# Substructures of Algebras with Weakly non-Negative Tits Form

J.A. de la Peña, A. Skowroński\*

Instituto de Matemáticas, U.N.A.M., Circuito Exterior Ciudad Universitaria 04510, México, D.F. México, jap@matem.unam.mx Faculty of Mathematics and Computer Science, Nicolaus Copernicus University Chopina 12/18, 87-100, Toruń, Poland, skowron@mat.uni.torun.pl

Received March 5, 2007

Abstract: Let A=kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if A is an essentially sincere strongly simply connected algebra with weakly non-negative Tits form and not accepting a convex subcategory which is either representation-infinite tilted algebra of type  $\tilde{E}_p$  or a tubular algebra, then A is of polynomial growth (hence of tame type).

 $Key\ words$ : tame representation type, essentially sincere module, Tits form, strongly simply connected algebra.

AMS Subject Class. (2000): 16G20, 16G60, 16G70.

Let A be a finite dimensional algebra (associative with unity) over an algebraically closed field k. We may assume that A has a presentation  $A \cong kQ/I$  where kQ is the path algebra of the Gabriel quiver  $Q = Q_A$  of A and I is an admissible ideal of kQ. Equivalently, A = kQ/I may be considered as a k-category with objects the vertices of Q and the space of morphism A(x,y) from x to y as the quotient of the space kQ(x,y), generated by the paths from x to y, by the subspace  $I(x,y) = kQ(x,y) \cap I$ . We denote by mod A the category of finite dimensional right A-modules. For basic background from representation theory of algebras we refer to [1, 4, 22, 23, 24].

From Drozd's Tame and Wild Dichotomy Theorem [10], algebras may be divided into two disjoint classes: the *tame algebras* for which indecomposable modules in each dimension occur (up to isomorphism) in a finite number of one-parametric families, and the *wild algebras* for which the representation

<sup>\*</sup> Partially supported by the Polish Scientific Grant KBN No. 1 P03A 018 27.

theory comprises the representation theories of all algebras. One central question in the modern representation theory of algebras is the determination of the representation type.

Let A = kQ/I be a triangular algebra, that is, Q has no oriented cycles. The Tits form  $q_A : \mathbb{Z}^{Q_0} \to \mathbb{Z}$  is the quadratic form defined by

$$q_A(v) = \sum_{i \in Q_0} v(i)^2 - \sum_{i \to j} v(i)v(j) + \sum_{i,j} r(i,j)v(i)v(j),$$

where r(i,j) is the cardinality of  $R \cap I(i,j)$  for a minimal set of generators  $R \subset \bigcup_{i,j} I(i,j)$  of I. The Tits form plays an important role in the problem of determining the representation type of A. Indeed, if A is representation-finite (that is, A accepts, up to isomorphism, only finitely many indecomposable modules), then  $q_A$  is weakly positive, that is,  $q_A(v) > 0$  for  $0 \neq v \in \mathbb{N}^{Q_0}$  [5]. More generally, if A is tame, then  $q_A$  is weakly non-negative, that is,  $q_A(v) \geq 0$  for  $v \in \mathbb{N}^{Q_0}$  [15]. The converse implications have been shown for important families of algebras, satisfying some rigidity conditions (see for example [5, 6]), or algebras of small homological dimensions [3, 9, 11, 12, 15, 21, 28].

A throughly studied class of tame algebras are the strongly simply connected algebras. We recall that A is said to be strongly simply connected if, for every convex subcategory B of A, the first Hochschild cohomology group  $H^1(B)$  vanishes, [26]. The modules over polynomial growth strongly simply connected algebras have been completely described [27] (see also [13] and [16]) and the critical tame strongly simply connected algebras of non-polynomial type have been classified [14]. It is a long standing conjecture that a strongly simply connected algebra A is tame if and only if  $q_A$  is weakly non-negative. The present paper answers positively the conjecture in a special case, generalizing previous results by the authors [17, 19]. This special case is shown to be essential for the solution of the conjecture as presented in [7].

We say that a strongly simply connected algebra A = kQ/I is essentially sincere if there is an indecomposable (finite dimensional) A-module X whose support supp  $X = \{i \in Q_0 : X(i) \neq 0\}$  contains all extreme vertices (sinks and sources) of Q. Observe that a strongly simply connected algebra A is tame if and only if every convex subcategory B of A which is essentially sincere is tame. The main result of the paper is the following:

THEOREM. Let A be a triangular algebra satisfying the following conditions:

(a) A is essentially sincere strongly simply connected;

- (b)  $q_A$  is weakly non-negative;
- (c) A contains a convex subcategory which is either representation-infinite tilted algebra of type  $\tilde{\mathbb{E}}_p$  (p=6, 7 or 8) or a tubular algebra.

Then A is either a tilted algebra or a coil algebra. In particular, A is of polynomial growth, hence it is tame.

