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1. Introduction

In [8] and [9] several classes of new algebras were introduced. Some of
them have two generating operations and they are called dialgebras. The first
motivation to introduce such algebraic structures (related with well known
Lie and associative algebras) were problems in algebraic K-theory.

The categories of these algebras over their operads assemble into the com-
mutative diagram which reflects the Koszul duality of those categories. The
aim of the present paper is to study structural properties of one class of Lo-
day’s list, namely the so called Leibniz algebras.

Leibniz algebras present a “non-commutative” (to be more precise, a “non-
antisymmetric”) analogue of Lie algebras and they were introduced by J.-
L.Loday [8], as algebras that satisfy the following identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y].

They appeared to be related in a natural way to several topics such as dif-
ferential geometry, homological algebra, classic algebraic topology, algebraic
K-theory, loop spaces, noncommutative geometry, etc. In fact, most papers
concerning Leibniz algebras are devoted to the study of homological problems
[5], [6], [11]. The structure theory of Leibniz algebras mostly remains unex-
plored and the extension of notions like simple, semisimple Leibniz algebras,
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radical, etc., have not been discussed. Some structural results concerning
nilpotency, classification of low dimensional Leibniz algebras and related prob-
lems were, however, considered in [1]–[4]. The reader may find similar results
for Lie algebras in [7].

The classification, up to isomorphism, of any class of algebras is a fun-
damental and very difficult problem. It is one of the first problems that one
encounters when trying to understand the structure of a member of this class
of algebras. The purpose of the present paper is to provide the classifica-
tion of four dimensional complex nilpotent Leibniz algebras. Actually, it is a
prelude of our paper [2], where the geometric classification problems of low
dimensional complex nilpotent Leibniz algebras were discussed. From the ge-
ometrical point of view the classification of a class of algebras corresponds to
a fibration of this class, the fiber being the isomorphic classes. We will give
representatives of each isomorphism class for 4-dimensional nilpotent complex
Leibniz algebras. By “classification” here we mean the algebraic classification,
i.e., the determination of the types of isomorphic algebras, whereas geomet-
ric classification is the problem of finding generic structural constants in the
sense of algebraic geometry. But the geometrical classification presupposes
the algebraical classification.

We restrict our discussion to nilpotent Leibniz algebras of dimension four
since all Leibniz algebras of dimension at most three already have been clas-
sified in [3], [7], [8].

Definition 1.1. An algebra L over a field F is said to be a Leibniz algebra
if it satisfies the following Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y],

where [ , ] denotes the multiplication in L.

Remark 1.2. If a Leibniz algebra has the additional property of antisym-
metry [x, y] = −[y, x] for all x, y ∈ L then the Leibniz identity can be easily
reduced to the Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Therefore a Leibniz algebra is a generalization of well known Lie algebras.
Another generalization of Lie algebras was given by A. Mal’tzev [12]. They

were called Mal’tzev algebras and satisfy the following two identities:

[x, y] = −[y, x],

[[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y] = [[x, y], [x, z]].
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It is clear that the intersection of the varieties of Leibniz algebras and
Mal’tzev algebras coincides exactly with the variety of Lie algebras.

All algebras considered in this paper are supposed to be defined over the
field of complex numbers C.

2. Nilpotent Leibniz algebras

In this section we remind the reader to some observations on associative
and Leibniz algebras.

If L is associative algebra without unit then the associative algebra A,
obtained from L by the external adjoining of a unit is denoted by A = L⊕C1.

Proposition 2.1. Let L be a finite dimensional nilpotent associative al-
gebra. Then the algebra A = L ⊕ C1 does not contain any nontrivial idem-
potents.

Proof. Let a be an element of L and let 1 + a be an idempotent of A =
L⊕C1. Let m be the index of nilpotency of a. It is evident that 1+a = (1+a)n

for any natural n ≥ 2. On the other hand, one has (1+a)n = 1+
∑n

k=1 Ck
nak;

this gives a = na+
∑n

k=2 Ck
nak, and multiplying both sides of this equality by

am−2 we get (n− 1)a = 0, which shows that the idempotent is trivial.

Let L be a complex Leibniz algebra. We put:

L1 = L, Lk+1 = [Lk, L], k ∈ N.

So if L is a Leibniz algebra with L3 = 0 then it is associative. For our
purpose the following corollary of the Proposition 2.1 is important.

