklin Jr, 1999], phantom par-
tials are usually present in string instruments, appearing close to the frequencies of
the normal partials. In some cases phantom partials become more dominant then
the normal usual partials.

Transients

The transient definition is not precise however it can be considered as an event or zone
of short duration where a fast variation of the signal happens [Rodet and Jaillet, 2001].
On music signals, transients are identified as note onsets in the form of fast attacks, or at
note offsets with fast releases. Fundamental frequency estimation is a very difficult task
when applied in sound zones with transients.

Transients are typically impulsive and covered with high energy, resulting in many
spurious components that will most likely interfere with other sound sources. Some re-
searches consider the transient as a signal component, where the transient is detected by
a non-parametric approach [Rodet and Jaillet, 2001, Bello et al., 2005, Röbel, 2003], or a
parametric approach [Daudet, 2004, Molla and Torrésani, 2004].
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Reverberation

Reverberation prolongs sounds in time generating overlapping with the subsequent
sounds. Therefore, a music sound signal is composed by not only by the direct sound part
but also by the reflected part and the reverberated part. Therefore, even considering a
monophonic sound produced by an instrument, if it is in a reverberant environment the
recorded sound looks like a polyphonic [Beauchamp et al., 2012, Yeh et al., 2006]. Fur-
thermore, the reverberated parts are not stationary, thus it turns the process of analysing
a sound signal even more complex.

2.8 Summary

This chapter introduced briefly some important background topics, from waves and signal
sampling and periodicity to more complex concepts on signal processing. After that some
theoretical concepts were addressed related with frequency estimation of sound signals.
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Chapter 3

Related Work

This chapter deals with related work on Multiple Pitch Estimation of piano sounds. It
presents a brief history of the approaches to the problem. Several techniques are presented
following a classification proposal. The main features and techniques used to tackle the
MPE problem are briefly explained. The strengths and weaknesses of other approaches
are described and discussed. It is also justified the decision of using Cartesian Genetic
Programming to the problem, as well as the main advantages and features that are pur-
sued.

Multiple fundamental frequency estimation was first studied by [Shields, 1970] dur-
ing is research on separating co-channel speech signals, a few years later this problem
topic was extended to polyphonic pitch estimation pursuing the goal of automatic music
transcription for polyphonic sounds, by [Moorer, 1977] and [Piszczalski and Galler, 1977].

There has been a lot of research on Multiple Pitch Estimation over the years, however
at this time there is no agreed general-purpose system or method. If we consider a more
generic task such as AMT, the several approaches can be generally organized into two main
categories, [Benetos et al., 2018]: note-level and frame-level. Note-level transcription, or
note tracking, is one level higher than MPE, in terms of the richness of structures of
the estimates. It not only estimates the pitches in each time frame, but also connects
pitch estimates over time into notes. Frame-level transcription, or Multi-Pitch Estimation
(MPE), is the estimation of the number and pitch of notes that are simultaneously present
in each time frame, this is usually performed in each frame independently.

There are several classifications proposals, according to [Yeh, 2008b] MPE approaches
in the context of AMT can be categorized into joint estimation and iterative estimation.
The approaches categorized as iterative estimations are based on finding successive F0s:
They search for the predominant F0 and cancel it, then start a new iteration to find
another fundamental frequency until a stopping criterion. The cancellation process is used
to remove the F0, its harmonics and also subharmonics, otherwise it would infer noise and
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could lead to false results on future detection processes. These approaches tend to be light
in what concerns to computational cost, however the iteration process accumulates errors.
The Joint estimation techniques tend to consume more computational resources. Instead
of evaluating one fundamental frequency at each iteration, they evaluate F0 combinations,
typically increasing the results in terms of accuracy.

[Su and Yang, 2015] presented another type of classification for multi-pitch estimation,
which depends on the use or not of labeled training data-set with ground-truth pitches.
Most of the researches done earlier used unsupervised learning, although with the recent
developments in machine learning systems several new approaches depend on supervised
learning. To fill that need, the researchers have a few available labeled datasets of which
[Emiya et al., 2010], [Goto et al., 2002], [Fritts, 2006] stand out.

[Benetos et al., 2013] states that recent developments in AMT show that the vast ma-
jority of proposed approaches now falls within the “joint” category. Thus, it purposes
a classification model that organises multi-pitch detection systems according to the core
techniques or models employed: feature-based, statistical model-based or spectrogram
factorisation-based. Featured-based techniques do not use a specific model, but try to
devise measures of pitch salience and criteria for selecting and scoring pitch candidates
from time-frequency representations, these techniques apply methods based on signal
processing. Statistical model-based techniques use probabilistic methods to model the
spectral peaks or envelops. Spectrogram factorisation-based techniques use templates of
spectral patterns of different pitch combinations and then decompose an input magni-
tude spectrogram according to the activation of different templates. In the rest of this
chapter it will be used this classification model extended with an additional emergent
class, neural networks, to present and describe some of the most important approaches to
the MPE problem, regardless some subjective issues related with some technique precise
classification.

3.1 Feature-based

Typically, feature-based methods use some audio features derived from the time-frequency
representation of polyphonic music to estimate multiple pitches in a joint or iterative
fashion.

3.1.1 Hypothetical Partial Sequence

[Yeh et al., 2010], [Yeh, 2008b] present a well succeeded frame-based approach for estimat-
ing single-channel polyphonic music signals using short time Fourier transform (STFT)
representation. The system classifies the spectral peaks into sinusoids and noise with an
adaptive noise level estimation. The Rayleigh distribution is used to model the spectral
magnitude distribution of noise [Yeh and Roebel, 2006]. The plausibility of a set of F0
hypotheses is jointly evaluated, in order to match as many sinusoidal peaks as possible,
taking into consideration the overlapping partials. For each hypothesis, the frequen-
cies and the amplitudes of their hypothetical partial sequences (HPS) are calculated
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by partial selection, using a harmonic matching technique and an overlapping partial
treatment. The joint estimation algorithm is based on the characteristics of harmonic
instrument sounds: harmonicity, the smoothness of spectral envelope and synchronous
evolution of partial amplitudes. The score function is a linear combination of four cri-
teria: harmonicity (HAR), mean bandwidth (MBW), spectral centroid (SPC) and the
standard deviation of mean time (SYNC). The HAR criterion evaluates the harmonic
matching between the combination of the HPS and the observed spectral peaks. The
MBW criterion evaluates the frequency of the envelope of a HPS by its bandwidth. The
SPC criterion is used to prevent subharmonic errors. The SYNC criterion estimates the
mean time for each individual peak, in order to evaluate the synchronicity of the temporal
evolution of the partials in a HPS. These criteria are then combined by the sum of the
peak salience of the related partials. An iterative approach is used for candidate selection.
The candidate solution method starts with non-harmonically related F0 candidates, that
explain the biggest number of sinusoidal peaks, and then, the harmonically related F0
candidates within the previous F0s found. A F0 hypothesis is considered a valid estimate
if it either explains significant energy or improves the spectral smoothness of the set of
the valid F0 estimates.

3.1.2 Cancellation by Spectral Models

[Klapuri, 2003] presented an iterative estimation approach based on spectral smooth-
ness and harmonicity. The input signal is preprocessed by a RASTA-like technique
[Hynek Hermansky, 1993] on a logarithmic frequency scale in a way that the spectral mag-
nitudes are compressed and the additive noise is removed. The preprocessed spectrum is
split and organized in frequency bands. At each sub-band, F0 weights are calculated by
normalizing the sum of their partial amplitudes. Those weights are then combined tak-
ing inharmonicity into account. The predominant F0 source is smoothed and subtracted
from the signal spectrum in order to avoid its corruption after multiple iterations of direct
cancellation. After the subtraction, the overlapping partials still persist in the remaining
sources. The method described uses the average amplitude within one octave band in
order to smooth out the envelope of an extracted source, and is called the band-wise
smooth model. The process repeats itself by computing the weights of each candidate
and extracting the F0 candidate until the maximum weight related to signal-to-noise ra-
tio (SNR) is below a fixed threshold. A perceptually motivated multiple-F0 estimation
method is presented by [Klapuri, 2005]. The input signal is split into multiple frequency
bands by using a bank of bandpass filters, which models the frequency selectivity of the in-
ner ear. Each sub-band signals are compressed, half-wave rectified and low-pass filtered.
The magnitude spectra is summed across channels and used to perform the harmonic
matching to extract the predominant F0. A 1/k smooth model is used to remove the
predominant source from the mixture, keeping the energy of higher partials for the next
iterations. [Klapuri, 2006] presents a spectral model which attempts to generalize a va-
riety of musical instrument sounds. An input signal spectrum is flattened to suppress
timbral information. Then, the salience of a F0 candidate is calculated as a weighted
sum of the amplitudes of its harmonic partials. [Santoro and Cheng, 2009] present an
algorithm for multiple F0 estimation in the transform domain, based on Klapuri’s work,
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to function in the Modified Discrete Cosine Transform (MDCT) domain. Klapuri’s work
still be considered an important milestone in MPE, and used in benchmarks.

3.1.3 Combined Frequency and Time Domains

[Peeters, 2006] and [Emiya et al., 2007b] use both frequency and lag domain features to
tackle the problem of single-pitch estimation. They multiply a spectral and a temporal
representation of the input audio signal to determine the likelihood of a pitch candi-
date. [Bello et al., 2006] extended this idea to multi-pitch estimation of piano music and
proposes a system based on a hybrid method, where the frequency domain approach is
associated to a time–domain process. This method takes into account the information
contained in phase relationships that are lost when only the magnitude spectra of sounds
are analyzed. [Su and Yang, 2015] extends [Peeters, 2006] and [Emiya et al., 2007b] work
for multi-pitch estimation and propose an unsupervised feature-based approach referred
to as Combined Frequency and Periodicity. This system detects pitches according to both
harmonic series in the frequency domain and a subharmonic series in the quefrency do-
main. The log-scaled amplitude spectrum is used for the frequency representation of the
signal, which is then pseudo-whitened to spectrally flatten the signal as in [Klapuri, 2003].
The generalized cepstrum is employed for the temporal representation of the signal. After
thresholding both signals, a peak picking process is applied to all local maxima and dis-
cards other non-peak terms. The presence of a true pitch is identified by three conditions:
a prominent harmonic series in the frequency representation, a prominent subharmonic se-
ries in the temporal representation and the fundamental frequency of the harmonic series
and the fundamental period of the subharmonic series match at the same fundamental fre-
quency. Criteria to deal with missing fundamental frequencies and stacked harmonics are
presented. False positives are reduced by sparcity contraints. In post-processing, pitches
above C5 that leave any other pitches in the affinity of 0.1 seconds by more than one
octave are discarded. Fiaally, a post-processing filtering operation is done in neighbor
frames for temporal smoothness which connects non-continuous estimates and removes
isolated notes shorter than 0.12 seconds.

3.1.4 Blackboard Systems

A blackboard system is an artificial intelligence approach based on the blackboard ar-
chitectural model, designed to handle complex problems, where a common knowledge
base, the “blackboard”, is iteratively updated by a diverse group of specialist knowledge
sources, starting with a problem specification and ending with a solution [Nii, 1986b].
According to [Nii, 1986a], a blackboard-system application consists of three major com-
ponents: knowledge sources, blackboard and control shell. The knowledge sources are
a diverse group of specialists, each one being a self-cointained expert on some aspects
of the problem which can contribute to the solution independently of the particular mix
of other specialists [Corkill, 1991]. The blackboard is a common knowledge base, shared
repository of problems, partial solutions, suggestions, and contributed information. It is
constantly being updated by the knowledge sources, in order to achieve a solution. The
control shell is responsible for controlling the flow of problem-solving activity in the sys-
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tem, organizing the common knowledge sources in the most effective way. [Martin, 1996]
presents a blackboard approach to automatic music transcription where a new system
is proposed, based on the log-lag correlogram [Ellis, 1996]. [Bello and Sandler, 2000],
[Bello et al., 2000] present a system based on a top-down approach. The blackboard sys-
tem is composed of three hierarchical levels. The inputs are the result of a segmentation
routine in the form of an averaged STFT matrix. The blackboard has a hypotheses
database, a scheduler and knowledge sources. One of those sources is a neural network,
trained for chord recognition, which allows the system to output more than one note
hypothesis at a time.

3.1.5 Multi-spectral analysis

Argenti et al. proposed a polyphonic music transcription method based on the bispec-
trum [Argenti et al., 2010], where the cross-correlation between the two-dimensional (2-D)
harmonic template and the bispectrum is calculated to estimate the frame-wise pitches.
Through this method, the over- lapping harmonics from different notes are mapped into
different locations in the 2-D plane. However, it is difficult to recognize the pattern if
there are few harmonics or some partials are missing, and the template for the bispectrum
of harmonic signals is a bit complex.

To address this problem, [Zhang et al., 2020] proposed a pseudo 2-D spectrum-based
method: the pseudo 2-D spectrum is first constructed to map the time domain signal into
the 2-D frequency space, where the harmonic signal exhibits a typical 2-D pattern. Then,
pitch estimation is carried out by cross-correlation between the pseudo 2-D spectrum and
the fixed 2-D harmonic template

3.2 Statistical Model-Based

Statistical model-based methods formulate the multi-pitch estimation problem in a sta-
tistical framework, then maximum a posteriori (MAP) or maximum likelihood (ML) es-
timation are employed to select the most salient pitch in each iteration

3.2.1 Maximum a Posteriori Estimation Approach

[Emiya et al., 2007a] address the problem of single-pitch estimation with a technique
based on a Weighted Maximum Likelihood principle. The signal is decomposed into
a sum of sinusoidal components and a colored noise. A moving average process is as-
sumed for the noise while the spectral envelope of the partials is modeled by an au-
toregressive model. The fundamental frequency is calculated by following a Weighted
Maximum Likelihood principle, which simultaneously whitens both noise and sinusoidal
sub-spectrums. This technique is extented for multi-pitch estimation, by jointly evaluate
multiple F0’s at the same time. [Emiya, 2007] incorporates an onset detector presented
by [Alonso et al., 2005]. For each segment, the first frames are analised and the largest
peaks will result in a set of F0 candidates. Then, for each frame and for each combina-
tion of notes among the selected candidates, the likelihood of the spectrum is derived,
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according to the previous work in [Emiya et al., 2007a]. The maximum likelihood esti-
mation is embedded into a Hidden Markov Model framework. Finally, detected pitches
in consecutive frames and segments are merged together. [Emiya et al., 2009] extend this
approach to multipitch estimation of multiple concurrent pitches in piano sounds. A new
spectral model is employed where the inharmonic distribution is taken into account and
adjusted for each possible note. A smooth autoregressive model is introduced to model
the spectral envelope of the overtones and a low-order moving-average (MA) process is
used for the residual noise. [Goto, 2004] propose a method called PreFEst to estimate the
most predominant F0 of melody and bass lines in audio signals. Maximum A Posteriori
Probability estimation is employed to represent every possible F0 as a probability den-
sity function, by using the expectation-maximisation algorithm [Dempster et al., 1977].
[Kameoka et al., 2007] present a multipitch analyzer called the harmonic temporal struc-
tured clustering method. This method jointly estimates multiple fundamental frequen-
cies, onsets, offsets and dynamics. The harmonic structure model is an extension of the
[Goto, 2004] work. The frequency of each partial is modelled using a Gaussian distribu-
tion function and the spectra is obtained by the constant Q transform. The synchronous
evolution of partials is modelled by Gaussian mixtures.

3.2.2 Time-domain Bayesian

[Davy et al., 2006] extended the polyphonic time-domain Bayesian harmonic model pre-
sented in [Walmsley et al., 1998], [Walmsley et al., 1999], [Davy and Godsill, 2003] and
[Godsill and Davy, 2002], for multi-pitch transcription, with some modifications. The au-
thors use a Gabor representation of nonstationary signals and a Markov chain Monte
Carlo method for the parameter estimation algorithm. The model supports time-varying
amplitudes and inharmonicity. [Peeling and Godsill, 2011] propose a new method for
solving the problem of multi-pitch estimation using novel statistical models. The partial
frequencies in the frequency domain are modeled by an inhomogeneous Poisson process.
[Koretz and Tabrikian, 2011] addresses the problem of multi-pitch estimation using a com-
bination of the maximum likelihood and maximum a posteriori probability criteria. Each
of the fundamental frequencies is modeled by a Markov process. The dominant signal
is modeled as a harmonic source and the remaining sources are modeled as Gaussian
interference. The dominant source is estimated and removed from the mixture, and the
process is applied to the next harmonic source.

3.2.3 Maximum-Likelihood Approach

[Duan et al., 2010] presents a maximum likelihood approach to multiple fundamental fre-
quency (F0) estimation. The audio signal is splitted into multiple frames. To each frame,
the Short Time Fourier Transform, hamming window and zero-padding are applied, to
obtain a power spectrum. Spectral peaks are detected using a peak finder presented
in [Duan et al., 2008]. The parameters for the model are learned from monophonic and
polyphonic data. The system models the power spectral density as both spectral peaks
and non-peak regions. The peak likelihood aims to find F0s that have harmonics that
explain peaks and the non-peak likelihood aims to avoid F0s that have harmonics in non-
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peak regions. [Yoshii and Goto, 2012] present a statistical method called infinite latent
harmonic allocation (iLHA) to deal with multiple fundamental frequencies (F0s) estima-
tion in polyphonic music audio signals. The method relies on hierarchical nonparametric
Bayesian models that can deal with complex models of multiple F0’s and their harmonic
structures.

3.3 Spectrogram factorization-based

The majority of recent multi-pitch estimation works use and expand spectrogram factori-
sation techniques or neural networks[Benetos et al., 2018]. Spectrogram factorization-
based methods attempt to decompose the spectrogram of the audio mixture into a linear
combination of notes with their corresponding intensities or probabilities. The recordings
are processed at the music-piece level, and the model parameters are often estimated using
expectation maximization or non-negative matrix factorization-like algorithms.

3.3.1 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a technique for data analysis where a
non-negative matrix V is factorized into two non-negative matrices W and H: given n
n×m non-negative matrix V and a positive integer r < min (n,m), NMF tries to factorize
V into an n× r non-negative matrix W and an r×m non-negative matrix H such that:

V ≈WH. (3.1)

This way, the observed power spectra V can be decomposed into spectral models (basis
functions in H) of each note with its intensity change along time (weightings in W) as in
[Smaragdis and Brown, 2003]. The cost function is designed to favor the minimization of
the residual with specific constraints like sparseness [Cont, 2006].

Sparse approximation or sparse decomposition accounts for most or all information
of a signal with a linear combination of a small number of elementary signals called atoms,
chosen from a dictionary. The technique of finding a representation with a small number
of significant coefficients is often referred to as sparse coding. Decoding merely requires
the summation of the relevant atoms, appropriately weighted.

Consider the observed signal x, where x = Dα. D is an m × p matrix (m � p)
and x ∈ Rm, α ∈ Rp. D is the dictionary or the design matrix. The idea is to estimate
the signal α, subject to the constraint that it is sparse. Sparsity implies that only a
few components of x are non-zero and the rest are zero. This implies that x can be
decomposed as a linear combination of only a few m× 1 vectors in D, called atoms : the
basis of x. The sparse decomposition problem is represented as:

min
α∈Rp
||α||0 such that x = Dα, (3.2)
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where ||α||0 = # {i : αi 6= 0, i = 1, · · · , p} is a pseudo-norm, l0, which counts the number
of non-zero components of α = [α1, · · · , αp]T . This problem is NP-Hard with a reduction
to NP-complete subset selection problems in combinatorial optimization. A convex re-
laxation of the problem can instead be obtained by taking the l1 norm instead of the l0
norm, where

||α||1 =

p∑
i=1

|αi|. (3.3)

The l1 norm induces sparsity under certain conditions [Donoho, 2006].

[Lee et al., 2010] assume that the Fourier coefficients of an input frame are a linear
combination of the Fourier coefficients of previously recorded waveforms of individual
piano notes [Bello et al., 2002] and defined a matrix of Fourier coefficients of segments
of those waveforms as the dictionary. The computational complexity of the problem is
reduced by l1 minimization.

A modified sparse Non-negative Matrix Factorization algorithm is used for realtime
pitch observation. [Vincent et al., 2010] and [Bertin et al., 2010] present a NMF in a
Bayesian framework applied to polyphonic music transcription, which uses a model of
superim- posed Gaussian components. The likelihood function incorporates spectral
smoothness constraints. A space-alternating generalized expectation-maximization (SAGE)
algorithm is applied to estimate the parameters . [Ochiai et al., 2012] proposes a NMF
for estimating simultaneously basis spectra and activations, detecting note onsets and
duration, and determining beat locations.

[Benetos and Dixon, 2011] proposed a model that extends the shift-invariant prob-
abilistic latent component (PLCA) method of [Smaragdis et al., 2008]. This model is
able to support the use of multiple pitch templates extracted from multiple sources. Using
a log-frequency representation and frequency shifting, detection of notes that are non-
ideally tuned, or that are produced by instruments that exhibit frequency modulations is
made possible. Sparsity is also enforced in the model, in order to further constrain the
transcription result and the instrument contribution in the production of pitches. Finally,
a hidden Markov model-based note tracking method is employed in order to provide a
smooth piano-roll transcription. A similar approach is used by [Arora and Behera, 2015]
where a scheme is presented for the source transcription of pitched polyphonic music.
Firstly, the multi-F0 values are extracted using source-filter model based Probabilistic
Latent Component Analysis (PLCA) with harmonic dictionaries Secondly, the unsuper-
vised source clustering scheme clusters the F0s into source specific clusters using Hidden
Markov Random Field (HMRF) model.

3.3.2 Evolutionary Algorithms

[Reis and Vega, 2007], [Reis et al., 2007] consider music transcription as a search problem
and present a new method for multi-pitch estimation on piano recordings, using genetic
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algorithms. Although the authors show the feasibility of the approach, the genetic al-
gorithm tends to create additional notes in harmonic locations of the original notes to
minimize the timbre differences between the original audio signal, and the internal sam-
ples. [Reis et al., 2012] presents a method which consists in a genetic algorithm aided by
two major components: an adaptative spectral envelope modeling and a dynamic noise
level estimation. The system process begins with an onset detector, which splits the input
time signal into multiple frames. For each frame, a genetic algorithm, is triggered to per-
form the transcription. After applying the genetic algorithm, all the segments are joined
into one whole transcription, and an Hill-Climber algorithm is used to merge consecutive
notes. Each individual represents a candidate transcription.An adaptative threshold com-
ponent encodes the dynamic noise level estimation, by adjusting the noise level for each
frequency bin in the spectrum. The spectral envelope component encodes the internal
synthesizer, by using the gain of its harmonics, expressed in dB, and its inharmonicity
deviation for each partial, in order to best match the input piano in the original signal.
A general system to encode the harmonic deviation of each partial was adopted to work
with other kinds of pitched instruments. Each solution is first rendered by an internal
synthesizer. Then, the fitness function, based on the log spectral distance, compares the
input audio signal with the generated transcription, in the frequency domain.

3.4 Neural Networks

As for many tasks relating to pattern recognition or classification problems, neural net-
works (NNs) have had a considerable impact in recent years on the problem of music
transcription and on music signal processing in general. The significant evolutionary step
for neural networks took place in 1999, when computers started becoming faster at pro-
cessing data and graphics processing units (GPU) were developed. Faster processing,
with GPUs processing pictures, increased computational speeds by 1000 times over a
10 year span. During this time, neural networks began to compete with support vector
machines. Neural networks also have the advantage of continuing to improve as more
training data is added. The term Deep Learning became common in scientific language
in the field of machine learning, deeper networks with more layers and able to train with
huge datasets. NNs are able to learn a nonlinear function (or a composition of functions)
from input to output via an optimization algorithm such as stochastic gradient descent
[Goodfellow et al., 2016]. Compared to other fields including image processing, progress
on NNs for music transcription has been slower but is now rising.