The paper is organized as follows. In Section 1 we present some remarks on essentially present modules, that is, indecomposable modules X such that supp X contains all the extreme vertices of the quiver of the algebra. In Section 2 we recall concepts and results needed for the proof of the Theorem. The proof presented in Section 3 depends heavely on the arguments given in [17, 19].

# 1. Essentially present modules

1.1. Let A = kQ/I be a finite dimensional k-algebra. For each vertex  $i \in Q_0$ , we denote by  $e_i$  the corresponding primitive idempotent of A, hence  $P_i = e_i A$  is the projective cover of the simple module  $S_i = e_i A/e_i \operatorname{rad} A$  and  $I_i = DAe_i$  the injective envelope of  $S_i$ . By  $D = \operatorname{Hom}_k(-, k)$  we denote the usual duality on mod A.

For a module  $X \in \text{mod } A$ ,  $i \in \text{supp } X$  if  $\text{Hom}_A(P_i, X) \neq 0$  (equivalently,  $\text{Hom}_A(X, I_i) \neq 0$ ). We say that X is omnipresent (resp. essentially present) if  $\text{supp } X = Q_0$  (resp. each source or sink in Q belongs to supp X). Clearly, X is essentially present if and only if for every simple projective A-module S we have  $\text{Hom}_A(S, X) \neq 0$  and for every simple injective A-module T we have  $\text{Hom}_A(X, T) \neq 0$ .

We consider the Grothendieck group  $K_0(A) = \mathbb{Z}^{Q_0}$  and the classes  $\dim X = (\dim_k X(i))_{i \in Q_0}$  of modules  $X \in \operatorname{mod} A$ . We recall that the homological form defined by Ringel [22] for algebras A of finite global dimension is given by

$$\langle \operatorname{\mathbf{dim}} X, \operatorname{\mathbf{dim}} Y \rangle_A = \sum_{s=0}^{\infty} (-1)^s \dim_k \operatorname{Ext}_A^s(X, Y).$$

1.2. We denote by  $\Gamma_A$  the Auslander-Reiten quiver of A with translation  $\tau_A = D$ Tr. By a component of  $\Gamma_A$  we mean a connected component. The structure of preprojective, preinjective and tubular components may be seen in [1, 22, 23, 24]. A path in mod A is a sequence  $X_0 \to X_1 \to \cdots \to X_t$  of non-zero non-isomorphisms between indecomposable A-modules; it is a cycle if  $X_0$  and  $X_t$  are isomorphic.

We say that an indecomposable A-module X is directing if it does not belong any cycle in mod A.

Given a component  $\mathcal{C}$  of  $\Gamma_A$  we say that  $\mathcal{C}$  is convex in mod A if any path  $X_0 \to X_1 \to \cdots \to X_t$  in mod A with extremes  $X_0$  and  $X_t$  in  $\mathcal{C}$ , has all  $X_i \in \mathcal{C}$ ,  $i = 1, \ldots, t-1$ . We shall consider also the support supp  $\mathcal{C} := \bigcup_{X \in \mathcal{C}} \operatorname{supp} X$  of  $\mathcal{C}$ .

PROPOSITION. Let A = kQ/I be a triangular algebra and let X be an essentially present indecomposable A-module in a component C of  $\Gamma_A$ .

- (a) If  $i \in Q_0 \setminus \text{supp } X$ , then there is a cycle in mod A passing through X and  $S_i$ .
- (b) If C is convex in mod A, then supp  $C = Q_0$ .

*Proof.* (Following [5]) (a) Assume  $i \notin Q_0 \setminus \text{supp } X$ . Since X is essentially present and A is triangular, there is a path  $\gamma$  of the form  $i_0 \to i_1 \to \cdots \to i_s$  in Q with  $i_0, i_s \in \text{supp } X$  and  $i_1, \ldots, i_{s-1} \notin \text{supp } X$  with  $i = i_t$  for some  $1 \leq t \leq s-1$ . Let  $\bar{A}$  be the quotient of A by all paths  $x \xrightarrow{\alpha} y \xrightarrow{\beta} z$  with exactly one arrow in  $\gamma$ . Then there is a cycle in mod  $\bar{A}$ 

$$X \to \bar{I}_{i_s} \to S_{i_s} \to \begin{pmatrix} i_{s-1} \\ i_s \end{pmatrix} \to S_{i_{s-1}} \to \cdots \to \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} \to S_{i_1} \to \bar{P}_{i_0} \to X$$

where  $\bar{P}_x$  (resp.  $\bar{I}_x$ ) denotes the indecomposable projective (resp. injective)  $\bar{A}$ module associated to x and  $\begin{pmatrix} x \\ y \end{pmatrix}$  is the indecomposable module of dimension
two with socle  $S_y$  and top  $S_x$ .