Corollary 2.2. Let L be a finite dimensional Leibniz algebra with
L3 = 0. Then the algebra A = L⊕ C1 has no nontrivial idempotents.

The following proposition gives the another link between L and A =
L⊕ C1.

Proposition 2.3. Let L1 and L2 be finite dimensional associative alge-
bras without unit. Then L1 ⊕ C1 ∼= L2 ⊕ C1 if only if L1

∼= L2.

Another result which we will use in this paper is G. Mazzola’s classifica-
tion of 5-dimensional unitary associative algebras [10]. He gave the list of
all isomorphism types of 5-dimensional unitary associative algebras, which is
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however too long to be given here since there are 59 isomorphism types. We
assume the reader is familiar with this list.

The concept of nilpotency in the case of Leibniz algebras can be defined
the similar manner as in the Lie algebras case.

Definition 2.4. A Leibniz algebra L is said to be nilpotent if there exists
a natural s ∈ N , such that Ls = 0.

Definition 2.5. An n-dimensional Leibniz algebra L is said to be nulfil-
iform if dimLi = n− i + 1, where 2 ≤ i ≤ n + 1.

Definition 2.6. An n-dimensional Leibniz algebra L is said to be filiform
if dimLi = n− i, where 2 ≤ i ≤ n.

For a given n−dimensional nilpotent Leibniz algebra L we define the fol-
lowing isomorphism invariant:

χ(L) = (dimL1, dimL2, . . . ,dimLn−1, dimLn)

It is evident that

dimL1 > dimL2 > · · · > dimLk > · · ·
Proposition 2.7. Let L be an n-dimensional nilpotent Leibniz algebra.

If the first two coordinates of the invariant χ(L) are equal to n and n − 1,
respectively, then L is a nulfiliform Leibniz algebra.

Proof. From the assertion of the proposition we can easily conclude that
L is one-generated algebra. Let L =< x > for some x ∈ L\L2. Then using
Leibniz identity we obtain that the following set of elements

{x, [x, x], . . . , [[[x, x], x], . . . , x]︸ ︷︷ ︸
n−times

}

forms the basis of the algebra L, such that dimLi = n− i + 1, where 2 ≤ i ≤
n + 1.

Proposition 2.8. ([4]) Up to isomorphism, there is only one n-dimen-
sional non-Lie nulfiliform Leibniz algebra. It can be given by the following
table of multiplications:

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1

where {e1, e2, . . . , en} is a basis of L and omitted products are supposed to be
zero.
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In [4] the description of the set of all (n+1)-dimensional complex non-Lie
filiform Leibniz algebras was given as a union of two disjoint classes. The
motivation behind these classes can be explained by the existence of natu-
rally graded filiform non-Lie Leibniz algebras. However, from the existence of
naturally graded filiform Lie algebras one more class of (n + 1)-dimensional
complex non-Lie filiform Leibniz algebras appears. Combining these two facts
we get the following proposition.

Proposition 2.9. Any (n+1)-dimensional complex non-Lie filiform Leib-
niz algebra can be included in one of the following three classes of non-Lie
filiform Leibniz algebras:

µα,θ
1 =





[e0, e0] = e2,

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1
[e0, e1] = α3e3 + α4e4 + · · ·+ αn−1en−1 + θen,

[ej , e1] = α3ej+2 + α4ej+3 + · · ·+ αn+1−jen, 1 ≤ j ≤ n− 2

µβ,γ
2 =





[e0, e0] = e2,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1
[e0, e1] = β3e3 + β4e4 + · · ·+ βnen,

[e1, e1] = γen,

[ej , e1] = β3ej+2 + β4ej+3 + · · ·+ βn+1−jen, 2 ≤ j ≤ n− 2

µα,β,γ,δ
3 =





[e0, e0] = αen, (α, β, γ) 6= (0, 0, 0)
[e1, e1] = βen,

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1
[e0, e1] = −e2 + γen,

[e0, ei] = −ei+1, 2 ≤ i ≤ n− 1
[ei, ej ] = −[ej , ei] ∈ lin < ei+j+1, ei+j+2, . . . , en >,

2 ≤ i ≤ j ≤ n− 1− i, i + j 6= n

[en−i, ei] = −[ei, en−i] = (−1)iδen, 1 ≤ i ≤ n− 1

where {e0, e1, e3, . . . , en} is a basis, δ = 1 for odd n and δ = 0 for even n;
omitted products are supposed to be zero.

