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1. Introduction

Let L(X) be the algebra of all bounded operators acting on an infinite-
dimensional complex Banach space. For an operator T ∈ L(X), write σ(T )
for its spectrum and ρ(T ) for its resolvent. The range and the kernel of T
are denoted respectively by R(T ) and N(T ). The operator T is called upper
semi-Fredholm if dimN(T ) is finite and R(T ) is closed, while T is called lower
semi-Fredholm if codimR(T ) is finite, and in this case the closedness of the
range follows immediately (see [2]). We shall simply say “semi-Fredholm”
when the operator is either upper semi-Fredholm or lower semi-Fredholm.
The index of such an operator T is defined by ind(T ) = dim N(T )−dimR(T ),
and if it is finite then T is said to be Fredholm.

Let T be an operator acting on X, and consider the decreasing sequence
cn(T ) := dim(R(Tn)/R(Tn+1)), n ∈ N, see [4]. Following M. Mbekhta and
M. Müller [14], we shall say that T has finite essential descent if de(T ) :=
inf{n ≥ 0 : cn(T ) < ∞}, where the infimum over the empty set is taken to
be infinite, is finite. Clearly, every lower semi-Fredholm operator has finite
essential descent and we have de(T ) = 0. This class of operators contains also
every operator of finite descent, i.e., every operator T such that the descent,
d(T ) = inf{n ≥ 0 : cn(T ) = 0}, is finite.

The notion of essential descent was studied in several article, for instance,
we cite [4], [6], [5] and [14]. From [15] and [6], we mention the following useful
characterizations:
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d(T ) is finite ⇐⇒ R(T ) + N(T d) = X for some d ≥ 0 , (1.1)

and

de(T ) is finite ⇐⇒ R(T ) + N(T d) has finite codimension
in X for some d ≥ 0 .

(1.2)

Let T be a bounded operator on X, the descent and the essential descent
resolvent sets are defined respectively by:

ρdes(T ) := {λ ∈ C : d(T − λ) is finite} ,

ρe
des(T ) := {λ ∈ C : de(T − λ) is finite} .

The descent and the essential descent spectrum are respectively σdes(T ) :=
C \ ρdes(T ) and σe

des(T ) := C \ ρe
des(T ); evidently σe

des(T ) ⊆ σdes(T ) ⊆ σ(T ).
The paper is organized as follows. In section 2, we show that the essential

descent spectrum is a compact subset of C, and that it is empty precisely
when the operator is algebraic. We shall also prove that the essential descent
spectrum satisfies a holomorphic version of the Spectral Mapping Theorem. In
[1], it was established that a power of an operator F ∈ L(X) has a finite-rank
if and only if σdes(T + F ) = σdes(T ) for every operator T commuting with F .
In section 3, we give a similar characterization of such operators F in term of
essential descent. In the final section we provide some sufficient conditions to
obtain the closedness of the range of an operator with finite essential descent.

2. Characterization of the essential descent spectrum

For an operator T of finite essential descent, we associate p(T ) = inf{n ≥
0 : cp(T ) = cn(T ) for all p ≥ n}. Clearly, de(T ) ≤ p(T ), and if d(T ) is finite
then we have d(T ) = p(T ).

An operator T ∈ L(X) is called semi-regular if R(T ) is closed and N(Tn)
⊆ R(T ) for all positive integer n. The semi-regular resolvent set is the open
subset s-reg(T ) of C formed by the complex numbers λ for which T − λ is
semi-regular, see [13].

We begin the statement of our results by the following theorem:

Theorem 2.1. Let T ∈ L(X) be an operator for which de(T ) is finite.
Then there exists δ > 0 such that for 0 < |λ| < δ and p := p(T ), we have the
following assertions:
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(i) T − λ is semi regular;

(ii) dimN(T − λ)n = ndim
(
N(T p+1)/N(T p)

)
for all n ∈ N;

(iii) codimR(T − λ)n = ndim
(
R(T p)/R(T p+1)

)
for all n ∈ N.

The proof of this theorem requires the following lemma.

Lemma 2.2. If T ∈ L(X) is a semi-regular operator with finite codimen-
sional range, then codim R(Tn) = n codim R(T ) for all positive integer n.

Proof. Let n ≥ 2 and S : X 7−→ X/R(Tn) be the operator given by Sx :=
Tn−1x + R(Tn). Since T is semi-regular, we have N(S) = R(T ) + N(Tn−1) =
R(T ), and consequently X/R(T ) ∼= R(Tn−1)/R(Tn). On the other hand,
it is well-known that X/R(Tn−1) × R(Tn−1)/R(Tn) ∼= X/R(Tn). Therefore
X/R(Tn−1)×X/R(T ) ∼= X/R(Tn), and hence

codimR(Tn) = codim R(Tn−1) + codim R(T ) .

