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1. Preliminaries

Let H be a complex Hilbert space and B(H) the Banach algebra of all
bounded linear operators on H. If T ∈ B(H) then T ∗ stands for the adjoint
operator of T , while R(T ) and N (T ) denote the range and the null-space of
T , respectively.

A contraction onH is an operator T ∈ B(H) satisfying T ∗T ≤ I, where I =
IH is the identity operator. If T ∗T < I then T is called a proper contraction.
The class of contractions is one of the most studied and well-understood class
of operators (see for instance [2], [3], [6], [11]) and the investigations concerning
different other classes in B(H) have a starting point the theory of contractions.
We refer below to a class of operators which generalize the contractions.

Let A ∈ B(H) be a positive operator, A 6= 0. An operator T ∈ B(H)
satisfying the inequality

T ∗AT ≤ A(1.1)

is called an A-contraction on H. If the equality in (1.1) one occurs then T
is called an A-isometry on H. Such operators appear in different contexts
in [1], [2], [3], [5], [7]–[10], [11], and other papers. By contrast to the class
of contractions (that is, of I-contractions), the class of A-contractions is not
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invariant for the adjoint mapping T → T ∗ in B(H), in general (see Example
4.1 [8]).

It is clear from (1.1) that N (A) is an invariant subspace for T (and ob-
viously, for A). So, if A is not injective then N (A) is a nontrivial invariant
subspace for T . In general, for an A-contraction T it is possible to get other
invariant subspaces for T which contain N (A). For instance, we proved in [8]
that the subspace

N := N (A−AT ) = N (A1/2 −A1/2T ) = N (A− T ∗A)(1.2)

is invariant for T , where A1/2 is the square root of A. Clearly one has N (A) ⊂
N , hence N = {0} implies A injective. On the other hand, N = H means
T ∗A = A, that is T ∗|R(A)

= IR(A)
. Thus, if A is not injective and T ∗ is not

the identity on R(A), then N (A) and N are nontrivial invariant subspaces
for T .

Now, we infer from (1.1) that there exists a unique contraction T̂ on
R(A) = R(A1/2), which satisfies T̂A1/2h = A1/2Th for any h ∈ H. Then
it follows immediately that R(I − T̂ ) = R(A1/2 −A1/2T ), hence having in
view the decomposition R(A) = R(I − T̂ )⊕N (I − T̂ ) we have

N∗ := N (A1/2 − T ∗A1/2) = N (I − T̂ )⊕N (A).(1.3)

We know (from [9] and [10]) that N = N∗ if and only if N (equivalently,
N∗) reduces A, and this fact has a pure ergodic character (see Theorem 2.1
[9] and Theorem 2.4 [10]). According to [9] we say that an A-contraction T
on H is ergodic if N = N∗. In this case, the subspace N is invariant for A
and T but, by contrast with the case when A = I, N is not invariant for T ∗,
in general (see Example 2.8 [10]).

An A-contraction T on H is called regular if it satisfies the condition
AT = A1/2TA1/2. Equivalently, this means that A1/2T̂A1/2h = T̂Ah for
h ∈ H, which implies A1/2T̂ k = T̂A1/2k for k ∈ R(A). So, an A-contraction
T is regular if and only if T̂ and A|R(A)

commute. In this case, one has

(I − T̂ )A1/2k = A1/2(I − T̂ )k for k ∈ R(A), which gives that N (I − T̂ ) is
invariant for A1/2|R(A)

and from (1.3) one obtains that N∗ is invariant for A.
Hence, any regular A-contraction is an ergodic A-contraction.

It is clear that any contraction T on H is an ergodic T ∗T -contraction
(being also a (T ∗T )1/2-contraction). In addition, if T is hyponormal that
is TT ∗ ≤ T ∗T , then T ∗ is an ergodic TT ∗-contraction, and also an ergodic
T ∗T -contraction. This happens in particular when T is quasinormal, that is
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if T and T ∗T commute (see [2], [3], [12]). But in this last case T and T ∗ are
regular T ∗T -contractions.

In general, an operator T ∈ B(H) which is a T ∗T -contraction is called a
quasi-contraction, and if T is a T ∗T -isometry then T is called a quasi-isometry.
In this last case, one has ||T || ≥ 1, and it was proved in [5] that ||T || = 1 if
and only if T is hyponormal.

In this paper we deal with some invariant subspaces in the context of A-
contractions. So, in Section 2 we discuss the largest invariant subspace on
which a given A-contraction actions as an A-isometry. Especially, the regular
case is considered here. As applications, in Section 3 we analyze in detail the
quasinormal contractions seen as quasi-contractions. We obtain the concrete
forms for the unitary part and for the quasi-isometric part of a quasinormal
contraction, and also some facts concerning such operators. In Section 4 we
obtain an asymptotic form of the largest invariant A-isometric subspace from
Section 2, using the operator limit of the sequence {T ∗nATn; n ≥ 1}. We
study this subspace in connection to other subspaces which appear in the
general context of A-contractions. But, more precisely results are derived in
the case of a regular A-contraction, or when the range of A is closed. As
applications in this section, we reobtain some facts concerning the asymptotic
behaviour of a quasinormal operator (see [2], [3]), by direct investigations
using the context of regular A-contractions.

2. The invariant A-isometric part

As we remarked in the previous section, the null-spaces N (A) and N =
N (A − AT ) play an important role in the study of an A-contraction T on
H, by being invariants for T . Other remarkable subspaces associated to an
A-contraction T are

N0 := N (A− T ∗AT ), N∞ :=
∞⋂

n=1

N (A− T ∗nATn).

We have N ⊂ N∞ ⊂ N0, and N = N0 if and only if A1/2TN0 ⊂ N∗.
By contrast with N , N0 is not invariant for T even in some ergodic cases.

This fact easily follows from Example 4.3 [8], where one has {0} 6= N (A) =
N = N∞ $ N0 6= H. But, in general, the inclusion N (A) ⊂ N ⊂ N0 can be
strict even if N0 is invariant for T . For instance, when T is a T ∗T -isometry on
H with ||T || = 1, we have from Remark 2.7 [10] that N = N (T )⊕N (I − T ).
Thus, if T is not an orthogonal projection and T has non zero invariant vectors
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in H, then {0} 6= N (T ) $ N $ N∞ = N0 = H.
Concerning the subspaces N0 and N∞, we firstly have

Proposition 2.1. The following conditions are equivalent for an A-con-
traction T on H:

(i) TN0 ⊂ N0;

(ii) N0 = N (A− T ∗2AT 2);
(iii) N0 = N∞.

Furthemore TN∞ ⊂ N∞, and if AN∞ ⊂ N∞ then N∞ is the largest
invariant subspace (in H) for A and T on which T is an A-isometry.

Proof. Let T be an A-contraction on H. Then Tn is also an A-contraction
for any integer n ≥ 2, and since the sequence {T ∗nATn} is decreasing we have

N (A− T ∗mATm) ⊂ N (A− T ∗nATn) ⊂ N0 (m,n ≥ 2)

This shows that (iii) implies (ii), and the equivalence of (ii) with (i) is based
on the following relation (for n = 1)

||(A− T ∗nATn)1/2Th||2 = 〈T ∗ATh, h〉 − 〈T ∗(n+1)ATn+1h, h〉,(2.1)

where h ∈ H and n ≥ 1.
Next, if we assume the condition (i), then for h ∈ N0 and n ≥ 1 we

have ATnh = T ∗ATn+1h, hence T ∗nATnh = T ∗(n+1)ATn+1h. This leads to
N0 = N∞, that is the condition (iii).