One of the earliest approaches based on neural networks was Marolt’s Sonic system. A
central component in this approach was the use of time-delay (TD) networks, which resem-
ble convolutional networks in the time direction, and were employed to analyse the output
of adaptive oscillators, in order to track and group partials in the output of a gammatone
filterbank. Although it was initially published in 2001, the approach remains competitive
and still appears in comparisons in more recent publications [Ewert and Sandler, 2016].
In the context of the more recent revival of neural networks, a first successful system was
presented by [Böck and Schedl, 2012]. One of the core ideas was to use two spectrograms
as input to enable the network to exploit both a high time accuracy (when estimating
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the note onset position) and a high frequency resolution (when disentangling notes in the
lower frequency range). This input is processed using one (or more) Long Short-Term
Memory (LSTM) layers.

[Sigtia et al., 2016] focus on long-range dependencies in music by combining an acous-
tic front-end with a symbolic- level module resembling a language model as used in speech
processing. Using information obtained from MIDI files, a recurrent network is trained
to predict the active notes in the next time frame given the past. This approach needs to
learn and represent a very large joint probability distribution, i.e., a probability for every
possible combination of active and inactive notes across time – note that even in a single
frame there are 288 possible combinations of notes on a piano. To render the problem of
modeling such an enormous probability space tractable, the approach employs a specific
neural net- work architecture (NADE), which represents a large joint as a long product
of conditional probabilities – an approach quite similar to the idea popularized recently
by the well-known WaveNet architecture.

[Kelz et al., 2016] focus on the acoustic modeling and report on the results of a larger
scale hyperparameter search and describe the influence of individual system components.
Trained using this careful and extensive procedure the resulting model outperforms ex-
isting models by a reasonable margin. In other words, language models have led to a
drastic improvement in performance. He extended is work i in [Kelz et al., 2019] using a
late-fusion approach to piano transcription, combined with a strong temporal prior in the
form of a handcrafted Hidden Markov Model (HMM). The network architecture under
consideration is compact in terms of its number of parameters and easy to train with gra-
dient descent. The network outputs are fused over time in the final stage to obtain note
segmentation, with an HMM whose transition probabilities are chosen based on a model
of attack, decay, sustain, release (ADSR) envelopes, commonly used for sound synthesis.
The note segments are then subject to a final binary decision rule to reject too weak note
segment hypotheses.

Also recently, Google Brain team presented a new method based on Deep learning
[Hawthorne et al., 2017]. Combining and extending ideas from existing methods, this
approach combines two networks: one network is used to detect note onsets and its
output is used to inform a second network, which focuses on detecting note lengths

3.5 Discussion

As stated before, besides the several attempts using many different techniques and even
distinct classification proposals, Multi Pitch Estimation remains an unsolved problem, and
it still is the focus of many works and researches. The majority of multiple-F0 estimation
and multi-pitch estimation methods rely on the frequency domain representation. This
representation has the advantage of represent the harmonic structure and the spectral
envelope of a sound in an intuitive way. Thus it eases the modeling of sound sources.
Frequency domain representation or spectral can be done using multi-resolution or fixed-
resolution.
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Multi-resolution techniques, as filter-banks constant-Q transform or wavelets, have
the advantage of representing the signal with different resolutions for distinct frequency
bands. Although, some authors claim that using a multi-resolution spectral representation
results in a benefit due its similarity to the equal tempered music scale or the human
auditory system [Marolt, 2004, Klapuri, 2005] no physical evidences were presented to
sustain that multi-resolution is better for representing the structure of a harmonic sound.
[Hainsworth, 2003] and [Yeh, 2008a], claim that multi-resolution representations do not
solve the time-frequency main issue and, the multi-resolution advantage becomes also
a disadvantage: wavelets sacrifice frequency resolution at high frequencies, which can
be a major drawback for distinguishing individual partials of concurrent sources, and
constant-Q and wavelets loose temporal precision in the lower frequencies [Reis, 2012].
Therefore, most of the MPE approaches use fixed resolution and during this thesis the
fixed representation is used through STFT.

Statistical methods can model varying time-frequency envelopes like, for instance, sax-
ophone sounds. However some of those methods, like the Bayesian waveform models, are
mathematically complex and have high computational cost. Some featured-based models
like Blackboard systems are usually, general architectures and these systems depend on
other methods to use them as knowledge sources. Spectogram factorization-based meth-
ods usually have a high computational cost and are also time consuming. Some of them
depend on dictionaries with templates. There is also the problem of using harmonicity
rules for a certain kind of music, typically western music. The methods based on Deep
Learning with neural networks are in vogue, they have accomplished relevant accuracy
results for AMT. However these approaches need specific and expensive hardware to train
the networks as well as huge detests. Another important question related with some Ma-
chine Learning based methods is the fact that they enclosure a black box, part of the
system works but it is hard to find out how and also how to tune it. At the end of the
day, when working they cannot be decoded into a function or a mathematical process well
explained.

There is a lack of approaches based on Evolutionary Algorithms for this known prob-
lem, the work of [Reis, 2012] is one exception. Among Evolutionary Algorithms avail-
able flavors, Genetic Programming is a very well known and developed area with some
prominent works [Gandomi et al., 2015], and as far as it is of public knowledge, there are
no approaches to multi pitch estimation. Cartesian Genetic Programming as a form of
Genetic Programming has already prove to be able to solve classification problems par-
ticularly in image processing [Miller and Harding, 2008, Harding et al., 2013]. It is also
a relative new methodology. Because all of this it was decided to face the challenge of
implementing from scratch a system based on cartesian genetic programming to tackle
the problem of multi pitch estimation, which is described in this dissertation. In a cer-
tain way, it is a pioneer innovation, the majority of CGP applications are related with
other kind of problems specially image classification or segmentation. It may be also a
prof of concept: to prove that CGP is a valid technique for music and sound processing
problems. Another important advantage of CGP systems is the resulting classifier or set
of classifiers transparency: it is possible to see, understand, export or tune the resulting
expression for the classifiers and this features are important for educational and didactic
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purposes. Therefore, it may be considered a white box system that allows optimization.
There are few systems that work real-time, thus another goal of the approach of this thesis
is real-time processing based on a parallelizable architecture.
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Chapter 4

Evolutionary algorithms and
Cartesian Genetic Programming

Computing optimal solutions for many problems of relevant scientific importance is often
difficult and sometimes impossible. Unlike exact methods, metaheuristics allow solving
hard and complex problem instances by delivering satisfactory solutions in a reasonable
time. All metaheuristic search methods try to solve problems for which no reasonable
fast algorithms have been developed, and they are especially fit for optimization problems
[de Vega, 2001].

Evolutionary computation is the most studied population-based metaheuristic; it uses
stochastic algorithms, which use simulated evolution as a search strategy to iteratively
evolve candidate solutions, using operators inspired by genetics and natural selection. The
Evolutionary Computation (EC) is based on Darwin’s theory of Evolution [Darwin, 1859]
and in Mendel’s laws of inheritance [Mendel and Bateson, 1925]. The species evolution
is based on the survival of the fittest, they have more chance to pass on their genetic
inheritance through breeding and consequently the progressive disappearance of the lees
fit individuals. There are 3 important cornerstones:

• Outbreed - Will only survive a part (µ) of the descendants (µ+ λ);

• Variability - There is variability in the whole species in what concerns to structure
and corporal function;

• Inheritance - Parents will pass to their descendants may of their own characteristics
through genetic transmission.

Evolutionary Algorithms or EAs are population-based metaheuristics inspired by ge-
netics and natural selection. The natural evolution process occurs in a evolving way over
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a population. The populations is a set of reproductive individuals with inheritance, each
individual is scored with a fitness which influences its probability of breeding. Hence,
to ensure evolution the individuals should have the ability to reproduce, their chance of
surviving depends on their characteristics, that may also change due to mutations. The
individual characteristics pass from parents to children due to inheritance and the entire
population competes for limited and shared resources.

Some mechanism’s characteristics are fundamental for the evolutionary process:

• Evolution - operates more over the chromosomes than over the structures of life
encoded on them;

• Natural selection - is the linkage between the chromosomes and behaviors of their
decoded structures;

• Reproduction - is the process where evolution turns visible.

The biological evolution process is future oriented, the past does not interfere. Any
evolved specie extinguishes if its population fails to adapt. The fittest means the most
adapted to the conditions and environment. The fittest will survive and perpetuate their
adapted born characteristics to the next generations. Computer science classifies this as
an optimization process and uses it as an advantage to solve difficult problems trough the
Evolutionary Algorithms. EAs include some distinct paradigms and classes, however all
of them should possess the following attributes [Michalewicz, 1994]:

• a genetic representation for potential solutions to the problem;

• a mechanism to create an initial population of potential solutions;

• an evaluation function that simulates the role of the environment, scoring solutions
in terms of their “fitness”;

• genetic operators that promote variety and children composition;

• values for the algorithm parameters (e.g., probabilities, population size).

Evolutionary Algorithms begin with an initial set of individuals, that represent candi-
date solutions for a specific problem, then with the aid of some search operators they refine
that set using some gradient follow techniques based on biological mechanisms of solution
space explorations and genetic operators [Rudolph, 1998, Oliveto and Witt, 2012], thus
EAs are solution generation methods. There are important methods used on EAs that
allow evolution or are important tools for genetic operators: Evaluation is responsible for
rate an individual fitness, and selection allows choose some individuals to breed. Tradi-
tional breeding operators include Reproduction, Crossover, and Mutation [Holland, 1975]:
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• Reproduction is the process of copying individuals. They are chosen according to
their fitness value;

• Crossover is the procedure of mating the members of the new population, in order
to create a new set of individuals. As genetic material is being combined, new
genotypes will be produced;

• Mutation modifies the values of one or several genes of an individual.

Evolutionary Algorithms are based on the notion of competition. They maintain a
population of solutions rather than just one current solution; in consequence, the search
is afforded many starting points, and the chance to sample more of the search space than
local searches. The population is iteratively recombined with crossover and mutated to
evolve successive populations, known as generation. Various selection mechanisms can be
used to decide which individuals should be used to create offspring for the next generation;
key to this is the concept of the fitness of individuals.

The way evolutionary algorithms work on a problem is described in Algorithm 1. It
as a peculiar lexicon and terminology analogue to genetic biology terms represented in
italic in the last paragraph. It is usual to the term chromosome for an individual solution
or sometime genotype, [Miller, 2011], Chapter 1.

Algorithm 1 Generic Evolutionary Algorithm
1: Generate initial population size p
2: Set generation number g = 0
3: repeat
4: Calculate the fitness of each individual of population;
5: Select number of Parents according to quality;
6: Recombine some parents to create offspring chromosomes;
7: Mutate some parents and offspring;
8: Form new population from mutated parents and offspring;
9: Optional - promote a number of unaltered parents from step 5 to new population;
10: g ← g + 1;
11: until (g = maxgenerations) OR (a fitness value criterion is reached)

The evolutionary algorithm starts by generating a number of chromosomes or indi-
viduals randomly; this is called the initial population (step 1). Thus, after this step we
would have a number of individuals that encode solutions. The next step is to evaluate
each individual genotype in the population. This is referred to as determining the fitness
of the members of the population (step 4). The next step is to select the members of the
population that will be used to generate the new population of potential solutions (step
5). Often these chromosomes are called parents as they are used to create new individuals
called children. Usually, children are generated using recombination or crossover. A child
is generated from two parents, by selecting genes from each one (step 6). The next step
in the generic evolutionary algorithm (step 7) is to mutate some parents and offspring.
Step 8 of the evolutionary algorithm forms the new population from some combination of
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parents, offspring and their mutated counterparts. In the optional step 9, some parents
are promoted to the next generation without change. The algorithm continues attractively
until a fitness criterion is reached or a maximum number of iterations (generations).

4.1 Evolutionary Algorithms Classification

Using the EAs for solving problems imposes certain conditions on the nature of the prob-
lem. First of all, multiple solutions of the problem must exist, and the evaluation function
must be provided; it is necessary for comparing the solutions and for directing the popu-
lation towards areas of a solution space where optima are possibly located. The second
essential condition is the ability to encode a solution within individual’s genotype and to
define the genetic operators, which modify the genotype and introduce a random factor
to the whole procedure. The classical evolutionary algorithms can generally be grouped
into four categories: genetic algorithms, genetic programming, evolutionary programming
and evolution strategies [Michalewicz, 1994], (see Figure 4.1):

Evolutionary
Algorithms Genetic

Programming

Genetic
Algorithms

Evolutionary
Programming

Evolutionary
Strategies

Cartesian
Genetic

Programming

Figure 4.1: Classification of Evolutionary Algorithms (EAs)

• Genetic Algorithms (GA) which use genetic operators over chromosomes and the
concept of mating and recombination. GAs were introduced by [Holland, 1975] and
were first used for optimization problems by [De Jong, 1975];

• Evolutionary Strategies (ES) which emphasize the behavior changes among in-
dividuals. ES were introduced by [Rechenberg, 1973] and had some significant de-
velopments with [Schwefel, 1975];
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• Evolutionary Programming (EP) which focuses on behavioural changes among
species. It was first introduced by [Fogel et al., 1966] and designed by [Fogel, 1992]
in its currently practiced form;

• Genetic Programming (GP) which uses evolution to evolve programs or mathe-
matical expressions capable of solve a given problem. The individual is a program
or a mathematical function. GP applies the genetic operators to programs or math-
ematical expressions represented as trees of operands and operators [Koza, 1992,
Koza, 1994].

A typical evolutionary algorithm (µ + λ) [Rechenberg, 1973] also considered a clas-
sical Evolutionary Strategy [Rutkowski, 2008] is widely used among severall flavours of
Evolutionary algorithms. Algorithm 2 shows its implementation in pseudo-code.

Algorithm 2 Algorithm ((µ+ λ)EA)

1: t← 0;
2: Initialize P0 with µ individuals chosen uniformly at random;
3: repeat
4: for i = 1 to λ do
5: choose xi ∈ Pt uniformly at random;
6: mutate each gene of xi with probability p;
7: end for
8: Create the new population Pt+1 by choosing the best µ individuals out of Pt∪{x1, . . . , xλ};
9: t← t+ 1;
10: until a stop condition is fulfilled.

It starts with a population of µ individuals and then generates λ offspring individuals.
The next generation is composed by the fittest µ individuals from the previous generation
of µ + λ individuals. The idea is create a temporary population; it has the different size
than the parent population (depending on the assumed parameters µ and λ). In this step,
the fitness values are not important. Individuals in the temporary population undergo
crossover and mutations or just mutation for our particular case. From such populations,
an assumed number of the best individuals are selected to the next generation of the
population (in a deterministic way). This evolutionary strategy is the general case for the
most common evolutionary strategy used in CGP that makes (µ = 1)and will be detailed
later on this chapter.

4.2 Genetic Programming

Genetic Programming (GP) is considered a Genetic Algorithm. GP is a specialization of
GAs usually associated with the evolution of tree structures; it focuses on automatically
creating computer programs by means of evolution [Koza, 1992].

In order to optimise a computer program, the notion of suboptimal programs instead
of right or wrong programs must be considered [Luke, 2011]; Therefore, GP is usually
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Figure 4.2: Example of GP subtree crossover. Adapted from [Poli et al., 2008]

concerned in the space of possible programs, but it is not clear which ones outperform the
others and in what degree. In most GP approaches, the programs are represented using
variable-sized tree genomes. The leaf nodes are called terminals, whereas the non-leaf
nodes are called non-terminals (or functions). Terminals can be inputs to the program,
constants or functions with no arguments; non-terminals are functions taking at least
one argument. The definition of the terminals and non-terminals depends on the target
application. GP uses a Function-set that is the set of functions from which the GP system
can choose when constructing trees. GP builds new trees by repeatedly selecting nodes
from a function Set and by arranging them. The individuals in the initial population are
typically randomly generated.

One important unique and distinguished feature of GP among the Evolutionary Algo-
rithms flavours is the implementation process for Crossover and Mutation [Poli et al., 2008].
The Subtree Crossover method, depicted in Figure 4.2 is the most commonly used: given
two parents, Subtree Crossover randomly selects a crossover point (i.e., a node) in each
parent tree; then, the offspring is created by replacing the subtree rooted at the crossover
point in a copy of the first parent with a copy of the subtree rooted at the crossover
point in the second parent. The most commonly used form of Mutation in GP is Subtree
Mutation (Figure 4.3), which randomly selects a mutation point in a tree and substitutes
the subtree rooted there with a randomly generated subtree. Another common form of
mutation is Point Mutation: a random node is selected and the primitive stored there
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Figure 4.3: Example of GP subtree Mutation. Adapted from [Poli et al., 2008]

Figure 4.4: Example interpretation of a GP syntax tree (the terminal x is a variable and
has a value of -1). The number to the right of each internal node represents the result of
evaluating the subtree rooted at that node. Adapted from [Poli et al., 2008]

is replaced with a different random primitive of the same arity taken from the primitive
set. As well as in the GAs the reproduction operator is based in selection of an individual
according to fitness values, and then a copy of it is produced and passed to the next
generation.
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To evaluate computer programs using a fitness function, the most common and natural
way is is to execute them and assess their behaviour [Luke, 2011]]. Decoding a program
tree usually means executing tree nodes in an correct order, that guarantees that nodes
are not executed before the value of their arguments (if any) is known. This is usually
performed by traversing the tree recursively starting from the root node, and postpon-
ing the evaluation of each node until the values of its children (arguments) are known
[Poli et al., 2008]; this crucial process is graphically detailed in Figure 4.4. The specifi-
cation of the control parameters in a run is a mandatory preparatory step. There are
several parameters; some of the most important include the population size, the proba-
bilities of performing the genetic operations, the minimum and maximum tree sizes, and
the stopping criteria. It is impossible to define general guidelines for setting optimal
parameter values, as these depend greatly on the details of the application. However,
GP is in practice robust, and it is likely that many different parameter values will work
[Poli et al., 2008].

4.3 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) roots come out of the work of [Miller et al., 1997],
as a method of evolving digital circuits. However, the term “Cartesian Genetic Program-
min” appeared two years later in [Miller, 1999]. Cartesian Genetic Programming is an
increasingly popular and efficient form of Genetic Programming [Koza, 1992, Koza, 1994]
proposed by Julian Miller in 2000 [Miller and Thomson, 2000]

It is being applied to many fields, such as machine learning, neural networks, data
mining, financial prediction, function optimization, classification, electronic circuit de-
sign, and so on. According to [Miller, 1999], CGP is more efficient than standard GP
methods in learning Boolean functions. CGP is “Cartesian” because it encodes programs
as a two-dimensional grid of nodes that are addressed in the Cartesian coordinate sys-
tem (see Section 4.3.2). In its classic form, it uses a very simple integer based genetic
representation of a program in the form of a directed graph instead of a tree. Graphs
are very useful program representations, more general than trees, and can be applied to
many domains (e.g. electronic circuits, neural networks). Therefore CGP is now consid-
ered as a general form of Genetic Programming [Miller and Thomson, 2000] and it has
been and increasingly popular and efficient form of Evolutionary Algorithms. It is seen as
a flexible form of Genetic Programming that is concerned with the automatic evolution of
computational structures, such as computer programs, mathematical equations or func-
tions. CGP encodes a graph representation of computer programs. The computational
structures encoded are represented as a string of integers (sometimes real values). These
integers, known as genes, determine the functions of nodes in the graph, the connections
between nodes, the connections to inputs and the locations in the graph where outputs
are taken from. Therefore, the genotype consists of a list of integers (and possibly real
parameters) that represent the program primitives and how they are connected together.
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Figure 4.5: CGP program structure: Program inputs and computational nodes are num-
bered sequentially. The program outputs can link to any computational node or program
input.

4.3.1 Program Structure

CGP evolves mathematical structures or programs capable of perform a task to optimize
or solve a problem. The individuals are those structures. The CGP programs are graphs
of nodes, where those nodes are structured in a Cartesian way: it can be seen as a
matrix of nodes with a definened number of rows and columns. CGP Programs have
three major components: program inputs, computational nodes and program outputs.
Computational nodes are structures organized and composed by input connections
and a function. The input connections of a node have their origin in any program input
or other precedent nodes. The function is among the ones previously defined in a look-up
table and it takes as arguments the values received through the node’s inputs. The node
itself is indexed by an integer value so that it can be referenced by other node input
connections. The computational nodes, organized in a two-dimensional grid of nodes, are
numbered sequentially and linked directly between them in a feed-forward manner (see
Figure 4.5). A program can have several inputs, named program inputs. Program
outputs are indexes that link to some nodes. For example, if the program’s output is
the number 4, the result of the program is the value computed by node 4’s function (see
Figure 4.5). Program inputs and nodes are referenced by sequential numbers.

In Figure 4.5 we can see that the program has two inputs, four nodes and one output.
The grid of nodes that is the base for the CGP graph is defined by the rows (nr) and
columns (nc). The number of inputs and outputs is not dependent of the grid (matrix)
dimensions, it is only influenced by the problem characteristics, therefore depending on
the nr and nc a wide range of grids can be made and consequently a wide range of graphs.
Figure 4.6 illustrates 3 different examples of CGP structures. For a problem with 2 inputs
and 4 outputs we may use many different matrix dimensions, in the upper case we have
a grid of nodes with nr = 6 and and nc = 3, and in the middle one we use a matrix of
nodes with nr = 3 and and nc = 6. A more generic and usual structure is also illustrated
in the bottom of Figure 4.6 where a single row with 6 columns grid is used to address a
problem with 4 inputs and 1 output. In general choosing a single row imposes the least
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constraints.

Figure 4.6: CGP nodes matrices: 3 different nodes matrices structures and different
number of inputs and outputs, (blue) input nodes, (withe) computational nodes and
(green) output nodes. (top) 2 inputs, 4 outputs, matrix nr = 6, nc = 3; (midle) 2
inputs, 4 outputs, matrix nr = 3, nc = 6; (bottom) 4 inputs, 2 outputs, matrix nr = 1,
nc = 6

4.3.2 CGP general form

In CGP, programs are represented in the form of directed acyclic graphs. These graphs
are represented as a two-dimensional grid (matrix) of computational nodes. The genes
that make up the genotype in CGP are integers that represent where a node gets its data,
what operations or function the node performs on the data and where the output data
required by the user is to be obtained. In CGP, each node in the directed graph represents
a particular function and is encoded by a number of genes. One gene is the address of
the computational node function in the function look-up table. We call this a function
gene. The remaining node genes say where the node gets its data from. These genes
represent addresses in a data structure (typically an array). We call these connection
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genes. Nodes take their inputs in using a feed-forward manner from either the output
of nodes in a previous column or from a program input (which is sometimes called a
terminal). The number of connection genes of a node is the maximum function arity from
the function-set (function look-up table). The program data inputs are given the absolute
data addresses 0 to ni−1 where ni is the number of program inputs. The data outputs of
nodes in the genotype are given addresses sequentially, column by column, starting from
ni to ni + Ln − 1, where Ln is the maximum number of nodes defined by the user. The
general form of a Cartesian genetic program is shown in Figure 4.7, it is a grid of nodes
whose functions are chosen from a set of primitive functions. The grid has nc columns
and nr rows. The number of program inputs is ni and the number of program outputs
is no. Each node is assumed to take as many inputs as the maximum function arity a.
Every data input and node output is labeled consecutively (starting at 0), which gives it
a unique data address which specifies where the input data or node output value can be
accessed (shown in the figure on the outputs of inputs and nodes) In general, there may
be a number of output genes (Oi) which specify where the program outputs are taken
from or eventually the output nodes are fixed as the last ones from the array. The graph
is directed and feed-forward; this means that a node may only have its inputs connected
to either input data or the output of a node in previous columns. The genotype structure
is presented bellow the the CGP scheme in Figure 4.7.