- (b) Since  $X \in \mathcal{C}$ , by (a), for every  $i \notin Q_0 \setminus \text{supp } X$ , the simple module  $S_i$  belongs to  $\mathcal{C}$ . Hence supp  $\mathcal{C} = Q_0$ .
- 1.3. We recall that an algebra A is tame [10] if, for each  $d \in \mathbb{N}$ , there is a finite number of k[t] A-bimodules  $M_i$ ,  $1 \leq i \leq n_d$ , which are finitely generated free as left k[t]-modules and such that all but finitely many isoclasses of indecomposable A-modules of dimension d are of the form  $k[t]/(t-\lambda) \otimes_{k[t]} M_i$  for some i and some  $\lambda \in k$ . Let  $\mu_A(d)$  be the minimal  $n_d$  in the definition. Then A is said to be of polynomial growth [25] if there is a number m such that  $\mu_A(d) \leq d^m$  for every  $d \geq 1$ .

The following proposition on the behaviour of the Auslander-Reiten components of strongly simply connected algebras of polynomial growth has been proved in [27, Theorem 4.1].

PROPOSITION. Let A be a strongly simply connected algebra of polynomial growth. Then every component of  $\Gamma_A$  is convex in mod A.

1.4. A useful construction is the *one-point extension* B[M] of an algebra B by a B-module M, given as the matrix algebra

$$B[M] = \begin{pmatrix} k & M_B \\ 0 & B \end{pmatrix}.$$

One-point coextensions [M]B are defined dually. The following extension of a result in [17] yields necessary conditions for an algebra to be essentially sincere.

SPLITTING LEMMA. Let A be a triangular algebra and  $B = B_0, B_1, \ldots, B_s = A$  a family of convex subcategories of A such that, for each  $0 \le i \le s$  with  $B_{i+1} = B_i[M_i]$  or  $B_{i+1} = [M_i]B_i$  for some indecomposable  $B_i$ -module  $M_i$ . Assume that the category of indecomposable B-modules admits a splitting ind  $B = \mathcal{P} \vee \mathcal{J}$ , where  $\mathcal{P}$  and  $\mathcal{J}$  are full subcategories of ind B satisfying the following conditions:

- (S1)  $\operatorname{Hom}_B(\mathcal{J}, \mathcal{P}) = 0;$
- (S2) for each i such that  $B_{i+1} = B_i[M_i]$ , the restriction  $M_{i|B}$  belongs to add  $\mathcal{J}$ ;
- (S3) for each i such that  $B_{i+1} = [M_i]B_i$ ,  $M_{i|B}$  belongs to add  $\mathcal{P}$ ;
- (S4) there is an index i with  $B_{i+1} = B_i[M_i]$  and  $M_i \in \mathcal{J}$  and an index j with  $B_{j+1} = [M_j]B_j$  and  $M_j \in \mathcal{P}$ .

Then A is not essentially sincere.

Proof. Let  $x_1, \ldots, x_r$  (resp.  $y_1, \ldots, y_t$ ) be those vertices at the quiver Q of A being sources (resp. targets) or arrows with target (resp. source) in B. For each i, denote by  $B_i^+$  the maximal convex subcategory of  $B_i$  not containing any  $y_1, \ldots, y_t$  (resp.  $x_1, \ldots, x_r$ ). Let  $\mathcal{P}_i$  (resp.  $\mathcal{J}_i$ ) be the full subcategory of ind  $B_i^-$  (resp. of ind  $B_i^+$ ) consisting of modules X such that  $X|_B \in \operatorname{add} \mathcal{P}_i$  (resp.  $X|_B \in \operatorname{add} \mathcal{J}_i$ ). We claim that ind  $B_i = \mathcal{P}_i \vee \mathcal{J}_i$  and  $\operatorname{Hom}_{B_i}(\mathcal{J}_i, \mathcal{P}_i) = 0$ . The proof of the claim follows by induction as in [17, page 1022].

We get that ind  $A = \mathcal{P}_s \vee \mathcal{J}_s$  with  $\operatorname{Hom}_A(\mathcal{J}_s, \mathcal{P}_s) = 0$ ,  $\mathcal{P}_s$  consists of  $B_s^+$ -modules and  $\mathcal{J}_s$  consists of  $B_s^-$ -modules. Moreover, by (S4),  $B \neq B_s^+$  and  $B \neq B_s^-$ . Let  $X \in \mathcal{P}_s$  and let y be a sink in Q which is a successor of  $y_1$ . Since  $B_s^+$  is convex in A, then y is not in  $B_s^+$ , hence X(y) = 0. That is, X is not essentially present. Similarly, any module  $Y \in \mathcal{J}_s$  is not essentially present. We conclude that A is not essentially sincere.

Observe that, for a strongly simply connected algebra A and a convex subcategory B of A, there exists a chain  $B = B_0, B_1, \ldots, B_s = A$  of convex subcategories of A such that  $B_{i+1} = B_i[M_i]$  or  $B_{i+1} = [M_i]B_i$  for some indecomposable  $B_i$ -module  $M_i$  (see [17, Proposition 2.2]).