Now we infer from (2.1) that

TN∞ ⊂ N (A− T ∗nATn) (n ≥ 1),

whence TN∞ ⊂ N∞.
Suppose that AN∞ ⊂ N∞. Therefore N∞ is invariant for A and T , and

T |N∞ is an A|N∞-isometry because N∞ ⊂ N0. Let M ⊂ H be another
invariant subspace for A and T such that T |M is an A|M-isometry. Then
Tn|M is also an A|M-isometry, that is (Tn|M)∗ATnh = Ah for h ∈ M,
n ≥ 1. Equivalently, one has ||A1/2Tnh|| = ||A1/2h|| which implies M ⊂
N (A− T ∗nATn) for any n ≥ 1, and so M⊂ N∞.

Remark 2.2. If the A-contraction T is not an A-isometry on H and the
operator A is not injective, then N (A), N and N∞ are nontrivial invariant
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subspaces for T . Furthermore, if the A-contraction T is not ergodic then
N (A) 6= N . In general N 6= N∞ because one has

N ⊂ N∞ ∩N (AT − T ∗A) = N∞ ∩N (A−AT 2) ⊂ N∞,(2.2)

where the subspace between N and N∞ is also invariant for T .
In particular, if T is an idempotent, that is T 2 = T , then AT = T ∗A

(see [8]) and so T ∗AT = AT , whence we infer that N = N∞ = N0. On the
other hand, when T is 2-nilpotent, that is T 2 = 0, then immediately follows
that N∞ ⊂ N (A), consequently N (A) = N = N∞. Such a case appears in
Example 4.3 [8] quoted above, where N∞ 6= N0; here N0 and N∞ are invariant
for A. In all these cases, T is an ergodic A-contraction.

In general, neither N0 nor N∞ are invariant for A, as can be seen in
Example 4.4 [8] where the A-contraction T is not ergodic and {0} 6= N =
N∞ = N0 6= H. Finally, the Example 2.8 [10] gives an ergodic A-contraction
T for which {0} 6= N (A) = N = N∞ $ N0 6= H, such that N∞ is invariant
for A, but N0 is not invariant for A or T .

The above remarks lead to conclusion that the properties of subspaces N0

and N∞ depend not essentially of the ergodic character of the A-contractions.
However, certain facts about N0 and N∞ may be obtained when T is a regular
A-contraction.

Proposition 2.3. Let T be an A-contraction on H and M ⊂ N0 be an
invariant subspace for A and A1/2T . Then A1/2T |M is a quasinormal operator
in B(M) if and only if ATh = A1/2TA1/2h, h ∈M.

Furthermore, if T is a regular A-contraction, thenN0 andN∞ are invariant
for A, and N∞ is the largest subspace into N0 which is invariant for A and
A1/2T .

Proof. Let M ⊂ N0 be a closed subspace such that AM ⊂ M and
A1/2TM⊂M. Then (A1/2T |M)∗ = PM(A1/2T )∗|M, PM being the orthogo-
nal projection onto M, and for h ∈M we obtain (because h ∈ N0)

Ah = T ∗ATh = PM(A1/2T )∗A1/2Th = (A1/2T |M)∗A1/2Th.

This firstly implies

A1/2TAh = (A1/2T |M)(A1/2T |M)∗A1/2Th

and later on (because A1/2Th ∈M)

A3/2Th = (A1/2T |M)∗(A1/2T |M)2h.
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Finally, the two relations show that the operator A1/2T |M is quasinormal in
B(M) if and only if A3/2Th = A1/2TAh for any h ∈M. Since this condition
just means that the operators A|M and A1/2T |M commute, it is equivalent to
the fact that A1/2|M commutes with A1/2T |M (M being a reducing subspace
for A), that is ATh = A1/2TA1/2h, for h ∈M.

Now we suppose that AT = A1/2TA1/2 on H. For n ≥ 2, Tn is also an A-
contraction, while the condition ATn = A1/2TnA1/2 can be easily obtained by
induction and using the fact that the operator A1/2 is injective on his range.
Thus, for n ≥ 1 one obtains

(A− T ∗nATn)A = A2 − T ∗nA2Tn = A(A− T ∗nATn),

which yields AN0 ⊂ N0 and AN∞ ⊂ N (A − T ∗nATn) for n ≥ 1, and later
AN∞ ⊂ N∞. So N0 and N∞ are invariant subspaces for A, N∞ being also
invariant for T , consequently N∞ is invariant for A1/2T .

Next, let M ⊂ N0 be as above. Using the condition from hypothesis, we
get for h ∈M

AT ∗A1/2T 2h = T ∗ATA1/2Th = A3/2Th,

whence ATh = A1/2T ∗A1/2T 2h = T ∗AT 2h. This gives Ah = T ∗ATh =
T ∗2AT 2h, and repeating the same argument we will obtain by induction that
Ah = T ∗nATnh, for h ∈M and n ≥ 2. Thus we have M⊂ N (A− T ∗nATn),
for n ≥ 1, and finally M ⊂ N∞. Hence N∞ is the largest subspace into N0

which is invariant for A and A1/2T .

Corollary 2.4. Let T be an A-contraction on H such that N∞ is invari-
ant for A. Then T is a regular A-isometry on N∞ if and only if the operator
A1/2T |N∞ is quasinormal in B(N∞).

Proof. By hypothesis and Proposition 2.1 we have that N∞ is invariant
for A and T , and T |N∞ is an A|N∞-isometry. The conclusion follows from
Proposition 2.3.

Corollary 2.5. An A-isometry T on H is regular if and only if the op-
erator A1/2T is quasinormal in H.

Concerning the subspace N0 we have now
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Theorem 2.6. Let T be a regular A-contraction on H. One has:

(i) T is a regular An-contraction and a regular A1/2n
-contraction, and further-

more we have

N0 = N (An − T ∗AnT ) = N (A1/2n − T ∗A1/2n
T ) (n ≥ 1).(2.3)

(ii) The subspace N0 is invariant for T if and only if N0 is invariant for An/2T ,
for some (equivalently, all) integers n ≥ 1.

Proof. (i) The fact that T is a regular An-contraction can be proved by
induction. For the first equality in (2.3) we use the identity

T ∗AnT = (A1/2)2(n−1)A1/2T ∗A1/2T (n ≥ 2),

which clearly follows from the condition AT = A1/2TA1/2. Thus, for h ∈ H
we have T ∗AnTh = Anh if and only if

(A1/2)2(n−1)Ah = (A1/2)2(n−1)A1/2T ∗A1/2Th,

or equivalently (since A1/2 is injective on A1/2H), Ah = A1/2T ∗A1/2Th
= T ∗ATh. This gives the first equality in (2.3).

Now, we show that T is an A1/2-contraction on H. Recall that the op-
erator A1/2 can be obtained as the strong limit of a sequence {pn(A)}n≥1 of
polynomials in A with positive coefficients and pn(0) = 0 (see [6], pg. 261).
As T is an Aj-contraction for j ≥ 1, we obtain

〈T ∗pn(A)Th, h〉 ≤ 〈pn(A)h, h〉,

for any h ∈ H and n ≥ 1. So, by passing to limit when n → ∞, we get
T ∗A1/2T ≤ A1/2. Hence T is an A1/2-contraction on H.