All node function genes fi are integer addresses in a look-up table of functions. All
connection genes Ci,j are data addresses and are integers values between 0 and the address
of the node at the bottom of the previous column. CGP has three parameters that are
chosen by the user. These are the the number of rows (nc), the number of columns (nc),
and levels-back (l). The product of the first two parameters determine the maximum
number of computational nodes allowed: Ln = nc × nr. The parameter l controls the
connectivity of the graph encoded. Levels-back constrains which columns a node can
get its inputs from. For instance if l = 2, a node can only have its inputs connected
to the outputs of any nodes in the immediate left two columns or a primary input. If
one wishes to allow nodes to connect to any nodes on their left, then l = nc. Varying
these parameters can result in various kinds of graph topologies. Choosing levels-back
to be one leads to highly layered graphs in which calculations are computed column by
column. In contrast if the levels-back is chosen to be equal to the number of columns and
number of rows is one we are facing a special and very common case of parameters values
combination widely used where we face an array of nodes instead of a grid and a node
can be connected to any other previous node.

4.3.3 Genotype

The genotype is the codification of a program as it is used and manipulated by the CGP
algorithm. It describes what are the programs inputs, computational nodes and their
functions, program outputs and how they are connected together. In general, it is a list
of genes where each gene is an integer with a particular meaning. As we have seen earlier,
program inputs and nodes are referenced by their index. Since a node is a structure with
input connections and a function, each node has multiple genes. Taking the example
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Figure 4.7: General form of CGP: A grid of nodes with nc columns and nr rows, adapted
from [Miller, 2011]

depicted in Figure 4.8, it illustrates the CGP encoded list of genes (genotype) and the
correspondent graph of nodes (phenotype) for an academic problem were the individuals
are represented as a set of mathematical equations. The CGP system uses 2 inputs (x0,
x1) and 4 outputs (OA,OB,OC ,OD) and the grid of nodes has 6 nodes distributed by 2
rows and 3 columns. The genetic structure that encodes a node consists in 3 genes with
diverse meanings: first references the function value and then the values of the node’s
connections (Figure 4.9). The node indexed with number 2 contains 3 genes with the
following sequence (0 0 1): the first gene corresponds to the address of the function in the
lookup table or the function index, the second and third genes correspond to the node
inputs, also known as nodes connections. For the particular case of the node represented
in Figure 4.9, extracted from the graph of the Figure 4.8 we may observe the node and
its correspondent genetic representation as well as the resulting mathematical expression
after decoding, the node function is a sum of the node 0 and node 1 (x0 + x1), which are
system inputs, and the node index is 2, the first after the inputs. Usually, all functions
have as many inputs as the maximum function arity and unused connections are ignored.
This introduces an additional redundancy into the genome.

In Figure 4.8 we have the entire genotype with 6 computational nodes from index 2 to
7 and with 4 output nodes, the index 0 and 1 are reserved for the inputs. We also have
the function set represented in a small table with 4 functions indexed from 0 to 4 (+, -,
*, /). The phenotype is represented by the resulting graph also illustrated. The node
number 6 is in dashed line and it is represented in the genotyoe however it is not used for
computing the outputs so it is not used when decoding the phenotype. That node and
its genes are usually called non-coding or silent genes.

The final result of the CGP program is obtained decoding the phenotype graph, in
this particular example the 4 outputs are obtained in the form of mathematical functions
of the 2 inputs:
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Figure 4.8: A CGP generic example of a genotype, its corresponding phenotype and the
function set. There are 2 inputs (x0, x1) and 4 outputs (OA,OB,OC ,OD). nc = 3 columns
and nr = 2 rows.

Figure 4.9: Computational node number 2: node with 2 connections, nodes 0 and 1.
It will compute the function number 0 of the function-set. Node genes (0 0 1) and its
mathematical meaning.

OA = x0 + x1

OB = x0 ∗ x1
OC =

x0 ∗ x1
x02 − x1

(4.1)

OD = x0
2

Thus, the set of Equations 4.1 is the resulting CGP program, obtained from the
phenotype in the graph form that was encoded by the list of genes, genotype.
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4.3.4 Allelic Constrains

The values that genes can take (i.e. alleles) are highly constrained in CGP. When geno-
types are initialized or mutated, these constraints should be obeyed. There are some allelic
constrains, that the genotype must respect. The alleles (values) of function genes fi must
take valid address values in the look-up table of primitive functions. Let nf represent the
number of allowed functions. Then fi must obey to the following range:

0 ≤ fi ≤ nf . (4.2)

There is another parameter called levels-back l, which determines how many previous
columns of nodes may connect to a node in the current column. When nr = 1 and l = nc,
any node can have input connections coming from any program input and any node on
its left, which allows unrestricted connectivity. However, if nr > 1, nodes cannot connect
to other nodes in the same column. Then, having a node in column j, and j ≥ l, node
connections, Cij, must obey to the following range:

ni + (j − l)nr ≤ Cij ≤ ni + j × nr. (4.3)

If j < l, then the following condition must be met:

0 ≤ Cij ≤ ni + j × nr. (4.4)

Program output genes Oi can connect to any node or program input:

0 ≤ Oi < ni + Ln, (4.5)

where Ln is the number of nodes in the genotype, computed by the following:

Ln = nr × nc. (4.6)

This representation is very simple, flexible and convenient for many problems.

4.3.5 Genotype-Phenotype

One of the key characteristics of CGP is the genotype-phenotype mapping. The genotype
is of fixed-length but the phenotype is not, duo to the fact that the genotype can have
inactive genes. Thus, they are redundant because they cannot influence the programs
output. The corresponding genes are called non-coding genes or inactive genes. This
means that we can have a phenotype different from the genotype because non-coding
genes are not expressed in the phenotype, that is, the program that will run in practice.
For instance, the example of the CPG program represented in Figure 4.8 has a resulting
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genotype (001 200 131 201 044 354 2 5 7 3) whereas the phenotype is (001 200 131
201 354 2 5 7 3) i.e. a three genes shorter corresponding to one inactive node. The
output or outputs of the CGP are nodes that point to other nodes (connection genes)
and so on. Decoding the program is recursive in nature and works from the program
output genes first. To decode the program outputs, the active nodes should be identified.
The process begins by looking at which nodes are directly connected to the output genes.
Then these nodes are examined to find out which nodes are directly linked to them. Since
non-coding genes are not addressed, they present little computational overhead. The non-
coding genes presented in the genotype are treated in a special way by the usual CGP
algorithms, silent mutation is allowed to perform neutral search.

4.3.6 Evolutionary Strategy

The evolutionary strategy widely used for CGP is a special case of the µ+λ evolutionary
strategy [Hansen et al., 2015] described in Algorithm 2 where µ = 1 (Algorithm 3). This
means that, in this special case, the population size is always one. At each iteration (gen-
eration), λ new offspring are generated from the current one through mutation. Then, the
best among the current individual and the offspring becomes the new current individual
in the next iteration. It is important to emphasize the condition in (step 10), the idea
is to promote genetic variety and also silent mutation. If the current individual (parent)
suffers a mutation in a silent node or gene, that mutation does not causes changes in the
phenotype, (it only changes the genotype), thus the resulting mutate individual has ex-
actly the same fitness of its parent, however it has a different genotype (silent mutation).
Promoting this individual instead of its parent allows what is called neutral search, and
it has been proved very importatant for CGP evolution and results[Miller, 2011]. Hence,
an offspring can become the current individual in the next iteration when it has the same
fitness as the current individual and there is no other individual with a better fitness.

Algorithm 3 (1 + λ) CGP Evolutionary Strategy
1: for i = 0 to λ do
2: Generate individual i randomly;
3: end for
4: Choose the fittest individual and promote it to next generation;
5: while solution not found AND max number of generations not reached do
6: for j = 1 to λ do
7: Mutate parent to generate offspring j
8: end for
9: Choose the fittest individual according to:
10: if An offspring individual has better or equal fitness than the parent then
11: Offspring individual is select as fittest
12: else The parent is select as fittest
13: end if
14: end while
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4.3.7 Mutation

The mutation operator used in CGP is a point mutation operator and it is very simple to
implement. In a point mutation, an allele at a randomly chosen gene location is changed
to another valid random value. If a function gene is chosen for mutation, then a valid
value is the address of any function in the function set, whereas if an input gene is chosen
for mutation, then a valid value is the address of the output of any previous node in the
genotype or of any program input. Also, a valid value for a program output gene is the
address of the output of any node in the genotype or the address of a program input.
There is also the real parameters mutation when used as genes. This is a special case
were the mutation process has to ensure that the new parameter value belongs to workable
valu, usually we interval normalization is used. The mutation process can be managed
in two distinct ways: a number of genes in the genotype that can be mutated in a single
application of the mutation operator is defined by the user, and is normally a percentage
of the total number of genes in the genotype; just define a mutation probability (p) for
each gene in the genotype without concerns about the number of genes that can mutate.

Other genetic operators may be used in CGP, a fundamental one is selection, the
selection operator is mainly expressed in steps 10, 11 and 12 of Algorithm 3, where the
best among the current individual and the λ offspring is chosen as the next iteration
individual. The Crossover operators don’t usually receive much attention in CGP. In
[Miller and Thomson, 2000], a one-point crossover operator was used but they found it to
be disruptive to the subgraphs within the chromosome, which affected the performance of
CGP. However, lately some work by[Clegg et al., 2007] has investigated crossover in CGP
(and GP in general). Their approach uses a floating-point crossover operator, similar to
that found in evolutionary programming, and also adds an extra layer of encoding to the
genotype, in which all genes are encoded as a floating-point number in the range [0,1].

4.4 Summary

This chapter presented an introduction about evolutionary algorithms and all its classes.
Among all the Evolutionary algorithms, it was given special focus on cartesian genetic
programming as the main technique used in this thesis. Some CGP topics and theoretical
fundamentals were detailed, like: evolutionary strategy, main algorithm, encoding process
etc. This is a fundamental chapter in order to understand the capabilities of CGP and
how they were employed to tackle the MPE problem. Next chapters will focus on the
tool developed to apply CGP to several signal processing problems, and in the use of the
toolbox to the problem of MPE of piano sounds.
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Cartesian Genetic Programming
Toolbox for Matlab - CGP4Matlab

Cartesian Genetic Programming (CGP) has already demonstrated its capabilities on syn-
thesizing complex functions, extracting main features from images and performing image
segmentation [Harding et al., 2013]. As one of ours fist task to use Cartesian Genetic
Programming to the problem of pitch estimation of piano music we decided to create a
brand new toolbox for Matlab 1 named CGP4Matlab. It should not only be a tool tackle
this problem but also capable of address signal processing problems. Matlab was our first
choice for two main reasons: there were not any toolboxes on this topic (CGP) for Matlab
and Matlab has recognized capabilities in signal processing including sound and image
processing with a lot of useful functions already implemented and assembled in other
toolboxes. There was at the time, some CGP tools, frameworks or implementations for
Java or in C as well as some applications (most of them are available at CGP home page
created by the principal author Julian Miller at https://cartesiangp.com). Although there
are a number of public domain genetic algorithm and genetic programming toolboxes for
MATLAB, there are no toolboxes for cartesian genetic programming. CGP4Matlab was
developed as a contribution to the community, providing a free toolbox that can be used
and extended by other researchers, allowing them to benefit from MATLAB’s great math-
ematical potential on audio and image processing. Also, with this toolbox, researchers
that already work with genetic programming in MATLAB are now able to try the carte-
sian version of genetic programming. CGP4Matalb toolbox is generic and flexible enough
to be applied to any kind of audio or image processing problems. It is completely free
and available for download2.

The idea was to have a highly flexible toolbox, configurable throughout parameters
and function callbacks, which could be used to several type of problems. After testing the

1MATLAB is a programming and numeric computing platform used develop algorithms, and create
models.

2https://github.com/tiagoinacio/CGP4Matlab.
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toolbox with simple problems the goal is to use it to the problem of MPE. The toolbox’s
architecture will be introduced throughout this chapter as well as each component and
main features. Finally, it is shown an example of a symbolic regression problem as an
example of toolbox usage.

5.1 Architecture

The developed CGP toolbox is simple to understand and to use, it allows an easy and quick
way for encoding a specific problem. The toolbox uses the classical structure of CGP. One
of the most important features projected for the toolbox was that it was generic enough
to help developers encoding from small to bigger problems. To accomplish that goal a
few design decisions were made that will be explained next.

5.1.1 Overview

All the possible combinations of rows and columns are allowed, considering that nr > 0 and
nc > 0 . The allelic constrains are generated dynamically, depending on the cartesian grid
of nodes representation and regarding that Levels-back was also taken into consideration.
The toolbox is also prepared to use additional parameters in genothype, these parameters
have no number restrictions. It can be used any fitness function provided by the user.
The toolbox is ready to receive as many inputs as desired by the user, and they may be of
any type and value. The number of outputs is also variable depending on users need and
problem specifications. The function-set is provided by the user and the function look
up table is generated automatically. Furthermore, there is a system of callbacks and the
evolutionary algorithm (EA) used is the 1 +λ with some adaptations, referred previously
in Section 4.3.6.

5.1.2 Evolutionary Algorithm

The evolutionary algorithm implemented is similar to the Evolutionary strategy (1 + λ)
with some peculiar adaptations for the particular case of CGP. The encoded EA is pre-
sented in Algorithm 4 using detailed pseudo-code. one of the most important goals is
to ensure that the toolbox is as generic as possible, so a few parameters used in the
evolutionary process were chosen to be configurable.

The number of offspring (λ) is defined by the user. This is useful because there
can be some problems that require a small number of offspring and others that require
a bigger number of offspring. The mutation rate (p) is also configurable. This is the
mutation probability for each gene. The maximum number of runs, mr, and maximum
number of generations, mg, are also required parameters. Finally, the last parameter
is the maximum or minimum fitness, f , for a solution to be considered valid, depending
if we want to maximize or minimize the fitness function. The EA needs to know when a
candidate solution can be considered as a valid solution for the problem, in order to stop
the evolutionary process.
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Algorithm 4 Algorithm ((1 + λ)EA)

1: g ← 0;
2: Set current individual I0 as the best of λ individuals created randomly;
3: Fg ← fitness of current individual I0
4: while g < mg and Fg < f do
5: for i = 1 to λ do
6: Create a copy xi of current individual Ig;
7: Mutate each gene of xi with probability p;
8: end for
9: Set I ′g as the best of {x1, . . . , xλ};
10: if I ′g is better or equal than Ig then
11: Ig+1 ← I ′g
12: else
13: Ig+1 ← Ig
14: end if
15: Fg+1 ← fitness of current individual Ig+1 ;
16: g ← g + 1;
17: end while

5.1.3 Components

The toolbox is divided into several components. Each one has its purpose and special
role. The first one is the CGP component. It exposes all the functionality to encode
an application built on top of the toolbox. This component communicates with the EA
and Structure components. The Structure is just an helper, which stores the positions
of the genes according to the type of gene (connection, function, program output and
parameter). The EA component is responsible for initializing the runs in the evolutionary
algorithm. It starts with a certain number of Offspring, created by the Genotype
component which, in turn, is composed by the Connection, Functions, Outputs and
Fitness components. Run is connected to the Generation component, by executing it
multiple times. In each generation, Mutation can occur, which will change the genotypes
(using the Connection, Functions, Outputs and Fitness components). Figure 5.1 shows the
overall structure of the toolbox’s components. Each component will be briefly addressed
next.

5.2 Implementation

The methodology used to implement the CGP4Matlab toolbox was object-oriented pro-
gramming (OOP). It is a well known programming paradigm based on the concept of
objects, which can contain data and code: data in the form of fields (often known as
attributes or properties), and code, in the form of procedures (often known as methods).
It was developed in Matlab (version R2016a)

The CGP class provides access to an API that lists all the features needed to encode
a program. It is the “core” of the toolbox and its primary component. The CGP class lets
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Figure 5.1: Toolbox components scheme

the user add the program inputs, provide the fitness function, add parameters and define
the function-set. The constructor takes a configuration object. This object will contain
all the configuration necessary for the CGP and for the EA.

For the CGP, the parameters are divided into: number of rows, number of columns,
number of levels back and number of program outputs. Since some CGP approaches
assume that the output node is the last node of the graph, this option was also taken
into consideration. So, if we pass the value last to the output_type, the last node of
the genotype will be considered the program output. This option only works when the
number of program outputs is set to 1, otherwise it will be ignored. Having these param-
eters configurable, the user has total control of the grid layout of the generated program

82



CHAPTER 5. CARTESIAN GENETIC PROGRAMMING TOOLBOX FOR
MATLAB - CGP4MATLAB

(genotype). For the EA, the parameters are: maximum number of generations, maximum
number of runs, number of offspring, mutation rate, the fitness threshold and the fitness
operator. The fitness threshold is the limit for which a candidate solution is considered
a valid solution to the problem. This allows the evolutionary process to stop or skip to
the next run. In some kind of problems, the goal is to minimize an error rate, where 0
would be the best value for the fitness. Also, there are other problems where the goal
is to maximimze the fitness function, as we have in our approach. The fitness_solution
property covers that necessity. However, the operator to use in the comparison between
fitness values also needs to be configurable, because the optimization of those values is
different. The fitness operator, O, is the operator to use when comparing the new fitness
candidate solution with the parent’s fitness, and can take the following values: ‘>’, ‘<’,
‘>=’and ‘<=’. For example, consider the parent’s fitness as f0 and an offspring fitness
as f1: if O = ‘>’, f0 = 0.5 and f1 = 0.6, then the offspring will replace the parent in the
new generation; if O = ‘<’, f0 = 0.5 and f1 = 0.6, the parent will remain as it have the
best fitness. This operator is also used for checking if a solution is a valid solution for the
given problem. Therefore, it is also used for comparison between a solution’s fitness and
the fitness_solution value, also configurable. Figure 5.1 describes every possible field for
the configuration.

Table 5.1: Configuration table with the fields that the structure should have, the type of
value and the description of each one.

Key Type Description
rows double number of rows
columns double number of columns
levels_back double number of levels-back
outputs double number of outputs
output_type string set the program output as the last node (last, random)
runs double number of runs
generations double number of generations
offspring double number of offspring
mutation double probability of mutation
fitness_solution double fitness for a solution to be considered valid
fitness_operator string fitness operator (‘>’,‘<’,‘>=’ or ‘<=’)

At the time of instantiaton, the CGP class will verify if all the required settings were
passed in the configuration object.

This class also exposes the functionallity of adding program inputs. Each problem
requires a specific set of program input or inputs. Some may require one integer as input,
others may require an array, or even a complex type of object. To address this abstraction,
the input provided for the CGP toolbox is of type struct (structure). Each field in the
structure is a program input. Therefore, the program inputs can be of any type: integers,
strings, structs, arrays, matrix, etc. The number of fields present in the structure indicates
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the number of inputs that the toolbox needs to set in the genotype, which is dynamically
set: there is no need to specify how many program inputs this program will have.

The fitness function is passed by callback (function pointer) to the program.

The toolbox reads the function set from a specific directory provided by the user.
This directory should have all the functions that could be used in the genotype. All
the functions should receive as many inputs as the maximum function arity. This is a
requirement for the program to work. Besides the maximum function arity, if the user
used added parameters to the genotype, these should be also passed to each function.
This method will iterate through all the Matlab files in the directory passed as argument,
and it will create a function handle for each one.

Some specific signal processing functions might require special arguments like ranges
or constants to be executed (e.g.: a low pass filter needs to know which percentage of
the original signal will be attenuated). Those parameters might need to evolve through
time, because their best values for the contribution to the solution of the problem is
unknown beforehand. The genotype can encode those parameters and add them to the
evolutionary process. Parameters should have integer or double values. Each parameter
is encoded by a structure with a name, a callback function for the initialization of the
parameter value, and another callback function for mutating the value. The initialization
and mutation functions should return an integer or a double. The mutation function
should also accept an argument, that is the value of the current parameter to mutate.
When running the algorithm, there are a number of events from the evolutionary process
that can be useful to handle, for running additional scripts or simply to add some kind
of report. In order to have that range of possibilities, the user is able to pass optional
callbacks, each of which, will fire at the following events: the configuration has been set,
a fittest solution is achieved after a run, a fittest solution is achieved in a generation,
a new solution is created, a new generation starts, a new run starts and a genotype is
mutated. After adding all the program inputs, fitness function, parameters and callbacks,
the configuration callback is fired, with a few useful parameters about the configuration
of the program. All the methods and properties of the CGP class are listed in figure 5.2.

There are several components that need to know how many genes are in the geno-
type, or if a specific gene is a function-gene or a connection gene. Instead of having to
determine those properties multiple times and at different stages, this information is only
computed once, in this class. The Structure class serves as an helper throughout the
entire evolutionary process. The main goal is to classify each gene a priori, according to
its type: connection, paremeter, program output or function. For example, if we have
3 genes per computational node and our genotype starts at number 1 (Matlab does not
accept zero-based vectors), we know in advance that gene 1 will represent a function and
genes 2 and 3 will both correspond to connections. Since this class will be responsible
for defining the type of genes, it needs to know a few parameters, such as: the number
of genes, the number of genes per node, the connection genes per node, the number of
computational nodes and the number of parameters.
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Figure 5.2: Properties and methods for the CGP class.

CGP
- config_
- callbacks_
- functions_
- inputs_
- parameters_
+ addCallbacks(callbacks : struct)
+ addFitnessFunction(fitness_function: function_handle)
+ addFunctionsFromPath(path: char array)
+ addInputs(inputs : struct)
+ addParameters(parameters : struct)
+ run()
- isValidConstructor_(configuration : struct)
- configuration_()
- areValidParameters_(parameters : struct)

The EA class is responsible for starting the evolutionary process. It iterates for the
maximum number of runs, defined in the configuration of the CGP, storing the fittest
candidate solution of each one.

The Run class is responsible for initializing a run. First, it generates a few candidate
solutions. Then, it will start the evolutionary loop over the generations. The class stores
the best candidate solution, while evaluating if a solution for the problem was found.

The Generation class is responsible for initializing a new generation. It starts with
the previous fittest candidate solution (parent), and generates a few mutated versions,
according to the configuration provided. If the λ chosen in the configuration phase is 4,
it will generate four mutated versions of the parent solution. All the new genotypes are
evaluated, and the fittest solution is stored.

The Offspring class is responsible for the initialization of a specific number of offspring,
previously defined, at random, before iterating through the generations. It initializes
randomly different genotypes which are then evaluated. The fittest solution is stored and
used as the parent solution, for the generation loop initialization.

The Genotype class is responsible for the creation of a genotype, restricted to the
configuration provided: number of columns, number of rows, number of program inputs,
parameters, and so on. First, the function genes are added to the genotype. Then, the
connection genes are randomly generated, as well as the parameters and program outputs.

After the genotype is created, the active nodes are recursively found by analysing the
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program outputs. For each output, the connection nodes are retrieved and stored in an
array. For each of those, their connections are also saved in that array, and so on. This
process stops until there are no more nodes to analyse. Lastly, the fitness of this new
candidate solution is computed.

The Connection class is responsible for generating a random and valid connection
for a specific node. It receives the connection gene index as argument. The class first
finds which node belongs the connection gene. This is done by subtracting the number
of program inputs from the gene index and dividing that value by the number of genes
per node. Then, it finds all the possible connections for that node. This is achieved
by recursively iterating through the previous nodes, taking into account that nodes in
the same row cannot be connected between each other, and also taking into account
the number of levels-back. Lastly, it randomly pick one connection from the possible
connections.

The Functions class is responsible for randomly generating the function genes for the
genotypes. It takes into account the number of functions present in the function-set, to
be able to generate valid function genes. It can generate one function gene at a time or
multiple function genes. This is is useful, because we find where all the function-genes
are positionated in the genotype, and call this class once, which returns function genes
to all those positions. If we have 10 nodes, we have to generate 10 function-genes in
the genotype. If our function-set is composed by 5 functions, this class will generate 10
random values between 1 and 5, each corresponding to a function-gene mapped to one of
the functions in the function-set.