1.5. The following are typical examples of strongly simply connected algebras A and essentially present (not omnipresent) indecomposable A-modules X. (We indicate, the relations in A by dotted edges: given i-j, the sum of all paths from i to j in Q is zero).



We note that, in the first case, A is a tame concealed algebra, and hence is of polynomial growth.

On the other hand, in the second case, A is a tame algebra of non-polynomial growth and there is an infinite family of pairwise nonisomorphic indecomposable A-modules  $(Y_{\lambda})_{{\lambda}\in k}$  with  $\dim Y_{\lambda}=\dim X$ .

PROPOSITION. Let A be a strongly simply connected algebra. Assume  $v \in \mathbb{N}^{Q_0}$  is an essentially present vector which is not omnipresent and such that there exists an infinite family  $(Y_{\lambda})_{\lambda}$  of pairwise nonisomorphic indecomposable A-modules with  $\dim Y_{\lambda} = v$ . Then A is not of polynomial growth.

*Proof.* Assume that A is tame of polynomial growth. Since A is tame, by a result of Crawley-Boevey [8], some module Y in the family  $(Y_{\lambda})_{\lambda}$  satisfies  $\tau_A Y \cong Y$ , and hence lies in a stable tube  $\mathcal{C}$  of rank one in  $\Gamma_A$ . Further, since A is of polynomial growth, applying 1.3, we conclude that  $\mathcal{C}$  is convex in mod A. Hence, applying 1.2, we obtain supp  $\mathcal{C} = Q_0$ . Finally, since every module  $X \in \mathcal{C}$  has  $\dim X = qv$  for certain rational number q > 0, we conclude that the vector v is omnipresent, a contradiction.  $\blacksquare$ 

#### 2. Algebras of Polynomial Growth

2.1. Let C be a tame concealed algebra, that is,  $A = \operatorname{End}_H(T)$  for a preprojective tilting module T over a tame hereditary algebra H, and let  $(\mathcal{T}_{\lambda})_{\lambda \in \mathbb{P}_1(k)}$  be the unique family of stable tubes in  $\Gamma_C$ . Let  $E = (E_1, \ldots, E_s)$  be a sequence of pairwise non-isomorphic C-modules which are simple among the regular modules and a family  $K = (K_1, \ldots, K_s)$  of branches. In [22], the tubular extension  $B = C[E, K] (= C[E_i, K_i]_{i=1}^s)$  is defined and has tubular type  $n_B = (n_{\lambda})_{\lambda}$  with  $n_{\lambda} = \operatorname{rank} \mathcal{T}_{\lambda} + \sum_{E_i \in \mathcal{T}_{\lambda}} |K_i|$ . Since almost all  $n_{\lambda} = 1$ , we write instead of  $n_B = (n_{\lambda})_{\lambda}$  the finite sequence consisting of at least two  $n_{\lambda}$ ,

write instead of  $n_B = (n_\lambda)_\lambda$  the finite sequence consisting of at least two  $n_\lambda$ , keeping those which are larger than 1, and arranged in non-decreasing order. We recall that B is a domestic tubular (resp. tubular) algebra if  $n_B$  is (p,q),  $1 \le p \le q$ , (2,2,r),  $2 \le r$ , (2,3,3), (2,3,4), (2,3,5) (resp. (3,3,3), (2,4,4), (2,3,6) or (2,2,2,2)).

The following fact is well known (see [15, 22]).

PROPOSITION. Let B be a tubular extension of a tame concealed algebra C. Then the following statements are equivalent:

- (a) B is tame;
- (b) B is domestic tubular or a tubular algebra;
- (c)  $q_B$  is weakly non-negative.
- 2.2. For the definitions of admissible operations and the construction of coils, we refer the reader to [2, 3].

Following [3], an algebra B is said to be a *coil enlargement* of a tame concealed algebra C if there is a finite sequence of algebras  $C = B_0, B_1, \ldots, B_m = B$  such that  $B_{j+1}$  is obtained from  $B_j$  by an admissible operations (ad 1), (ad 2) or (ad 3) (resp. (ad 1\*), (ad 2\*), (ad 3\*)) with a pivot (resp. a copivot) on a stable tube of  $\Gamma_C$  or in a component of  $\Gamma_{B_j}$  obtained from a stable tube

of  $\Gamma_C$  by a sequence of admissible operations done so far. By a *coil algebra* we mean a tame strongly simply connected algebra obtained as a *coil* enlargement of a tame concealed algebra.

The following structure result has been proved in [3].