Next, we prove that the A1/2-contraction T is regular, too. We remark
that the inequality T ∗AT ≤ A implies that there is an operator C ∈ B(H)
such that A1/2T = CA1/2. Since T is a regular A-contraction, we get

(A1/2)2T = AT = A1/2TA1/2 = C(A1/2)2

and by induction we obtain (A1/2)nT = C(A1/2)n for any n ≥ 1. This leads
to p(A1/2)T = Cp(A1/2) for any polynomial p with scalar coefficients. Then
considering a sequence of approximation polynomials (as above) for the square
root A1/4 of A1/2, we deduce that A1/4T = CA1/4. This implies A1/4TA1/4 =
CA1/2 = A1/2T , which just means that T is a regular A1/2-contraction. Also,
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it follows by induction on n ≥ 1 that T is a regular A1/2n
-contraction, and

clearly, the first equality in (2.2) gives N0 = N (A1/2n − T ∗A1/2n
T ), for any

n ≥ 1.

(ii) If N0 is invariant for T then, being also invariant for A1/2, N0 will
be invariant for An/2T , for any n ≥ 1. Conversely, we suppose that N0 is
invariant for An/2T , for some n ≥ 1. We have for h ∈ N0

T ∗AnT 2h = T ∗An/2TAn/2Th = An/2An/2Th = AnTh,

where we used from assertion (i) the fact that T is a regular An-contraction
and a regular A1/2-contraction, while in the second equality one has in view
that An/2Th ∈ N0. Finally, from (2.3) we obtain that TN0 ⊂ N0.

Corollary 2.7. If T is a regular A-contraction on H such that A1/2T
is a quasinormal operator on H, then N0 = N∞ and this subspace reduces
A1/2T .

Proof. From hypothesis we infer for h ∈ N0,

T ∗ATA1/2Th = A1/2TT ∗ATh = A1/2TAh = AA1/2Th,

and respectively,

T ∗ATT ∗A1/2h = T ∗A1/2T ∗A1/2A1/2Th = T ∗A3/2h = AT ∗A1/2h.

This means that N0 is a reducing subspace for the operator A1/2T , and both
Theorem 2.6 (ii) and Proposition 2.1 imply finally N0 = N∞.

Remark 2.8. When T is a regular A-contraction and N0 = N∞, then we
also have

N0 = N (A− T ∗nATn) (n ≥ 2),(2.4)

which completes the relations (2.3). On the other hand, let us remark that the
condition AT = A1/2TA1/2 not assures that A1/2T is quasinormal, in general.
For instance, when T is a non-unitary coisometry and A = I on H.
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3. Applications to quasinormal contractions

The above results can be applied to obtain some facts on the quasinormal
contractions, as those concerning their unitary, isometric and quasi-isometric
parts.

Theorem 3.1. Let T be a quasinormal contraction on H. One has:

(i) N (I − T ∗T ) is the largest subspace which reduces T to an isometry.

(ii) N (I − TT ∗) is an invariant subspace for T , and T is an isometry on this
subspace.

(iii) M :=
⋂∞

n=1N (I − TnT ∗n) is the largest subspace which reduces T to a
unitary operator, and we have

M =
∞⋂

n=0

TnN (I − TT ∗).(3.1)

Proof. The assertion (i) follows immediately from Proposition 2.1 and
Corollary 2.7 when A = I.

(ii) It is easy to see (T being quasinormal) that TT ∗ ≤ T ∗T and

N (I − TT ∗) ⊂ N (I − T ∗T ).(3.2)

Thus, for h ∈ N (I − TT ∗) we have h = T ∗Th and Th = TT ∗Th, hence
Th ∈ N (I − TT ∗). Therefore N (I − TT ∗) is invariant for T .

(iii) By Proposition 2.1 the subspace M from (iii) is the largest invariant
subspace for T ∗ on which T ∗ is an isometry. Let us prove that TM⊂M. Let
h ∈ M, hence h = T jT ∗jh for j ≥ 1. Using the fact that M ⊂ N (I − TT ∗)
and (3.2) we have T ∗Th = h, and we obtain for n ≥ 1,

TnT ∗nTh = TnT ∗(n−1)h = T (Tn−1T ∗(n−1)h) = Th.

Thus TM⊂ N (I−TnT ∗n) for n ≥ 1, whence it follows that TM⊂M. Con-
sequently,M reduces T to a unitary operator (by (3.2)), being even the largest
subspace with this property, because M is the largest invariant subspace for
T ∗ on which T ∗ is an isometry. The subspace M can be also expressed as in
(3.1) by Theorem 2.4 [7].

Recall that W. Mlak proved in [4], using the unitary dilation, that for any
hyponormal contraction T the largest subspace which reduces T to a unitary
operator has the form (3.1). But in [7], this fact was shown for the quasinormal
contractions without the use of unitary dilation.
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Corollary 3.2. Let T be a quasinormal contraction on H. Then the
subspace N (I − TT ∗) is reducing for T if and only if T is a unitary operator
on N (I−TT ∗). In this case, N (I−TT ∗) is the largest subspace which reduces
T to a unitary operator.

Proof. Suppose that T is unitary on N (I−TT ∗). Then we have T ∗N (I−
TT ∗) = T ∗TN (I − TT ∗) = N (I − TT ∗), because T is an isometry on N (I −
TT ∗). So N (I − TT ∗) reduces T to a unitary operator, being the largest
subspace with this property, by Theorem 3.1 (iii). The converse part of the
corollary is immediate.

Remark 3.3. Since any contraction T on H is also a quasi-contraction, one
has

∞⋂

n=1

N (I − T ∗nTn) ⊂
∞⋂

n=2

N (T ∗T − T ∗nTn),(3.3)

where in the left side and the right side we have the largest invariant subspace
for T on which T is an isometry, and respectively, a quasi-isometry. When T
is quasinormal we can obtain more complete facts in the following

Theorem 3.4. Let T be a quasinormal contraction on H. One has:

(i) N (T ∗T − T ∗2T 2) is the largest subspace which reduces T to a quasi-
isometry.

(ii) N (T ∗T − TT ∗TT ∗) is an invariant subspace for T and T ∗T , and T is a
quasi-isometry on this subspace. Furthermore we have

N (T ∗T − TT ∗TT ∗) = N (I − TT ∗)⊕N (T )

⊂ N (T ∗T − TT ∗) ∩N (T ∗T − T ∗2T 2).
(3.4)

(iiii) M̃ :=
⋂∞

n=1N (T ∗T − TnT ∗TT ∗n) is the largest subspace which reduces
T , on which T and T ∗ are T ∗T -isometries. Moreover, we have

M̃ =
∞⋂

n=0

TnN (I − TnT ∗n)⊕N (T ).(3.5)

Proof. The assumption that T is a quasinormal contraction assures that
T is also a regular T ∗T -contraction. Then both Proposition 2.1 and Corollary
2.7 imply the assertion (i).
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Also we remark (T being a quasinormal contraction) that

TT ∗TT ∗ ≤ TT ∗ ≤ T ∗T,

which shows on one hand that T ∗ is a T ∗T -contraction on H, and on the other
hand we infer the inclusion

N (T ∗T − TT ∗TT ∗) ⊂ N (T ∗T − TT ∗).(3.6)

Next, if h ∈ N (T ∗T − TT ∗TT ∗), then using (3.6) and the fact that T is
quasinormal we obtain

T ∗Th = TT ∗TT ∗h = T ∗T 2T ∗h = T ∗TT ∗Th = T ∗2T 2h.

This leads to the inclusion

N (T ∗T − TT ∗TT ∗) ⊂ N (T ∗T − T ∗2T 2),(3.7)

and both (3.6) and (3.7) give the inclusion from (3.4).
Now denote Nn := N (T ∗T − TnT ∗TT ∗n) for n ≥ 1. Clearly, Nn is the

corresponding subspace N0 for the regular T ∗T -contraction T ∗n, therefore by
Proposition 2.3, Nn is invariant for T ∗T . Also, since T is quasinormal we have
T ∗TTnT ∗n = TnT ∗nT ∗T , whence

Nn = N [T ∗T (I − TnT ∗n)] = N [(I − TnT ∗n)T ∗T ].

