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Abstract: Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed
field k presented by its quiver Q with relations I. A fundamental problem in the repre-
sentation theory of algebras is to decide whether or not A is of tame or wild type. In this
paper we consider triangular algebras A whose quiver @ has no oriented paths. We say that
A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose
support contains all extreme vertices of Q. We prove that if A is an essentially sincere
strongly simply connected algebra with weakly non-negative Tits form and not accepting
a convex subcategory which is either representation-infinite tilted algebra of type Ep or a
tubular algebra, then A is of polynomial growth (hence of tame type).
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Let A be a finite dimensional algebra (associative with unity) over an
algebraically closed field k. We may assume that A has a presentation A =2
kQ/I where kQ is the path algebra of the Gabriel quiver Q = Q4 of A and I
is an admissible ideal of £Q. Equivalently, A = kQ/I may be considered as a
k-category with objects the vertices of @ and the space of morphism A(z,y)
from z to y as the quotient of the space kQ(x,y), generated by the paths
from z to y, by the subspace I(x,y) = kQ(z,y) N I. We denote by mod A the
category of finite dimensional right A-modules. For basic background from
representation theory of algebras we refer to [1, 4, 22, 23, 24].

From Drozd’s Tame and Wild Dichotomy Theorem [10], algebras may be
divided into two disjoint classes: the tame algebras for which indecomposable
modules in each dimension occur (up to isomorphism) in a finite number of
one-parametric families, and the wild algebras for which the representation
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theory comprises the representation theories of all algebras. One central ques-
tion in the modern representation theory of algebras is the determination of
the representation type.

Let A = kQ/I be a triangular algebra, that is, Q has no oriented cycles.
The Tits form q4 : Z2 — Z is the quadratic form defined by

qav) =Y 0(i)* =Y (i) + ZT(M)W)U(]’),

i€Qo i—j

where 7(7, j) is the cardinality of RN I(7,7) for a minimal set of generators
R c JI(i,j) of I. The Tits form plays an important role in the problem of
i,

deternjlining the representation type of A. Indeed, if A is representation-finite
(that is, A accepts, up to isomorphism, only finitely many indecomposable
modules), then g4 is weakly positive, that is, g4(v) > 0 for 0 # v € N@ [5].
More generally, if A is tame, then g4 is weakly non-negative, that is, ga(v) > 0
for v € N@0 [15]. The converse implications have been shown for important
families of algebras, satisfying some rigidity conditions (see for example [5, 6]),
or algebras of small homological dimensions [3, 9, 11, 12, 15, 21, 28].

A throughly studied class of tame algebras are the strongly simply con-
nected algebras. We recall that A is said to be strongly simply connected if,
for every convex subcategory B of A, the first Hochschild cohomology group
H'(B) vanishes, [26]. The modules over polynomial growth strongly simply
connected algebras have been completely described [27] (see also [13] and [16])
and the critical tame strongly simply connected algebras of non-polynomial
type have been classified [14]. It is a long standing conjecture that a strongly
simply connected algebra A is tame if and only if g4 is weakly non-negative.
The present paper answers positively the conjecture in a special case, gener-
alizing previous results by the authors [17, 19]. This special case is shown to
be essential for the solution of the conjecture as presented in [7].

We say that a strongly simply connected algebra A = kQ/I is essentially
sincere if there is an indecomposable (finite dimensional) A-module X whose
support supp X = {i € Qo : X (i) # 0} contains all extreme vertices (sinks
and sources) of ). Observe that a strongly simply connected algebra A is tame
if and only if every convex subcategory B of A which is essentially sincere is
tame. The main result of the paper is the following:

THEOREM. Let A be a triangular algebra satisfying the following condi-
tions:

(a) A is essentially sincere strongly simply connected;
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(b) qa is weakly non-negative;
(¢) A contains a convex subcategory which Is either representation-infinite
tilted algebra of type E, (p =6, 7 or 8) or a tubular algebra.

Then A is either a tilted algebra or a coil algebra. In particular, A is of
polynomial growth, hence it is tame.

The paper is organized as follows. In Section 1 we present some remarks
on essentially present modules, that is, indecomposable modules X such that
supp X contains all the extreme vertices of the quiver of the algebra. In
Section 2 we recall concepts and results needed for the proof of the Theorem.
The proof presented in Section 3 depends heavely on the arguments given in
[17, 19].