PROPOSITION. Let B be a coil enlargement of a tame concealed algebra C. Then:

- (a) There exists a unique maximal tubular extension  $B^+$  of C which is a convex subcategory of B such that B is obtained from  $B^+$  as a sequence of algebras  $B^+ = B_0, B_1, \ldots, B_m = B$  such that  $B_{j+1}$  is obtained from  $B_j$  by an admissible operation (ad 1\*), (ad 2\*) or (ad 3\*) with a copivot on a coil component of  $\Gamma_{B_j}$ .
- (b) There exists a unique maximal tubular coextension  $B^-$  of C which is a convex subcategory of B such that B is obtained from  $B^-$  as a sequence of algebras  $B^- = B_0, B_1, \ldots, B_n = B$  such that  $B_{j+1}$  is obtained from  $B_j$  by an admissible operation (ad 1), (ad 2) or (ad 3) with a pivot on a coil component of  $\Gamma_{B_j}$ .
- (c) There is a splitting ind  $B = \mathcal{P} \vee \mathcal{J}$ , where  $\mathcal{P}$  is formed by components of  $\Gamma_{B^-}$  and some coils obtained by admissible operations as in (b), and  $\mathcal{J}$  is formed by components of  $\Gamma_{B^+}$ . The splitting satisfies conditions (S1), (S2) and (S3) in 1.4. It satisfies (S4) if and only if  $B^+$  is a proper subcategory of B (equivalently  $B^-$  is a proper subcategory of B).
- (d) B is tame if and only if  $B^+$  and  $B^-$  are tame.

As a consequence of the splitting of ind B for a coil enlargement B of a tame concealed algebra, we get the following result [27, 18].

PROPOSITION 2.3. Let A be a polynomial growth strongly simply connected algebra and X be a essentially present indecomposable A-module. Then one of the following situations occur:

- (a) A is a tilted algebra of tame representation type, X is a directing module and  $q_A(\dim X) = 1$ .
- (b) A is a coil algebra and X belongs to a coil component of  $\Gamma_A$ .

# 3. The proof of the Theorem

We start with some technical considerations.

PROPOSITION 3.1. Let A be an essentially sincere strongly simply connected algebra such that  $q_A$  is weakly non-negative. Let  $B \subset D = [X]B$  be two convex subcategories of A such that B is a coil enlargement of a tame concealed algebra C and X is an indecomposable module lying on a coil  $\Gamma$  of  $\Gamma_B$  such that  $\operatorname{Hom}_B(Z,X) \neq 0$  for a non-directing Z in  $\Gamma$ . Then D is either a coil algebra or  $B^-$  is a tilted algebra of type  $\tilde{\mathbb{D}}_n$  with an indecomposable Y in the preprojective component of  $\Gamma_{B^-}$  satisfying  $\dim_k \operatorname{Hom}_B(Y,X) = 2$ .

Proof. Let  $F = B^-$  and N be the restriction of X to F. Then [N]F is a convex subcategory of D = [X]B. By 2.1, F is a domestic tubular or a tubular algebra which is a tubular extension of C. Assume, in order to ge a contradiction, that F is a tubular algebra. Then X belongs to the inserted family of coils in  $\Gamma_F$ . If X is copivoting, then D = [X]B is a coil algebra. Suppose now that X is not copivoting. We distinguish two situations.

Assume first that the support of  $\operatorname{Hom}_F(-,N)|_{\mathcal{T}}$  contains the k-linear category of a subquiver  $\mathcal{S}$  of the component  $\mathcal{T}$  of  $\Gamma_F$  with  $N \in \mathcal{T}$ , where  $\mathcal{S}$  has the shape (1).



In this case, F is a tubular extension of the tame concealed algebra C of type  $\tilde{\mathbb{D}}_n$ . Then there is a component  $T' \neq T$  of  $\Gamma_F$  containing projective modules. A simple application of the Splitting Lemma implies that A is not essentially sincere, a contradiction. Since X is not copivoting, then supp  $\text{Hom}_F(-,N)|_{\mathcal{T}}$  contains a k-linear category of a poset of type (2). If C is of type  $\tilde{\mathbb{D}}_n$  we obtain a contradiction as above. Otherwise,  $\text{Hom}_F(\text{mod }F,N)$ 

contains a full subcategory given by a poset

$$\operatorname{Hom}_F(Z_5,N) \qquad \qquad \operatorname{Hom}_F(Z_1,N) \qquad \operatorname{Hom}_F(Z_2,N) \qquad \operatorname{Hom}_F(Z_3,N) \qquad \operatorname{Hom}_F(Z_4,N)$$

of type (1, 1, 1, 2) where  $Z_1, Z_2$  lie in  $\mathcal{T}$  and  $Z_3, Z_4, Z_5$  lie in the preprojective component of  $\Gamma_F$ . Considering the coextension vertex t of [N]F, and the vector

$$v = 4e_t + 2\sum_{i=1}^{4} \dim Z_i + \dim Z_5 \in K_0([N]F)$$

evaluating the Tits form  $q_{[N]F}$  at v (using that gldim  $F \leq 2$ ) we get

$$q_{[N]F}(v) = \langle v, v \rangle_F + 8 \sum_{i=1}^4 \dim_k \operatorname{Ext}_{[N]F}^3(Z_i, S_t) + 4 \dim_k \operatorname{Ext}_{[N]F}^3(Z_5, S_t)$$
$$= -1 + 8 \sum_{i=1}^4 \dim_k \operatorname{Ext}_F^2(Z_i, N) + 4 \dim_k \operatorname{Ext}_F^2(Z_5, N) = -1.$$