Thus we infer that N (T ) = N (T ∗T ) ⊂ Nn and N (I − TnT ∗n) ⊂ Nn, and
furthermore, T ∗TNn ⊂ N (I − TnT ∗n). As Nn reduces T ∗T , we can define
the operator Pn := T ∗T |Nn in B(Nn). Then using (3.7) and the fact that
Nn ⊂ N1 for n ≥ 2, we obtain that P 2

n = Pn, and since Pn ≥ 0, Pn will be an
orthogonal projection in B(Nn). But we have

N (Pn) = Nn ∩N (T ∗T ) = N (T ),

and on the other hand,

R(Pn) = {h ∈ Nn : h = T ∗Th} = {h ∈ H : T ∗Th = TnT ∗nT ∗Th}
= {h ∈ H : h = T ∗Th = TnT ∗nh}
= N (I − T ∗T ) ∩N (I − TnT ∗n) = N (I − TnT ∗n),

because T being a quasinormal contraction, one has for n ≥ 2,

N (I − TnT ∗n) ⊂ N (I − TT ∗) ⊂ N (I − T ∗T ).
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Thus, it follows that the Hilbert space Nn admits the orthogonal decomposi-
tion

Nn = N (I − TnT ∗n)⊕N (T ) (n ≥ 1).(3.8)

In particular, for n = 1 this just gives the decomposition from (3.4) of the
subspace N1, whence we also infer that N1 is an invariant subspace for T ,
because N (I − TT ∗) and N (T ) are such subspaces. Furthermore, from (3.7)
we have that T is a quasi-isometry, or equivalently a T ∗T -isometry, on N1.
All assertions from (ii) are proved.

Next, if M̃ :=
⋂∞

n=1Nn, then from (3.8) we obtain for n ≥ 1 that

M̃ ªN (T ) ⊂ N (I − TnT ∗n),

therefore if h ∈ M̃ªN (T ) then h = TnT ∗nh. But M̃ is just the corresponding
subspace N∞ for the T ∗T -contraction T ∗, hence M̃ is the largest invariant
subspace for T ∗ on which T ∗ is a T ∗T -isometry. So, for h as above one has
T ∗nh ∈ M̃ ⊂ N1, hence h ∈ TnN1 ⊂ TnN (I−TT ∗) by (3.8), for n ≥ 1. Thus
we obtain

M̃ ªN (T ) ⊂
∞⋂

n=1

TnN (I − TT ∗) =
∞⋂

n=0

TnN (I − TT ∗) := M

which yields the inclusion M̃ ⊂ M⊕ N (T ). But by Theorem 3.1, the sub-
space M defined above reduces the operator T to a unitary operator and
particularly, T ∗ is a T ∗T -isometry on M. Having in view the maximality
property quoted above for the subspace M̃, we infer that M ⊂ M̃, and also
M⊕N (T ) ⊂ M̃. Consequently, M̃ = M⊕N (T ) which means the equality
(3.5). But N (T ) is a reducing subspace for T , because T is quasinormal. It
follows that M̃ is also invariant for T , and as M̃ ⊂ N1, by (3.7) we have that
T is a quasi-isometry, or equivalently, a T ∗T -isometry, on M̃. In fact, T |M̃
is the orthogonal sum between a unitary operator and zero, relative to the
decomposition M̃ = M⊕N (T ). Therefore, M̃ has the required properties in
the statement (iii), and the proof is finished.

Corollary 3.5. Let T be a quasinormal contraction on H. Then M̃ is
the largest subspace which reduces T to a normal quasi-isometry. Moreover,
T is injective if and only if T is a unitary operator on M̃, or equivalently,

M̃ =
∞⋂

n=0

TnN (I − TT ∗).(3.9)
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Proof. As we quoted in the previous proof, by the decomposition (3.5)
we have T |M̃ = U ⊕ 0, U being a unitary operator on the subspace M given
by the right side in (3.9). This shows that T is a normal quasi-isometry on
M̃ and furthermore, T |M̃ one reduces to a unitary operator if and only if
N (T ) = {0}, or equivalently M̃ = M. Now, if L is another subspace which
reduces T to a normal quasi-isometry, then easily follows that T ∗ is also a
T ∗T -isometry on L, so L ⊂ M̃ having in view the property of M̃ in Theorem
3.4 (iii). Hence M̃ has the required property in Corollary 3.5. ¤

Now, preserving the above notations, we immediately obtain the following
corollary which completes Corollary 3.2.

Corollary 3.6. For a quasinormal contraction T on H, the following are
equivalent:

(i) M̃ = N (T ∗T − TT ∗TT ∗);
(ii) N (I − TT ∗) =

⋂∞
n=0 TnN (I − TT ∗);

(iii) N (I − TT ∗) = TN (T ∗T − TT ∗TT ∗);
(iv) N (I − TT ∗) is an invariant subspace for T ∗;
(v) N (T ∗T − TT ∗TT ∗) is an invariant subspace for T ∗.

Proof. Clearly, (i) implies (ii) by the relations (3.5) and (3.8). Assuming
(ii) we get (by (3.8) for n = 1), N (I − TT ∗) = TN (I − TT ∗) = TN1, so (ii)
implies (iii). Now, the equality from (iii) means that for any h ∈ N (I − TT ∗)
there exists h1 ∈ N1 such that Th1 = h. Then we have by (3.8),

T ∗h = T ∗Th1 ∈ T ∗TN (I − TT ∗) = N (I − TT ∗),

because N (I − TT ∗) ⊂ N (I − T ∗T ). This shows that N (I − TT ∗) is an
invariant subspace for T ∗, and so (iii) implies (iv). Next, the assertions (iv)
and (v) are even equivalent, by the relation (3.8) for n = 1, because N (T )
reduces T . Finally, (v) implies (i) by Theorem 3.4 (the assertions (ii) and
(iii)).

Remark 3.7. Corollary 3.6 shows that, for a quasinormal contraction T ,
the subspace N0 corresponding to the regular I-contraction T ∗, and the one
for the regular T ∗T -contraction T ∗, respectively N0 = N (I − TT ∗) and N0 =
N (T ∗T − TT ∗TT ∗), are not invariant for T ∗, in general. But they are always
invariant for T and T ∗T .

Now, from Theorem 3.1 and Theorem 3.4 we infer the following
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Corollary 3.8. Let T be a quasinormal contraction on H. Then H
admits the orthogonal decomposition

H = R(T ∗T − T ∗2T 2)⊕N (I − T ∗T )⊕N (T ),(3.10)

where N (I − T ∗T ) is the largest subspace which reduces T to an isometry,
and R(T ∗T − T ∗2T 2) is the largest subspace which reduces T to an injective
proper quasinormal contraction.

Proof. Since T is quasinormal one has T ∗2T 2 = (T ∗T )2. Then by Propo-
sition 3.3 [3] we have

N (T ∗T − T ∗2T 2) = N (I − T ∗T )⊕N (T ),(3.11)

this being the largest subspace which reduces T to a quasi-isometry (by
Theorem 3.4(i)). But by Theorem 3.1(i), N (I − T ∗T ) is the largest sub-
space which reduces T to an isometry. Thus, we conclude that the range
subspace from (3.10) reduces T to an injective and completely non isomet-
ric contraction, being the largest subspace with this property. Clearly, if
0 6= h ∈ R(T ∗T − T ∗2T 2) then one has h 6∈ N (I − T ∗T ) that is ||Th|| < ||h||,
hence R(T ∗T − T ∗2T 2) reduces T to a proper contraction. Conversely, if
M⊂ H is a subspace which reduces T to an injective proper contraction, then
T is also a non isometric contraction on M, hence M ⊂ R(T ∗T − T ∗2T 2),
thus this range has the required property.

