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Abstract : Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed
field k presented by its quiver Q with relations I. A fundamental problem in the repre-
sentation theory of algebras is to decide whether or not A is of tame or wild type. In this
paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that
A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose
support contains all extreme vertices of Q. We prove that if A is an essentially sincere
strongly simply connected algebra with weakly non-negative Tits form and not accepting
a convex subcategory which is either representation-infinite tilted algebra of type Ẽp or a
tubular algebra, then A is of polynomial growth (hence of tame type).
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Let A be a finite dimensional algebra (associative with unity) over an
algebraically closed field k. We may assume that A has a presentation A ∼=
kQ/I where kQ is the path algebra of the Gabriel quiver Q = QA of A and I
is an admissible ideal of kQ. Equivalently, A = kQ/I may be considered as a
k-category with objects the vertices of Q and the space of morphism A(x, y)
from x to y as the quotient of the space kQ(x, y), generated by the paths
from x to y, by the subspace I(x, y) = kQ(x, y)∩ I. We denote by modA the
category of finite dimensional right A-modules. For basic background from
representation theory of algebras we refer to [1, 4, 22, 23, 24].

From Drozd’s Tame and Wild Dichotomy Theorem [10], algebras may be
divided into two disjoint classes: the tame algebras for which indecomposable
modules in each dimension occur (up to isomorphism) in a finite number of
one-parametric families, and the wild algebras for which the representation
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theory comprises the representation theories of all algebras. One central ques-
tion in the modern representation theory of algebras is the determination of
the representation type.

Let A = kQ/I be a triangular algebra, that is, Q has no oriented cycles.
The Tits form qA : ZQ0 → Z is the quadratic form defined by

qA(v) =
∑

i∈Q0

v(i)2 −
∑

i→j

v(i)v(j) +
∑

i,j

r(i, j)v(i)v(j) ,

where r(i, j) is the cardinality of R ∩ I(i, j) for a minimal set of generators
R ⊂ ⋃

i,j
I(i, j) of I. The Tits form plays an important role in the problem of

determining the representation type of A. Indeed, if A is representation-finite
(that is, A accepts, up to isomorphism, only finitely many indecomposable
modules), then qA is weakly positive, that is, qA(v) > 0 for 0 6= v ∈ NQ0 [5].
More generally, if A is tame, then qA is weakly non-negative, that is, qA(v) ≥ 0
for v ∈ NQ0 [15]. The converse implications have been shown for important
families of algebras, satisfying some rigidity conditions (see for example [5, 6]),
or algebras of small homological dimensions [3, 9, 11, 12, 15, 21, 28].

A throughly studied class of tame algebras are the strongly simply con-
nected algebras. We recall that A is said to be strongly simply connected if,
for every convex subcategory B of A, the first Hochschild cohomology group
H1(B) vanishes, [26]. The modules over polynomial growth strongly simply
connected algebras have been completely described [27] (see also [13] and [16])
and the critical tame strongly simply connected algebras of non-polynomial
type have been classified [14]. It is a long standing conjecture that a strongly
simply connected algebra A is tame if and only if qA is weakly non-negative.
The present paper answers positively the conjecture in a special case, gener-
alizing previous results by the authors [17, 19]. This special case is shown to
be essential for the solution of the conjecture as presented in [7].

We say that a strongly simply connected algebra A = kQ/I is essentially
sincere if there is an indecomposable (finite dimensional) A-module X whose
support suppX = {i ∈ Q0 : X(i) 6= 0} contains all extreme vertices (sinks
and sources) of Q. Observe that a strongly simply connected algebra A is tame
if and only if every convex subcategory B of A which is essentially sincere is
tame. The main result of the paper is the following:

Theorem. Let A be a triangular algebra satisfying the following condi-
tions:

(a) A is essentially sincere strongly simply connected;
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(b) qA is weakly non-negative;

(c) A contains a convex subcategory which is either representation-infinite
tilted algebra of type Ẽp (p = 6, 7 or 8) or a tubular algebra.

Then A is either a tilted algebra or a coil algebra. In particular, A is of
polynomial growth, hence it is tame.

The paper is organized as follows. In Section 1 we present some remarks
on essentially present modules, that is, indecomposable modules X such that
suppX contains all the extreme vertices of the quiver of the algebra. In
Section 2 we recall concepts and results needed for the proof of the Theorem.
The proof presented in Section 3 depends heavely on the arguments given in
[17, 19].