Thus, a successive repetition of this argument leads to codimR(Tn) =
n codimR(T ).

In [11], it is shown that if T ∈ L(X) is a semi-regular operator such that its
range possesses a closed complement subspace M in X, then X = R(T−λ)⊕M
for all λ in a small neighbourhood of 0 in C. Therefore, we can add to the
preceding lemma that codim R(T − λ)n = n codim R(T ) for every n ∈ N and
λ in the connect component of s-reg(T ) that contains zero.

Proof of Theorem 2.1. Let To be the restriction of T to R(T p), and define
a new norm on R(T p) by

|y| = ‖y‖+ inf{‖x‖ : x ∈ X and y = T px} , for all y ∈ R(T p) .

It is a classical fact that R(T p) equipped with this norm is a Banach space
and that To is a bounded operator on (R(T p), | |). Hence it follows that To

is both semi-Fredholm and semi-regular. Indeed, To is semi-Fredholm be-
cause R(To) = R(T p+1) is of finite codimension in R(T p). Moreover, since
de(T ) is finite, [4, Theorem 3.1] ensures that for all n ∈ N, N(T ) ∩ R(T p) =
N(T ) ∩ R(T p+n), and so

N(To) = N(T ) ∩ R(T p) = N(T ) ∩ R(T p+n) ⊆ R(T p+n) = R(Tn
o ) .

Let δ > 0 be such that To − λ is both semi-Fredholm and semi-regular for
|λ| < δ. We note that with no restriction on T , X = R(T − λ)n + R(T p) for
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all positive integers p, n and non-zero complex number λ. In fact, consider
the complex polynomials p(z) =: (z − λ)n and q(z) = zp. Since p and q has
no common divisors, there exists two complex polynomials u and v such that
1 = p(z)u(z) + q(z)v(z) for every z ∈ C. Hence I = p(T )u(T ) + q(T )v(T ),
and thus X = R(T − λ)n + R(T p). Consequently, for 0 < |λ| < δ, it follows
by the preceding lemma that

codim R(T − λ)n = dimX/R(T − λ)n

= dim
(
(R(T p) + R(T − λ)n)/R(T − λ)n

)

= dim
(
R(T p)/R(T p) ∩ R(T − λ)n

)

= codim R(To − λ)n = n codimR(To)

= ndim R(T p)/R(T p+1) .

In particular, T − λ is semi-Fredholm. Moreover, since N(T − λ) = R(T p) ∩
N(T − λ) = N(To − λ) ⊆ R(To − λ)k ⊆ R(T − λ)k for all k ∈ N, T − λ is also
semi-regular. For the second statement, we have

dimN(T − λ)n = dim N(To − λ)

= ind(To − λ)n + codimR(To − λ)n

= n
[
ind(To − λ) + codim R(To − λ)

]

= n
[
ind(To) + codimR(To)

]

= ndimN(To) = ndim
(
R(T p) ∩N(T )

)
.

But, since T p induces an isomorphism from N(T p+1)/N(T p) onto R(T p) ∩
N(T ), we obtain that

dimN(T − λ)n = ndim
(
R(T p) ∩N(T )

)
= n dim

(
N(T p+1)/N(T p)

)
.

This completes the proof.

Remark 2.3. It is interesting to note that if T ∈ L(X) has finite essential
descent, then there exists a finite-dimensional subspace M of X such that
X = R(T −λ)⊕M for every λ in a sufficient small punctured neighbourhood
of 0. Indeed, let To and p be as in the proof of Theorem 2.1. Since To is
semi-regular with finite-codimensional range, there exists δ > 0 and a finite
dimensional subspace M such that R(T p) = R(To − λ) ⊕ M for |λ| < δ.
Hence, X = R(T − λ) + R(T p) = R(T − λ)⊕M for 0 < |λ| < δ.
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In the following we recapture as corollary the Proposition 2.1 of [1].

Corollary 2.4. Let T ∈ L(X) be an operator of finite descent d. Then
there exists δ > 0 such that the following assertions hold for 0 < |λ| < δ:

(i) T − λ is onto;

(ii) dimN(T − λ) = dim N(T d+1)/N(T d).

Also as an immediate consequence of Theorem 2.1, we have:

Corollary 2.5. If T is a bounded operator on X, then σe
des(T ) is a

compact subset of C.

In [14], M. Mbekhta and V. Müller have established that the set {T ∈
L(X) : de(T ) is finite} is a regularity in L(X); consequently, by [10, Theorem
1.4], the corresponding spectrum satisfies the spectral mapping theorem.

Theorem 2.6. Let T be a bounded operator on X. If f is an analytic
function on an open neighborhood of σ(T ), not identically constant on each
connected component of its domain, then

σe
des(f(T )) = f(σe

des(T )) .