1. ESSENTIALLY PRESENT MODULES

1.1. Let A = kQ/I be a finite dimensional k-algebra. For each vertex
1 € QQp, we denote by e; the corresponding primitive idempotent of A, hence
P; = ¢;A is the projective cover of the simple module S; = e;A/e;rad A and
I; = DAe; the injective envelope of S;. By D = Homy(—, k) we denote the
usual duality on mod A.

For a module X € mod A, i € supp X if Homy4(P;, X)# 0 (equivalently,
Hom (X, I;)# 0). We say that X is omnipresent (resp. essentially present )
if supp X = Qo (resp. each source or sink in @ belongs to supp X). Clearly,
X is essentially present if and only if for every simple projective A-module S
we have Hom 4 (.S, X') # 0 and for every simple injective A-module 7" we have
Homy (X, T) # 0.

We consider the Grothendieck group Ko(A4) = Z% and the classes dim X
= (dimy X (©))ieq, of modules X € mod A. We recall that the homological
form defined by Ringel [22] for algebras A of finite global dimension is given
by

(dim X,dimY) 4 =Y (—1)° dimy, Ext (X, Y).
s=0

1.2. We denote by I" 4 the Auslander-Reiten quiver of A with translation
74 = DTr. By a component of I'4 we mean a connected component. The
structure of preprojective, preinjective and tubular components may be seen
in [1, 22, 23, 24]. A path in mod A is a sequence Xy — X; — -+ — X; of
non-zero non-isomorphisms between indecomposable A-modules; it is a cycle
if Xy and Xy are isomorphic.
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We say that an indecomposable A-module X is directing if it does not
belong any cycle in mod A.

Given a component C of I' 4 we say that C is convex in mod A if any path
Xo — X1 — -+ — X; in mod A with extremes Xy and X; in C, has all
X, € C, i =1,...,t —1. We shall consider also the support suppC :=

J supp X of C.
XeC

PROPOSITION. Let A = kQ/I be a triangular algebra and let X be an
essentially present indecomposable A-module in a component C of T 4.

(a) If i € Qo \ supp X, then there is a cycle in mod A passing through X
and S;.
(b) IfC is convex in mod A, then suppC = Q.

Proof. (Following [5]) (a) Assume i ¢ () \ supp X. Since X is essentially
present and A is triangular, there is a path + of the form ig — iy — -+ — 5
in @ with ig,is € supp X and iy,...,is—1 ¢ supp X with ¢ = 4; for some
1 <t<s—1. Let A be the quotient of A by all paths z — y b, 5 with
exactly one arrow in . Then there is a cycle in mod A

X—>Iis—>513—><lzl> — Siy & <Zl> — S, = Py — X
s 2

where P, (resp. I) denotes the indecomposable projective (resp. injective) A-
module associated to x and ( Zj ) is the indecomposable module of dimension

two with socle S, and top S,.
(b) Since X € C, by (a), for every i ¢ Qo \ supp X, the simple module S;
belongs to C. Hence suppC = Qqo. |

1.3. We recall that an algebra A is tame [10] if, for each d € N, there
is a finite number of k[t] — A-bimodules M;, 1 < i < ng, which are finitely
generated free as left k[t]-modules and such that all but finitely many isoclasses
of indecomposable A-modules of dimension d are of the form k[t]/(t—X)® 1 M;
for some i and some \ € k. Let pua(d) be the minimal ng in the definition.
Then A is said to be of polynomial growth [25] if there is a number m such
that pa(d) < d™ for every d > 1.

The following proposition on the behaviour of the Auslander-Reiten com-
ponents of strongly simply connected algebras of polynomial growth has been
proved in [27, Theorem 4.1].



ALGEBRAS WITH WEAKLY NON-NEGATIVE TITS FORM 71

PROPOSITION. Let A be a strongly simply connected algebra of polynomial
growth. Then every component of T'4 is convex in mod A.

1.4. A useful construction is the one-point extension B[M] of an algebra
B by a B-module M, given as the matrix algebra
_(k Mp
o= (5 .
One-point coextensions [M]B are defined dually. The following extension

of a result in [17] yields necessary conditions for an algebra to be essentially
sincere.