Having in view (3.11) we also have the following fact which was obtained
in [5] in a different way.

Corollary 3.9. A quasi-isometry T on H with ||T || = 1 is quasinormal
if and only if T is a partial isometry.

Finally, we infer from Corollary 3.8 the following

Corollary 3.10. An injective quasinormal contraction is completely non
isometric if and only if it is a proper contraction.

4. Asymptotic form of the invariant A-isometric part

Let T be an A-contraction on H. Since {T ∗nATn; n ≥ 1} is a bounded
decreasing sequence of positive operators it converges strongly to an operator
AT ∈ B(H). If T is a contraction (i.e., A = I) we will denote by ST the strong
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limit of {T ∗nTn; n ≥ 1}. So, if T̂ is the contraction on R(A) associated
to the A-contraction T as in Section 1, then ST̂ will be the strong limit in
B(R(A)) of the sequence {T̂ ∗nT̂n; n ≥ 1}. Since A1/2Tnh = T̂nA1/2h and
T ∗nA1/2k = A1/2T̂ ∗nk for h ∈ H, k ∈ R(A) and n ≥ 1, one has

AT h = A1/2ST̂ A1/2h (h ∈ H).(4.1)

This gives AT ≤ A because ST̂ ≤ I. We also have ST̂ = T̂ ∗ST̂ T̂ and
AT = T ∗AT T . We can use the operators AT and ST̂ in order to obtain
more informations on the subspace N∞ defined in Section 2.

Theorem 4.1. Let T be an A-contraction on H. Then we have

N∞ = N (A−AT ) = (A1/2)−1N (I − ST̂ ).(4.2)

Furthermore, if ||A|| ≤ 1 then

N∞ ∩N (A−A2) = N (A)⊕N (I −AT ) = N∞ ∩N (AT −A2
T )(4.3)

and

N (I −AT ) = N (I −A) ∩N (I − ST̂ ) = N (I −A) ∩N∞.(4.4)

Proof. If h ∈ N∞ then Ah = T ∗nATnh for any n ≥ 1 and taking n → ∞
one obtains Ah = AT h, that is h ∈ N (A−AT ). So N∞ ⊂ N (A−AT ). Next,
if h ∈ N (A−AT ) then using (4.1) and the fact that A1/2 is injective on R(A)
we obtain (I − ST̂ )A1/2h = 0, which yields h ∈ (A1/2)−1N (I − ST̂ ). Thus we
have N (A−AT ) ⊂ (A1/2)−1N (I−ST̂ ). Finally, if h ∈ (A1/2)−1N (I−ST̂ ), or
equivalently A1/2h ∈ N (I − ST̂ ), then since T̂ and ST̂ are contraction and T̂

is also a ST̂ -isometry on R(A) it follows (see Proposition 3.1 (j) from [2]) that

||A1/2Tnh|| = ||T̂nA1/2h|| = ||A1/2h|| (n ≥ 1).

This gives (A − T ∗nATn)h = 0, that is h ∈ N (A − T ∗nATn), for n ≥ 1,
therefore h ∈ N∞. Thus, (A1/2)−1N (I − ST̂ ) ⊂ N∞, and consequently the
two equalities in (4.2) hold.

Now we suppose that ||A|| ≤ 1 that is A ≤ I (since A ≥ 0). As AT ≤ A
implies 0 ≤ I −A ≤ I −AT , one obtains that

N (I −AT ) = N (I −A) ∩N (A−AT ) = N (I −A) ∩N∞.
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This gives one relation in (4.4) and also (by Proposition 3.3 [2])

N∞ ∩N (A−A2) = N∞ ∩ (N (A)⊕N (I −A)) = N (A)⊕N (I −AT ),

that is the first relation in (4.3). Next if h ∈ N∞ ∩ N (AT − A2
T ), then

Ah = AT h and h = h0 + h1 with h0 ∈ N (AT ) and h1 ∈ N (I − AT ). Hence
Ah = AT h1 = h1 and also Ah = Ah0+Ah1, whence we get Ah0 = (I−A)h1 =
0 because N (I − AT ) ⊂ N (I − A) by the previous remark. Thus h0 ∈ N (A)
and then h ∈ N (A)⊕N (I −AT ). Consequently

N∞ ∩N (AT −A2
T ) ⊂ N (A)⊕N (I −AT )

and as the converse inclusion is obvious, we obtain the second relation in (4.3).
For the first equality in (4.4) we remarked above that N (I−AT ) ⊂ N (I−

A). So, if h ∈ N (I − AT ) we have h = AT h = Ah = A1/2h, and also by the
second equality in (4.2) we obtain h = A1/2h ∈ N (I − ST̂ ). Hence

N (I −AT ) ⊂ N (I −A) ∩N (I − ST̂ ).

Conversely, if h ∈ N (I−A)∩N (I−ST̂ ) we have h = A1/2h ∈ N (I−ST̂ ) which
means (by (4.2)) h ∈ N (A−AT ). Thus h = Ah = AT h, hence h ∈ N (I−AT )
and we obtained the inclusion

N (I −A) ∩N (I − ST̂ ) ⊂ N (I −AT ).

We conclude that the former equality (4.4) holds and the proof is finished.

Corollary 4.2. If T is an A-contraction on H such that ||A|| ≤ 1 then

N (A) = N∞ ∩N (AT ).(4.5)

Furthermore, the following assertions are equivalent:

(i) N∞ = N (A);
(ii) R(A1/2) ∩N (I − ST̂ ) = {0};
(iii) ||S1/2

T̂
k|| < ||k|| for every k ∈ R(A1/2), k 6= 0;

(iv) ||A1/2
T h|| < ||A1/2h|| for every h 6∈ N (A).
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Proof. If h ∈ N∞ ∩ N (AT ) then by (4.3) one has h = h0 + h1 with h0 ∈
N (A) and h1 ∈ N (I −AT ), hence h− h0 = h1 = 0 because h− h0 ∈ N (AT ).
So, h = h0 ∈ N (A) and we have the inclusion N∞ ∩ N (AT ) ⊂ N (A), the
converse being trivial.

Now we suppose that N∞ = N (A) and let k = A1/2h ∈ R(A1/2) ∩ N (I −
ST̂ ). Then A1/2h = ST̂ A1/2h, whence by (4.1) one has Ah = AT h. Hence
by (4.2) we have h ∈ N∞ = N (A) which gives k = A1/2h = 0. This means
that R(A1/2) ∩ N (I − ST̂ ) = {0} and so we obtained the implication (i) ⇒
(ii). Next, the assumption (ii) ensures that for 0 6= k ∈ R(A1/2) one has
(I − ST̂ )k 6= 0, or equivalently

||k||2 − ||S1/2

T̂
k||2 = ||(I − ST̂ )1/2k||2 > 0,

which provides the implication (ii) ⇒ (iii). Similarly, we infer from (iii) that
(I − ST̂ )A1/2h 6= 0 for h 6∈ N (A), which also gives A1/2(I − ST̂ )A1/2h 6=
0 because (I − ST̂ )A1/2h ∈ R(A). Hence (A − AT )h 6= 0, or equivalently
〈(A − AT )h, h〉 > 0, that is the inequality from (iv). Finally, the implication
(iv) ⇒ (i) is trivial, having in view the first relation in (4.2).