The Output class is responsible for generating a valid program output. Depending on
the settings provided initially, this class can pick the last node to be the program output,
or randomly pick any program input or computational node in the genotype.

The Fitness class is responsible for calling the fitness callback provided in the con-
figuration phase. A few properties are passed to that callback, such as the genes in the
genotype, active nodes, function-set, program inputs and others. It has a validation of
the type returned by the function, which should return an integer or double value. The
returned value, is stored and used as the fitness of that particular candidate solution.

The Mutation class receives a genotype and iterates over its genes. All the genes have
the same mutation probability. For a gene being mutated, we first find what type of
gene it is: connection, function, parameter or program output. If it is a program output,
the Output class is used. If it is a connection gene, the Connection class is used. If it
is a function gene, the Functions class is used. Recall that when we add parameters to
the CGP, we must provide an initialization function and a mutation function. If it is a
parameter gene, the mutation function provided will be called.

After iterating all genes, the active nodes are found again, and the fitness is recalcu-
lated.
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5.3 Example

To understand how the toolbox is used to a particular problem, is now shown an example.
The example is briefly described and it is detailed in Appendix B. The idea is to apply
the toolbox for the symbolic regression problem of a known and frequently used 6th order
polynomial:

y(x) = x6 − 2(x4) + x2. (5.1)

The goal is to evolve mathematical function to accomplish the desired expression. To
build an an application for complementing the toolbox several steps must be made starting
on import the package cgptoolbox into Matlab workspace. Then some components have
to be provided, and they are represented in Figure 5.3.

Figure 5.3: Components to provide to the CGP Toolbox.

The necessary steps for running the toolbox are the following:

• configure the CGP;

• add the program inputs;

• provide a fitness function;

• add the function-set.
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Also, there are two optional steps:

• add callbacks to be executed during the evolutionary process;

• add parameters to the genotype.

The detailed process is described in Appendix B. For this particular example all the
runs leaded to the desired mathematical function corresponding to the polynomial func-
tion in Equation 5.1.

5.4 Summary

This chapter described in detail the toolbox developed for implement CGP, especially built
for signal processing problems like image and sound (CGP4Matlab). It was tested with a
common case of a polynomial curve regression y(x) = x6 − 2(x4) + x2, obtaining always
the exact desired expression. It was also tested with periodic signals added with noise to
estimate the fundamental frequency. The CGP4Matlab was presented and published in
[Miragaia et al., 2018] along with a first approach to the problem of pitch estimation of
piano music.
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Chapter 6

Cartesian Genetic Programming
applied to pitch estimation of piano
sound

Multi-pitch estimation or multiple fundamental frequency estimation is the process of
extracting musical notation (pitches) from a given acoustic signal. Multi-pitch estimation
is a task that belongs to content-based music information retrieval. Music information
retrieval (MIR) has drawn more attention due to the exponential growth of digital mu-
sic [Casey et al., 2008]. Howbeit, there is a significant gap between high-level human
perception and low-level signal features. Among all musical instruments, the piano is
one of the most popular instruments worldwide and one of the most complex in what
concerns pitch variety and number of simultaneous notes [Emiya, 2008]. These are the
main reasons that motivate us to research the multi-pitch estimation of piano sounds.

A single piano note is a monophonic sound comprising a quasi-harmonic spectrum
[Olson, 1967], where the lowest frequency of the harmonic series corresponds with the
perceived pitch or fundamental frequency (F0). The combination of multiple piano notes
(monophonic sounds) results in a polyphonic sound with multiple pitches. MPE refers to
determination of the underlying pitches of an obtained polyphonic sound. Unlike mono-
pitch estimation, multi-pitch estimation deals with issues such as the source number
ambiguity and the octave ambiguity Figure 6.1 shows an example where the spectrum of
a single piano note C4, Musical Instrument Digital Interface (MIDI) note number 60, is
almost identical to the spectrum of the two-key combination of C4 and C5. Therefore,
multi-pitch estimation is a challenging problem. Although there has been a lot of research
devoted to it, it still remains unsolved.
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Figure 6.1: Example of source number and octave ambiguity: (a) Spectrum of C4.
(b) Spectrum of the mixture of C4 and C5. (c) Signal difference between (a,b). Adapted
from [Lee et al., 2012]

In general, multi-pitch estimation approaches and algorithms assume that there might
be more than one harmonic source in the same short-time signal. As explained by
[Yeh et al., 2009], that signal may also be expressed as a sum of harmonic sources plus a
residual (The residual, z[n], comes from components that are not explained by sinusoids,
for instance, the background noise, spurious components, or nonharmonic partials.):

y[n] =
M∑
m=1

ym[n] + z[n],M > 0 with ym[n] ≈ ym[n+Nm], (6.1)

where M is the number of harmonic sources, n represents the discrete time, ym[n] is the
quasi-periodic part of the mth source signal, Nm represents the period of the mth source,
and z[n] is the residual. According to Fourier series and the signal quasi periodicity, y[n]
can be written as follows:

y[n] =
M∑
m=1

{ ∞∑
h=1

Am,h cos(hωmn+ φm,h)
}

+ z[n]

≈
M∑
m=1

Hm∑
h=1

Am,h cos(hωmn+ φm,h) + z[n]. (6.2)
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Last-step approximation is common for practical usage: a finite and small number of
sinusoids H is commonly used to approximate a quasi-periodic signal.

The main difficulty associated with MPE is dealing with the modeling of y[n]. This
task implies estimating the number of harmonic sources and their related F0s. Decomposi-
tion of the observed signal into an unknown number of model sources not only is a problem
of pattern matching but also can be seen as a classification problem, i.e., identifying the
most likely combination of F0s for the modeling of y[n].

Evolutionary algorithms are very successful in solving both pattern matching and
optimization problems [Goldberg and Holland, 1988]. However we may decompose this
problem into several classification problems if we consider the process of recognition the
presence of one particular note or pitch as a classification problem. Thus, we have many
classification problems each one for one note or piano key in the case of piano sounds.
This led us to propose a multi-pitch estimation system based on an evolutionary ap-
proach: genetic programming (GP). Among all GP variants available, we decided to
innovate by addressing this problem using Cartesian genetic programming (CGP), which
has already proven to be able to solve classification problems related to signal and image
processing [Harding et al., 2013]. Although we may consider MPE as a set of classification
problems, using CGP we may consider each one as an optimization problem (optimize a
search). In fact for each pitch we will evolve one expression or set of mathematical func-
tions that maximize one fitness function, i.e that are capable to classify correctly using a
classification evaluation metric piano sounds.

6.1 Overview

We propose a framework based on a set of classifiers to analyze the audio input and identify
the piano notes present on the given audio signal, a “Divide and Conquer” approach. Our
system’s classifiers are evolved using Cartesian Genetic Programming: we take advantage
of Cartesian Genetic Programming to evolve a set of mathematical functions that act as
independent classifiers for piano notes.

Genetic Programming is aimed at creating computer programs capable of solving a
given problem. Cartesian Genetic Programming builds programs in a form of graphs. To
address the MPE problem, our CGP system generates programs in a form of graphs using
a set mathematical functions (function set). This way, each each individual will be an
evolved graph encoding a complex mathematical expression.

91



6.1. OVERVIEW

Figure 6.2: Block diagram of our MPE working system with multiple classifiers: 61
classifiers (from 36 to 96)

The proposed estimation system initially developed for piano music consists on a set
of classifiers, where each piano note is identified by a CGP evolved classifier (Figure 6.2).
This way, for identifying 61 musical notes (from the C2 to the C7), we need to have 61
evolved classifiers: one for each musical note or piano key according to the particular
case of a 61 key piano. This can be easily generalized for any other piano with different
number of keys . Each one of these classifiers uses several inputs, all of them deriving from
the acquired audio signal and return one binary output, indicating if the corresponding
piano note is present or not in the given signal. Basically, a sound vector is sampled, this
process can be made iteratively or using a note onset detection system. Then, the inputs
are computed from the original sound vector using several signal processing techniques.
These inputs are then used by the classifiers CGP functions, to accomplish an output
vector. This vector suffers a binarization process to obtain a final binary output.

In the proposed CGP system, each piano note is identified by a classifier previously
evolved using CGP. A CGP encoded individual, in its general form, consists of a grid
of nodes, where each node has connections and also a function chosen from a set of
primitive functions. This grid of nodes has three main properties as explained before:
nc (columns), nr (rows) and l-back (how many previous columns of cells may have their
outputs connected to a node in the current column). Depending on nr, nc and l-back, a
wide range of graphs can be generated. When nr = 1 and l-back = nc, arbitrary directed
graphs can be created with a maximum depth. Choosing these values imposes the least
constraints. Therefore, this is the best and most general choice [Miller, 2013]. This
choices are fundamental to start the first stage of an EA based system, where evolution
takes place; the training stage.

Basically, there are two different stages: the training stage and the test or working
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stage. Both stages have processes in common and they share the majority of the blocks
illustrated in Figure 6.3, which depicts the training process. The training stage is crucial
and it is responsible for the learning process that conducts the evolution of the individuals.
The evolution leads to the final classifiers, which are mathematical expressions evolved
through CGP.

6.2 Training

To develop the CGP based classifier system, there is always a learning stage. In general
this stage uses known examples i.e elements extracted from a data-set with labels. In this
case those elements are sound signals of piano music or piano chords completely labeled
with the pitches or notes presented at any instant. This set is called the training set. The
learning stage also known as training stage is the first stage of all process and consists
in evolving the classifiers trough a training process. The training process used is summa-
rized using a block diagram in Figure 6.3. To perform the training stage a sound data-set
is required, composed by several piano sounds properly labeled with the ‘ground truth’.
First the system extracts audio sized frames from audio files or file then, some preprocess-
ing is applied on the acquired audio frames to generate the desired system inputs for all
the classifiers. Those inputs, along with the function set and CGP parameters are used
in the CGP block, where the classifiers are evolved independently using our CGP tool-
box [Miragaia et al., 2018]; during this evolutionary process, each classifier generates an
output vector. Then, this output vector undergoes a binarization process to obtain a
final binary output. During the next step, a fitness function is computed to evaluate the
quality of the corresponding classifier using F-measure. The engine of the implemented
evolutionary process is the CGP block: it is responsible for the evolutionary process that
is done during the training stage to accomplish one final classifier for each piano note: a
graph of mathematical functions encoding a mathematical expression capable of detecting
the presence of the sound produced by the corresponding piano key.

Besides the implementation of the CGP algorithm many other decisions had to be
made and processes hat to be implemented. It was employed and implemented a set of
preprocessing tasks (Section 6.3) to generate the system inputs, and had to figure out
which inputs to use and how to represent them (subsection 6.4). It was also necessary to
create a gene encoding process where each gene has a specific purpose (subsection 6.5), it
was decide which kind of mutations to implement, (subsection 6.7) and which evolutionary
strategy (section 6.8) to use as well. We also developed a binarization strategy (section
6.9) for the output and fitness computation (section 6.10).

6.3 Preprocessing

One important decision in designing classifier systems is defining the inputs and their
structure. The original sound signals acquired from wave files are float vectors, represent-
ing the input audio signals in time domain. However, the frequency domain contains a
lot of important information for multi-pitch estimation problems. As mentioned in Sec-
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Figure 6.3: Block diagram of the CGP system with feedback for training stage: training
stage starts with a signal pre-processing over the dataset, it generates the inputs, the
system engine is CGP toolbox, that produces the output vector, then binarization and
fitness evaluate the individuals and feedback for CGP toolbox to proceed to the next
generation of the evolutionary process

tion 2.7, the polyphonic signals can also be expressed as a sum of harmonic sources plus
a residual (Equation 6.1). Thus, in frequency domain we have the information we need
about the Fundamental Frequencies (F0) that compose the acoustic input signal. This
stresses for a need of converting the input audio signal to the frequency domain. However,
some preprocessing tasks have to be made to the original sound signal to prepare it for a
domain change. The first step is the sound frame or sound sample extraction. The goal
is not to use an entire sound signal or music but extract small time portions of the signal
with a constant size. The pitch estimation analysis will be made frame by frame. There
are 2 common ways of perform AMT using MPE, one is frame-level, i.e. the sound signal
is decomposed in small time frames and the MPE is performed frame by frame, the other
is note-level and known as ‘note tracking’, uses onset detection and pitch estimation. Both
approaches need to perform pitch estimation and use sized sound frames to do it.

The extraction of a sample frame is illustrated in Figure 6.4. A sound signal of a
piano chord, D2+C#3+A#4, with ≈ 1s is used as base. In red is the part of the sound
signal that will be extracted and used for MPE, it is ≈ 0.1s long. The time instant
for the sampling process was triggered by a rudimentary onset detection process based
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Figure 6.4: Sound frame extraction: (a) Piano sound signal 1 second long; (b) sound
frame extracted of ≈ 0.01s

on peak detection. The main concern on frame extraction from the original sound is
the size of it. Because the size of the vector in the time domain is directly linked with
the size of the resulting vector after a domain change, regarding that the original sound
signal is in time domain and it will be converted to the frequency domain using the DFT
through FFT algorithm. The relation between signal properties (time vs frequency) was
addressed in Section 2.4.6. Commonly, the piano original sounds have a sampling rate
fs = 44100Hz, this means that in 1 second of signal we have 44100 samples, in a music
this is an huge amount of time to make pitch estimation because in one second many
notes may appear (onset) and disappear (ofset), thus it is important to find out a more
convenient and smaller time frame to perform the signal MPE. Although choosing a very
small time frame brings difficulties when analyzing the frequency domain signal, because
the resulting vector in frequency maps the same frequency range with fewer elements, this
constrain reduces the frequency resolution, each vector element represents a higher range
of frequencies, it means a loss of precision in the frequency domain. Another relevant
fact is the FFT algorithm, presented in Section 2.4.1 used to compute the DFT, it was
designed to be fast and preferentially to work with arrays size of 2n. Therefore, using
time frame arrays of 4096 becomes a common choice, [Reis et al., 2012]. A time frame of
4096 represents ≈ 0, 093s of time signal using Equation 2.40.

The second part of the preprocessing consists on windowing and applying the DFT
to the time frame, the signal representation in frequency domain contains contains a lot
of useful information for MPE and also gives a good basis for signal processing common
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Figure 6.5: Preprocessing: (a) acquired audio frame in time domain; (b) Hanning win-
dow representation; (c) windowed audio frame; (d) windowed signal represented in the
frequency domain after applying the DFT.

tasks. The transformation process is depicted in Figure 6.5 using an acoustic sound of
a piano chord with pitches 38, 49 and 70. The original sound frame with 4096 samples
is initially windowed, process detailed in Section 2.4.5, this process minimizes the naffest
effect in the spectrum caused by the spectral leakage due to the discontinuities of truncated
waveforms resulting from the frame extraction. The windowing process uses the Hanning
window with 4096 points depicted in Figure 6.5 (b) plot. It is the result of the signal of
the following equation:

w[n] = 0.5

(
1− cos

(
2πn

N − 1

))
. (6.3)

where w[n] is the Hanning window signal and N is the number of points and it is equal
to the number of samples of the signal to window, 4096. Then the original x[n] signal is
point wise multiplied for the window signal w[n]:

xw[n] = w[n].x[n]. (6.4)
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resulting windowed signal xw[n] illustrated in Figure 6.5 (c). This windowed signal is
transformed to the frequency domain using DFT according to the Equation 6.5:

X[k] =
N−1∑
n=0

xw[n]e−j(
2π
N )nk, (k = 0, 1, · · · , N − 1), (6.5)

Thus the resulting signal X[k] in frequency domain has also a N = 4096 and it is plotted
in Figure 6.5 (d). It is important to underline that the transformation using the DFT pro-
duces elements in the complex domain (C), therefore the signal graphical representation
was made using the absolute value of the complex numbers.

The signal X[k] is represented in frequency and it is 4096 long, it contains information
of about 0.093 seconds of sound, it has a frequency resolution:

∆f =
fs
N
⇔ ∆f =

fs
N

=
44100

4096
= 10.77Hz. (6.6)

This means that each vector bin represents ≈ 10.77Hz. We also know that a time signal
cannot be uniquely represented for frequencies above fs

2
(Nyquist frequency), where fs is

the sampling frequency of the sequence in this particular case 44100 Hz. Observing the
plot in Figure Figure 6.5 (d) we may observe some periodicity. Due to the periodicity
of frequency domain signal resulting of a DFT, period [0; fs], and the Nyquist theorem
where the symmetry of the real part and the anti symmetry of the imaginary part relative
to Nyquist frequency, fs

2
, we may use half of the resulting signal of the DFT. Thus, from

the resulting frequency signal representing in the frequency interval [0; fs] with size of
4096, we can use only the first half represented in the interval [0; fs

2
], with a 2048 length,

Figure 6.6.
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Figure 6.6: Half frequency transformed signal X[k] with 2048 bins, corresponds to fre-
quency interval [0; fs

2
], fs = 44100Hz.

6.4 System Inputs

For any EA is very important to correctly decide which are the system inputs because they
carry the information that the system needs. In a Cartesian Genetic Programming system
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that decision should take into account the relevant information to the learning process as
well as the desired output and the functions inputs of the function set because the inputs
will be arguments of the functions available for usag:, the functions of the function-set.
The CGP system for piano music works with sound signals, the relevant information about
pitch is in the frequency domain and each sound signal is represented by a vector or array
of complex numbers. This algorithm inputs are obtained from the preprocessing system.
Each piano sample is split into time frames and transformed into frequency domain using
a DFT. By doing so, we get frames with 2048 samples with complex domain numbers,
each one representing a time frame of a piano sample note with 93 milliseconds duration.
Each complex number may be represented in the Argand plane using to different type of
coordinates: Cartesian and Polar, (Section 2.4.3). Thus, the complex number vector X[k]
may be represented as 2 vectors using Cartesian coordinates and 2 vectors with polar
coordinates:

• <{X[k]} - Real part of cartesian coordinates;

• ={X[k]} - Imaginary part of cartesian coordinates;

• ||X[k]|| - Absolute value or the radius of polar representation;

• ]X[k] - Angle of the polar representation.

This way, we have a pair of vectors each one with 2 components, making 4 usable inputs.
By having redundant information, regarding the 4 inputs, we ensure the CGP system has
a variety of representations of the same data, so it can be able to choose the one which
best fits the problem.

In Figure 6.7 four inputs are represented as real value vectors. In The CGP system the
inputs will be the arguments of some computational nodes that also contain a function
encoded that may use one or more inputs as arguments. Thus it is important to have
inputs the most generalized as possible to avoid constrains to some functions. These
inputs are also normalized in amplitude to a max value of 1, these brings benefits to
the system and its training because it tends to learn to ignore sound amplitudes scaling.
Summarizing, Figure 6.7 shows the 4 system inputs, generated from the original piano
sound in Figure 6.4 containing the chord D2+C#3+A#4 (pitches 38+49+70) trough a
pre-processing and an inputs generation process.

6.5 System Encoding

The process of encoding a Cartesian Genetic Programming system consists on defining
the way the evolutionary structure, graph of nodes and the nodes are encoded, where
each individual, a graph himself, is a possible solution. In this CGP approach to MPE
each individual is a graph of encoded nodes, where each node is also encoded with integer
numbers and real parameters. Cartesian Genetic Programming contains three node types:
input nodes, function nodes and output nodes. To tackle this problem a system was
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Figure 6.7: System input vectors extract from X[k] frequency based signal, (left) entire
vectors with 2048 elements (bins), (right) the first 500 elements of the entire vectors: (a,e)
Real pat; (b, f) Imaginary pat; (c, g) absolute value of the complex number (radius); (d,
h) angle of the complex values;

designed with 4 input nodes and only one output node for each classifier. The CGP
graph of nodes is based on a grid of 1 row and 100 columns. Thus, each individual will
have a maximum allowed of 100 computational nodes, which is a common value for this
kind of approaches [Miller and Harding, 2008]. The approach used is based on the grid
of nodes in Figure 6.8, in that structure there are 100 computational (nr = 1, nc = 100),
and the connections are allowed until nc levels back. To encode the 4 inputs in the
graph structure 4 additional nodes were added in the first index positions, using the
CGP4Matlab toolbox the output node has an optional and configurable encoding: it may
be part of the output of any other computational node encoded as an index, or it is set to
be the last computational node, this lats option was the mode used in the CGP system
described in this chapter. The final node structure has 104 nodes, the first 4 are input
nodes and the last one is where the output is extracted, so it is named as output node.

Besides the structure of the grid of nodes, it is mandatory to encode each node accord-
ing to its type and purpose. Each computational node, also called function node, contains
5 different genes (Figure 6.9). There is a gene that represents the function number (Fn)
from the pre-established function set represented in black and with the underline number.
The next two genes encode the node inputs represented in blue also known as connection
genes: they can be the system inputs or the outputs of another nodes, they are 2 regard-
less they are used or not by the function, the maximum arity of our function set is 2, this
means that the functions of the function set have one or two arguments to perform their
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Figure 6.8: CGP grid of nodes structure: 1 line 100 columns for computational nodes:
(blue) 4 input nodes; 100 computational nodes; (green) last computational node set as
output node

task. Finally, there are two genes for the real parameters (P1 and P2), represented in
red, used as parameters for some functions, that require real values besides the inputs to
perform their tasks. Once again, every function node contains these kind of genes even if
they do not use them. The F gene represents the function used by that node chosen from
the function set represented by a lookup table. Note that all the functions are prepared
to receive one or two vectors and all of them return a vector. The function set is almost
comprised by filtering operations on vectors and by arithmetic operations with constants
and vectors.

Figure 6.9 shows an example of 2 computational nodes with different genotypes. The
node represented on the left is a computational node which uses the function number
4 and 2 real parameters (0.4 and 7.2), this note uses 2 inputs codified in the form of
connection genes (3 and 1), this means that this node is connected to node index 3 and
to node index 1. Observing Figure 6.8, it is possible to conclude that those 2 indexes
correspond to 2 inputs of the system, because in this case the first 4 nodes are reserved
to the inputs. This node is indexed as node number 6. On the other hand, the node
depicted in the right side of the Figure 6.9 is the node index 10. This computational node
has the function number 19 and uses as inputs the nodes indexes (6 and 9), this means
that the output of node 6 is used as input in the node 10. The remaining 2 genes are the
real parameters.