In other words, the above proposition means that the set of all (n + 1)-
dimensional complex non-Lie filiform Leibniz algebras can be represented as a
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disjoint union of the above mentioned three subsets. The isomorphisms inside
each class, however, are not known.

3. Description of 4-dimensional nilpotent
complex Leibniz algebras

In this section we shall expose the list of all isomorphic types of four
dimensional nilpotent complex Leibniz algebras. Here we will use the four-
dimensional case of Proposition 2.9 and then define isomorphisms inside each
of the classes. To find the other isomorphism types one uses the classification
of unitary associative algebras of dimension five [10]. Namely, from the classi-
fication list of [10] we pick out according to some restrictions Leibniz algebras
of our list.

First we derive the following subsidiary result:

Proposition 3.1. Any 4-dimensional nilpotent complex Leibniz algebra
L belongs to one of the following types:

(i) nulfiliform Leibniz algebras, that is χ(L) = (4, 3, 2, 1),
(ii) filiform Leibniz algebras, that is χ(L) = (4, 2, 1, 0),
(iii) associative algebras, with χ(L) := (4, 2, 0, 0) or (4, 1, 0, 0),
(iv) abelian, that is χ(L) = (4, 0, 0, 0).

Proof. Let us consider all possible cases for χ(L). The following can occur.

a) χ(L) = (4, 3, 2, 1), then in view of Proposition 2.8 L is a nulfiliform
algebra.

b) χ(L) = (4, 2, 1, 0), then in view of Proposition 2.9 L is a filiform algebra.
c) χ(L) = (4, 2, 0, 0).
d) χ(L) = (4, 1, 0, 0).

It is clear that in the last two cases the algebra L is associative.
e) χ(L) = (4, 0, 0, 0), then we get an abelian algebra.

Note that Proposition 2.7 implies that the cases χ(L) := (4, 3, 2, 0), (4, 3, 1, 0)
and (4, 3, 0, 0) are impossible.

From now on as a matter of convenience we assume that the undefined
multiplications are zero; we also do not consider neither abelian algebras, nor
Lie algebras or split Leibniz algebras, i.e., we do not consider Leibniz algebras
which are direct sums of proper ideals.

So we are given a Leibniz algebra L with a basis {e1, e2, e3, e4}.
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Theorem 3.2. The isomorphism classes of four-dimensional complex
nilpotent Leibniz algebras are given by the following representatives.

<1 : [e1, e1] = e2, [e2, e1] = e3, [e3, e1] = e4;
<2 : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = e3, [e3, e1] = e4;
<3 : [e1, e1] = e3, [e2, e1] = e3, [e3, e1] = e4;

<4(α) : [e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = e4,

[e3, e1] = e4, α ∈ {0, 1};
<5 : [e1, e1] = e3, [e1, e2] = e4, [e3, e1] = e4;
<6 : [e1, e1] = e3, [e2, e2] = e4, [e3, e1] = e4;
<7 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3,

[e1, e3] = −e4,

<8 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3 + e4,

[e1, e3] = −e4,

<9 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4,

[e1, e2] = −e3 + 2e4, [e1, e3] = −e4,

<10 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4,

[e1, e2] = −e3, [e1, e3] = −e4,

<11 : [e1, e1] = e4, [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = −2e3 + e4

<12 : [e1, e2] = e3, [e2, e1] = e4, [e2, e2] = −e3;
<13(α) : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −αe3, [e2, e2] = −e4, α ∈ C;
<14(α) : [e1, e1] = e4, [e1, e2] = αe4, [e2, e1] = −αe4, [e2, e2] = e4,

[e3, e3] = e4, α ∈ C;
<15 : [e1, e2] = e4, [e1, e3] = e4, [e2, e1] = −e4, [e2, e2] = e4, [e3, e1] = e4;
<16 : [e1, e1] = e4, [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4;
<17 : [e1, e2] = e3, [e2, e1] = e4;
<18 : [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = e4;
<19 : [e2, e1] = e4, [e2, e2] = e3;

<20(α) : [e1, e2] = e4, [e2, e1] = 1+α
1−α e4, [e2, e2] = e3, α ∈ C\{1};

<21 : [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4.

Proof. According to Proposition 3.1 any 4-dimensional nilpotent complex
Leibniz algebra is either nulfiliform, filiform or associative. Let us consider
each of these cases separately.
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Let L be nulfiliform. Then in view of Proposition 2.8 there is only one
nulfiliform Leibniz algebra and it can be given by the multiplication table:

[e1, e1] = e2, [e2, e1] = e3, [e3, e1] = e4.