SPLITTING LEMMA. Let A be a triangular algebra and B = By, By, ...,
B, = A a family of convex subcategories of A such that, for each 0 < i < s
with B;+1 = B;[M;] or B;+1 = [M;]|B; for some indecomposable B;-module M;.
Assume that the category of indecomposable B-modules admits a splitting
ind B="PV J, where P and J are full subcategories of ind B satisfying the
following conditions:

(S1) Homp(J,P) = 0;

(S2) for each i such that Bijy1 = B;[M;], the restriction M;p belongs to
add J;

(S3) for each i such that B;11 = [M;]B;, M; g belongs to add P;

(S4) there is an index i with B;11 = B;[M;] and M; € J and an index j with
Bj+1 = [MJ]BJ and Mj eP.

Then A is not essentially sincere.

Proof. Let x1,...,x, (resp. y1,...,y:) be those vertices at the quiver @ of
A being sources (resp. targets) or arrows with target (resp. source) in B. For
each 7, denote by Bz-+ the maximal convex subcategory of B; not containing
any yi,...,Y: (resp. x1,...,x.). Let P; (resp. J;) be the full subcategory
of ind B (resp. of ind B;") consisting of modules X such that X|p € add P;
(resp. X|p € add J;). We claim that ind B; = P; V J; and Homp, (7;, P;) = 0.
The proof of the claim follows by induction as in [17, page 1022].

We get that ind A = Py V Js with Hom4(Js, Ps) = 0, Ps consists of By -
modules and J; consists of B;-modules. Moreover, by (S4), B # B and
B # B;. Let X € Ps and let y be a sink in @) which is a successor of y;.
Since B is convex in A, then y is not in B, hence X(y) = 0. That is, X
is not essentially present. Similarly, any module Y € J; is not essentially
present. We conclude that A is not essentially sincere. 1
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Observe that, for a strongly simply connected algebra A and a convex
subcategory B of A, there exists a chain B = By, By,...,Bs = A of con-
vex subcategories of A such that B;11 = B;[M;] or Bi11 = [M;]B; for some
indecomposable B;-module M; (see [17, Proposition 2.2]).

1.5. The following are typical examples of strongly simply connected al-
gebras A and essentially present (not omnipresent) indecomposable A-modules
X. (We indicate, the relations in A by dotted edges: given i — — j, the sum
of all paths from i to j in @ is zero).

(1) . k
o/\ ° / (o) © k
‘ | . %
: ° X k2
\/ \‘ 0 “kk
| (0,1)
° \k
Dol At LR
SN e
N N Q) 1
4 . /I | .\. X 0 k4\\G)
\.é. :/ k_(10 i k2
o 0 e ~ K2 .
k/'/(l,l) 1\]€2

We note that, in the first case, A is a tame concealed algebra, and hence
is of polynomial growth.

On the other hand, in the second case, A is a tame algebra of non-
polynomial growth and there is an infinite family of pairwise nonisomorphic
indecomposable A-modules (Y))er with dimY) = dim X.

PROPOSITION. Let A be a strongly simply connected algebra. Assume
v € N9 js an essentially present vector which is not omnipresent and such that
there exists an infinite family (Y ) of pairwise nonisomorphic indecomposable
A-modules with dim Yy = v. Then A is not of polynomial growth.
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Proof. Assume that A is tame of polynomial growth. Since A is tame, by
a result of Crawley-Boevey [8], some module Y in the family (Y))) satisfies
74Y 2Y, and hence lies in a stable tube C of rank one in I'4. Further, since A
is of polynomial growth, applying 1.3, we conclude that C is convex in mod A.
Hence, applying 1.2, we obtain suppC = ). Finally, since every module
X € C has dim X = gv for certain rational number ¢ > 0, we conclude that
the vector v is omnipresent, a contradiction. [