6.5.1 Real Parameters Genes

The CGP common implementations only use integer numbers as genes, however in some
particular problems it is useful to use real numbers to encode parameters. This MPE
problem that evolves a classifier composed by several chained mathematical functions,
filters and direct and inverse transforms is a special case that requires real parameters for
a correct work of some used functions. This real parameters should not be fixed or constant
during the evolutionary process, the parameters value have direct impact in the way some
functions produce work or produce the output. For instance, a low pass filter needs at
least a parameter that defines the cutoff frequency. If that cutoff frequency is used in an
system that evolves, it is important to allow changes or mutations in the parameter that
represents that same cutoff frequency. Besides this particular function, there are many
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Figure 6.9: 2 Nodes genotype with genes meaning: (left) node index 6 uses as inputs 2
system inputs 1 and 3; (right) node index 10 uses as inputs 2 computational nodes 6 and
9; (black) function gene; (blue) connection/input genes; (red) real parameters genes

more functions in the function set that require the use of real parameters and should
be allowed their mutation. As depicted in Figure 6.9 the node genotype uses 2 different
real parameters for different purposes. These parameters are useful for the functions,
since each function uses at most 2 parameters to accomplish its task. In fact, most
functions need real parameters. However, the same parameter has a different meaning
and a different domain from function to function. To avoid a tremendous increase of
parameters and genes in each node, we use one real parameter to represent constants (i.e.
values for arithmetic operations with vectors), and other one to represent a percentage of
an interval. This way, with only two additional genes, we managed to fulfill all function
set needs. As the same parameter may have one meaning and domain for one particular
function and another meaning and domain for another function, we normalize the domain
of the parameter P1 to a fix interval. Each function is responsible for mapping that fix
interval to the correct domain for its own purpose. The parameter P1 of each function
with its own range is normalized into [0; 1]:

PF = P × (bF − aF ) + aF , P ∈ [0; 1] (6.7)

Where P is the values of the gene P1 for the correspondent computational node and PF is
the real value used by the function F to accomplish its task and PF ∈ [aF ; bF ]. By using
this technique, the actual value of any parameter can be seen as a number between 0 and
1 or a percentage of a defined interval and the mutation process becomes standard and
easier.
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6.5.2 Gene Ranges

All the genes have an interval of possible values according to their specific type. The
various types of genes used in the computational nodes that codify the classifier, are
categorized into 3 types:

• Function genes - a number to encode a specific mathematical function from a
function set;

• Connection genes - a number to encode a connection via node input, i.e codifies
the index of the node or system input that will be connected to the actual node.
Are used 2 as maximum arity of the functions;

• Real parameters genes - A number to codify a parameter used by a specific
function to perform its task, there are to different real parameters for every function,
p1 codifies a point in an interval normalized, and P2 codifies an arithmetic constant
used in arithmetic functions.

All computational nodes have in their genotype 3 types of genes. Depending on the
type of gene and its purpose it can assume different range of value. The connection genes
are integer values, I1, I2 ∈ N and they may assume values depending on the node index
where they are placed and the configured l (levels back), because each node can only be
connected to the nodes in previous columns of the CGP grid. In this case the levels back
value is the number of the CGP grid columns (nc), in the end of the day each connection
gene can have values from 1 to its node index minus 1. The function gene of each node
represents the function used in that particular node, it is the index of the function in the
function look-up table. Thus the function gene (F ) may assume values between 0 and
nF , the number of functions in the function set, it is also is an integer value. Finally,
the real parameters P1 and P2 have distinct purposes and distinct ranges. P1 ∈ [0; 1] and
P2 ∈ [−c; c], where c in this particular approach takes the value 15. The value ranges for
each type of genes are fundamental to understand their purposes as well as to define how
they mutate during the evolutionary process.

6.6 Function Set

The function set is the set of functions that the CGP system has available to use in each
computational node. The main idea is to build a look-up table where each line corresponds
to a function and where every function is indexed with an integer number. As mentioned
before, each computational node has a gene that indicates which function of the function
set should be used on that node. Table 6.1 shows the function set with a look-up table
that was used in the first approach to the problem. The maximum function arity is 2,
this way every functions are prepared to receive as arguments one or two vectors and all
of them return one vector as output. Thus, there are no constrains problems with the
inputs domain or chaining functions.
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Table 6.1: Function set - lookup table.

Index Function Description

1 SPAbs Absolute value
2 SPBPGaussFilter Band pass Gaussian filter
3 SPConvolution Convolution
4 SPCos Cosine Function
5 SPDivide poit to point Division
6 SPFFT Absolute value of the DFT
7 SPGaussfilter Gaussian filter
8 SPHighPassFilter High pass filter
9 SPIFFT Absolute value of Inverst DFT
10 SPLog Natural logarithm
11 SPLog10 Common logarithm
12 SPLowPassFilter Low pass filter
13 SPMedFilter Median filter
14 SPMod Remainder after division
15 SPMulConst Multiplication by constant
16 SPNormalizeMax Normalization maximum
17 SPNormalizeSum Normalization sum
18 SPPeaks Find peaks
19 SPSin Sine Function
20 SPSubtract Subtraction
21 SPSum Sum
22 SPSumConst Sum with a constant
23 SPThreshold tresholding
24 SPTimes Multiplication

The function set is basically composed by arithmetic functions with constants or vec-
tors, transform related functions and filtering operations. Our function set is basically
composed of filtering operations on vectors and arithmetic operations with constants and
vectors.

SPAbs This function returns the absolute value of each data point of the first vector
received as argument.

SPBPGaussFilter performs a band pass filter of the first input, centered in the fre-
quency represented by the first parameter.

SPConvolution performs a convolution between the first input vector and the second
input vector.

SPCos applies the cosine function to each data point in the first vector and returns it.

103



6.6. FUNCTION SET

SPDivide divides each point in the first input vector by each data point in the second
input vector.

SPFFT applies the DFT to the first input vector, and returns its absolute value.

SPGaussfilter applies a Gaussian filter to the first input vector. Sigma (first parameter)
can evolve between 1 and 10, depending on the interval parameter encoded in the
node.

SPHighPassFilter applies a high pass Gaussian filter to the first vector input, using
first real parameter to represent the cutoff frequency as a point of the vector.

SPIFFT applies the Inverse DFT to the first input vector, and returns its absolute value.

SPLog returns the natural logarithm of the first input vector.

SPLog10 returns the absolute value of the common logarithm applied to the first input
vector.

SPLowPassFilter it filters the input vector with a low pass Gaussian filter using a cutoff
frequency based on the first real parameter.

SPMedFilter applies a median filter to the first input vector. The percentage of sig-
nal that will be filtered is in a range between 3% to 10%, depending on the first
parameter.

SPMod returns the remainder after division of the first input vector by the second input
vector.

SPMulConst return the multiplication of the first vector by a constant (second param-
eter).

SPNormalizeMax returns the normalization of the first input vector by the maximum
value in the vector.

SPNormalizeSum returns the normalization of the first input vector by sum.

SPPeaks returns the first input vector with all non-peak values set to 0.

SPSine applies the sine function to each data point in the first vector and returns it.

SPSubtract returns the subtraction of the first input vector by the second input vector.

SPSum returns the sum of the first input vector with the second input vector.

SPSumConst returns the sum of the first input vector with a constant (second param-
eter).

SPThreshold sets all values of the first vector below a certain threshold (first parameter)
to zero, and returns its value.

SPTimes multiplies the first vector by the second vector.
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The computational node genotype is composed by genes, however depending on the
function gene the computational node may have from 2 to 5 genes with actual meaning
in the phenotype, thus there are genes that may be ignored. There are functions that use
2 arguments (inputs) and others uses only one, being the remain ignored for phenotype
purposes. There are some functions from the function set that use one real parameter
others use two and there are some that do not use real parameters. Although, even the
ignored genes (not used in phenotype) are kept in the genotype and mutated if selected,
because if the function gene changes they have the chance to be used by another chosen
function, in the same computational node.

6.7 Mutation

Mutation process plays a fundamental role on the evolutionary process of Cartesian Ge-
netic Programming based systems. Without crossover, mutation is the only process re-
sponsible for the generation of new individuals in an offspring, thus the genetic variety
relies on the mutation operator. The mutation process depends on two different stages,
ruled by different probability distribution functions: the first stage decides if and which
gene or genes will be mutated; the second stage decides how these genes will be mutated.
There is a configurable parameter, the mutation probability, that represents the probabil-
ity of each gene to undergo a mutation. For instance, p = 0.015 means that each gene will
mutate with a 1.5% probability. Different mutations are performed, according to the gene
type and domain: if a function gene happens to be mutated, then a valid value must be
chosen for selecting a new function in the function set lookup table; if a mutation occurs
in a gene node input, then a valid value is the output of any previous node in the genotype
or any system input; the valid values for the system output genes are the output of any
node in the genotype or the address of a system input (if the option ‘last node’ is not
set). All these mutations happen according to the discrete uniform probability distribu-
tion function for integers. Two additional genes can also mutate: the real parameters used
by the functions (P1, P2). The mutation of the real genes (function parameters) is done
using the normal distribution in order to address the entire range. The Mutation process
of one particular gene (gn) with a configurable mutation probability (p) is systematized
in the pseudo-code of the Algorithm 5.

The idea is to use an uniform distribution in the interval [0; 1] to generate a random
value (p′) for each gene (gn) this way, if the generated random value is lower than (p) the
gene is set to be mutated. The mutation process follows different probability distributions
and different acceptable ranges, according to gene type. The system mutation peculiarity
is the mutation process of the real parameters. As mentioned the real parameters uses
the Normal distribution. a normal (or Gaussian or Gauss or Laplace–Gauss) distribution
is a type of continuous probability distribution for a real-valued random variable. The
general form of its probability density function is:

f(x) =
e−(x−µ)

2/(2σ2)

σ
√

2π
, x ∈ R (6.8)
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Algorithm 5 Mutate gene (gn) with probability p
p′ ← random number in [0; 1]
if p′ < p then

gn← gene set to mutate;
if gn is connection gene then

mutate gn randomly in (node indexes + inputs)
else if gn is function gene then

mutate gn in function lookup table
else

mutate gn using normal distribution . distinct for P1 and P2

end if
end if

where f(x) represents the probability density function of x variable that represents the
parameter values, with a normal distribution. This function is also represented as N(µ, σ),
where µ is the mean and σ is the standard deviation. The system contains to configurable
parameters σ1 and σ2, these parameters are used to set the standard deviation of the
function f(x) for the real parameter P1 and P2. Note that they have different range of
values as detailed in Section 6.5.2. Lets consider the mutation process of parameter P1,
since the process for P2 is similar. The initial value for P1 is obtained using the random
value from normal distribution N(µ, σ), where µ = 0.5 half of the interval [0; 1], and
σ = σ1 the configurable parameter (usually used as 0.3). To follow a simple example,
(Figure 6.10) we may consider an actual value for P1 = 0.5, if that gene is set to be
mutated the blue line will be the probability density function, N(µ = 0.5, σ = 0.3) to
generate a mutate P ′1. The new random generated value, P1 = 0.71. If that value will
be choosen to mutate again, the new value will be generated according the red curve in
Figure 6.10, that is a probability density function N(µ = 0.71, σ = 0.3), i.e, a normal
function centered in the actual values of the parameter and with the same standard
deviation value.

It is also important to ensure, during the mutation process, that the P1 is always in
the range of [0;1]. The use of a normal distribution centered in the actual value of the
parameter for generating a random new value for it, may lead to a values out of range
since in Equation 6.8 x ∈ [−∞;∞]. Algorithm 6 describes the mutation process of the
real parameter P1, using the normal probability distribution centered in the actual value
of the parameter.

The Algorithm 6 needs to get the actual value of the parameter gene (P1) and the
standard deviation value parameter stored in the configuration file (σ1), to use these 2
parameters to manage the random process of generating a new value for P1, temporarily
stored in P ′1. The random new value is generated using the Gaussian probability density
function with mean µ = P1, this means that the normal function is centered in P1 and
uses a standard deviation value constant, extracted from configuration σ = σ1. Finally, if
the generated random value is out of acceptable range, [0;1] the process is repeated until
a valid new value is reached. This mutation process is used for the other real parameter
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Figure 6.10: probability density functions of normal distribution: 2 consecutive normal
distribution functions for mutation, (blue) centered in µ = 0.5 in red centered in µ = 0.71,
both with the same standard deviation 0.3

Algorithm 6 Mutate real gene P1 using normal distribution
1: get actual gn value P1

2: get from configuration file σ1
3: µ← P1

4: σ ← σ1
5: do
6: generate random value P ′1 using N(µ, σ)
7: P1 ← P ′1
8: while P1 > 1 OR P1 < 0

P2 and for other system parameter, the threshold. The parameter P2 is mutated exactly
as is shown in Algorithm 6, with different values for configurable standard deviation (σ2)
and with a range of valid values also distinct, instead [0;1] it is used the interval [-15;15].

This way, we ensure that when a mutation occurs in a real parameter, all the parameter
interval is reachable, but with higher probability to mutate to closer values.

6.8 Evolutionary Strategy

The Evolutionary Strategies have been presented in in Chapter 4, and the CGP usual EA
was detailed in Section 5.1.2. Thus the EA used in this CGP system for MPE is based
on the simple evolutionary algorithm known as 1 + λ [Eigen, 1973]: the new offspring
is obtained promoting the fittest individual and generating λ new individuals trough
mutation. Therefore, mutation has a crucial role in this system, it is the only genetic
operator used to guarantee evolution and it is detailed apart in previous Algorithms 5
and 6. Another particularity of the ES used, is the fact that an offspring can replace a
parent, when it has the same fitness as its parent and there is no other population member
with a better fitness. According to [Goldman and Punch, 2015], an empirical value for
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λ is 4, which was the value configured in our configuration file for extensive use in our
system. Being an evolutionary strategy a non-deterministic process and with a lot of
aleatory components it makes entire sense to perform multiple evolutions of a classifier,
i.e. make multiple runs of the evolutionary process. All this adaptations and details are
documented in Algorithm 7, encoded with multiple runs.

Algorithm 7 Algorithm ((1 + λ)EA) encoded with multiple runs
1: r ← 0;
2: while r < mr do;
3: g ← 0;
4: Set current individual I0 as the best of λ individuals created randomly;
5: Fg ← fitness of current individual I0
6: while g < mg and Fg < f do
7: for i = 1 to λ do
8: Create a copy xi of current individual Ig;
9: Mutate each gene of xi with probability p; . mutation algorithm 5
10: end for
11: Set I ′g as the best of {x1, . . . , xλ};
12: if I ′g is better or equal than Ig then
13: Ig+1 ← I ′g
14: else
15: Ig+1 ← Ig
16: end if
17: Fg+1 ← fitness of current individual Ig+1 ;
18: g ← g + 1;
19: end while
20: Save the best individual of run r (Ig) as Br;
21: r ← r + 1;
22: end while

In Algorithm 7 there will be mr runs, the best individual of each run r will be saved
as Br. Each run consists on an evolutionary process that will continue until generation
g reaches the maximum number of generation allowed, mg or the fitness of the best
individual of the current generations Fg reaches the maximum fitness value f equals to
1, in this maximization case. During each run, an offspring of 4 elements xi will be
generated as a copy of the current fittest individual Ig. Each individual xi will suffer
a mutation process, using Algorithm 5 invoked in line 9. The best individual, (fittest)
of all xi is temporarily stored as I ′g. If the best individual of the offspring is better or
equal than the actual fittest Ig, then it will take the place of Ig as the fittest Ig+1, and
if the process continues it will pass for the next generation. This process ensures genetic
diversity through generations, it also promotes silent mutation and neutral search.

During the evolutionary process, there is a reasonable percentage of inactive genes.
Such inactive genes have a neutral effect on the genotype fitness [Miller and Smith, 2006].
However, [Vassilev and Miller, 2000] investigated in detail the influence of neutrality in
CGP and shown it to be extremely beneficial to the efficiency of the evolutionary process.
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For better computing performance, we also took into account the similarity between
individuals: when an individual has the same active genes than the offspring parent,
there is no need to compute its fitness.

6.9 System Output and Binarization

The MPE system developed based on CGP is a multi-classifier system, Figure 6.2, where
each evolved classifier detects the presence of each piano note (key). It follows the block
diagram depicted in Figure 6.3 where the final block is the ‘Fitness Function’. The fitness
function uses F-measure which requires binary output values. The output vector block,
only extracts the output of the system grid of nodes that is the last node of the row, when
using the Last node configuration for the CGP instead of random output node. At this
point the system output is a vector sized equals to the inputs, in this case 2048, that needs
to be transformed into a Boolean value where 1 means the presence of the correspondent
note and 0 otherwise. The Binarization block is responsible for the process of transforming
an output vector into a binary Boolean output.

The fitness function is compute for each individual (possible solution), each individual
represents one specific classifier for a specific note. To use the fitness function to calculate
the fitness for one classifier, we need the classification results of that classifier applied to
a set of sound frames, called training set. The classification results must be ‘1s´ and ‘0s’,
true or false for each input sound signal for a classifier. The fitness function will use those
binary results and the ground truth to compute f-measure.

The CGP system is comprised of mathematical functions whose arguments are vectors
and that also return vectors. Thus, at the end of each CGP graph (output node), we have
a vector of float values. The binarization process added at the end of each classifier to
transform its output vector into a binary output was done using a base signal and a vector
inner product. The system, depending on the classifier builds a base signal, the base signal
depends on the pitch of the note that is being analysed, i.e. each classifier is evolved for
one piano pitch or key number with a fundamental frequency (F 0). To calculate the F 0

for a piano key we use the following equation that gives the fundamental frequency F 0(n)
of the nth key:

F0(n) = 440× 2
n−49
12 Hz, (6.9)

using Equation 6.9 the fundamental frequency is mapped according the piano key number,
thus the base vector is built placing a triangle in a vector size of 2048 mapping the
frequency used spectrum where each bin corresponds to 10.7Hz. The amplitude and
width of the triangle is configurable and centered in the F 0(n) mapped on the vector.
Figure 6.11-(a) shows the base vector computed for key number 66. In order to accomplish
a binary output, we use a discrete interception process between the CGP output vector
normalized in amplitude Ocgpn [k], (Figure 6.11-(b)) and the base signal with the frequency
corresponding to the pitch of the estimator, BF0n [k]. The first step is the normalization
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of the output vector in amplitude. Due to the normalization process using the maximum
value of the vector it is ensured that every vector element falls into the interval [0;1], this
is important for managing the threshold range values. Then, we generate the following
scalar value, computing the inner product between the 2 vectors:

A =
N∑
k=1

Ocgpn [k]×BF0n [k], (6.10)

where A, besides resulting from the inner product measures the discrete intersection be-
tween the two discrete signals. Making an approximation for the 2 signals to a continuous
domain, the A value can be seen as the intersected area between the two signals, the
entire process is depicted in the sequence of 3 graphs in Figure 6.11.
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Figure 6.11: Binarization: (a) Base triangular vector for pitch 66; (b) Output vector; (c)
Interception

Finally, we use a threshold function to accomplish the binary result:

T (A) =

{
1, if A > θ

0, if A <= θ
(6.11)

where θ is the threshold value and T (A) is the Boolean system output for a classifier of
a given sound sample. Remembering that 1 means a positive case and 0 a negative one.
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Since both signals are normalized in amplitude, the max value for A is:

Amax =
N∑
k=1

BF0n [k]. (6.12)

Computing Equation 6.12, the system is able to determine the interval of values for
placing the threshold for the correct system work. However, after a few experiments
it becomes clear that the threshold value should be a system parameter and subject of
exhaustive tuning. Since our MPE proposal is based on Evolutionary Algorithms, it
was consistent to use genetic operators to reach the best value for the threshold for the
problem. Therefore, the threshold was encoded as a system gene able to mutate during
the training stage and consequently evolve along with all the others CGP genes. This way,
besides the node genes, the threshold may also adapt to reach a better system fitness.
The threshold mutation probability is independently configurable, and was empirically
set to the same mutation probability of the other genes. When the system decides to
mutate the threshold, its mutation process is ruled by the same algorithm of the real
parameters using the normal probability distribution, Algorithm 6. The initial threshold
value is set as a configurable parameter and it mutates using the Gaussian probability
density function N(µ, σ) where σ is also a configurable parameter. The interval for valid
mutations is [0;Amax].

6.10 Fitness

The last system block of the chain in Figure 6.3 is the Fitness Function. This block
is fundamental in the training stage but is also used during the test stage.Thanks to
the binarization process, each CGP generated graph can act as a classifier and dictate if
the corresponding piano key is present on the input audio signal. Therefore, the fitness
function evaluates the quality of the evolved classifier not only during the training process
but also during the test stage. In statistical analysis of binary classification, F-measure
is a measure of a test’s accuracy widely used since its proposal [Chinchor, 1992]

This way, during the evolutionary training process, each classifier can be evaluated
according its classification. This evaluation is done using F-measure (Equation 6.13).

Fmeasure = 2× recall × precision
recall + precision

, (6.13)

where precision (also called positive predictive value) is the fraction of relevant instances
among the retrieved instances and defined as follows:

precision =
tp

tp+ fp
(6.14)
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and recall (also known as sensitivity) is the fraction of relevant instances that were re-
trieved and define:.

recall =
tp

tp+ fn
. (6.15)

.

The main goal of the training or evolutionary process is maximize the Fm in order
to reach the most accurate as possible classifier. The training stage stops if Fm reaches
1 or the max number of generations mg is reached. During the test phase the fitness
function is also computed to evaluate the results of the evolved classifiers for a test data
set. Denote that fitness function values belong to the interval [0; 1].

6.11 Configuration Parameters

The configuration parameters are divided into 2 different sets, the CGP related parameters
set, represented in the block Parameters (see Figure 6.3), which is directly connected
to the CGP block, and a second set which includes all the other types of parameters,
particularly those used for signal processing problems. This last set interacts directly
with many system blocks e.g. Preprocessing, Inputs, Binarization, and also defines
parameters used in the genes mutation functions.

Listing 6.1: CGP parameter values in file config.txt
% file conif.txt
% create a configuration struct

[cgp]
rows=1
columns=100
levels_back=100
output_type=last
outputs=1
generations=5000
runs=30
offspring=4
mutation=0.05
fitness_solution=1
fitness_operator=>=

% initialize a CGP instance with a custom configuration
cgp = cgptoolbox.CGP(configuration);

During this first approach to MPE using CGP detailed in this chapter, the system
used the parameters in Listing 6.1. The meaning of the parameters was described in
Table 5.1. This parameters are used as a configurable structure, it will perform 20 runs
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with 1000 generations each, maximizing the fitness function with a maximum values of 1.
The grid of nodes will have 1 row (nr), 100 columns (nc) and 100 levels back are allowed
(l) setting the last node as output node. The evolution process will use 1 + 4 ES, (λ = 4)
with a mutation probability 5% (p).

Listing 6.2: Signal parameters values in file config.txt
% file conif.txt
% signal configuration
[signal]
sampling_frequency=44100
samples=4096
threshold=0.5
type=record
triangular_signal=0 0.5 1 0.5 0
function_set=transcription/function-set
fitness_function=fmeasure
interval_standard_deviation=0.3
constant_standard_deviation=3
fft_samples=half
threshold_increment=0.01
polyphony=chords
inputs=real,imag,abs,angle

The second set of parameters used are detailed in Listing 6.2. And they are specific
parameters for the MPE problem. They are used in many parts of the system and their
meaning is:

sampling frequency represents the sampling frequency in samples per second used in
the signal processing functions (fs);

samples number of samples used in an extracted frame of sound vector in time domain;

threshold value used for the initial threshold when it mutates, or for a fixed threshold
(without mutation);

record type of sound signal;

triangular signal when using the triangular base signal it describes the triangle width
and amplitude;

function set sets the path and folder where the functions of the function set are defined;

fitness function sets the type of fitness function used;

interval standard deviation it is the value of the standard deviation (σ1) used in the
normal distribution for the mutation of the real parameter P1;
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constant standard deviation it is the value of the standard deviation (σ2) used in the
normal distribution for the mutation of the real parameter P2; usual nominated as
constant;

fft samples number of samples used in the frequency domain after applying the DFT,
in this case ‘half ’ means 2048 and it corresponds to N , size of inputs;

threshold increment threshold increment used for incremental mutation, if used;

polyphony parameter used for defining 2 different approaches monophonic and poly-
phonic;

inputs this parameter is used to compute the inputs, it is a set of strings where each
string is the function used to compute a specific input, this case 4 inputs.

6.12 Experiments and Results

To evaluate the quality of the system, after the configuration process, it is required a
training stage for all the classifiers. After that, the system can be tested with a test
dataset, the Fm is calculated and the results are analysed. In the first approach to the
MPE problem using Cartesian Genetic Programming, the main concern was on investi-
gate if the used system and technique where feasible, and how every blocks and steps
worked, rather than the objective values of the final F-measure. Therefore this first set
of experiments is seen as a staring point for the entire research.

6.12.1 The Dataset

To perform an evaluation of the classification system, the experiments require a dataset
large enough, labeled with ground truth and used by other approaches to the same prob-
lem. The choice fell on MAPS1 database [Emiya et al., 2010] because of all said and it
was available and was free for scientific use.