We can also describe N (AT ) as follows

Corollary 4.3. If T is an A-contraction on H and A0 = A|R(A)
then

N (AT ) = (A1/2)−1N (ST̂ ) = N (A)⊕N (ST̂ A
1/2
0 ).(4.6)

Furthermore, the following assertions are equivalent:

(i) N (AT ) = N (A);
(ii) R(A1/2) ∩N (ST̂ ) = {0};
(iii) A1/2Tnh 6→ 0 for every h 6∈ N (A), h 6= 0.

Proof. From (4.1) one infers that h ∈ N (AT ) if and only if A1/2h ∈ N (ST̂ ),
or equivalently h ∈ (A1/2)−1N (ST̂ ), what gives the first equality in (4.6). On
the other hand, since 0 ≤ AT ≤ A it follows that N (A) ⊂ N (AT ), hence

N (AT ) = N (A)⊕ (R(A) ∩N (AT )).

But k ∈ R(A) ∩ N (AT ) if and only if A
1/2
0 k ∈ N (ST̂ ), or equivalently k ∈

N (ST̂ A
1/2
0 ). Thus one obtains the other equality in (4.6).
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Clearly, N (AT ) = N (A) if and only if N (ST̂ A
1/2
0 ) = {0}. Now we suppose

that N (AT ) = N (A). Then for A1/2h ∈ N (ST̂ ) we have

ST̂ A1/2h = 0 = ST̂ A1/2h1

where h = h1+h0 with h1 ∈ R(A) and h0 ∈ N (A). So h1 ∈ N (ST̂ A
1/2
0 ) which

means h1 = 0 by our assumption, hence h = h0 and A1/2h = 0. Thus we have
the implication (i) ⇒ (ii). Next, using (ii), we obtain for 0 6= h 6∈ N (A) that
A1/2h 6∈ N (ST̂ ) that is T̂nA1/2h 6→ 0, or equivalently A1/2Tn 6→ 0. Therefore
(ii) implies (iii), and obviously (iii) ensures (i).

Remark 4.4. The second relation in (4.2) shows that A1/2N∞ is contained
in N (I − ST̂ ), but N (I − ST̂ ) is not contained in N∞, and also N∞ and
N (I − ST̂ ) are not invariant for A, in general. However, if ||A|| ≤ 1 then
N (I − AT ) and hence N∞ ∩ N (A − A2) are invariant (in fact, reducing)
subspaces for A. Now we can describe the case when N∞ is invariant for A
(completing Proposition 2.1).

Proposition 4.5. The following are equivalent for an A-contraction T on
H:

(i) N∞ is invariant for A;

(ii) N∞ is invariant for AT ;

(iii) N∞ ⊂ N (AAT −AT A);
(iv) N∞ ⊂ N (A2 −A2

T ).

Furthermore, in this case we have

N∞ = (A + AT )−1N∞ = N (AAT −AT A) ∩N (A2 −A2
T ).(4.7)

Proof. The statements (i) and (ii) are obviously equivalent, having in view
the first relation in (4.2). Now the assumption (i) ensures for h ∈ N∞ that
AAT h = A2h = AT Ah, that is h ∈ N (AAT − AT A). Hence (i) implies (iii).
Since for h ∈ N (AAT −AT A) one has

(A2 −A2
T )h = (A + AT )(A−AT )h,

the implication (iii) ⇒ (iv) is immediate. Finally, supposing (iv), we have for
h ∈ N∞ that Ah = AT h and so

(A−AT )Ah = (A2 −A2
T )h = 0,
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that is Ah ∈ N∞. Hence (iv) implies (i).
Now let h ∈ N (AAT − AT A) ∩ N (A2 − A2

T ) so that AAT h = AT Ah and
A2h = A2

T h. Then one obtains A(A+AT )h = AT (A+AT )h, or (A−AT )(A+
AT )h = 0. This gives that (A + AT )h ∈ N∞, therefore h ∈ (A + AT )−1N∞.
Conversely, if k ∈ (A + AT )−1N∞ which means that (A + AT )k ∈ N∞, then
A(A + AT )k = AT (A + AT )k, or equivalently, (A + AT )(A − AT )k = 0.
This shows that (A − AT )k ∈ N (A + AT ), and as 0 ≤ A ≤ A + AT one
has N (A + AT ) ⊂ N (A), hence A(A − AT )k = 0. Since R(AT ) ⊂ R(A1/2)
(by (4.1)) it follows that (A − AT )k ∈ R(A1/2), and by previous remark
(A − AT )k ∈ N (A), therefore (A − AT )k = 0, that is k ∈ N∞. Thus we
proved the inclusions

N (AAT −AT A) ∩N (A2 −A2
T ) ⊂ (A + AT )−1N∞ ⊂ N∞.(4.8)

In the case when N∞ is invariant for A, these inclusions become the equalities
(4.7), having in view the conditions (iii) and (iv) of above. This ends the
proof.

Now we present two cases in which Proposition 4.5 can be applied, where
the subpace N∞ has a special form.

Theorem 4.6. Let T be an A-contraction on H such that either the range
R(A) is closed, or the A-contraction T is regular. Then one has

N∞ = N (A)⊕N (I − ST̂ ),(4.9)

while N∞ and N (I − ST̂ ) are invariant subspaces for A.

Moreover, in the regular case we have AST̂ k = ST̂ Ak for k ∈ R(A),
AT h = ST̂ Ah for h ∈ H and

N (AT ) = N (A)⊕N (ST̂ ), R(AT ) = R(ST̂ ).(4.10)

Proof. Firstly we suppose that the range R(A) is closed. Then R(A) =
R(A1/2) and having in mind the definition of ST̂ we have 0 ≤ ST̂ ≤ T̂ ∗nT̂n ≤ I
for any n ≥ 1, hence

N (I − ST̂ ) = {A1/2h ∈ R(A) : ||T̂nA1/2h|| = ||A1/2h||, n ≥ 1}
⊂ {k ∈ H : ||A1/2Tnk|| = ||A1/2k||, n ≥ 1}
= {k ∈ H : T ∗nATnk = Ak, n ≥ 1} = N∞.
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From (4.2) we infer that A1/2N∞ ⊂ N (I − ST̂ ) ⊂ N∞, and we also have
A1/2N (I−ST̂ ) ⊂ A1/2N∞ ⊂ N (I−ST̂ ), which means that N∞ and N (I−ST̂ )
are invariant subspaces for A.

Now it is clear that N (A)⊕N (I − ST̂ ) ⊂ N∞, and to prove the equality
let h ∈ N∞ such that h is orthogonal to N (A)⊕N (I − ST̂ ). Then h ∈ R(A)
and h is orthogonal to N (I − ST̂ ) which implies that h is also orthogonal to
AN∞ as a subspace of N (I−ST̂ ). In particular 〈h,Ah〉 = 0 that is A1/2h = 0,
and since h ∈ R(A) we conclude that h = 0. Thus the equality (4.9) holds if
R(A) is closed.

Next we suppose that T is a regular A-contraction, that is one has AT =
A1/2TA1/2. Then A1/2T̂A1/2h = T̂Ah, for h ∈ H which means that A1/2T̂ =
T̂A1/2 on R(A). Using this relation one obtains immediately that ST̂ Ah =
A1/2ST̂ A1/2h = AT h for every h ∈ H, and also ST̂ A1/2 = A1/2ST̂ , or equiv-
alently ST̂ A = AST̂ , on R(A). This relation later on implies that N (ST̂ )
and N (I − ST̂ ) are invariant subspaces for A. But using (4.1) one infers that
N (I −ST̂ ) ⊂ N∞ and also A1/2N∞ ⊂ N (I −ST̂ ) ⊂ N∞ so that N∞ is invari-
ant for A, too. Clearly, we have N (A)⊕N (I −ST̂ ) ⊂ N∞. To prove here the
equality, let h ∈ N∞ such that h is orthogonal to N (A) ⊕N (I − ST̂ ). Since
Ah ∈ N (I−ST̂ ) we have 〈h,Ah〉 = 0 so that A1/2h = 0, and as h ∈ R(A) one
has h = 0. Hence the equality (4.9) holds if the A-contraction T is regular.