This is <1.
Let now L be filiform. Then Proposition 2.9 implies that there are three

classes of filiform Leibniz algebras, i.e., the following occurs:

∇(α, β) : [e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = βe4, [e3, e1] = e4;

Ω(α, β) : [e1, e1] = e3, [e1, e2] = αe4, [e2, e2] = βe4, [e3, e1] = e4;

and

Φ(α, β, γ) : [e1, e1] = αe4, [e2, e2] = βe4, [e2, e1] = e3, [e3, e1] = e4,

[e1, e2] = −e3 + γe4, [e1, e3] = −e4,

where in the latter case at least one of α, β, γ is not zero.
Let us consider the case of the algebras ∇(α, β).
Case 1.1: β = 0 and α 6= 0. Then the following change of the basis

{e1, e2, e3, e4} reduces ∇(α, β) to ∇(1, 0):

e′1 = αe1, e′2 = αe2, e′3 = α2e3, e′4 = α3e4.

In this case we get <2.
Case 1.2: β = 0 and α = 0. Then ∇(0, 0) is <3.
Case 2: β 6= 0. By changing the basis {e1, e2, e3, e4} in the following way:

e′1 = βe1, e′2 = βe2, e′3 = β2e3, e′4 = β3e4

the algebra ∇(α, β) can be reduced to ∇(α, 1).
Thus we get the following table of multiplication for the algebras ∇(α, 1):

[e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4.

Next we define isomorphism types within the above family of algebras. It
is not hard to see that the only following changes of the basis {e1, e2, e3, e4}
can occur:

e′1 = ae1 + be2, e′2 = (a + b)e2 + b(α− 1)e3,

e′3 = a(a + b)e3 + b(aα + b)e4, e′4 = a2(a + b)e4.
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Then for α, α′, a, b we obtain the equalities α′ = (aα + b)/a2 and b = a2 − a.
Clearly at α = 1 we get α′ = 1. But at α 6= 1 setting a = 1 − α we obtain
α′ = 0. Therefore, up to isomorphisms, there are only two algebras here:

<4(1) : [e1, e1] = e3, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4, [e1, e2] = e4;

<4(0) : [e1, e1] = e3, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4.

We show that the displayed algebras are nonisomorphic. Note that the di-
mensions of maximal abelian subalgebras of the algebras <2 and <4(α) are
different, and therefore <2 is not isomorphic to the algebra <4(α) for any
α ∈ {0, 1}. The algebra <3 is not isomorphic to the algebras <2 and <4(α)
for any α ∈ {0, 1}, by dimensional reasons about the right annihilators.

Let us now consider the class Ω(α, β). There are two possible cases.
Suppose β = 0 and α 6= 0. Then the transformation

e′1 = e1, e′2 = α−1e2, e′3 = e3, e′4 = e4

brings us to Ω(1, 0) which is <5.
Suppose now β 6= 0. It is easy then to see that the transformation

e′1 = βe1, e′2 = βe2, e′3 = β2e3, e′4 = β3e4

leads to the type

Ω(α, 1) : [e1, e1] = e3, [e1, e2] = αe4, [e2, e2] = e4, [e3, e1] = e4.

In this case the following changes of the basis can occur:

e′1 = ae1 + be2, e′2 = ce2 − abc−1e3,

e′3 = a2e3 + b(aα + b)e4, e′4 = a3e4.

It is not hard to notice, after some calculations, that for different values
of the parameters α and α′ we will get the equalities: α′ = c(aα + b)/a3

and c2 = a3. Now we set b = −aα to obtain α = 0. Thus we have showed
that the algebras Ω(α, 1) are isomorphic to the algebra <6 with the following
multiplication table:

[e1, e1] = e3, [e2, e2] = e4, [e3, e1] = e4.

It should be noted that the algebra Ω(0, 0) is split.
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The algebra <5 is not isomorphic to the algebra <6, by dimensional reasons
about the left annihilators.

Let us consider the last class of non-Lie filiform Leibniz algebras: Φ(α, β, γ).
Since at least one of α, β, γ is not zero then not restricted of generality we

can suppose that α 6= 0. Taking the transformation

e′1 = e1, e′2 = αe2, e′3 = αe3, e′4 = αe4

we obtain α = 1.
To study the family Φ(1, β, γ) we consider the general change of the gen-

erator basic elements in the form:

e′1 = A1e1 + A2e2 + A3e3, e′2 = B1e1 + B2e2 + B3e3.