The last equality due to the fact that  $\operatorname{pdim}_F Z_i \leq 1$  for i = 3, 4, 5 and  $\operatorname{Ext}_F^2(Z_i, N) = 0$ , i = 1, 2, from the structure of  $\mathcal{T}$ . This contradicts the weak non-negativity of  $q_A$  and shows that F is tilted of type  $\tilde{\mathbb{D}}_n$  or  $\tilde{\mathbb{E}}_p$  (p = 6, 7 or 8).

If X is copivoting, then the vector space category  $\operatorname{Hom}_B(\operatorname{mod} B,X)$  is tame. Indeed, if it is not linear, say  $\dim_k \operatorname{Hom}_B(M,X) \geq 2$  for an indecomposable B-module M, then every object  $Y \in \Gamma_B$  is comparable with X (that is, there is  $0 \neq f \in \operatorname{Hom}_B(X,Y)$  or  $0 \neq f \in \operatorname{Hom}_B(Y,X)$  with  $\operatorname{Hom}_B(f,X) \neq 0$ ). Then F is tilted of type  $\tilde{\mathbb{D}}_n$  and M is preprojective in  $\Gamma_F$ . Assume  $\operatorname{Hom}_B(\operatorname{mod} B,X)$  is linear.

If it is not of tame type, then it contains a full subposet L belonging to the Nazarova's list. We identify each point  $a \in L$  with an indecomposable  $X_a$  in the preprojective component  $\mathcal{P}$  of  $\Gamma_F$ . Moreover, since the orbit graph of  $\mathcal{P}$  is a tree (since A is strongly simply connected), we may choose L such that any subchain H yields a sectional path in  $\mathcal{P}$ . Let v be a positive vector such that  $\chi_L(v) = -1$  for the graphical form  $\chi_L$  associated to L (see [22]). Then using that gldim  $D \leq 2$  we get

$$q_D\left(\sum_{a\in L}v(a)\operatorname{dim}X_a+v(w)e_t\right)=\chi_L(v)=-1,$$

for t the extension vertex of D such that  $I_t/\operatorname{soc} I_t = X$ . This leads to a contradiction with the weak non-negativity of  $q_A$ , showing that  $\operatorname{Hom}_B(\operatorname{mod} B, X)$  is tame. Hence D is a tame coil enlargement of C.

If X is not copivoting, then supp  $\operatorname{Hom}_B(-,X)|_{\Gamma}$  contains one of the posets (1) or (2).

In the first case, as above,  $F = B^-$  is of type  $\tilde{\mathbb{D}}_n$ . In the second case, if F is not of type  $\tilde{\mathbb{D}}_n$  we find a full subposet of  $\operatorname{Hom}_F(\operatorname{mod} F, X)$  of type (1,1,1,2) and, as above, we get a contradiction against the weak nonnegativity of  $q_A$ . In both cases, there is a preprojective module Y in  $\Gamma_F$  with  $\dim_k \operatorname{Hom}_F(Y, X) = 2$ .

PROPOSITION 3.2. Let A be an essentially sincere strongly simply connected algebra with  $q_A$  weakly non-negative. Let B be a convex subcategory of A satisfying the following conditions:

- (i) B is a representation-infinite tilted algebra of type  $\tilde{\mathbb{E}}_p$  (p = 6, 7 or 8) having a complete slice in its preinjective component;
- (ii) A admits not a convex subcategory of the form [N]B for any indecomposable B-module N;
- (iii) for any convex subcategory B[M] of A, M is an indecomposable preinjective B-module.

Then A is a tame tilted algebra.

*Proof.* We know that  $\Gamma_B$  consists of a preprojective component  $\mathcal{P}$ , a family  $\mathcal{T}_{\lambda}$  of inserted tubes and a preinjective component  $\mathcal{J}$  having a section of type  $\tilde{\mathbb{E}}_p$ . We may choose  $\Sigma$  a section of  $\mathcal{J}$  such that any indecomposable M such that B[M] is a convex subcategory of A, is a successor of  $\Sigma$  (in order of paths in  $\mathcal{J}$ ).