2. ALGEBRAS OF POLYNOMIAL GROWTH

2.1. Let C be a tame concealed algebra, that is, A = Endg(7T) for a
preprojective tilting module T over a tame hereditary algebra H, and let
(7)) acp, (k) be the unique family of stable tubes in I'c. Let E = (E1,..., Es)
be a sequence of pairwise non-isomorphic C-modules which are simple among
the regular modules and a family K = (K7y,..., Ks) of branches. In [22], the
tubular extension B = C[E, K|(= C[E;, K;];_,) is defined and has tubular
type np = (ny)x with ny =rank7) + >  |K;|. Since almost all ny =1, we

E, €Ty
write instead of np = (ny) the finite sequence consisting of at least two ny,
keeping those which are larger than 1, and arranged in non-decreasing order.
We recall that B is a domestic tubular (resp. tubular) algebra if ng is (p, q),
1<p<gq (2,2,r),2<r (23,3), (2,3,4), (2,3,5) (resp. (3,3,3), (2,4,4),
(2,3,6) or (2,2,2,2)).

The following fact is well known (see [15, 22]).

PROPOSITION. Let B be a tubular extension of a tame concealed algebra
C. Then the following statements are equivalent:

(a) B is tame;
(b) B is domestic tubular or a tubular algebra;
(¢) gqp is weakly non-negative.

2.2. For the definitions of admissible operations and the construction of
coils, we refer the reader to [2, 3].

Following [3], an algebra B is said to be a coil enlargement of a tame con-
cealed algebra C' if there is a finite sequence of algebras C' = By, By,...,Bn =
B such that Bj; is obtained from B; by an admissible operations (ad 1),
(ad 2) or (ad 3) (resp. (ad 1*), (ad 2%), (ad 3*)) with a pivot (resp. a copivot)
on a stable tube of I'c or in a component of I'p; obtained from a stable tube
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of I'c by a sequence of admissible operations done so far. By a coil algebra we
mean a tame strongly simply connected algebra obtained as a coil enlargement
of a tame concealed algebra.

The following structure result has been proved in [3].

PROPOSITION. Let B be a coil enlargement of a tame concealed algebra
C. Then:

(a) There exists a unique maximal tubular extension BT of C which is a
convex subcategory of B such that B is obtained from B" as a sequence
of algebras BT = By, By, ..., By, = B such that Bj; is obtained from
B; by an admissible operation (ad 1*), (ad 2*) or (ad 3*) with a copivot
on a coil component of I'p;.

(b) There exists a unique maximal tubular coextension B~ of C which is a
convex subcategory of B such that B is obtained from B~ as a sequence
of algebras B~ = By, B1,..., B, = B such that Bj is obtained from
B; by an admissible operation (ad 1), (ad 2) or (ad 3) with a pivot on
a coil component of T'p;.

(¢) There is a splitting ind B = P \V J, where P is formed by components
of T'g- and some coils obtained by admissible operations as in (b), and
J is formed by components of I'g+. The splitting satisfies conditions
(S1), (S2) and (S3) in 1.4. It satisfies (S4) if and only if B is a proper
subcategory of B (equivalently B~ is a proper subcategory of B).

(d) B is tame if and only if BT and B~ are tame.

As a consequence of the splitting of ind B for a coil enlargement B of a
tame concealed algebra, we get the following result [27, 18].

PROPOSITION 2.3. Let A be a polynomial growth strongly simply con-
nected algebra and X be a essentially present indecomposable A-module.
Then one of the following situations occur:

(a) A is a tilted algebra of tame representation type, X is a directing module
and qa(dim X) = 1.

(b) A is a coil algebra and X belongs to a coil component of T 4.
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3. THE PROOF OF THE THEOREM

We start with some technical considerations.

PrROPOSITION 3.1. Let A be an essentially sincere strongly simply con-
nected algebra such that q4 is weakly non-negative. Let B C D = [X]|B be
two convex subcategories of A such that B is a coil enlargement of a tame
concealed algebra C' and X is an indecomposable module lying on a coil T' of
I'p such that Homp(Z, X) # 0 for a non-directing Z in I'. Then D is either
a coil algebra or B~ is a tilted algebra of type D,, with an indecomposable Y
in the preprojective component of I'g- satisfying dimy Homp(Y, X) = 2.

Proof. Let F = B~ and N be the restriction of X to F. Then [N]F is
a convex subcategory of D = [X]|B. By 2.1, F is a domestic tubular or a
tubular algebra which is a tubular extension of C. Assume, in order to ge a
contradiction, that F' is a tubular algebra. Then X belongs to the inserted
family of coils in I'p. If X is copivoting, then D = [X]B is a coil algebra.
Suppose now that X is not copivoting. We distinguish two situations.