1. Essentially present modules

1.1. Let A = kQ/I be a finite dimensional k-algebra. For each vertex
i ∈ Q0, we denote by ei the corresponding primitive idempotent of A, hence
Pi = eiA is the projective cover of the simple module Si = eiA/ei radA and
Ii = DAei the injective envelope of Si. By D = Homk(−, k) we denote the
usual duality on modA.

For a module X ∈ mod A, i ∈ suppX if HomA(Pi, X) 6= 0 (equivalently,
HomA(X, Ii)6= 0). We say that X is omnipresent (resp. essentially present )
if suppX = Q0 (resp. each source or sink in Q belongs to suppX). Clearly,
X is essentially present if and only if for every simple projective A-module S
we have HomA(S, X) 6= 0 and for every simple injective A-module T we have
HomA(X,T ) 6= 0.

We consider the Grothendieck group K0(A) = ZQ0 and the classes dimX
= (dimk X(i))i∈Q0 of modules X ∈ mod A. We recall that the homological
form defined by Ringel [22] for algebras A of finite global dimension is given
by

〈dimX,dimY 〉A =
∞∑

s=0

(−1)s dimk Exts
A(X, Y ) .

1.2. We denote by ΓA the Auslander-Reiten quiver of A with translation
τA = DTr. By a component of ΓA we mean a connected component. The
structure of preprojective, preinjective and tubular components may be seen
in [1, 22, 23, 24]. A path in modA is a sequence X0 → X1 → · · · → Xt of
non-zero non-isomorphisms between indecomposable A-modules; it is a cycle
if X0 and Xt are isomorphic.
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We say that an indecomposable A-module X is directing if it does not
belong any cycle in modA.

Given a component C of ΓA we say that C is convex in modA if any path
X0 → X1 → · · · → Xt in modA with extremes X0 and Xt in C, has all
Xi ∈ C, i = 1, . . . , t − 1. We shall consider also the support supp C :=⋃
X∈C

suppX of C.

Proposition. Let A = kQ/I be a triangular algebra and let X be an
essentially present indecomposable A-module in a component C of ΓA.

(a) If i ∈ Q0 \ suppX, then there is a cycle in mod A passing through X
and Si.

(b) If C is convex in modA, then supp C = Q0.

Proof. (Following [5]) (a) Assume i /∈ Q0 \ suppX. Since X is essentially
present and A is triangular, there is a path γ of the form i0 → i1 → · · · → is
in Q with i0, is ∈ suppX and i1, . . . , is−1 /∈ suppX with i = it for some
1 ≤ t ≤ s − 1. Let Ā be the quotient of A by all paths x

α−→ y
β−→ z with

exactly one arrow in γ. Then there is a cycle in mod Ā

X → Īis → Sis →
(

is−1

is

)
→ Sis−1 → · · · →

(
i1
i2

)
→ Si1 → P̄i0 → X

where P̄x (resp. Īx) denotes the indecomposable projective (resp. injective) Ā-

module associated to x and
(

x

y

)
is the indecomposable module of dimension

two with socle Sy and topSx.
(b) Since X ∈ C, by (a), for every i /∈ Q0 \ suppX, the simple module Si

belongs to C. Hence supp C = Q0.

1.3. We recall that an algebra A is tame [10] if, for each d ∈ N, there
is a finite number of k[t] − A-bimodules Mi, 1 ≤ i ≤ nd, which are finitely
generated free as left k[t]-modules and such that all but finitely many isoclasses
of indecomposable A-modules of dimension d are of the form k[t]/(t−λ)⊗k[t]Mi

for some i and some λ ∈ k. Let µA(d) be the minimal nd in the definition.
Then A is said to be of polynomial growth [25] if there is a number m such
that µA(d) ≤ dm for every d ≥ 1.

The following proposition on the behaviour of the Auslander-Reiten com-
ponents of strongly simply connected algebras of polynomial growth has been
proved in [27, Theorem 4.1].
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Proposition. Let A be a strongly simply connected algebra of polynomial
growth. Then every component of ΓA is convex in mod A.

1.4. A useful construction is the one-point extension B[M ] of an algebra
B by a B-module M , given as the matrix algebra

B[M ] =
(

k MB

0 B

)
.

One-point coextensions [M ]B are defined dually. The following extension
of a result in [17] yields necessary conditions for an algebra to be essentially
sincere.