Choose a sequence of categories  $B = B_0, B_1, \ldots, B_s = A$  such that  $B_{j+1} = B_j[M_j]$  or  $B_{j+1} = [M_j]B_j$  for an indecomposable  $B_j$ -module  $M_j$ . We claim that for each j, there is a component  $C_j$  in  $\Gamma_{B_j}$  satisfying:

- (a)  $C_j$  is a directing component (that is,  $C_j$  is convex in mod  $B_j$  and without cycles);
- (b)  $C_j$  has a complete slice  $\Sigma_j$  which is a tree. In particular, this shows that  $A = B_s$  is a tilted algebra. Then, by [11], A is tame.

Indeed,  $C_0 = \mathcal{J}$  and  $\Sigma_0 = \Sigma$ . Assume  $C_j$  is a directing component of  $\Gamma_{B_j}$  with a complete slice  $\Sigma_j$  such that any indecomposable M, such that B[M]

is a convex subcategory of A, is a successor of  $\Sigma_j$  –maybe not in  $C_j$  (observe that  $\Sigma_j$  may be selected this way as an application of the Splitting Lemma).

Suppose  $B_{j+1} = B_j[M_j]$  for an indecomposable. We claim that  $M_j \in \mathcal{C}_j$ . Otherwise by the Splitting Lemma, there are no injective modules in  $\mathcal{C}_j$ . Since  $q_{B_j}$  is weakly non-negative, then  $\Sigma_j$  is of extended Dynkin type and j=0. In that case  $\mathcal{C}_0 = \mathcal{J}$  is a preinjective component, a contradiction showing that  $M_j \in \mathcal{C}_j$ . By [20],  $M_j$  lies in a directing component of  $\Gamma_{B_{j+1}}$  with a (complete) slice  $\Sigma_{j+1}$  which is a tree (extending  $\Sigma_j$ ).

Suppose  $B_{j+1} = [M_j]B_j$ . By hypothesis, we have  $M_{j|B} = 0$ . If  $M_j \notin \mathcal{C}_j$ , then the Splitting Lemma implies that A is not essentially sincere as illustrated in the following picture:



Hence  $M_j \in \mathcal{C}_j$  and there should exists  $\Sigma_j$  preceding  $M_j$  (apply Splitting Lemma again!). Then  $M_j$  belongs to a directing component  $\mathcal{C}_{j+1}$  of  $\Gamma_{B_{j+1}}$  with a complete slice  $\Sigma_{j+1}$ .

The case complementary Proposition 3.2 goes as follows:

PROPOSITION 3.3. Let A be an essentially sincere strongly simply connected algebra with  $q_A$  weakly non-negative. Assume A contains a full convex subcategory B satisfying the conditions:

- (i) B is either a representation-infinite algebra of type  $\tilde{\mathbb{E}}_p$  (p=6, 7 or 8) with a complete slice in the preinjective component and some projective outside the preprojective component or B is a tubular algebra;
- (ii) there is a convex subcategory A of the form [N]B for some indecomposable B-module N.

Then A is a coil algebra.

*Proof.* Choose B maximal satisfying (i) and (ii). Let D be a maximal coil enlargement of B in A. We want to prove that D = A.

Let  $\Gamma_D = \mathcal{P}_{\infty} \vee \mathcal{C} \vee \mathcal{J}_0$  where  $\mathcal{J}_0$  is the preinjective component of B,  $\mathcal{C} = (\mathcal{C}_{\lambda})_{\lambda}$  is a family of coils such that, for certain  $\lambda_0$ ,  $\mathcal{C}_{\lambda_0}$  contains a projective module and  $\mathcal{P}_{\infty}$  is formed by  $D^-$ -modules. By Proposition 2.3,  $D^-$  is a tilted algebra or a tubular algebra.

Observe that the maximality of B implies that  $N \notin \mathcal{J}_0$ . Hence  $N \in \mathcal{C}$ . The Splitting Lemma implies that  $\mathcal{C}_{\lambda_0}$  is the only component in  $\mathcal{C}$  that may contains projective or injective modules, and in fact contains both types (in particular,  $N \in \mathcal{C}_{\lambda_0}$ ). If D is properly contained in A, then there is a convex subcategory D' of D of the form D[X] or [X]D for an indecomposable D-module X. Maximality of B and the Splitting Lemma imply that  $X \in \mathcal{C}_{\lambda_0}$ . Since  $q_{D'}$  is weakly non-negative, D' is a coil algebra by Proposition 3.1. Then  $D' \subset D$  which is a contradiction. Therefore, A = D is a coil algebra.

Proof of the Theorem. We may assume that A admits a maximal proper convex subcategory B which is a tubular extension of a tame concealed algebra C and such that B is either a tubular algebra or a representation-infinite tilted algebra of type  $\tilde{\mathbb{E}}_p$  (p=6, 7 or 8) having a complete slice in its preinjective component. Therefore, for any convex subcategory of A of the form B[M], M is a preinjective B-module, since  $q_{B[M]}$  is weakly non-negative, M is not preprojective, and the maximality of B and Proposition 3.1 imply that M is not in a coil component). Hence the Splitting Lemma implies that B is not a tubular algebra.