Finally, since ATH = ST̂ AH it follows that R(AT ) = R(ST̂ ) that is the
second relation in (4.10), and which also implies the former relation in (4.10).

Corollary 4.7. Let T be a regular A-contraction on H. Then N (AT ),
N (ST̂ ) and N (ST̂ − S2

T̂
) are invariant subspaces for A, and one has

N (ST̂ ) = N (ST̂ A
1/2
0 ).(4.11)

Moreover, if ||A|| ≤ 1 then N (AT − A2
T ) is an invariant subspace for A,

and if A = A2 then we have

N (AT −A2
T ) = (A)−1N (ST̂ − S2

T̂
)

= N (A)⊕N (ST̂ − S2
T̂
) = N (ST̂ )⊕N∞.

(4.12)

In the last case, one has AT = A2
T if and only if ST̂ = ST̂ 2 .

Proof. It was seen in the previous proof that N (ST̂ ) is an invariant sub-
space for A and the first relation in (4.10) gives that N (AT ) is also invariant
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for A. In addition, both this relation from (4.10) and the second relation from
(4.6) lead to (4.11).

Since N (ST̂ − S2
T̂
) = N (ST̂ )⊕N (I − ST̂ ), this subspace will be invariant

for A, such as the two contained subspaces.
In the case when ||A|| ≤ 1 one has N (AT − A2

T ) = N (AT ) ⊕ N (I − AT )
and it follows that N (AT −A2

T ) is invariant for A (by the above remark and
Remark 4.4).

Now we assume that A = A2. Then for h ∈ H we have

(AT −A2
T )h = ST̂ Ah− S2

T̂
A2h = (ST̂ − S2

T̂
)Ah,

hence h ∈ N (AT − A2
T ) if and only if Ah ∈ N (ST̂ − S2

T̂
), or equivalently

h ∈ (A)−1N (ST̂ − S2
T̂
). This gives the first relation in (4.12). On the other

hand, since A = A2 one has R(A) = N (I − A), and from (4.4) one obtains
N (I −AT ) = N (I − ST̂ ). Thus we have

N (AT −A2
T ) = N (A)⊕N (ST̂ )⊕N (I − ST̂ ) = N (A)⊕N (ST̂ − S2

T̂
),

that is the second relation in (4.12). Clearly, from this relation it follows that
AT = A2

T if and only if ST̂ = S2
T̂
. Also, we infer from the previous relation

and (4.9) that
N (AT −A2

T ) = N (ST̂ )⊕N∞
which is the last relation in (4.12). The proof is finished.

Corollary 4.8. Let T be a regular A-contraction such that ||A|| ≤ 1
and AT = A2

T . Then ST̂ = S2
T̂

and furthermore, if N (A) = N (AT ) one has
A = AT .

Proof. From the relation (4.4) and (4.10) we have

H = N (AT −A2
T ) = N (A)⊕N (ST̂ )⊕N (I −A) ∩N (I − ST̂ ),

whence it follows

R(A) = N (ST̂ )⊕N (I −A) ∩N (I − ST̂ ) = N (ST̂ − S2
T̂
),

that is ST̂ = S2
T̂
. Now if N (A) = N (AT ), or equivalently N (ST̂ ) = {0}, then

we have N (I − ST̂ ) = R(A) that is ST̂ = I. Hence AT = ST̂ A = A.
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Remark 4.9. Since T is an AT -isometry on H there exists a (unique) isom-
etry V on R(AT ) such that V A

1/2
T h = A

1/2
T Th, h ∈ H. On the other hand,

because T̂ is a ST̂ -isometry on R(A) there exists a (unique) isometry V̂ on
R(ST̂ ) satisfying V̂ S

1/2

T̂
k = S

1/2

T̂
T̂ k, k ∈ R(A). But in the regular case one

has V = V̂ , since R(AT ) = R(ST̂ ) (by (4.10)) and

V A
1/2
T h = A

1/2
T Th = S

1/2

T̂
A1/2Th,

S
1/2

T̂
T̂A1/2h = V̂ S

1/2

T̂
A1/2h = V̂ A

1/2
T h

for h ∈ H. Here we used the fact that A
1/2
T = S

1/2

T̂
A1/2 which follows from

Theorem 4.6. In this case, N (I − ST̂ ) is the largest invariant subspace for T̂

on which T̂ is an isometry and we even have

T̂ |N (I−ST̂ ) = V |N (I−ST̂ )

because N (I − ST̂ ) is also invariant for V and for h ∈ N (I − ST̂ ) one has

T̂ h = ST̂ T̂ h = S
1/2

T̂
T̂ h = V S

1/2

T̂
h = V h.

In addition, if ST̂ is a projection then N (I − ST̂ ) = R(ST̂ ) is the largest
subspace which reduces T̂ to an isometry, so that V is the isometric part of
T̂ .

As an application to quasinormal contractions, we can obtain the following
facts, partially known from [2], [3], which complete ones from Section 3.

Proposition 4.10. For a quasinormal contraction T on H we have:

(i) ST = S2
T and the largest subspace which reduces T to an isometry is

N (I − ST ) = N (I − T ∗T ) = N (I − ST̂ )(4.13)

where T̂ = T |R(T ∗) .

(ii) The largest subspace which reduces T to a quasi-isometry, or equivalently
to a partial isometry, is

N (T ∗T − ST ) = N (T )⊕N (I − ST ) = HªN (ST̂ ).(4.14)
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(iii) The largest subspace which reduces T to a strongly stable contraction, or
equivalently to a proper contraction, is

N (ST ) = N (T )⊕N (ST̂ ).(4.15)

Furthermore, N (ST̂ ) reduces T and there is no nonzero subspace of N (ST̂ )
which reduces T to a quasi-isometry.

Proof. One considers T a quasinormal contraction. Since T and T ∗T
commute it follows that ST = T ∗TST , ST being the strong limit of the se-
quence {T ∗nTn; n ≥ 1}. Thus we have (I − T ∗T )ST = 0, whence R(ST ) ⊂
N (I −T ∗T ). Let now h ∈ N (I −T ∗T )∩N (ST ). Then ST h = 0 which means
that Tnh → 0 (n → ∞). Since N (I − T ∗T ) reduces T to an isometry, one
has ||Tnh|| = ||h|| for n ≥ 1, hence h = 0. So, one has N (I − T ∗T ) = R(ST ),
therefore N (I −T ∗T ) and N (ST ) are orthogonal subspaces. Next, if h ∈ H is
orthogonal to N (ST )⊕N (I −T ∗T ) then h ∈ R(ST )∩N (ST ) by the previous
remark, and so h = 0. Hence we have

H = N (ST )⊕N (I − T ∗T ).

But it is clear that N (I − T ∗T ) ⊂ N (I − ST ) and so we obtain

H = N (ST )⊕N (I − ST ) = N (ST − S2
T ),

and consequently ST = S2
T . Also one has N (I−T ∗T ) = N (I−ST ), this being

the largest subspace which reduces T to an isometry. In addition, since ST̂ =
ST |R(T ∗) and as N (I −ST ) ⊂ R(T ∗), it follows that N (I −ST ) = N (I −ST̂ ).
Thus the assertion (i) is proved.