Splitting Lemma. Let A be a triangular algebra and B = B0, B1, . . . ,
Bs = A a family of convex subcategories of A such that, for each 0 ≤ i ≤ s
with Bi+1 = Bi[Mi] or Bi+1 = [Mi]Bi for some indecomposable Bi-module Mi.
Assume that the category of indecomposable B-modules admits a splitting
indB = P ∨ J , where P and J are full subcategories of indB satisfying the
following conditions:

(S1) HomB(J ,P) = 0;

(S2) for each i such that Bi+1 = Bi[Mi], the restriction Mi|B belongs to
addJ ;

(S3) for each i such that Bi+1 = [Mi]Bi, Mi|B belongs to addP;

(S4) there is an index i with Bi+1 = Bi[Mi] and Mi ∈ J and an index j with
Bj+1 = [Mj ]Bj and Mj ∈ P.

Then A is not essentially sincere.

Proof. Let x1, . . . , xr (resp. y1, . . . , yt) be those vertices at the quiver Q of
A being sources (resp. targets) or arrows with target (resp. source) in B. For
each i, denote by B+

i the maximal convex subcategory of Bi not containing
any y1, . . . , yt (resp. x1, . . . , xr). Let Pi (resp. Ji) be the full subcategory
of indB−

i (resp. of indB+
i ) consisting of modules X such that X|B ∈ addPi

(resp. X|B ∈ addJi). We claim that indBi = Pi∨Ji and HomBi(Ji,Pi) = 0.
The proof of the claim follows by induction as in [17, page 1022].

We get that indA = Ps ∨ Js with HomA(Js,Ps) = 0, Ps consists of B+
s -

modules and Js consists of B−
s -modules. Moreover, by (S4), B 6= B+

s and
B 6= B−

s . Let X ∈ Ps and let y be a sink in Q which is a successor of y1.
Since B+

s is convex in A, then y is not in B+
s , hence X(y) = 0. That is, X

is not essentially present. Similarly, any module Y ∈ Js is not essentially
present. We conclude that A is not essentially sincere.
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Observe that, for a strongly simply connected algebra A and a convex
subcategory B of A, there exists a chain B = B0, B1, . . . , Bs = A of con-
vex subcategories of A such that Bi+1 = Bi[Mi] or Bi+1 = [Mi]Bi for some
indecomposable Bi-module Mi (see [17, Proposition 2.2]).

1.5. The following are typical examples of strongly simply connected al-
gebras A and essentially present (not omnipresent) indecomposable A-modules
X. (We indicate, the relations in A by dotted edges: given i j, the sum
of all paths from i to j in Q is zero).
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We note that, in the first case, A is a tame concealed algebra, and hence
is of polynomial growth.

On the other hand, in the second case, A is a tame algebra of non-
polynomial growth and there is an infinite family of pairwise nonisomorphic
indecomposable A-modules (Yλ)λ∈k with dimYλ = dimX.

Proposition. Let A be a strongly simply connected algebra. Assume
v ∈ NQ0 is an essentially present vector which is not omnipresent and such that
there exists an infinite family (Yλ)λ of pairwise nonisomorphic indecomposable
A-modules with dimYλ = v. Then A is not of polynomial growth.
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Proof. Assume that A is tame of polynomial growth. Since A is tame, by
a result of Crawley-Boevey [8], some module Y in the family (Yλ)λ satisfies
τAY ∼= Y , and hence lies in a stable tube C of rank one in ΓA. Further, since A
is of polynomial growth, applying 1.3, we conclude that C is convex in modA.
Hence, applying 1.2, we obtain supp C = Q0. Finally, since every module
X ∈ C has dimX = qv for certain rational number q > 0, we conclude that
the vector v is omnipresent, a contradiction.

2. Algebras of polynomial growth

2.1. Let C be a tame concealed algebra, that is, A = EndH(T ) for a
preprojective tilting module T over a tame hereditary algebra H, and let
(Tλ)λ∈P1(k) be the unique family of stable tubes in ΓC . Let E = (E1, . . . , Es)
be a sequence of pairwise non-isomorphic C-modules which are simple among
the regular modules and a family K = (K1, . . . ,Ks) of branches. In [22], the
tubular extension B = C[E, K](= C[Ei,Ki]si=1) is defined and has tubular
type nB = (nλ)λ with nλ = rank Tλ +

∑
Ei∈Tλ

|Ki|. Since almost all nλ = 1, we

write instead of nB = (nλ)λ the finite sequence consisting of at least two nλ,
keeping those which are larger than 1, and arranged in non-decreasing order.
We recall that B is a domestic tubular (resp. tubular ) algebra if nB is (p, q),
1 ≤ p ≤ q, (2, 2, r), 2 ≤ r, (2, 3, 3), (2, 3, 4), (2, 3, 5) (resp. (3, 3, 3), (2, 4, 4),
(2, 3, 6) or (2, 2, 2, 2)).