By the maximality of B we may assume that either the hypothesis of Proposition 3.2 or those of Proposition 3.3 hold. Then either A is a tilted algebra or a coil algebra.

# References

- [1] ASSEM, I., SIMSON, D., SKOWROŃSKI, A., "Elements of Representation Theory of Associative Algebras I: Techniques of Representation Theory", London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.
- [2] ASSEM, I., SKOWROŃSKI, A., Multicoil algebras, in "Proceedings of the Sixth ICRA (Ottawa, 1992)", Carleton-Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, 1992, 29-67.
- [3] Assem, I., Skowroński, A., Tomé, B., Coil enlargements of algebras, Tsukuba J. Math. 19 (2) (1995), 457–479.
- [4] Auslander, M., Reiten, I., Smalø, S., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, 1995.

- [5] BONGARTZ, K., Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), 461-469.
- [6] BRÜSTLE, Th., Tame tree algebras, *J. Reine Angew. Math.* **567** (2004), 51–98.
- [7] Brüstle, Th., de la Peña, J.A., Skowroński, A., Tame algebras and Tits quadratic forms, in preparation.
- [8] Crawley-Boevey, W.W., On tame algebras and bocses, *Proc. London Math. Soc.* (3) **56**(3) (1988), 451–483.
- [9] DRÄXLER, P., SKOWROŃSKI, A., Biextensions by indecomposable modules of derived regular length 2, *Compositio Math.* **117** (1999), 205–221.
- [10] DROZD, JU A., Tame and wild matrix problems, in "Proceedings of the Second ICRA (Ottawa, 1979)", Lecture Notes in Math., 832, Springer, Berlin-New York, 1980, 242 258.
- [11] Kerner, O., Tilting wild algebras, J. London Math. Soc. (2) **39** (1989), 29-47.
- [12] MALICKI, P., SKOWROŃSKI, A., Algebras with separating almost cyclic coherent Auslander-Reiten component, J. Algebra 291 (2005), 208 – 237.
- [13] Malicki, P., Skowroński, A., Tomé, B., Indecomposable modules in coils, *Collog. Math.* **93** (2002), 67–130.
- [14] NÖRENBERG, R., SKOWROŃSKI, A., Tame minimal non-polynomial growth strongly simply connected algebras, *Collog. Math.* **73** (1997), 301–330.
- [15] DE LA PEÑA, J.A., On the representation type of one-point extensions of tame concealed algebras, *Manuscripta Math.* **61** (1988), 183–194.
- [16] DE LA PEÑA, J.A., Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171–185.
- [17] DE LA PEÑA, J.A., SKOWROŃSKI, A., Forbidden subalgebras of non-polynomial growth tame simply connected algebras, *Canad. J. Math.* **48** (5) (1995), 1018–1043.
- [18] DE LA PEÑA, J.A., SKOWROŃSKI, A., Characterizations of strongly simply connected polynomial growth algebras, Arch. Math. (Basel) 65 (1995), 391-398.
- [19] DE LA PEÑA, J.A., SKOWROŃSKI, A., Substructures of non-polynomial growth algebras with weakly non-negative, in "Algebras and Modules, II", CMS Conference Proceedings, 24, AMS/CMS, Providence-Ottawa, 1998, 415–431.
- [20] DE LA PEÑA, J.A., TAKANE, M., Constructing the directing components of an algebra, *Colloq. Math.* **74** (1) (1997), 29–46.
- [21] Reiten, I., Skowroński, A., Characterizations of algebras with small homological dimensions, *Adv. Math.* **179** (2003), 122–154.
- [22] RINGEL, C.M., "Tame Algebras and Integral Quadratic Forms", Lecture Notes in Math., 1099, Springer-Verlag, Berlin, 1984.
- [23] SIMSON, D., SKOWROŃSKI, A., "Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type", London Mathematical Society Student Texts, 71, Cambridge Uni-

- versity Press, Cambridge, 2007.
- [24] SIMSON, D., SKOWROŃSKI, A., "Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras", London Mathematical Society Student Texts, 72, Cambridge University Press, Cambridge, 2007.
- [25] Skowroński, A., Algebras of polynomial growth, in "Topics in Algebra", Banach Center Publications, 26, Part 1, PWN–Polish Scientific Publishers, Warsaw, 1990, 535-568.
- [26] SKOWROŃSKI, A., Simply connected algebras and Hochschild cohomologies, in "Proceedings of the Sixth ICRA (Ottawa, 1992)", Carleton-Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, 1992, 431–447.
- [27] Skowroński, A., Simply connected algebras of polynomial growth, *Compositio Math.* **109** (1997), 99–133.
- [28] Skowroński, A., Tame quasitilted algebras, *J. Algebra* **203** (1998), 470–490.