Assume first that the support of Homp(—, N)|7 contains the k-linear cat-
egory of a subquiver S of the component 7 of I'r with N € 7, where S has
the shape (1).

N
. 2)
./ N

In this case, F' is a tubular extension of the tame concealed algebra C'
of type D,,. Then there is a component 7’ # 7 of ['p containing projec-
tive modules. A simple application of the Splitting Lemma implies that A
is not essentially sincere, a contradiction. Since X is not copivoting, then
supp Homp(—, N)|7 contains a k-linear category of a poset of type (2). If C
is of type D,, we obtain a contradiction as above. Otherwise, Homy(mod F, N)
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contains a full subcategory given by a poset

Homp(Z5, N)

|

HOmF(Zl,N) HOmF(ZQ,N) HOIIlF(Zg,N) HOmF(Z4,N)

of type (1,1,1,2) where Z1, Z5 lie in 7 and Zs, Z4, Z5 lie in the preprojective
component of I'r. Considering the coextension vertex ¢ of [N]F', and the

vector
4

v=4e,+2» dim Z; + dim Z5 € Ko([N]F)
i=1
evaluating the Tits form gy at v (using that gldim F' < 2) we get

4
qnr(v) = (v, v)F +8 Z dimy, Ext:[)’N]F(Zl-, St) + 4 dimy, Ext:[)’N]F(Zg,, St)
i=1
4
= —1+8) dimy Ext}(Z;, N) + 4dimy, Ext;(Z5, N) = —1.
i=1
The last equality due to the fact that pdimp Z; < 1 for ¢« = 3,4,5 and
Ext%(Z;,N) = 0, i = 1,2, from the structure of 7. This contradicts the
weak non-negativity of ¢4 and shows that F is tilted of type D,, or pr (p =6,
7 or 8).

If X is copivoting, then the vector space category Homp(mod B, X) is
tame. Indeed, if it is not linear, say dimy Homp(M,X) > 2 for an inde-
composable B-module M, then every object Y € I'p is comparable with
X (that is, there is 0 # f € Homp(X,Y) or 0 # f € Homp(Y,X) with
Homp(f, X) # 0). Then F is tilted of type D,, and M is preprojective in I'p.
Assume Homp(mod B, X) is linear.

If it is not of tame type, then it contains a full subposet L belonging to
the Nazarova’s list. We identify each point a € L with an indecomposable X,
in the preprojective component P of I'r. Moreover, since the orbit graph of
P is a tree (since A is strongly simply connected), we may choose L such that
any subchain H yields a sectional path in P. Let v be a positive vector such
that xr(v) = —1 for the graphical form y, associated to L (see [22]). Then
using that gldim D < 2 we get

4D <Z v(a)dim X, + U(w)et> =xr(v)=-1,

acLl
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for t the extension vertex of D such that I;/soc I; = X. This leads to a con-
tradiction with the weak non-negativity of ¢4, showing that Hom g (mod B, X)
is tame. Hence D is a tame coil enlargement of C.

If X is not copivoting, then supp Homp(—, X)|r contains one of the posets
(1) or (2).

In the first case, as above, F = B~ is of type D,. In the second case,
if F'is not of type D, we find a full subposet of Homg(mod F, X) of type
(1,1,1,2) and, as above, we get a contradiction against the weak non-
negativity of q4. In both cases, there is a preprojective module Y in I'p
with dim; Homp (Y, X) = 2. 11

PROPOSITION 3.2. Let A be an essentially sincere strongly simply con-
nected algebra with q4 weakly non-negative. Let B be a convex subcategory
of A satisfying the following conditions:

(i) B is a representation-infinite tilted algebra of type IEp (p =06, 7 or8)
having a complete slice in its preinjective component;

(ii) A admits not a convex subcategory of the form [N]B for any indecom-
posable B-module N;

(iii) for any convex subcategory B[M] of A, M is an indecomposable prein-
jective B-module.

Then A is a tame tilted algebra.