The following fact is well known (see [15, 22]).

Proposition. Let B be a tubular extension of a tame concealed algebra
C. Then the following statements are equivalent:

(a) B is tame;

(b) B is domestic tubular or a tubular algebra;

(c) qB is weakly non-negative.

2.2. For the definitions of admissible operations and the construction of
coils, we refer the reader to [2, 3].

Following [3], an algebra B is said to be a coil enlargement of a tame con-
cealed algebra C if there is a finite sequence of algebras C = B0, B1, . . . , Bm =
B such that Bj+1 is obtained from Bj by an admissible operations (ad 1),
(ad 2) or (ad 3) (resp. (ad 1*), (ad 2*), (ad 3*)) with a pivot (resp. a copivot)
on a stable tube of ΓC or in a component of ΓBj obtained from a stable tube



74 j.a. de la peña, a. skowroński

of ΓC by a sequence of admissible operations done so far. By a coil algebra we
mean a tame strongly simply connected algebra obtained as a coil enlargement
of a tame concealed algebra.

The following structure result has been proved in [3].

Proposition. Let B be a coil enlargement of a tame concealed algebra
C. Then:

(a) There exists a unique maximal tubular extension B+ of C which is a
convex subcategory of B such that B is obtained from B+ as a sequence
of algebras B+ = B0, B1, . . . , Bm = B such that Bj+1 is obtained from
Bj by an admissible operation (ad 1*), (ad 2*) or (ad 3*) with a copivot
on a coil component of ΓBj .

(b) There exists a unique maximal tubular coextension B− of C which is a
convex subcategory of B such that B is obtained from B− as a sequence
of algebras B− = B0, B1, . . . , Bn = B such that Bj+1 is obtained from
Bj by an admissible operation (ad 1), (ad 2) or (ad 3) with a pivot on
a coil component of ΓBj .

(c) There is a splitting indB = P ∨ J , where P is formed by components
of ΓB− and some coils obtained by admissible operations as in (b), and
J is formed by components of ΓB+ . The splitting satisfies conditions
(S1), (S2) and (S3) in 1.4. It satisfies (S4) if and only if B+ is a proper
subcategory of B (equivalently B− is a proper subcategory of B).

(d) B is tame if and only if B+ and B− are tame.

As a consequence of the splitting of indB for a coil enlargement B of a
tame concealed algebra, we get the following result [27, 18].

Proposition 2.3. Let A be a polynomial growth strongly simply con-
nected algebra and X be a essentially present indecomposable A-module.
Then one of the following situations occur:

(a) A is a tilted algebra of tame representation type, X is a directing module
and qA(dimX) = 1.

(b) A is a coil algebra and X belongs to a coil component of ΓA.
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3. The proof of the Theorem

We start with some technical considerations.

Proposition 3.1. Let A be an essentially sincere strongly simply con-
nected algebra such that qA is weakly non-negative. Let B ⊂ D = [X]B be
two convex subcategories of A such that B is a coil enlargement of a tame
concealed algebra C and X is an indecomposable module lying on a coil Γ of
ΓB such that HomB(Z, X) 6= 0 for a non-directing Z in Γ. Then D is either
a coil algebra or B− is a tilted algebra of type D̃n with an indecomposable Y
in the preprojective component of ΓB− satisfying dimk HomB(Y, X) = 2.

Proof. Let F = B− and N be the restriction of X to F . Then [N ]F is
a convex subcategory of D = [X]B. By 2.1, F is a domestic tubular or a
tubular algebra which is a tubular extension of C. Assume, in order to ge a
contradiction, that F is a tubular algebra. Then X belongs to the inserted
family of coils in ΓF . If X is copivoting, then D = [X]B is a coil algebra.
Suppose now that X is not copivoting. We distinguish two situations.

Assume first that the support of HomF (−, N)|T contains the k-linear cat-
egory of a subquiver S of the component T of ΓF with N ∈ T , where S has
the shape (1).