Then express the new basis {e′1, e′2, e′3, e′4} of the algebra Φ′(1, β′, γ′) with
respect to the old basis {e1, e2, e3, e4} and comparing the coefficients we obtain
the following identities:

A2
1 + A1A2γ + A2

2β = A2
1B2, B1 = 0, A2

1B2 6= 0

β′ =
B2β

A2
1

, γ′ =
A1γ + 2A2β

A2
1

.

Note that the following identity is true

γ′2 − 4β′ =
1

A2
1

(γ2 − 4β).

Consider the case β = 0. Then β′ = 0.
So, in this case if γ = 0, then γ′ = 0 and we get <7. But if γ 6= 0, then

setting A1 = γ, B2 = 1 and A2 = 0 we obtain γ′ = 1, and we get <8.
Consider the case β 6= 0. Then putting B2 = A2

1/β we obtain β′ = 1.
If γ2 − 4β = 0, then taking A2 = (−2A1γ + 4A2

1)/γ2 and A1 any non-zero
number we obtain γ′ = 2. Thus, in this case we obtain <9.

If γ2 − 4β 6= 0, then putting

A1 =

√
4β − γ2

4
, A2 = − γ

2β

√
4β − γ2

4

we obtain γ′ = 0 and this is <10.
Now we suppose that the algebra L has the type (iii) in Proposition 3.1,

that is the same to say that L is a Leibniz algebra with χ(L) := (4,2,0,0) or
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(4,1,0,0), in particular L is associative. Then all above results on associative
algebras are applicable to this case and so we deal with associative algebras.

We consider the associative algebra A = L ⊕ C. It is 5-dimensional and
unitary. Now using properties of L we delete from G. Mazzola’s list [10] in-
appropriate algebras. The first condition that will be used is the number of
central idempotents. In view of this condition A is not isomorphic to the alge-
bras with numbers 1-15, 25, 26, 38, 39, 55. Then in view of Corollary 2.2 and
of the fact that the image of an idempotent element under isomorphism is an
idempotent element we decide that A is not isomorphic to each of the algebras
16-22, 27, 28, 29, 40, 41, 46, 47, 52, 58 in the list of G. Mazzola. Moreover,
the condition L3 = 0 implies that A is not isomorphic to the algebras 23, 24,
33, 34, 44. in the list of G. Mazzola. Then from the remaining algebras we
pick out appropriate ones.

Consider N30. A = C < x, y > /(xy + yx, xy − yx + y2 − x2) + (x, y)3.
Choose the basis of A: e0 = 1, e1 = x, e2 = y, e3 = xy, e4 = x2. Then the
subalgebra L =< e1, e2, e3, e4 > has the following composition law:

[e1, e1] = e4, [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = −2e3 + e4.

This is algebra <11.
Consider N31. A = C < x, y > /(x2, xy + y2) + (x, y)3. Choose the basis

of A: e0 = 1, e1 = x, e2 = y, e3 = xy, e4 = yx. Then the subalgebra
L =< e1, e2, e3, e4 > has the composition law:

[e1, e2] = e3, [e2, e1] = e4, [e2, e2] = −e3.

This means that it coincides with <12

Let now consider N32. A = C < x, y > /(xy + y2, αx2 + yx) + (x, y)3.
Choose the basis for A: e0 = 1, e1 = x, e2 = y, e3 = x2, e4 = xy. Consider the
subalgebra L =< e1, e2, e3, e4 >. Then it is the algebra with the multiplication
table:

[e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −αe3, [e2, e2] = −e4.

In view of Proposition 2.7 for distinct values of the parameter α these algebras
are not isomorphic. In this case L is <13(α).

Consider N35. A = C < x, y, z > /(xz, yz, zx, zy, x2 − y2, x2 − z2, xy +
yx, αx2 + yx), where α 6= 0. Choose the basis for A: e0 = 1, e1 = x, e2 = y,
e3 = z, e4 = x2. Then the subalgebra L =< e1, e2, e3, e4 > has the following
composition law:

[e1, e1] = e4, [e1, e2] = αe4, [e2, e1] = −αe4, [e2, e2] = e4, [e3, e3] = e4.
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and it is <14(α).
We remark that the algebras <14(α1) and <14(α2) (α1 6= α2) are not

isomorphic except for the case where α2 = −α1, in the latter case they are
indeed isomorphic [10].