Proof. We know that I'p consists of a preprojective component P, a family
7T, of inserted tubes and a preinjective component J having a section of type
Iﬁp. We may choose ¥ a section of J such that any indecomposable M such
that B[M] is a convex subcategory of A, is a successor of ¥ (in order of paths
in J).

Choose a sequence of categories B = By, B1, ..., Bs = A such that Bj | =
B;[M;] or Bji1 = [M;]B; for an indecomposable Bj-module M;. We claim
that for each j, there is a component C; in I'p; satisfying:

(a) C; is a directing component (that is, C; is convex in mod B; and without
cycles);

(b) C; has a complete slice ¥; which is a tree.

In particular, this shows that A = By is a tilted algebra. Then, by [11], A is
tame.

Indeed, Cp = J and ¥y = X. Assume C; is a directing component of I'p;
with a complete slice ¥; such that any indecomposable M, such that B[M]



78 J.A. DE LA PENA, A. SKOWRONSKI

is a convex subcategory of A, is a successor of ¥; -maybe not in C; (observe
that ¥; may be selected this way as an application of the Splitting Lemma).

Suppose Bj1 = Bj[M;] for an indecomposable. We claim that M; € C;.
Otherwise by the Splitting Lemma, there are no injective modules in C;. Since
qp, is weakly non-negative, then 3; is of extended Dynkin type and j = 0. In
that case Cy = J is a preinjective component, a contradiction showing that
Mj € C;. By [20], Mj lies in a directing component of I'g,,, with a (complete)
slice ¥;41 which is a tree (extending ¥;).

Suppose Bjy1 = [M;]B;. By hypothesis, we have M;p = 0. If M; ¢ Cj,
then the Splitting Lemma implies that A is not essentially sincere as illustrated
in the following picture:

i

2
Ps

Cj

Hence M; € C; and there should exists ¥; preceeding M; (apply Splitting
Lemma again!). Then M belongs to a directing component C;j4q of I'p
with a complete slice X 11. |

j+1

The case complementary Proposition 3.2 goes as follows:

PrOPOSITION 3.3. Let A be an essentially sincere strongly simply con-
nected algebra with g4 weakly non-negative. Assume A contains a full convex
subcategory B satisfying the conditions:

(i) B is either a representation-infinite algebra of type pr (p=6,7or8)
with a complete slice in the preinjective component and some projective
outside the preprojective component or B is a tubular algebra;

(ii) there is a convex subcategory A of the form [N]B for some indecompos-
able B-module N.

Then A is a coil algebra.
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Proof. Choose B maximal satisfying (i) and (ii). Let D be a maximal coil
enlargement of B in A. We want to prove that D = A.

Let I'p = Ps VCV Jy where Jy is the preinjective component of B,
C = (Cy)» is a family of coils such that, for certain Ao, Cy, contains a projective
module and P, is formed by D~-modules. By Proposition 2.3, D~ is a tilted
algebra or a tubular algebra.

Observe that the maximality of B implies that N ¢ Jy. Hence N € C.
The Splitting Lemma implies that Cy, is the only component in C that may
contains projective or injective modules, and in fact contains both types (in
particular, N € Cy,). If D is properly contained in A, then there is a convex
subcategory D’ of D of the form D[X] or [X]D for an indecomposable D-
module X. Maximality of B and the Splitting Lemma imply that X € Cy,.
Since gpr is weakly non-negative, D’ is a coil algebra by Proposition 3.1. Then
D’ C D which is a contradiction. Therefore, A = D is a coil algebra. 1

Proof of the Theorem. We may assume that A admits a maximal proper
convex subcategory B which is a tubular extension of a tame concealed algebra
C and such that B is either a tubular algebra or a representation-infinite tilted
algebra of type Ep (p = 6, 7 or 8) having a complete slice in its preinjective
component. Therefore, for any convex subcategory of A of the form B[M],
M is a preinjective B-module, since gp[yy) is weakly non-negative, M is not
preprojective, and the maximality of B and Proposition 3.1 imply that M is
not in a coil component). Hence the Splitting Lemma implies that B is not a
tubular algebra.

By the maximality of B we may assume that either the hypothesis of
Proposition 3.2 or those of Proposition 3.3 hold. Then either A is a tilted
algebra or a coil algebra. |
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