MAPS provides recordings with CD quality (16-bit, 44-kHz sampled stereo audio)
and the related aligned MIDI files as ground truth. The overall size of the database is
about 40GB, i.e. about 65 hours of audio recordings. The database is available under
a Creative Commons license. A large amount of sounds and a reliable ground truth are
provided thanks to some automatic generation processes, consisting in the audio synthesis
from MIDI files. The use of a Disklavier (MIDIfied piano) and of high quality synthesis
software based on libraries of samples permitted a satisfying tradeoff between the quality
of the sounds and the time consumption needed to produce such a quantity of annotated
sounds. In order to favor generalization to many audio scenes, several grand pianos and
upright pianos have been played in various recording conditions, including various rooms
and close/ambient takes. It also specifies the origin of the recording, which may be high
quality synthesis software based on sample libraries or a Disklavier. produced and can be
stored in one 4.7GB DVD. The contents of MAPS is divided in four sets:

1MAPS stands for MIDI Aligned Piano Sounds and it is available for use under previous request.
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• ISOL - isolated notes and monophonic excerpts;

• RAND - chords with random pitch notes;

• UCHO - usual chords from Western music;

• MUS - pieces of piano music.

The MAPS was the sound database, and from that sound it was important to built
several training datasets. Each classifier needs a training set with positive and negative
sounds, i.e. a set of sounds where a given note is present and a set where the note is not
present. After trained the classifiers have to be tested and for that purpose were built
testing sets disjointed from the training sets. The idea was to train the system and then
test it with unseen data, randomly chosen and mainly, using the sub-set “RAND”. This is
a set were there are no musical rules or harmonic rules for chords construction. This way
the system was being prepared in a more general way.

6.12.2 Training

The preliminary training tests were conducted under the configuration file presented in
Listings 6.1 and 6.2. The training set was built for each of the classifiers using the MAPS
data-set. Each training set includes monophonic and polyphonic sounds extracted from
the sub-set ISOL and RAND respectively.

Table 6.2 shows the values of the configurable parameters summarised. The evolu-
tionary process consisted of 30 runs with 5000 generations each, using 50 positive and 50
negative cases. The number of computational nodes is 100. The classifiers were evaluated
using the F-measure (Equation 6.13).

Table 6.2: List of parameters used in the experiments.

Parameter Value

Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Offspring 4
Mutation Probability 5%
Runs 30
Generations 5000
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In Figure 6.12 is presented a bar plot for 30 runs of the training stage of classifier 60,
each bar individual results of each run (i.e. evolved pitch estimator). Each bar is the sum
of two bars the mean value obtained for all runs (light gray) plus the difference for the
actual F-measure obtained, in dark gray. The idea is to show that all runs have similar
results, the overall meaning value is also depicted with an horizontal line of about 0.945,
and the calculated standard deviation is σ = 0.01.
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Figure 6.12: Training results obtained during 30 runs for pitch 60. Fitness values were
calculated using F-measure.

The use of Cartesian Genetic Programming gives the possibility of observing in detail
the mathematical result of the evolutionary process in terms of a graph of function, the
phenotype. This way if the resulting genotype is decoded it is possible to see which
mathematical functions are being used and how they are chained to each other as well as
the inputs usage.

Listing 6.3: Evolved classifier code for pitch 60
% Classifier 60
%
Node 1 = input (1)
Node 2 = input (2)
Node 3 = input (3)
Node 4 = input (4)
Node 5 = SPConvolution ( 1 , 1 )
Node 6 = SPFFT ( 1 , 4 )
Node 7 = SPConvolution ( 4 , 4 )
Node 8 = SPTimes ( 5 , 7 )
Node 10 = SPSum ( 2 , 1 )
Node 11 = SPIFFT ( 10 , 4 )
Node 12 = SPPeaks ( 8 , 11 )
Node 13 = SPPeaks ( 11 , 10 )
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Node 14 = SPSum ( 3 , 10 )
Node 15 = SPSubtract ( 1 , 13 )
Node 16 = SPAbs ( 13 , 12 )
Node 17 = SPLog10 ( 16 , 10 )
Node 18 = SPThreshold ( 5 , 16 )
Node 19 = SPCos ( 17 , 18 )
Node 20 = SPLog ( 8 , 2 )
Node 23 = SPNormalizeSum ( 6 , 14 )
Node 24 = SPAbs ( 13 , 13 )
Node 33 = SPDivide ( 12 , 23 )
Node 36 = SPHighPassFilter ( 19 , 20 )
Node 87 = SPSum ( 15 , 33 )
Node 101 = SPGaussfilter ( 36 , 87 )
Node 104 = SPIFFT ( 24 , 101 )

In Listing 6.3 is depicted the decoded genotype program of one of the runs of the
evolved classifier 60. It shows the functions used in each node as well as the inputs of
each node. The first 4 nodes are the system inputs and the last node, the node 104
correspondent to computational node 100 is the system output. For instance: node 101
contains the Gaussian filter function and the function arguments (inputs) are the outputs
of the nodes 36 and 87, the output of this node is the input of the last node, 104, that
performs the inverse FFT. The resulting program is a set of mathematical functions, with
specific parameters, over vectors - our phenotype.

6.12.3 Testing

After the training stage the system classifiers were tested with a different set, the test-set.
After the training process, each classifier was tested with a different test set. Each test set
consisted in 144 negative cases, (chords and single notes) and 5 positive cases, comprising
a total of 149 piano sound samples.

The F-measure results for 61 classifiers, that correspond to a piano with 61 keys, are
depicted in the bar plot of Figure 6.13, the key value is the F-measure mean ≈ 0.66,
detailed results used to built the graph are expressed in Appendix C. Denote that this
results correspond to the first approach to the problem of MPE using a multi classifier
system. Both sets, training and test are relatively small because of the time consumption
for evolve 30 runs for all classifiers and the main goal was to find out if the technique was
feasible for the type of problem, which proved to be. However this first approach shows
some problems and difficulties, it is possible to observe that the classifiers of pitches
with lower fundamental frequencies have poorer results comparing with those with higher
F0s. This is due to the frequency resolution of the signal representation in the frequency
domain, each vector bean represents a range of frequencies of 10.7Hz. Lower pitches
have F0s more closer from each other. For instance: pitches 36, 37 and pitch 38 have
fundamental frequencies ≈ 65, 69 and 73Hz, which means they are separated only by 8Hz.
The system needs some improvements as well as larger training and test sets, the next
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Test results for 61 classifiers

Figure 6.13: Testing results obtained for 61 classifiers from pitch 36 to 96. Fitness values
were calculated using F-measure. Mean value 0.66

task is to improve the system accuracy applying some adaptations and adding some new
features. This system version was named as CGP-1 for further analysis and comparison.

6.13 Summary

In this chapter it was described the methodology used to address the problem of MPE with
real audio piano signals. The system architecture was explained as well as the training
process and the test process for the first approach to the problem named CGP-1. All the
main decisions related with the implementation were addresses, from the system inputs
until the fitness function and the system parameters used. Finally the first experiments
and preliminary results are presented.
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Chapter 7

Improving with Harmonic Mask and
Data Augmentation

The system explained in the previous chapter was our first approach to the MPE of piano
sounds problem, the presented results were encouraging to continue and improve the
research. This chapter describes the implementation of the new features and some changes
to the system that were made in order to improve the accuracy results. The system main
idea remains the same, to evolve a multi-classifier system with an independent classifier
for each piano note to perform multi-pitch estimation of polyphonic piano sounds. Some
important changes were made, the Harmonic Mask (HM) and the Data Augmentation
process stands out in terms of objective results. The new block diagram of the system is
depicted in Figure 7.1. It presents two additional blocks in red compared with the diagram
in Figure 6.3 and 3 other blocks highlighted in blue suffered relevant changes. Following
the block chain there is a new block named Onset Detection: it detects when a new
note appears or starts. This point is used in the next new block, Data Augmentation to
enlarge the data-set for training purposes. After preprocessing, the inputs are extracted
from the sound samples, besides the 4 inputs based on the DFT a new one is added using
cepstrum: block Inputs. The block Function Set was extended with more functions to
have more possibilities. Finally the block Binarization was prepared to use an harmonic
mask.

During the rest of this chapter, all the improvements made in the system architecture
and some implementation details will be presented. Section 7.1 explains the introduction
of a new system input, section 7.2 introduces the onset detection algorithm implemented,
used in this system also to perform a data augmentation process described in Section 7.3.
Section 7.4 explains the extension of the initial function with the introduction of new
functions, during the Section 7.5 it is shown how a new harmonic mask is used and
configured. In Section 7.6 all the new blocks and changes of the system are schematized
and a brief overview is made, and finally Section 7.7 describes all the experiments made
and presents the results obtained.
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Figure 7.1: Block diagram of the improved system: (red) the new added blocks, (blue)
the improved blocks with some changes

7.1 Using Cepstrum as System Input

The Cepstrum was introcuced in Section 2.6.1 as a mathematical tool for periodicity
analysis in signal processing The introduction of a new input was decided when cesptrum
analysis was studied.

The cepstrum is a mathematical transformation deeply used in audio signal processing
in particular for pitch detection. Cepstral signal analysis is one out of several methods
that enables us to find whether a signal contains periodic elements. The method can also
be used to determine the pitch of a signal [Noll and Schroeder, 1964]. The cepstrum is
defined as the inverse DFT (IDFT) of the log magnitude of the DFT of a signal:

c[n] = F−1{log|F{x[n]}|}. (7.1)

where F represents the DFT and F−1 the IDFT. For a windowed frame audio signal
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x[n], cepstrum is:

c[n] =
N−1∑
n=0

log(|
N−1∑
n=0

x[n]e−j(
2π
N )nk|)j(

2π
N )nk,

(k = 0, 1, ..., N − 1).

(7.2)

Where c[n] is the cepstrum. The cepstral coefficients describe the periodicity of the spec-
trum. A peak in the cepstrum denotes that the signal is a linear combination of multiples
of the pitch frequency. The pitch period can be found as the number of the coefficient
where the peak occurs. Therefore, it seems that cepstrum brings additional information
to the evolutionary system, that can be used to perform multi-pitch estimation. One
of the advantages of an evolutionary system based on CGP is its ability to choose and
evaluate the combinations of inputs to use as long as they do not bring constrains to the
system, in this particular case they have to be represented as vectors (arrays). Therefore,
to the four inputs used in CGP-1, (Figure 6.7), a fifth input was added the cepstrum,
as shown in Figure 7.2-(e).

Now, the system uses 5 inputs: real part of DFT, imaginary part of DFT, radius
of DFT, angle of DFT, and Cepstrum. The cepstrum is calculated using Equation 7.2
applied to the time domain sound signal framed. In Figure 7.2, are depicted 5 graphs,
each one represents one of the 5 inputs, being in red the added cepstrum. All the inputs
are computed on a sound extracted frame with 4096 time bins, all of them will be real
value vectors of 2048 bins. In this particular case, the piano sound is a chord with 3
pitches (70+75+94) and only the first 500 bins are registered in the graphs, for a better
and clearer view.

7.2 Onset Detection

Onset Detection is the quest for finding the starting moment of musical notes in an audio
signal or according to [Bello et al., 2005],a single instant chosen to mark the temporally
extended transient. The transient can be understood as a short-time interval in which a
significant energy change occurs in the signal, Figure 7.3. It is an active research subject
since note onset detection is commonly used as a first step in high-level music processing
tasks.

The purpose of including a block to perform onset detection is to extract from an
audio piano sound the frame where the note or chord starts in a more accurate way.
The onset detection algorithm used is based on the onset detection algorithm used by
[Martins, 2008], with some modifications and improvements. The approach used is based
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Figure 7.2: System with 5 inputs for a chord with 3 pitches (70+75+94): (a) real part of
DFT, (b) imaginary part of DFT, (c) radius of DFT, (d) angle of DFT, and (d) Cepstrum
calculated from the time domain signal. First 500 of 2048 bins of all the 5.

on the Spectral Flux as the onset detection function, defined as:

SF [n] =

N
2∑

k=1

H(|X[n, k]| − |X[n− 1, k]|) (7.3)

where:

H(x) =
x+ |x|

2
(7.4)

is the half wave rectifier function, X(n, k) represents the kth bin of the nth frame of the
short-time Fourier Transform (STFT) of the input x[n]. Linear magnitude is used instead
of logarithmic. N is the Hamming window size. Experiments performed use a 46 ms
frame size (i.e. N = 2048 samples, with sampling rate fs = 44100 Hz) and a 11.6 ms hop
size (h = 512 samples).
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Figure 7.3: Attack, onset and transient in a single note, adapted from [Bello et al., 2005]

As in [Martins, 2008], in order to reduce the false positive rate, the onset detection
function SF (n) is smoothed using a Butterworth filter defined by H(z):

H(z) =
0.1173 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946−2
(7.5)

To avoid the phase distortion (which would deviate the time of the detected onsets) the
input data is filtered in both forward and backward directions. The result has a precisely
zero phase distortion, being the magnitude the square magnitude of the filter response,
and the order of the filter the double of the order specified by H(z). We also used an
envelope function EH[p], where p represents the discrete time variable of the input signal
x[p] 1, the envelope function is calculated over the input time signal x[p], using Hilbert
transformation for discrete time signals [Rao et al., 2007].

The onsets are detected using a peak-picking algorithm to find a local maximum. The
algorithm is simple and based on 3 conditions:

A peak at instant t = nH
fs

is chosen as an onset if the following conditions are met:

1. SF [n] ≥ SF [k] ∀ k : n− w ≤ k ≤ n+m

1Input signal in time domain x[n], represented as x[p], because the variable n is now representing the
frame number and not the discrete time.
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2. SF [n] >
∑n+w
k=n−mw SF [k]

mw+w+1
× thres+ δ

3.
∑n∗h+N
k=n∗h+1 EH[k]

N
> θ,

if all three conditions are met, than the peak in instant t is chosen to be an onset instant,
where:

t =
nH

fs
(7.6)

The 3 conditions use several parameters for the onset detetction: The w = 6 is the
window size to achieve the local maxima; m = 4 is a multiplier so that the average should
be calculated in a broader area before the peak; thres = 2.0 is a threshold value relative
to the local average that a peak must reach in order to be sufficient prominent to be
selected as an onset; and δ = 10−20 is a residual that is combined with θ = 0.01 to avoid
false positive detection in silence regions of the signal. All these parameters were adjusted
empirically on previously performed tests using a collection of several piano compositions
played by different pianos. Figure 7.4 shows an example of a sound sample of 2.1 seconds
with 3 onsets detected on frames 29, 90 and 141.

Onset detection is typically used for audio segmentation: since onset detectors infer
where musical notes are present in the input audio signal, the input signal can be split
in several audio fragments according to the onset information. This is a fundamental
process on Automatic Music Transcription algorithms that are based on note tracking.
Despite the implemented approach is frame based, the onset detection described process
is used during the training stage for data augmentation purposes. Hence, improving the
training process. The data augmentation process using the onset detector is explained in
Section 7.3.

7.3 Data Augmentation

Data augmentation encompasses a suite of techniques that enhance the size and quality of
training datasets [Shorten and Khoshgoftaar, 2019]. In many classification problems, the
available data is insufficient to train accurate and robust classifiers. Thus, to alleviate the
relative scarcity of the data compared to the number of free parameters of a classifier, one
popular approach is data augmentation (DA). Data augmentation consists in transforming
the available samples into new samples using label-preserving transformations.

In our classification problem, the amount of data is big enough, however it is not
balanced for our multi-pitch approach. For each one of the 61 classifiers to be properly
trained, we need to build a balanced dataset with two classes: positive cases and negative
cases. Our training data built for each classifier and its training instances are extracted
from the MAPS database [Emiya et al., 2010]. This way, we have 61 different classifiers
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Figure 7.4: Onset detection process steps of a piano signal with 3 onsets: (a) original
input signal in time domain x[n]; (b) Hilbert envelope EH[n] of (a); (c) the spectral flux
SF [n] (blue) , where n represents the frame number and the spectral flux smoothed (red);
(d) onsets detected and marked in red dashed line.

and 61 different pitches. Therefore, the ratio of positive cases and negative cases in the
database for each pitch is ≈ 1

60
. However, for proper training, each one of our classifiers

requires a balanced dataset, with the same amount of positive and negative cases. This
dataset should also be diversified, with the most miscellaneous examples that cover the
most range of the pitch space. In our case, we need to enhance the size and quality of
the positive subset of the training dataset, in order to be able to use the most number of
different negative cases with a good and large distribution in the pitch space (this include
multiple pitches combinations) and keep them both balanced in size.

For the data augmentation process, first we apply our onset detector on the input
audio signal. Then, based on the inferred onset position (Ios), we acquire three different
audio fragments translated in time. Each acquired audio fragment has 4096 samples
length (≈ 0.93 milliseconds), sampled at frequency 44100 Hz. An audio fragment is
acquired at first, starting at the inferred onset time Ios. Then, two additional audio
frames are acquired from the original signal, starting at Ios − 512 and Ios + 512. In
practice, we translate the acquired window signal back and forward in time and, this
way, we accomplish a data augmentation with factor (3x). This process is illustrated in
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Figure 7.5.

Figure 7.5: Data Augmentation process using time translation: (a) in blue, the original
piano signal in time domain (≈ 0.2s), in black is represented the inferred onset location
Ios, and in red is the extracted frame, starting at Ios; (b) audio frame extracted from the
original signal, starting at instant Ios − 512; (c) audio frame extracted from the original
signal, starting at Ios + 512.

This innovation in our CGP systems is useful to enlarge the number of positive cases
on the training dataset and consequently allows us to enlarge the number of negative
original cases maintaining the two classes numbers balanced. This way, we can train the
classifiers with a more extensive and diverse negative training dataset. Another important
advantage is that, this way, we also force the classifiers to learn and infer not only when
the onset detector is accurate but also when it does not estimate the onset time with high
precision (delays and advances).

7.4 Function Set

The function set first used was presented in Table 6.1, it contains 24 different functions.
After the implementation of the cepstrum as a system input and the use of Hilbert envelope
function for the onset detection, it was decided to add also these functions to the function
set, first because they were implemented and are easy to add to the system second because
they return a vector as output and are commonly used functions in signal processing.
Actually the function set was extended with 3 new functions: Cepstrum, Hilbert transform
and power.
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SPCceps Function that uses only the first input and computes the complex spectrum of
the input signal, returns a vector of the same size of the input.

SPEnvelopeHilbert this function has only one argument, a vector, and returns the
absolute value of the Hilbert transform as a real vector with the same size.

SPPower this function uses one vector as input and calculates the square of each element
of the input vector, it returns also a vector with the same size, in the case of complex
numbers it performs the product of each element with its conjugate.

The complete extended function set is detailed in Apendix D using a function look up
table.

7.5 Harmonic Mask

The binarization block is the last block before the Fitness function, actually it produces
the result of the classification. It is used in the training process to feed the fitness function
and it is used in the test stage to produce the classification result of the analysed piano
sound, the Harmonic Mask is used to transform the system output vector into a binary
number 0 or 1. The idea is similar to the binarization process described in Section 6.9, but
using harmonic information to build a mask. In the previous implementation the main
goal was to evolve the specific classifier in a manner that, along with the inputs, it could
generate an output vector with high values in the classifier fundamental frequency bin.
The use of a triangular signal centered in the fundamental frequency with a basis with 3
bins give some room for frequency precision problems. However if the high values of the
output of the CGP classifier are placed one bit apart of the exact F0, the system applies
a small penalization in value, due to the triangular shape of the signal used to calculate
the interception (inner product). This way, small precision deviations are are taking in
account in the binarization but have some value penalization because in low frequency
pitches the F0 are very close to each other. The implementation of the harmonic mask
intends to use more pitch and the signal harmonic information in terms of frequency
analysis. Therefore, at the end of each CGP graph (output node), there is a vector of
float values, the transformation into a Boolean value is done by applying a spectral mask
with harmonic information: each classifier uses its own mask built by the system. The
fundamental frequency (F0) of the corresponding note being detected by the classifier, is
considered the first signal harmonic, thus the Equation 7.7 adapted from Equation 6.9,
gives the harmonic frequencies of a piano key or pitch.

F (n, p) = n× 440× 2
p−49
12 Hz, (7.7)

where n represents the harmonic number of pitch p. To design the Harmonic Mask vector
for pitch p, Mp[k] , the system uses the Equation 7.7, to calculate n harmonic frequencies
and centers triangles in each harmonic frequency correspondent bin. The final Harmonic
Mask is a vector size of output vector in frequency domain with n triangles and zeros
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otherwise. The amplitude and width of each triangle are configurable system parameters
as well as the number of harmonics used. Then the inner product between the output
signal and mask is computed:

A =
N∑
k=1

Ocgp[k]×Mp[k], (7.8)

where a measures the discrete intersection between the two discrete signals. The rest of
the binarization process is equal to the presented in Section 6.9.
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Figure 7.6: Binarization process using the Harmonic Mask for classifier 66: (bottom down)
Hrmonic Mask, system output vector, interception

A specific example of the application of the Harmonic Mask in the binarization process
is shown in the set of graphs depicted in Figure 7.6. The classifier pitch is 66, and the
number of harmonics used are 2, thus for Equation 7.7, the program computes F (n, 66)
for n = 1 and for n = 2. F (1, 66) ≈ 369.99Hz and F (2, 66) ≈ 739.99Hz. The vectors
are size of 2048, half of the sound samples in time domain 4096, the frequency precision
≈ 10.7Hz, thus the frequencies are mapped in the mask vector in position 35 and 70.
The triangles configuration acquired from configuration file are: [0.5 1 0.5] and [0.3 0.5
0.3]. Then the output vector Ocgp is intercepted with the harmonic mask, M66, generated
an interception value A that passes trough a threshold function and generates a Boolean
value. The previous example is illustrated in Figure 7.6.
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It is possible to observe that the 2 configurable triangles are configured with a base
width 3 bins, that fact prevents a possible lack of precision when evaluating the F0 and
the correspondent bin, it gives an error margin of one bin. The triangular amplitude
rewards precises F0, and small errors are slightly penalized but not completely dismissed.
The used configuration also gives more relevance to the fist harmonic placement, however
it also takes in account the second harmonic. The changes applied to the Binarization
block, in particular the use of the HM, minimize the effect of overlapping of fundamental
frequencies or precision errors for pitches with lower frequencies.

7.6 Improved System Overview

Cartesian Genetic Programming builds programs in a form of graphs. To address the
MPE problem, the CGP system generates programs in a form of graphs using a set
mathematical functions (function set). This way, each each individual will be an evolved
graph encoding a complex mathematical expression.

In the final version named CGP-HM-DA, each piano note is identified by a CGP
evolved classifier (Figure 7.7). This way, for identifying 61 musical notes (from the C2 to
the C7), there are 61 evolved classifiers: one for each musical note or piano key. Each one
of these classifiers uses several inputs, all of them deriving from the acquired audio signal
and return one binary output, indicating if the corresponding piano note is present or not
in the given signal. Basically, a sound vector is sampled, using the onset detector. Then,
five inputs are computed from the original sound vector using several signal processing
techniques. These inputs are then used by the classifiers CGP functions (Fn(I)), to
accomplish an output vector.

Figure 7.7: Block diagram of the CGP MPE system with multiple classifiers.