•
ÂÂ@

@@
@

(1) •
??~~~~

ÂÂ@
@@

@ • N

•
??~~~~

ÂÂ@
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@ •
??~~~~

•
??~~~~ •

??~~~~

··· •
??~~~~

···

•
ÂÂ@

@@
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??~~~~
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•
??~~~~

•
??~~~~

····

In this case, F is a tubular extension of the tame concealed algebra C
of type D̃n. Then there is a component T ′ 6= T of ΓF containing projec-
tive modules. A simple application of the Splitting Lemma implies that A
is not essentially sincere, a contradiction. Since X is not copivoting, then
suppHomF (−, N)|T contains a k-linear category of a poset of type (2). If C
is of type D̃n we obtain a contradiction as above. Otherwise, HomF (modF, N)
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contains a full subcategory given by a poset

HomF (Z5, N)

²²
HomF (Z1, N) HomF (Z2, N) HomF (Z3, N) HomF (Z4, N)

of type (1, 1, 1, 2) where Z1, Z2 lie in T and Z3, Z4, Z5 lie in the preprojective
component of ΓF . Considering the coextension vertex t of [N ]F , and the
vector

v = 4et + 2
4∑

i=1

dimZi + dimZ5 ∈ K0([N ]F )

evaluating the Tits form q[N ]F at v (using that gldimF ≤ 2) we get

q[N ]F (v) = 〈v, v〉F + 8
4∑

i=1

dimk Ext3[N ]F (Zi, St) + 4 dimk Ext3[N ]F (Z5, St)

= −1 + 8
4∑

i=1

dimk Ext2F (Zi, N) + 4 dimk Ext2F (Z5, N) = −1 .

The last equality due to the fact that pdimF Zi ≤ 1 for i = 3, 4, 5 and
Ext2F (Zi, N) = 0, i = 1, 2, from the structure of T . This contradicts the
weak non-negativity of qA and shows that F is tilted of type D̃n or Ẽp (p = 6,
7 or 8).

If X is copivoting, then the vector space category HomB(modB,X) is
tame. Indeed, if it is not linear, say dimk HomB(M,X) ≥ 2 for an inde-
composable B-module M , then every object Y ∈ ΓB is comparable with
X (that is, there is 0 6= f ∈ HomB(X, Y ) or 0 6= f ∈ HomB(Y,X) with
HomB(f, X) 6= 0). Then F is tilted of type D̃n and M is preprojective in ΓF .
Assume HomB(modB, X) is linear.

If it is not of tame type, then it contains a full subposet L belonging to
the Nazarova’s list. We identify each point a ∈ L with an indecomposable Xa

in the preprojective component P of ΓF . Moreover, since the orbit graph of
P is a tree (since A is strongly simply connected), we may choose L such that
any subchain H yields a sectional path in P. Let v be a positive vector such
that χL(v) = −1 for the graphical form χL associated to L (see [22]). Then
using that gldimD ≤ 2 we get

qD

(∑

a∈L

v(a)dimXa + v(w)et

)
= χL(v) = −1 ,
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for t the extension vertex of D such that It/ soc It = X. This leads to a con-
tradiction with the weak non-negativity of qA, showing that HomB(modB, X)
is tame. Hence D is a tame coil enlargement of C.

If X is not copivoting, then supp HomB(−, X)|Γ contains one of the posets
(1) or (2).

In the first case, as above, F = B− is of type D̃n. In the second case,
if F is not of type D̃n we find a full subposet of HomF (modF, X) of type
(1, 1, 1, 2) and, as above, we get a contradiction against the weak non-
negativity of qA. In both cases, there is a preprojective module Y in ΓF

with dimk HomF (Y, X) = 2.

Proposition 3.2. Let A be an essentially sincere strongly simply con-
nected algebra with qA weakly non-negative. Let B be a convex subcategory
of A satisfying the following conditions:

(i) B is a representation-infinite tilted algebra of type Ẽp (p = 6, 7 or 8)
having a complete slice in its preinjective component;

(ii) A admits not a convex subcategory of the form [N ]B for any indecom-
posable B-module N ;

(iii) for any convex subcategory B[M ] of A, M is an indecomposable prein-
jective B-module.

Then A is a tame tilted algebra.

Proof. We know that ΓB consists of a preprojective component P, a family
Tλ of inserted tubes and a preinjective component J having a section of type
Ẽp. We may choose Σ a section of J such that any indecomposable M such
that B[M ] is a convex subcategory of A, is a successor of Σ (in order of paths
in J ).

Choose a sequence of categories B = B0, B1, . . . , Bs = A such that Bj+1 =
Bj [Mj ] or Bj+1 = [Mj ]Bj for an indecomposable Bj-module Mj . We claim
that for each j, there is a component Cj in ΓBj satisfying:

(a) Cj is a directing component (that is, Cj is convex in modBj and without
cycles);

(b) Cj has a complete slice Σj which is a tree.
In particular, this shows that A = Bs is a tilted algebra. Then, by [11], A is
tame.