To show (ii), we firstly remark that T is a regular A = T ∗T -contraction
on H and that T̂ = T |R(T ∗) is the corresponding contraction on R(T ∗) which

satisfies T̂ |T |h = |T |Th, h ∈ R(T ∗). In this case (i.e., A = T ∗T ) we have
AT = ST and the corresponding subspace N∞ given by the relation (4.9) is

N (T ∗T − ST ) = N (T )⊕N (I − ST ).

Since N (T ) and N (I−ST ) reduce T , N (T ∗T−ST ) is just the largest subspace
which reduces T to a T ∗T -isometry, that is to a quasi-isometry, or equivalently
(by Corollary 3.9) to a partial isometry. This gives the assertion (ii).

For the same meaning of T , we infer from (4.10) and from the above
decomposition of H that

N (ST ) = N (T )⊕N (ST̂ ) = HªN (I − ST ),
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this being the largest subspace which reduces T to a completely non isometric
contraction, or equivalently to a strongly stable contraction, having in view
the definition of ST . But by Corollary 3.8, N (ST ) is the largest subspace
which reduces T to a proper contraction. Finally, we remark that

H = N (ST̂ )⊕N (T ∗T − ST ),

hence the subspace N (ST̂ ) has the required property. The assertion (iii) is
proved and the proof is finished.

The dual version of the preceding proposition can be also given.

Proposition 4.11. For a quasinormal contraction T on H we have:

(i) ST ∗ = S2
T ∗ and the largest subspace which reduces T to a unitary operator,

or equivalently, on which T ∗ is an isometry, is

N (I − ST ∗) = N (I − ST̂ ∗),(4.16)

where T̂ = T |R(T ∗).

(ii) The largest subspace which reduces T ∗ to a T ∗T -isometry, or equivalently,
on which T is a normal partial isometry, is

N (T ∗T − ST ∗) = N (T )⊕N (I − ST ∗) = HªN (ST̂ ∗).(4.17)

(iii) The largest subspace which reduces T ∗ to a strongly stable contraction is

(4.18) N (ST ∗) = N (T )⊕N (ST̂ ∗) = N (ST )⊕ (N (I − ST )ªN (I − ST ∗)
)
.

Furthermore, one has

N (ST̂ ∗) = N (ST̂ )⊕ (N (I − ST )ªN (I − ST ∗)
)
.(4.19)

Proof. Let T be a quasinormal contraction. Since T ∗ and T ∗T commute,
T ∗ is a regular T ∗T -contraction on H. In this case, the corresponding con-
traction AT ∗ (A = T ∗T ) is equal to ST ∗ . Indeed, because TT ∗ ≤ T ∗T ≤ I we
have for n ≥ 1

TnT ∗TT ∗n ≤ TnT ∗n = Tn−1TT ∗T ∗(n−1) ≤ Tn−1T ∗TT ∗(n−1),

whence it follows that

AT ∗ = s− lim
n

TnT ∗TT ∗n = s− lim
n

TnT ∗n = ST ∗ .
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Since TnT ∗TT ∗n = TnT ∗nT ∗T = T ∗TTnT ∗n, we infer that ST ∗ = ST ∗T
∗T =

T ∗TST ∗ , and also (I−T ∗T )ST ∗ = 0. This implies that R(ST ∗) ⊂ N (I−T ∗T ),
hence N (I−ST ∗) ⊂ R(ST ∗) ⊂ N (I−ST ) having in view (4.13). But ST ∗ and
T ∗T commute, therefore R(T ∗) reduces ST ∗ , and we have ST ∗ |R(T ∗) = ST̂ ∗

where T̂ ∈ B(R(T ∗)) verifies T̂ |T | = |T |T̂ on R(T ∗). Indeed, for T ∗ as
a T ∗T -contraction there is a contraction T∗ ∈ B(R(T ∗)) satisfying T∗|T | =
|T |T ∗ = T ∗|T | on R(T ∗), hence T∗ = T ∗|R(T ∗). Since R(T ∗) reduces T one

has T ∗∗ = T |R(T ∗) = T̂ , therefore T̂ ∗ = T∗ = T ∗|R(T ∗), and the relation quoted
above between ST ∗ and ST̂ ∗ follows immediately.

Now, since N (I − ST ∗) ⊂ R(T ∗) we have N (I − ST ∗) = N (I − ST̂ ∗). But
N (I − ST ∗) is an invariant subspace for T , because if h ∈ N (I − ST ∗) then
using the fact that T is quasinormal we get

ST ∗Th = lim
n

TnT ∗TT ∗nh = lim
n

TnT ∗TT ∗TT ∗(n−1)h =

= lim
n

TT ∗TTn−1T ∗TT ∗(n−1)h = TT ∗TST ∗h = TST ∗h = Th,

hence Th ∈ N (I−ST ∗). On the other hand, N (I−ST ∗) is the largest invariant
subspace for T ∗ on which T ∗ is an isometry (being the corresponding subspace
N∞ for the regular T ∗T -contraction T ∗). Since N (I −ST ∗) ⊂ N (I −T ∗T ), it
follows that N (I − ST ∗) is the largest subspace which reduces T to a unitary
operator, or equivalently, on which T ∗ is an isometry. Since one has

N (I − ST ) = N (I − ST ∗)⊕ (N (I − ST )ªN (I − ST ∗)),

T will be a shift, or equivalently T ∗ a strongly stable contraction, hence

N (I − ST )ªN (I − ST ∗) = N (I − ST ) ∩N (ST ∗).

having in view that N (ST ∗) is the largest subspace on which T ∗ is strongly
stable. On the other hand, using the fact that TT ∗ ≤ T ∗T and that T is
quasinormal, one obtains that ST ∗ ≤ ST , whence N (ST ) ⊂ N (ST ∗). Now,
because ST is an orthogonal projection, we infer from above relations that

H = N (I − ST )⊕N (ST ) = N (I − ST ∗)⊕N (ST ∗) = N (ST ∗ − S2
T ∗),

consequently ST ∗ is an orthogonal projection, which ends the proof of the
statements (i). Also, we obtain that N (ST ∗) is the largest subspace which
reduces T ∗ to a strongly stable contraction, and clearly we have from the
above remarks and (4.10),

N (ST ∗) = N (ST )⊕ (N (I − ST )ªN (I − ST ∗)) = N (T )⊕N (ST̂ ∗).
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This leads to the assertion (iii).
Next, we remark that the subspace N∞ for the regular T ∗T -contraction

T ∗ given by the relation (4.9) is

N (T ∗T − ST ∗) = N (T )⊕N (I − ST ∗) = HªN (ST̂ ∗),

and this is the largest subspace which reduces T ∗ to a T ∗T -isometry, because
N (I − ST ∗) reduce T . Equivalently, N (T ∗T − ST ∗) = M̃, the subspace from
(3.5), hence this subspace has the required property relative to T in (ii). The
assertion (ii) holds, and the proof is finished.

Finally from Corollary 3.8 and (4.14) we obtain

Corollary 4.12. If T is a quasinormal contraction on H and T̂ =
T |R(T ∗) then

R(T ∗T − T ∗2T 2) = N (ST̂ ),(4.20)

hence T and T ∗ are strongly stable contractions on this subspace. Also, a
quasinormal contraction is strongly stable if and only if it is a proper contrac-
tion.

We notice that the above facts concerning the quasinormal contractions
are obtained by different methods as ones from [2], [3]. Here we only used the
context of the regular A-contractions.
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[11] Sz.-Nagy, B., Foiaş, C., “Harmonic Analysis of Operators on Hilbert
Space”, North-Holland, Budapest-Amsterdam-London, 1970.

[12] Yoshino, T., “Introduction to Operator Theory”, Pitman Research Notes in
Mathematics Series, 300, Longman Scientific & Technical, Harlow, 1993.