In a detailed way the Block diagram represented in Figure 7.7 works as follows: First
an onset detector is applied on the input audio signal to infer where there is a start
of a musical note; then, an audio frame with 4096 audio samples (93 milliseconds) is
extracted, starting on the onset time; the extracted audio fragment is then transformed
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in 4 different representations on the frequency domain plus a cepstrum, resulting in 5
different inputs (I1 . . . I5) represented by vectors width; these 5 inputs are feed into the
61 evolved classifiers (Fn(I)) that are graphs of mathematical functions from the function
set; An output vector is produced CGPFn(i); finally is applied the binarization process
using HM and the binary outputs are computed one for each classifier Out_bn

7.7 Experiments and Results

To make a detailed study about the quality of the proposed system results (including the
4 versions of it), several experiments were made. The main goal was to evolve 61 classifiers
during the training stage, each one for the correspondent piano key, from C2 (MIDI note
36) to C7 (MIDI note 96). Each piano key is represented by the corresponding MIDI
note number, being 60 the MIDI note number corresponding to the C4 musical note (the
middle C).

To train and test the system, it was used the MAPS2 database [Emiya et al., 2010].
It is a piano sound database dedicated to research on Multi-F0 (multi-pitch) estimation
and Automatic Music Transcription. It contains piano sound samples of polyphonic and
monophonic sounds, usual chords and random chords played by 7 different pianos in
different recording conditions and was detailed in Section 6.12.1.

Throughout this section, all the steps performed to test this proposal and their advan-
tages are describe. We started by (i) training and testing some classifiers using the K-fold
cross validation method to estimate the skill of our machine learning model on unseen
data. Then, (ii) we expanded the experiments to train the CGP system evolving all the
61 classifiers in order to have comparative base with other algorithms. We tested our
system composed by the 61 classifiers previously trained with a larger amount of poly-
phonic piano sounds: 3000 random chords and monophonic notes of 7 different pianos.
Additional tasks and tests were made and are described in this section.

7.7.1 System Versions

During Chapter 6, a detailed description was presented about the first system implemen-
tation, its features and techniques used. Preliminary tests were made and described to
research for the feasibility of the problem of MPE using the Cartesian Genetic Program-
ming. As mentioned, the tests and results were preliminary, they were not exhaustive
however they were encouraging and become a crucial starting point for the research. Dur-
ing this chapter (Chapter 7) all the improvements implemented were detailed, not in a
chronological order but following the system work flow. Therefore, Table 7.1 presents the
4 system versions with their main features ordered in time.

2MAPS stands for MIDI Aligned Piano Sounds and it is available for use under previous request.
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Table 7.1: System versions features

Version Ceps Tuned Parameters Ext. FS HM DA

CGP-1 × × × × ×
CGP-HM

√
× ×

√
×

CGP-HM2
√ √ √ √

×
CGP-HM-DA

√ √ √ √ √

The 5 important features added that contributed for the quality increase of the overall
results and for the four tested versions of the system are:

Ceps - Introduction of a fifth system input using cepstrum transform, this feature is
presented in Section 7.1.

Tuned Parameters - This was a procedure applied on configurable parameters, the
idea was to make a parameters tuning,to improve the results, this was done mainly
with the mutation probabilities parameters, a different mutation probability for the
threshold and also increase the number of cases during the training stage.

Ext. FS - It is the extended function-set, it was a natural change in the system, when
new features where added and new functions were introduced for other purposes.
The function set was extended with more functions, the motivation and the added
functions are described in Section 7.4

HM - The Harmonic Mask was introduced in the binnarization scheme replacing the
original base signal method. This was an important featured implemented in a
configurable way, it is presented in Section 7.5

DA - Data Augmentation was the last added feature based on the implementation of a
on set detection algorithm. The idea came from other machine learning methods
like neural networks, with proved results in classification systems. It allowed a
significant enlarge of the training data-set. It was explained in Section 7.3.

The introduction of new features led to new tests and new results, thus the var-
ious system implementations, were considered versions and were labeled according to
Table 7.1, in the same table is possible to see the main features of each version. Each
one of the system versions, along with tests and results produced at least one publica-
tion in international conferences or in journals. The fist implementation, CGP-1 was
the genesis of [Inácio et al., 2016]. This implementation as all the others was developed
with the CGP4Matlab toolbox [Miragaia et al., 2018], published latter after correc-
tions, optimizations and prepared for public use. The CGP-HM includes the harmonic
mask procedure as well as the cepstrum input, it was described in [Miragaia et al., 2020].
The CGP-HM2 is a improved version of the previous version, mainly in what concern
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to system parameters, it was published in [Miragaia et al., 2021b]. Finally, the CGP-
HM-DA, that includes all the features listed and achieves the most accurate results
[Miragaia et al., 2021a].

7.7.2 Validating the Proposed Methodology

The first goal is to validate the proposed methodology based on CGP for MPE of pi-
ano sound, using the last system version CGP-HM-DA. The idea is to prove that the
methodology works and is capable of infer classification.

A standard procedure for evaluating the performance of classification algorithms is
k-fold cross validation [Kohavi et al., 1995, Zhang and Yang, 2015]. The instances in a
data set are randomly divided into k disjoint folds with approximately equal size, and
every fold is in turn used to test the model induced from the other K-1 folds used for
training the model, Figure 7.8 shows a schematic illustration of the K-fold split process
with k = 5.

Figure 7.8: K-fold cross validation scheme with k = 5: (gray) all the data-set, (yellow)
folds used for training, (blue) folds used for test.

Cross-validation is a model validation technique for assessing how the results of a
statistical analysis will be able to generalize to a different dataset. It is mainly used in
settings where the goal is prediction or classification, and to estimate how accurately a
model will perform in practice. To validate the proposed model a 5 fold cross validation
method was used, each fold was built using 100 cases, corresponding to a 500 cases
dataset for 10 pitches classifiers, randomly chosen. For a specific classifier the dataset was
composed by 500 cases, 250 positive cases and 250 negative cases to be balanced in terms
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of positive and negative cases. All file cases were extracted from MAPS database, where
there are monophonic sounds (polyphony 1) and polyphonic sounds, from polyphony 2
to polyphony 6. All the chords were extracted from the RAND subset (random chords
subset) which contains random-pitched chords from C2 to B6 uniformly distributed. These
chords are composed by random notes without any music rules, like harmonicity and
musical consonance. Training the classifiers with random-pitched chords is an important
characteristic, because this way, the evolved classifiers will not be constrained to any kind
of music, like for example, western music neither constrained to any music rules.

Each of the 10 classifiers were trained using 4 folds an were tested with the remaining
fold, and the process was repeated for the 5 combinations (5 - splits) of 4 folds (Figure 7.8.
For each one of the training and test process were computed 10 runs. The k-fold cross val-
idation and the configurable parameters of our proposed CGP system used, are presented
in Table 7.2. The evolutionary process consisted of 10 runs with 10000 generations each,
using 200 positive and 200 negative cases for each split combination. The configuration
file with the entire parameter values is detailed in Appendix E.

Table 7.2: 5-fold cross validation parameters train/test

Parameter Value

K-folds 5
Data Augmentation 3
Positive Test Cases 250
Negative Test Cases 250
Frame Size 4096
Fitness Initial Threshold 1.5
Outputs 1
Rows 1
Columns 100
Levels Back 100
λ (E.S. 1+λ) 4
Mutation Probability 5%
Threshold Mutation Probability 10%
Harmonic Mask 2
Runs 10
Generations 10000

The k-fold cross validations experiments were conducted with the list of parameter
values expressed in Table 7.2. The individual encoding structure is the same used in the
first approach; were used one single row with 100 nodes. The “Harmonic Mask” value was
empirically set to 2: the CGP system is prepared to use harmonic mask since 1st harmonic
to the 5th. The “Data Augmentation” parameter is set to 3, which means that for each
initial sound file we generate 3 different ones with time translations forward and backward.
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The evolutionary process consisted of 10 runs with 10000 generations each, using the 5
folds dataset split for training and test; were conducted 5 evolutionary processes (train)
followed by a test stage, each train stage used 4 folds and was followed by a test stage using
the remain unused fold. The classifiers were evaluated using F-measure metric, Equation
6.13. The rest of the parameters remains equal to the previous experiments described
in Chapter 6, except the “threshold mutation probability”, the system is prepared to an
independent value of mutation probability with regard to the gene mutation probability,
thus it was set to a higher value 0.1 (10%). The graph depicted in Figure 7.9 shows the
5-fold cross validation results using precision, recall and F-measure. The mean value (µ)
for F-measure is 0.93 with 0.91 of precision and 0.93 of recall, these values have a standard
deviation (σ) 0.027, 0.025 and 0.025 respectively. These values prove that our CGP based
technique is able to learn and infer with a good accuracy rate.

Figure 7.9: Results of 5-fold cross validation for 10 classifiers, using 500 cases dataset,
half positive half negative. Precision (µ = 0.91, σ = 0.027) Recall (µ = 0.95, σ = 0.025)
and F-measure (µ = 0.93, σ = 0.025)

7.7.3 Classifiers Training

After demonstrating the quality of the machine learning based system with CGP using
the k-fold cross validation method for a set of classifiers, it is fundamental to prepare
a set of experiments to train all the system classifiers. Therefore, the training stage
includes training all of the 61 pitched based classifiers in a way to obtain the best possible
results for the testing stage. Thus, a complete training process was made for all the 61
different piano keys to evolve the 61 classifiers. Was used a bigger dataset for the training
process, composed of 600 cases of monophonic and polyphonic sounds extracted from
the same database used before. The CGP system parameters are identical to those in
Table 7.2, except the number of runs per classifier, which we increased to 20. Therefore,
each classifier uses a set of 600 cases, 300 positive case and 300 negative, to evolve during
10000 generations.
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Figure 7.10: Results of the overall training stage for 61 classifiers. Precision (µ = 0.92, σ =
0.029) Recall (µ = 0.97, σ = 0.026) and F-measure (µ = 0.93, σ = 0.024)

In Figure 7.10 the results obtained for the extensive experiment set are shown. The
mean F-measure calculated over all the 61 classifiers is 0.95 with σ = 0.024. These are
training results, so as usually we obtained higher values for all the 3 measures computed
when compared to test results of unseen data. Typically machine learning classification
models should have a bigger training set compared to the test set [Guyon et al., 1997], thus
it was important for the quality of the system to train with bigger data-sets however the
training process for this model with multiple classifiers has some limitations. It consumes
a large amount of time training and that time increases with the amount of cases used (1
run for 1 classifier with 500 cases takes 12 hours), so with the size of the training set. It
also requires balanced training sets which means equal number of positive and negative
test cases, and the MAPS database does not have that proportion. Although the training
stage used a dataset size smaller than the used latter in the test stage due to the resources
consumption limitations.

7.7.4 Testing

The cross validation process results gave an idea about the quality of the classifiers.
However, the important and comparable with other methods results are those obtained in
the test stage with a larger test set comparable with others. The experiments made during
the test stage, the classifiers evolved during the training stage were used, to identify the
presence of their corresponding pitches in polyphonic audio sounds. We measured the
quality of the classifiers by testing them with a different disjoint dataset: the test set.
The test set for each classifier consisted in 3,000 piano audio files of chords and single
notes extracted from the MAPS database [Emiya et al., 2010], corresponding to almost
5 minutes of music: 3,000 random pitched chords and single notes between C2 (65.406
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Hz) to C7 (2093.0 Hz), with polyphony levels ranging from 1 to 6 (includes monophonic
sounds). For each sound chord or single note, a 93ms frame located after the onset time
detected was extracted, sized with 4096. The test results are illustrated in Figure 7.11.

Figure 7.11: Results of the overall testing stage, for 61 classifiers. Precision (µ = 0.72, σ =
0.08) Recall (µ = 0.82, σ = 0.036) and F-measure (µ = 0.764, σ = 0.06)

The system based on the version CGP-HM-DA accomplished a final F-measure
value of 0.76 (76%). As expected, these are significant worst results, when compared
to the values obtained during the training stage, due to the ratio used for the datasets
construction because of the referred time and source consumption limitations. However,
they are very competitive in the MPE context when compared with other approaches
using the same evaluation metric and dataset as will be shown.

Besides the overall test results, a polyphony level experiment was also made. For that
purpose the F-measure for each polyphony, from 1 to 6, was also calculated during the
test process. The system returns F-measures values in percentage of 77%, 79%, 77%,
73%, 69% and 66% for polyphony3 1, 2, 3, 4, 5, and 6, respectively, Figure 7.12 shows
detailed results including precision and recall. The results depicted show that the CGP
system reaches higher F-measure values for polyphony 2 and 3, and then it decreases until
the polyphony 6, with a 13% gap between the highest and lowest polyphony F-measure
values. This progressive decrease is related with the number of notes analysed and with
the complexity of the problem.

3Polyphony 0 - corresponds to silence, easily detected by an analytic power spectrum analysis.
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Figure 7.12: Polyphony test results, from polyphony 1 (monophonic) to polyphony 6,
results for precision recall and F-measure

Another important issue is related to the piano variety in the database. The dataset
includes sounds from seven different pianos. Analysing the results by piano, we have about
4% standard deviation. This means that the system accuracy do not significantly depend
on piano differences, recording conditions nor on whether a real piano or a software-based
one is used, which suggests robustness for varying production conditions.

7.7.5 System Versions Test Results

In Chapter 6 the first implementation and approach to tackle the problem was introduced,
CGP-1, it was trained and tested in different dataset conditions, due to its aim and as a
starting point for the entire research. As mentioned before, previous versions and several
improvements have be made since our initial proposal, until this last version called CGP-
HM-DA. All the versions were trained and then tested under the same conditions and
the test results are expressed in Figure 7.13.
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Figure 7.13: CGP MPE system versions: From CGP-1,first approach, to CGP-HM-DA.
Results from 62.7% to 76.6%.

Table 7.3: versions results

Version Precision Recall F-measure

CGP-1 59.1 66.9 62.7
CGP-HM 66.2 78.6 71.8
CGP-HM2 67.2 79.9 73
CGP-HM-DA 72.1 82 76.6

Table 7.3 shows F-measure scores for the successive system versions. The improve-
ments and innovations developed, had a direct impact in the quality of the evaluation
of the proposed methodology. The starting point was the CGP-1 used and described
in [Inácio et al., 2016, Miragaia et al., 2018]. The cepstrum was added and the har-
monic mask was developed, CGP-HM in [Miragaia et al., 2020] leading to F-measure
of 71.8; later, some functions were added to the function-set and minor improvements
were made, related with parameter tuning, CGP-HM2 [Miragaia et al., 2021a], resulting
in better F-measure ≈ 73%. Finally, the training set was extended using a artificial
data augmentation process, CGP-HM-DA, producing the best results for this approach
[Miragaia et al., 2021b], which reach F-measure values over than 76%.

7.7.6 Comparing Score to Other MPE Methodologies

There is a lack of Evolutionary approaches on multi-pitch estimation problems in the
literature, specially using Genetic Programming. As far as it is public knowledge this
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methodology based on Cartegian Genetic Programing is unique. Besides, furthermore
its architecture with multiple independent classifiers its also peculiar in what concerns
to this problem. To make a precise score comparison were used 4 different state of the
art algorithms for MPE of piano sound. These were the algorithms that were tested
previously by Emiya [Emiya et al., 2009], in the same conditions as this proposal: MPE
for random chords using MAPS database including all the pianos, artificial and real.

Figure 7.14: F-measure results comparison in (%) with state of the art algorithms: Tolo-
nen, Tolonen-500, Emiya and Klapuri. Our proposal is referenced as CGP and it is the
last version of our algorithm, CGP-HM-DA

The 4 algorithms have been tested on the same database for comparison purpos-
esand the metric used is F-measure. The first one is Tolonen’s multipitch estimator
[Tolonen and Karjalainen, 2000]. As the performance of the algorithm decreases when
F0s are greater than 500Hz (C5), the system was additionally tested in restricted con-
ditions – denoted Tolonen-500 – by selecting from the database the subset of sounds
composed of notes between C2 and B4 only. The third is Emiya [Emiya et al., 2009]. The
fourth one is Klapuri’s system [Klapuri, 2003] that has acess to the code, and has been
upgraded later [Klapuri, 2008]. The overall results shown in Figure 7.14 demonstrate that
the proposed methodology reaches 76% in F-measure, being the third best in quality, only
behind Emiya with 80% and Klapuri with 82%. Tolonen reached 47% and Tolonen-500
61%. These results confirm the suitability of the technique employed. Moreover, as it
will shown later, this algorithm is able to go beyond piano and has some unique features
that stand out. It is important to highlight that there are more recent state of the art
algorithms with salient published results, like [Zhang et al., 2020]. However, these recent
algorithms were designed and prepared to perform automatic music transcription, most
of them based on deep learning methodologies, and they encapsulate the process of multi
pitch estimation. Moreover, those were trained and tested in different conditions and
thus, a fair comparison can not be made.
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7.7.7 White Box Optimization

Many Machine Learning algorithms proved to accomplish successfully their tasks. How-
ever, some of them feature “opacity”: they do not provide information about how do
they do perform their task in an analytic way. Thus, being labelled as black box. The
CPG multi-classifier system is completely transparent. It is known that each classifier is
composed by a graph of nodes where each node is essentially a mathematical function
from a defined function set. Thus, picking any evolved classifier, it is possible to decode
it and analyse its readable function graph or mathematical expression. This provides a
white box analysis. Using classifiers as white box has several advantages. Among them
two stand out: one is the possibility to learn from the classifiers obtained, by checking
what mathematical functions and inputs are used to make a classification; the second is
the possibility to optimize the classifier, tuning the constant values used by the encoded
functions.

Figure 7.15: Resulting graph after decoding the genotype of classifier 55. The rectangles
are functions from the function set, the circles are inputs and the bold one is the output.
In grey are the nodes that are not used to calculate the output due to the arity of some
functions.

Figure 7.15 shows one of the evolved classifiers, the classifier 55, which as a F-measure
of (95%). The decoded graph was obtained decoding the genotype of the classifier pre-
sented in Appendix F, besides the genotype it includes the list of active nodes and the
final value of the also evolved threshold. Looking at the depicted classifier, the output
is computed by a sum (last node) of the resulting expressions: one uses a Gauss filter of
two different normalizations of a cosine of I4 that is the angle of the DFT of the sound
signal; and the other branch of the graph uses two consecutive sines of the I3, which is the
radius of number of the DFT. Among all the functions, “SPGaussFilter” executes a sliding
window filtering process using a Gaussian function. This function uses a real parameter to
design the Gaussian filter. That parameter is the standard deviation (σ). So, a good start
to optimize this classifier could be tuning this real constant value. The evolved classifiers
are diverse as well as the functions used, although there are almost always functions that
uses one or two real parameters. The extended function set is detailed in Appendix-D.
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7.7.8 Reaching for the piano and beyond

The main task was to develop a multi-classifier system strong and precise, that could be
tested with piano music with accurate results. However it was also important that the
developed system was flexible enough to be easily extended to other instruments. After
the exhaustive study on MPE for piano music, it was decided to try the MPE of another
musical instrument. The study was extended to electric guitar. The idea was to make
a prof of concept, try to apply the CGP methodology used in piano sound in another
musical instrument. For the study on electric guitar sounds was used a dataset with
400 guitar chords and single notes extracted from guitar database, IDMT-SMT-GUITAR
[Kehling et al., 2014]. Seven different guitars in standard tuning were used with varying
pick-up settings and different string measures to ensure a sufficient diversification in the
field of electric guitars.

Figure 7.16: F-measure results for MPE on 2 different instruments, piano F-measure 76%
and for guitar it rises to 83%.

The procedure adopted was identical to the used for piano: a first stage for training
followed by a test stage for unseen data. The results depicted in Figure 7.16, show that
the F-measure for guitar reaches the 83%, which are even better than piano results. This
way, it is possible to state that the proposed multi-classifier system based CGP has the
ability to perform MPE for other musical instruments besides piano, with even better
results.

7.7.9 Discussion

To discuss the quality of the CGP proposal it is fundamental to look beyond the score
results, based on evaluation metrics. Besides the F-measure results, which have demon-
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strated the competitiveness of the approach not just for piano, there are a set of features
that should be considered when a machine learning technique must be selected for solving
a problem. Besides the accuracy, it is important to consider the time consumption, many
MPE systems denote poor time performance, therefore the real time feature is one im-
portant characteristic. It is also appreciated the capability to perform MPE on another
instruments, i.e. to have a system sufficiently generalized to act on another type of musical
instruments, the guitar is an example used. The opacity or transparency of the algorithm
is another key feature in machine learning approaches, systems with “white boxes” have
the ability to show their working process and allow optimization in a non experimental
dependent base. Some of these desirable features are summarized in Table 7.4.

Table 7.4: Algorithms main features

Algorithm Real-Time Guitar White Box Piano FM(%) Guitar FM(%)

Tolonem
√

x x 47% -
Tolonen-500

√
x x 61% -

CGP
√ √ √

76% 83%
Emiya x x x 80% -
Klapuri x x x 82% -

This CGP algorithm for MPE is unique in terms of the technique used to address the
problem we face. It is the first one which embodies Genetic Programming and a distinctive
architecture with multiple classifiers that can work independently and in parallel. As
far as it is possible to know, there is no other approach for this kind of problem with a
similar multi-classifier architecture. In fact, this architecture is highly parallelizable: since
the evolved classifiers are independent, they can run in parallel. This system has been
preliminary tested on a 8 core processor: the idea was distribute the classifiers across the
processor cores, and due to its parallelization capabilities, it works on real-time. Therefore,
as shown in the table, CGP-based approach is the one among the real-time techniques
that provides the best F-measure.

Without much effort the CGP system was extended to perform MPE on other instru-
ments with accurate results. We trained and tested our system for electric guitars and
we reached an outstanding 83% F-measure. This suggests that this is the only real-time
technique developed for piano that may be applied without changes to any instrument.
Although the tests have been only successfully conducted to guitar, it is expectable that
the results will be positive with other instruments, given that after piano, guitar is another
one with higher polyphony degree.

One of the most important features that stands out of the proposed system is the white
box method, that allows users and the community to study the solutions provided, by
avoiding opacity and allowing future improvements based on what we can learn. Again,
this is the only technique among the state of the art techniques featuring white-box
optimization. Summarizing, and as shown in Table 7.4, the CGP based system is the
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only one providing real-time approach, white-box optimization, easily extendable to other
instruments, competitive F-measure for piano music and outstanding F-measure values
for guitar music.

7.8 Summary

This chapter described all the improvements made to the CGP MPE system first imple-
mentation. Among them, the introduction of an Harmonic Mask and the development
of an onset detector which leaded to an implementation of a data augmentation process
stand up. The improvements were fundamental to increase in a significant way the system
accuracy. During this chapter it was also described the various system versions published
from CGP-1 to CGP-HM-DA. Finally the detailed set of tests made was explained
and a systematized. It was also presented and discussed a feature comparison with other
relevant methodologies for the same problem.
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Chapter 8

Conclusions and Future Work

The main goal of this dissertation consisted on a research process to apply Cartesian
Genetic Programming to the problem of Multi Pitch Estimation of piano notes. The
objective was to train 61 classifiers from C1 to C6 piano notes, that could identify their
presence in small time-frames of an audio piano signal. This was a process that started
with an idea of methodology, but without any tool to accomplish it. Therefore, the first
step was to develop a framework or a toolbox capable of addressing the Cartesian Genetic
Programming approach to Multi Pitch Estimation, unaware of the problem context. After
this first stage, some other small steps were made before tackling the MPE problem for
piano. After the development of the CGP4Matlab toolbox, a proof of concept was made
for a symbolic regression example of a polynomial mathematical function. The research
continued with 2 intermediate steps before the MPE for real audio polyphonic signals:
the application of CGP to signals artificially created by mathematical models; and the
application of CGP to real audio recordings of monophonic piano signals.

8.1 CGP Toolbox

Multi Pitch Estimation is a complex problem, therefore it was decided to make incremental
steps for addressing it. The first and fundamental step was to create, from scratch, a
toolbox to help with the codification of the algorithm. Therefore, the first step was
defined and it was necessary to choose the aim of the toolbox. Instead of creating a
toolbox specially designed for a specific problem, it was decided to create it generic enough
to be capable of encoding several different kinds of problems.