Indeed, C0 = J and Σ0 = Σ. Assume Cj is a directing component of ΓBj

with a complete slice Σj such that any indecomposable M , such that B[M ]
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is a convex subcategory of A, is a successor of Σj –maybe not in Cj (observe
that Σj may be selected this way as an application of the Splitting Lemma).

Suppose Bj+1 = Bj [Mj ] for an indecomposable. We claim that Mj ∈ Cj .
Otherwise by the Splitting Lemma, there are no injective modules in Cj . Since
qBj is weakly non-negative, then Σj is of extended Dynkin type and j = 0. In
that case C0 = J is a preinjective component, a contradiction showing that
Mj ∈ Cj . By [20], Mj lies in a directing component of ΓBj+1 with a (complete)
slice Σj+1 which is a tree (extending Σj).

Suppose Bj+1 = [Mj ]Bj . By hypothesis, we have Mj|B = 0. If Mj /∈ Cj ,
then the Splitting Lemma implies that A is not essentially sincere as illustrated
in the following picture:

Cj

PB

Σj

Mj

Hence Mj ∈ Cj and there should exists Σj preceeding Mj (apply Splitting
Lemma again!). Then Mj belongs to a directing component Cj+1 of ΓBj+1

with a complete slice Σj+1.

The case complementary Proposition 3.2 goes as follows:

Proposition 3.3. Let A be an essentially sincere strongly simply con-
nected algebra with qA weakly non-negative. Assume A contains a full convex
subcategory B satisfying the conditions:

(i) B is either a representation-infinite algebra of type Ẽp (p = 6, 7 or 8)
with a complete slice in the preinjective component and some projective
outside the preprojective component or B is a tubular algebra;

(ii) there is a convex subcategory A of the form [N ]B for some indecompos-
able B-module N .

Then A is a coil algebra.
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Proof. Choose B maximal satisfying (i) and (ii). Let D be a maximal coil
enlargement of B in A. We want to prove that D = A.

Let ΓD = P∞ ∨ C ∨ J0 where J0 is the preinjective component of B,
C = (Cλ)λ is a family of coils such that, for certain λ0, Cλ0 contains a projective
module and P∞ is formed by D−-modules. By Proposition 2.3, D− is a tilted
algebra or a tubular algebra.

Observe that the maximality of B implies that N /∈ J0. Hence N ∈ C.
The Splitting Lemma implies that Cλ0 is the only component in C that may
contains projective or injective modules, and in fact contains both types (in
particular, N ∈ Cλ0). If D is properly contained in A, then there is a convex
subcategory D′ of D of the form D[X] or [X]D for an indecomposable D-
module X. Maximality of B and the Splitting Lemma imply that X ∈ Cλ0 .
Since qD′ is weakly non-negative, D′ is a coil algebra by Proposition 3.1. Then
D′ ⊂ D which is a contradiction. Therefore, A = D is a coil algebra.

Proof of the Theorem . We may assume that A admits a maximal proper
convex subcategory B which is a tubular extension of a tame concealed algebra
C and such that B is either a tubular algebra or a representation-infinite tilted
algebra of type Ẽp (p = 6, 7 or 8) having a complete slice in its preinjective
component. Therefore, for any convex subcategory of A of the form B[M ],
M is a preinjective B-module, since qB[M ] is weakly non-negative, M is not
preprojective, and the maximality of B and Proposition 3.1 imply that M is
not in a coil component). Hence the Splitting Lemma implies that B is not a
tubular algebra.

By the maximality of B we may assume that either the hypothesis of
Proposition 3.2 or those of Proposition 3.3 hold. Then either A is a tilted
algebra or a coil algebra.
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[1] Assem, I., Simson, D., Skowroński, A., “Elements of Representa-
tion Theory of Associative Algebras I: Techniques of Representation The-
ory ”, London Mathematical Society Student Texts, 65, Cambridge Univer-
sity Press, Cambridge, 2006.
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[24] Simson, D., Skowroński, A., “ Elements of the Representation Theory

of Associative Algebras 3: Representation-Infinite Tilted Algebras ”, Lon-
don Mathematical Society Student Texts, 72, Cambridge University Press,
Cambridge, 2007.
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[28] Skowroński, A., Tame quasitilted algebras, J. Algebra 203 (1998), 470 –
490.