Consider N36. A = C < x, y, z > /(x2, yz, zy, z2, xy − xz, xy + yx, yx +
y2, yx+zx). As a basis here we choose e0 = 1, e1 = x, e2 = y, e3 = z, e4 = xy.
Then the subalgebra L =< e1, e2, e3, e4 > has the following law of composition

[e1, e2] = e4, [e1, e3] = e4, [e2, e1] = −e4, [e2, e2] = e4, [e3, e1] = e4

and it is isomorphic to <15 of the theorem.
Consider N37. A = C < x, y, z > /(xz, y2, yz, zx, zy, x2− z2, x2− xy, x2 +

yx). As a basis we take e0 = 1, e1 = x, e2 = y, e3 = z, e4 = xy. Then the
subalgebra L =< e1, e2, e3, e4 > is isomorphic to the algebra:

<16 : [e1, e1] = e4, [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4.

Consider N42. A = C < x, y > /(x2, y2)+ (x, y)3. As a basis we take e0 =
1, e1 = x, e2 = y, e3 = xy, e4 = yx. Then the subalgebra L =< e1, e2, e3, e4 >
is the same as:

<17 : [e1, e2] = e3, [e2, e1] = e4.

Consider N43. A = C[x, y]/(y3, xy, x3) and choose as a basis e0 = 1,
e1 = x, e2 = y, e3 = x2, e4 = y2. Then the subalgebra L =< e1, e2, e3, e4 >
has the table of multiplication:

[e1, e1] = e3, [e2, e2] = e4.

But it is obvious that this algebra is decomposable and we can omit it.
Consider N48. A = C < x, y > /(x2, xy + yx) + (x, y)3. As a basis we

choose e0 = 1, e1 = x, e2 = y, e3 = xy, e4 = y2. Then the subalgebra
L =< e1, e2, e3, e4 > coincides with the algebra:

<18 : [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = e4.

Consider N49 (α = 1). A = C < x, y > /(x2, xy) + (x, y)3. As a basis
we take e0 = 1, e1 = x, e2 = y, e3 = y2, e4 = yx. Then the subalgebra
L =< e1, e2, e3, e4 > is isomorphic to the algebra:

<19 : [e2, e1] = e4, [e2, e2] = e3.

Let now consider N49 (α 6= 1). A = C < x, y > /
(
x2, (1 + α)xy+

(1 − α)yx
)

+ (x, y)3. As a basis of A can be chosen vectors e0 = 1, e1 = x,
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e2 = y, e3 = y2, e4 = xy, and the subalgebra L =< e1, e2, e3, e4 > will be
isomorphic to

<20(α) : [e1, e2] = e4, [e2, e1] =
1 + α

1− α
e4, [e2, e2] = e3.

By using Proposition 2.3 again we conclude that for different values of α
we obtain non-isomorphic algebras.

Consider N50. A = C < x, y, z > /(x2, xz, y2, yz, zx, zy, xy + yx, yx + z2).
As a basis of it we choose vectors e0 = 1, e1 = x, e2 = y, e3 = z, e4 = xy.
Then the subalgebra L =< e1, e2, e3, e4 > is isomorphic to the algebra:

<21 : [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4.

We finally consider N51. A = C < x, y, z > /(xz, yz, zx, zy, x2 − y2, x2 −
z2, xy, yx). As a basis we choose e0 = 1, e1 = x, e2 = y, e3 = z, e4 = x2. Then
the subalgebra L =< e1, e2, e3, e4 > has the following table of multiplication:

[e1, e1] = e4, [e2, e2] = e4, [e3, e3] = e4.

But this algebra can be included in to the family of algebras <14(α) at α = 0.
Using Proposition 2.3 it is easy to check that all obtained algebras are

pairwise not isomorphic.

Remark 3.3. All the other algebras of G. Mazzola’s list are either Lie
algebras or split Leibniz algebras.

It should be noted that there are a lot of Leibniz algebras in dimension
four unlike the case of Lie algebras, where in dimension four there is only one
non-split algebra.

Summarizing the classification of the above theorem and the classifications
of complex nilpotent Lie algebras of dimension at most four and complex
nilpotent Leibniz algebras of dimension at most three, we obtain the complete
classification of complex nilpotent Leibniz algebras of dimension at most four.
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