The need of a toolbox was clear for some reasons. First of all, there were no toolboxes
developed for Matlab for CGP, and it was important to use Matlab because of its singu-
larity and specialization on signal processing techniques. Then, we intended to perform
research on MPE problem, which includes many sub-problems, different experiments and
parameterisations performed with iterative steps, according to scientific method. With-
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out a toolbox it would take much more time and effort to conduct all the research, i.e
much repetitive and redundant code. Another important reason is structural: with the
toolbox it was possible to define which code code belongs to the CGP itself, and which
code belongs to the pitch estimation problem; this way it was possible to debug and
track all the evolutionary process as well as change and analyse in a easy way parameters
that modulate that evolution. Finally, with the toolbox developed and available, it was
possible to address other problems, particularly image processing and sound processing
problems in a more efficient and easier way.

Work with the toolbox is a very easy and intuitive process, it is just needed to provide
a small set of configurations, define the system program inputs, define the fitness function
and a path to the function-set location. The EA encoded is the 1+λ, and it is possible to
choose λ value. Settings such as the mutation probability, number of runs and generations
are configurable through a configuration text file. The cartesian representation of CGP
(grid of nodes) may assume multiple forms, because the number of rows, columns, levels-
back and program outputs are customizable. It is prepared to handle different type of
fitness functions: minimization of f(x) and maximization of f(x). It can receive multiple
program inputs, of any type. The toolbox is also prepared to receive parameters for each
node. Those parameters are encoded in the genotype and can also mutate. Furthermore, it
has a useful system of callbacks. This callback system lets us handle multiple events, such
as knowing when a new genotype was created, a new solution candidate was found or a run
ended. Each callback receives useful information about the event itself: genotype, active
nodes, fitness of the current candidate solution, and so on. In summary the CGP4MAtlab
toolbox revealed itself as a fundamental tool for the research process and was crucial to
achieve the system results and features detailed in this thesis.

8.2 Multi-Pitch Estimation

The preliminary stage of experiments consisted on applying the proposed methodology
to artificial signals created with mathematical models and with Gaussian noise addition.
Sine functions, square waves and sawtooth waves were used. All the evolved classifiers
for pitch estimation estimated all the correct fundamental pitches on true positive signals
and correctly identified all the true negative cases. It was very promising and a strong
starting point for further steps. Then, the system was designed and evolved for real piano
polyphonic signals, leading to the first tested version CGP-1, which presented the first
published results. This required a new set of parameters as the implementation of a new
real signal functions for the new function set. This first set of results was the basis for the
rest of the research, and the results had room to increase, with some innovations. The use
of the Harmonic Mask, the extended function set, the use of an additional input based on
cepstrum as well as the use of an independent higher mutation probability for the fitness
threshold contributed for two more version with published results, named CGP-HM and
CGP-HM2 respectively. Finally, we proposed the most recent version of the multi-pitch
estimation system for piano music based on Cartesian Genetic Programming using an
harmonic mask and improved with a data augmentation process for a better training
stage. An onset detection analytic system was also introduced to aid the working process.
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The last version’s results were compiled, as well as the methodology used, and were also
published.

The main disadvantage of our proposal is the fact that it requires evolving the 61
classifiers, so that the system is able to employ those classifiers to perform the MPE, and
the training (evolutionary) process takes time: each single classifier takes one day to train
(10 runs). However, our technique produces competitive results for any kind of piano
sounds without the need of harmony rules for chords construction. This way, it is more
generalized and works with random notes, which could be of interest for contemporary
music. Moreover, we have also shown that the methodology can be applied without
changes to other polyphonic instruments, such as guitar.

The CGP-HM-DA approach based on a graphs of nodes with functions extracted
from a dataset can be easily decoded once the classifiers have been evolved for a given
instrument: the classifiers are made up of mathematical expressions with inputs, internal
functions and outputs, which provides “white box” optimization.

Results are shown and compared with state of the art algorithms and we demonstrate
the feasibility of the approach: the technique is the only one providing simultaneously (i)
competitive results (F-measure) together with (ii) real-time capabilities thanks to their
intrinsic parallel nature; (iii) white-box optimization; (iv) and can be directly applied to
other polyphonic instruments with outstanding results (F-measure).

8.3 Future Work

We consider that this thesis enables a small step in the world of Multi Pitch Estima-
tion, introducing a new technique in the field of Evolutionary algorithms – the Cartesian
Genetic Programming –, but more can be done. Future work may include some of the
following items:

• Preparing the toolbox for recent developments in the field of CGP, such as “Crossover”
and Modular CGP.

• Prepare the toolbox for GPU Parallel Processing, as GPUs offer significant speed
boost at a time when the CPU performance increase has slowed down over the past
few years. This feature is important in the field of Data Science, which involves
processing very large datasets (in the form of matrices/vectors) efficiently. The
SIMD design, or Single Instruction/Multiple Data, means that GPU computing can
process multiple data with a single instruction, as is the case for matrix.

• In the proposed system we used five different inputs using FFT and cepstrum,
add more program inputs using another type of transforms such as “Constant-Q
transform” increases the inputs variety for a better training stage.
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• The extension of the function set can also be of interest; there are several numeric
functions for peak detection or for filtering processes that may be useful and add
variety to the function set.

• Another suggestion would be experiment different binarization methods; we only
used the output signal interception with a Mask, associated to a threshold process,
however another similarity methods can be used, such as Correlation, or distance
between vectors.

• Future work will focus on demonstrating the capabilities of the proposed system on
other types of pitched instruments, namely: woodwind and string ensemble.

• It will be interesting with the aid of more computational power to use different and
larger grids of nodes for the CGP system; it would allow more complex and longer
chains of mathematical functions.

• Also, with the increase of computational resources, the classifiers should be trained
with huge data-sets in a similar way to deep learning processes; bigger datasets have
more variety of cases and usually allow system to train mpre adequately.

• Use this MPE approach to built a more generic automatic music transcription sys-
tem.

It is fair to state that this dissertation is a valid contribution to the study of the Multi
Pitch Estimation problem, suggesting one more valid and innovating technique to the
existing ones.
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Appendix B

Symbolic regression Example

Symbolic regression using CGP4Matlab toolbox for the polynomial function:

y(x) = x6 − 2(x4) + x2. (B.1)

B.1 Configuration

The method for instantiating a new CGP application is by referencing the toolbox cg-
ptoolbox and the CGP class. Listing B.1 illustrates one possible configuration, and
instantiation of the CGP Class:

Listing B.1: Example of initializing the CGP Class.
% create a configuration struct
configuration = struct(

’rows’, 1, ...
’columns’, 10, ...
’levels_back’, 10, ...
’output_type’, ’random’, ...
’runs’, 100, ...
’outputs’, 1, ...
’generations’, 8000, ...
’offspring’, 9, ...
’mutation’, 0.02, ...
’fitness_solution’, 0.01, ...
’fitness_operator’, ’<=’ ...

);

% initialize a CGP instance with a custom configuration
cgp = cgptoolbox.CGP(configuration);
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B.2 Inputs

Since we are trying to solve a symbolic regression problem, we will create 50 points,
between −1 and 1, with Equation 5.1. Those points will constitute the program input
(see Listing B.2).

Listing B.2: Example of adding inputs to the CGP.
% initialize CGP instance
cgp = cgptoolbox.CGP(configuration);

% create 50 points of x^6 - 2*(x^4) + x^2, between -1 and 1.
a = zeros(1, 50);
b = zeros(1, 50);
index = 1;
for x = -1:2/50:1

a(index) = x^6 - 2*(x^4) + x^2;
b(index) = x;
index = index + 1;

end

% add program inputs
cgp.addInputs( ...

struct( ...
’points’, struct(’x’, b, ’y’, a) ...

) ...
);

B.3 Parameters

The following listing shows how to add two parameters to the genotype.

This example will not be used in the symbolic regression problem, because there is no
need for additional parameters in the genotype in that case.

Listing B.3: Example of adding two parameteres to the genotype.
% initialize CGP instance
cgp = cgptoolbox.CGP(configuration);

% add the parameters to the genotype
cgp.addParameters(

struct(
’name’, ’some-parameter’,
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’initialize’, @()rand(),
’mutate’, @(x) x + rand()

),
struct(

’name’, ’constant’,
’initialize’, @()randi([-10, 10]),
’mutate’, @mutateParameter

)
);

These parameters will be encoded in the genotype and share the mutation probability
with the rest of the genotype’s genes. Listing B.4 shows a possible mutation function for
a parameter.

Listing B.4: Example of one function that doubles the parameter value at every mutation.
function newValue = mutateParameter(parameter)

% mutate the old parameter value to a new one
newValue = parameter * 2;

end

B.4 Function Set

All the functions from the function-set should be under the same directory. The path to
this directory is passed to the CGP’s public method addFunctionsFromPath (see Listing
B.5).

Listing B.5: Example of adding the path to the function-set.
% initialize CGP instance
cgp = cgptoolbox.CGP(configuration);

% set the directory of the function-set
cgp.addFunctionsFromPath(’./my-path/function-set/’)

Listing B.6 lists four functions used for the symbolic regression problem. Each function
is in a separated file, under ’./my-path/function-set/’.
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B.5. FITNESS FUNCTION

Listing B.6: Example of four functions that receive two inputs and do some action with
those.
% function that sums the first and second input
function result = Sum(x, y)

result = plus(x, y);
end

% function that subtracts the first and second input
function result = Subtract(x, y)

result = x - y;
end

% function that divides the first and second input
function result = Divide(x, y)

if y == 0
result = x;

else
result = x / y;

end
end

% function that multiplies the first and second input
function result = Times(x, y)

result = x * y;
end

B.5 Fitness Function

The fitness function is provided by callback, which means that we pass the reference of this
function to the toolbox. The public method for this is addFitnessFunction (see Listing
B.7).

Listing B.7: Example of passing the Fitness function to the program.
% initialize a CGP instance with a custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the fitness function as reference
cgp.addFitnessFunction(@myFitnessFunction);

The fitness function receives a struct with a series of fields that help with the decod-
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ification of the phenotype (see Section ??). The fitness function should return a double
or integer for the fitness value. Listing B.8 shows how to decode a phenotype from the
symbolic regression problem, step by step. The goal of the symbolic regression fitness
function is to minimize the difference between the output of a candidate program and the
required output. The fitness (f) is computed by applying the absolute sum of the errors:

f =
50∑
t=1

|et|. (B.2)

The lower the fitness, the lower the error and the better this candidate solution.

Listing B.8: Example of a fitness function.
function score = fitness(args)

score = 0.0;
values = zeros(1, args.config.sizes.nodes);

% for each data point or test case
for j = 1:50

values(1) = args.programInputs.points.x(j);

% iterate through active nodes
for i = args.config.sizes.inputs + 1:size(args.activeNodes, 2)

% get current active node that we want to decode
currentActiveNode = args.activeNodes(i);

% get the gene that points to the function-gene of the active node
functionGeneOfActiveNode =

args.config.structure.functionGenes(currentActiveNode);

% get the function gene of the active node
currentFunctionGene = args.genes(functionGeneOfActiveNode);

% get the genes index
geneFirstConnection =

args.config.structure.connectionGenes{1}(currentActiveNode);
geneSecondConnection =

args.config.structure.connectionGenes{2}(currentActiveNode);

% get the nodes index
nodeFirstConnection = args.genes(geneFirstConnection);
nodeSecondConnection = args.genes(geneSecondConnection);

% get the values of the connections
firstConnection = values(nodeFirstConnection);
secondConnection = values(nodeSecondConnection);
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% call the function which index is given by currentFunctionGene
values(currentActiveNode) =

args.functionSet{currentFunctionGene}(firstConnection,
secondConnection);

end

% compute the sum of squared error
score = score + abs(values(args.activeNodes(end)) -

args.programInputs.points.y(j));
end

end

If the genotype is encoded with parameters, those are very easy to extract. Consider
the node connection inputs as ci, the number of parameters as np and the number of genes
per node as g. If ci = 2 and np = 2, then g = 5: one gene for the function gene, two genes
for the node’s connection inputs, and two additional genes for the parameters. To recall,
the genotype is a sequence of numbers, the genes composing the nodes and the program
outputs. Each node starts with the function gene, then the connection inputs and lastly
are the parameters. So, if the user wants to extract the parameters relative to node 2,
all it needs is to address the last genes from the node. Listing B.9 is the continuation of
Listing B.8, extended to decode the parameters from the genotype and pass them to each
function call. The functions from the function-set should know which parameters to use
and which to ignore.

Listing B.9: Example of decoding the parameters of the current node.
for i = args.config.sizes.inputs + 1:size(args.activeNodes, 2)

% decode the firstConnection and secondConnection
...

% find how many genes per node
genesPerNode = 3 + args.config.sizes.parameters;

% genes of the active node
lastParameter = currentActiveNode * genesPerNode;

% gene of the first parameter
firstParameter = lastParameter - args.config.sizes.parameters + 1;

% get all parameter genes
allParameters = firstParameter:lastParameter;

% get the value of each parameter
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for k = 1:size(allParameters, 2)
parameters(k) = args.genes(allParameters(k));

end

% pass the parameters to the functions
values(currentActiveNode) =

args.functionSet{currentFunctionGene}(firstConnection, secondConnection,
parameters);

end

B.6 Callbacks

All callbacks receive a struct object with specific properties, relevant to each event.

B.6.1 Generation Ended

After running a generation, the callback GENERATION_ENDED is fired. This is very
useful for knowing the genes present or the fitness value at each generation. The call-
back accepts a structure with a few fields, such as the current generation and the fitness
value. In Listing B.10, the function will print to the output window the generations and
corresponding fitness.

Listing B.10: Example of passing the GENERATION_ENDED callback function to the
program.
function myGenerationCallback(args)

% print current generation and fitness
fprintf(’%d - %.16f\n’, args.generation, args.fitness);

end

% initialize a CGP instance with some custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference
cgp.addCallbacks(struct(

’GENERATION_ENDED’, @myGenerationCallback
));
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B.6.2 Run Ended

At the end of a run, the callback RUN_ENDED is fired. This is very useful for knowning
the fitness value of each run. The callback accepts a structure with a few fields, such as
the current run. In Listing B.11, the function will print to the output window the run
that is currently being processed.

Listing B.11: Example of passing the RUN_ENDED callback function to the program.
function myRunCallback(args)

% print current run
fprintf(’run: %d\n’, args.run);

end

% initialize a CGP instance with some custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference
cgp.addCallbacks(struct(

’RUN_ENDED’, @myRunCallback
));

B.6.3 New Solution In Generation

When a new solution is generated a NEW_SOLUTION_IN_GENERATION event is
fired. This is useful to know exactly which offspring is being evaluated at each time.
The callback accepts a structure with a few fields, such as the current fitness and current
offspring. In Listing B.12, the function will print to the output window the offspring that
is currently being processed.

Listing B.12: Example of passing the NEW_SOLUTION_IN_GENERATION callback
function to the program.
function myNewSolutionCallback(args)

% print current offspring
fprintf(’current offspring: %d\n’, args.offspringIndex);

end

% initialize a CGP instance with some custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference
cgp.addCallbacks(struct(

’NEW_SOLUTION_IN_GENERATION’, @myNewSolutionCallback
));
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B.6.4 Genotype Mutated

Everytime a solution is created and the genotype is mutated, a GENOTYPE_MUTATED
event is fired. This event is useful in order to know which genes were mutated. The
callback accepts a structure with three fields: genes before mutation, genes after mutation
and index of the mutated genes. Example B.13 shows a function that prints the mutated
genes.

Listing B.13: Example of writing to a file the genes before and after mutation.
function genotypeMutatedCallback(args)

% open a file and store in someFileHandler variable
before = args.genesBeforeMutation(args.genesMutated);
after = args.genesAfterMutation(args.genesMutated);
dlmwrite(someFileHandler, [args.genesMutated(:), before(:), after(:)],

’-append’);
end

B.6.5 Fittest Solution Found In A Run

When a new solution is better then a previous achieved one, the FITTEST_SOLUTION
event is fired. The callback accepts a structure with a few fields, such as the current
fitness and current run. Example B.14 prints to the output window all the runs that
obtained a better candidate solution.

Listing B.14: Example of passing the FITTEST_GENERATION callback function to the
program.
function myFittestSolutionCallback(args)

% print current generation and fitness
fprintf(’new fittest solution at run: %d \n’, args.run);

end

% initialize a CGP instance with some custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference
cgp.addCallbacks(struct(

’FITTEST_SOLUTION’, @myFittestSolutionCallback
));
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B.6.6 Fittest Solution Of A Generation

When iterating through the offspring, if a solution is better than the previous one,
the event FITTEST_SOLUTION_OF_GENERATION is fired. The callback accepts
a structure with a few fields, such as the current fitness and current offspring. Example
B.15 prints to the output window the new fittest offspring index.

Listing B.15: Example of passing the FITTEST_SOLUTION_OF_GENERATION call-
back function to the program.
function myFittestSolutionOfGenerationCallback(args)

fprintf(’new fittest offspring: %d \n’, args.offspringIndex);
end

% initialize a CGP instance with some custom configuration
cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference
cgp.addCallbacks(struct(

’FITTEST_SOLUTION_OF_GENERATION’, @myFittestSolutionOfGenerationCallback
));

172



Appendix C

Test results for first approach
(CGP-1)

All the classifiers were tested after the evolutionary process with chords and isolate notes
not previously used in the training stage. Table C.1 shows the detailed results for 61
classifiers. From classifier pitch number 36 to 96. Evaluation process using F-measure for
the test cases: tp True positives, tn True negatives, fp False positives, fn False negatives.
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Table C.1: Test results for (CGP-1) of 61 classifiers

classifier tp tn fp fn F-measure

36 5 140 4 0 0.714

37 5 121 23 0 0.303

38 5 140 4 0 0.714

39 5 113 31 0 0.244

40 4 130 14 1 0.348

41 4 138 6 1 0.533

42 4 124 20 1 0.276

43 4 138 6 1 0.533

44 5 112 32 0 0.238

45 5 135 9 0 0.526

46 3 138 6 2 0.429

47 4 119 25 1 0.235

48 5 135 9 0 0.526

49 5 136 8 0 0.556

50 5 140 4 0 0.714

51 5 127 17 0 0.370

52 5 138 6 0 0.625

53 5 141 3 0 0.769

54 5 128 16 0 0.385

55 5 138 6 0 0.625

56 5 128 16 0 0.385

57 5 139 5 0 0.667

58 5 139 5 0 0.667

59 5 137 7 0 0.588

60 5 142 2 0 0.833

61 4 142 2 1 0.727

62 4 143 1 1 0.800

63 4 144 0 1 0.889

64 5 138 6 0 0.625

65 5 141 3 0 0.769

66 5 139 5 0 0.667

67 5 141 3 0 0.769

68 5 140 4 0 0.714

69 5 141 3 0 0.769

70 5 142 2 0 0.833

71 5 141 3 0 0.769

72 5 142 2 0 0.833

73 5 140 3 0 0.769

74 4 142 2 1 0.727

75 4 142 2 1 0.727

76 5 139 5 0 0.667

77 4 142 2 1 0.727

78 4 140 4 1 0.615

79 5 140 4 0 0.714

80 4 140 4 1 0.615

81 5 143 1 0 0.909

82 5 144 0 0 1.000

83 5 142 2 0 0.833

84 5 145 2 0 0.833

85 5 144 3 0 0.769

86 5 146 1 0 0.909

87 5 141 3 0 0.769

88 5 142 2 0 0.833

89 5 142 2 0 0.833

90 5 143 1 0 0.909

91 4 144 0 1 0.889

92 5 143 1 0 0.909

93 5 140 3 0 0.769

94 5 141 3 0 0.769

95 5 143 2 0 0.833

96 5 141 3 0 0.769
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Appendix D

Extended Function Set

List of all the 27 functions that make up the Function-set, trough a look up table.
function indices starts in 1 to 27. There are function with arity 1, use only one input
argument, and functions that use 2 input arguments, arity 2.
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Table D.1: Function set lookup table

Index Function Description

1 SPAbs Absolute value
2 SPBPGaussFilter Band pass Gaussian filter
3 SPCceps Cepstrum transform
4 SPConvolution Convolution
5 SPCos Cosine
6 SPDivide Point to point Division
7 SPEnvelopeHilbert Hilbert envelope
8 SPFFT Absolute value of the DFT
9 SPGaussfilter Gaussian filter
10 SPHighPassFilter High pass filter
11 SPIFFT Absolute value of Inverst DFT
12 SPLog Natural logarithm
13 SPLog10 Common logarithm
14 SPLowPassFilter Low pass filter
15 SPMedFilter Median filter
16 SPMod Remainder after division
17 SPMulConst Multiplication by constant
18 SPNormalizeMax Normalization maximum
19 SPNormalizeSum Normalization sum
20 SPPeaks Find peaks
21 SPPowe Power
22 SPSin Sine
23 SPSubtract Subtraction
24 SPSum Sum
25 SPSumConst Sum with a constant
26 SPThreshold Tresholding
27 SPTimes Multiplication
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Appendix E

Configuration file for k-fold cross
validation

Listing E.1: k-fold configuration config.txt
[signal]
sampling_frequency=44100
samples=4096
threshold=1.5
type=record
triangular_signal=0 0.5 1 0.5 0
triangular_signal_2=0 0.2 0.3 0.2 0
function_set=transcription/function-set
fitness_function=fmeasure
interval_standard_deviation=0.3
constant_standard_deviation=3
fft_samples=half
second_harmonic=1
test_cases=500
threshold_increment=0.01
polyphony=chords
inputs=real,imag,abs,angle,cceps

[cgp]
rows=1
columns=100
levels_back=100
output_type=last
outputs=1
generations=10000
runs=10
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offspring=4
mutation=0.05
threshold_mutation=0.1
fitness_solution=1
fitness_operator=>=

[report]
generation_frequency=500
callbacks=CONFIGURATION,RUN_ENDED,FITTEST_SOLUTION,GENERATION_ENDED,
NEW_SOLUTION_IN_GENERATION,FITTEST_SOLUTION_OF_GENERATION,FIGURES
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Appendix F

Classifier 55 decoded example

Listing F.1: node genotype decoded
generation:10000
fitness:0.9523809523809523
threshold:1.2874124589452547
true positives:370
true negatives:367
false positives:20
false negatives:17

Node Index1 = input (1)
Node Index2 = input (2)
Node Index3 = input (3)
Node Index4 = input (4)
Node Index5 = input (5)
Computational Node 1 = SPLog ( 2 , 1 )
Computational Node 2 = SPSumConst ( 3 , 1 )
Computational Node 5 = SPSin ( 3 , 2 )
Computational Node 6 = SPTimes ( 5 , 5 )
Computational Node 8 = SPPeaks ( 4 , 7 )
Computational Node 11 = SPCos ( 4 , 1 )
Computational Node 12 = SPCceps ( 5 , 6 )
Computational Node 14 = SPConvolution ( 7 , 11 )
Computational Node 18 = SPNormalizeSum ( 16 , 13 )
Computational Node 19 = SPSin ( 10 , 1 )
Computational Node 20 = SPSumConst ( 3 , 13 )
Computational Node 46 = SPTimes ( 17 , 13 )
Computational Node 49 = SPNormalizeMax ( 23 , 25 )
Computational Node 67 = SPSumConst ( 54 , 51 )
Computational Node 90 = SPGaussfilter ( 72 , 19 )
Computational Node 100 = SPSum ( 95 , 24 )

179



active: 1.000000, 2.000000, 3.000000, 4.000000, 5.000000, 6.000000, 7.000000,
10.000000, 11.000000, 13.000000, 16.000000, 17.000000, 19.000000,
23.000000, 24.000000, 25.000000, 51.000000, 54.000000, 72.000000,
95.000000, 105.000000,
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