Recall that the ascent of an operator T is defined by a(T ) = inf{n ≥ 0 :
N(Tn) = N(Tn+1)}. It is familiar that T has finite ascent and descent if and
only if 0 is a pole of the resolvent of T . The set of the poles of the resolvent
of T will be denoted by E(T ).

In the following theorem, we show that the operators whose essential de-
scent spectrum is empty are exactly the algebraic operators, i.e, the operators
that satisfy a non-trivial polynomial identity.

Theorem 2.7. If T is a bounded operator on X, then

ρe
des(T ) ∩ ∂σ(T ) = E(T ) .

Moreover, σe
des(T ) is empty if and only if T is algebraic.

Before giving the proof of Theorem 2.7, we have to consider the following
lemma:

Lemma 2.8. Let T be a bounded operator on X. Then σdes(T ) \ σe
des(T )

is an open subset of C.
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Proof. Assume that λ ∈ σdes(T ) \ σe
des(T ) and let p := p(T − λ). Then

by Theorem 2.1, there exists a deleted open neighborhood V of λ such that
V ∩ σe

des(T ) = ∅ and for all µ ∈ V and n ∈ N,

codim R(T − µ)n = ndim
(
R(T − λ)p/R(T − λ)p+1

)
.

But, since T − λ has infinite descent, dim
(
R(T − λ)p/R(T − λ)p+1

)
is non-

zero, and hence {codim(R(T −µ)n)}n is a strictly increasing sequence for each
µ ∈ V . Thus V ⊆ σdes(T ), which completes the proof.

Proof of Theorem 2.7. Let λ be in the boundary of σ(T ) and such that
de(T − λ) is finite. It follows by theorem 2.1 that there exists a punctured
neighborhood U of λ such that dim N(T − µ) = dim

(
N((T − λ)p+1)/N((T −

λ)p)
)

and codim R(T − µ) = dim
(
R((T − λ)p)/R(T − λ)p+1)

)
for all µ ∈ U ,

where p := p(T − λ). Moreover, U \ σ(T ) is non-empty because λ ∈ ∂σ(T ).
Therefore

dim
(
N((T − λ)p+1)/N((T − λ)p)

)
= dim

(
R((T − λ)p)/R((T − λ)p+1)

)
= 0 .

Thus T − λ is of finite ascent and descent and so λ is a pole of the resolvent
of T . The inverse inclusion is clair.

For the last statement, observe that σe
des(T ) is empty if and only if so is

σdes(T ). In fact, suppose that σe
des(T ) = ∅. Then, by the previous lemma,

σdes(T ) is a clopen subset of C, and hence it is empty. To complete the
proof, we recall that by [1, Theorem 1.5], σe

des(T ) = ∅ if and only if T is
algebraic.

Theorem 2.9. Let T be a bounded operator on X. If Ω is a connected
component of ρe

des(T ), then

Ω ⊂ σ(T ) or Ω \ E(T ) ⊆ ρ(T ) .

Proof. Let Ωr be the set of complex number λ ∈ Ω such that T − λ is
both semi-regular and semi Fredholm. Then, Theorem 2.1 implies that Ω\Ωr

is at most countable, and hence Ωr is connected. Suppose that Ω ∩ ρ(T ) is
non-empty, then so is Ωr ∩ ρ(T ). Consequently, since codim R(T − λ) is a
constant function on Ωr, we obtain that codimR(T − λ) = 0, and by the
continuity of the index, we get that dim N(T −λ) = 0. Thus Ωr ⊆ ρ(T ). Now,
Ω \ Ωr consists of an isolated points of the spectrum. Hence, by Lemma 2.7,
Ω \ Ωr ⊆ E(T ), as required.
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Corollary 2.10. If T is a bounded operator on X, then the following
assertions are equivalent:

(i) σ(T ) is at most countable;

(ii) σdes(T ) is at most countable;

(iii) σe
des(T ) is at most countable; in this case, we have

σe
des(T ) = σdes(T ) and σ(T ) = σdes(T ) ∪ E(T ) .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious.
(iii) ⇒ (i) Suppose that σe

des(T ) is at most countable, then ρe
des(T ) is

connected, and since ρ(T ) ⊆ ρe
des(T ), Theorem 2.9 implies that ρe

des(T ) \
E(T ) = ρ(T ). Therefore σ(T ) = σe

des(T ) ∪ E(T ) is at most countable.
For the last assertion, suppose that σ(T ) is at most countable. Then it

follows by Lemma 2.8 that σdes(T ) \ σe
des(T ) is a countable open set. Hence

σdes(T ) = σe
des(T ), as desired.

3. Essential descent spectrum and perturbations

In [8], M. Kaashoek and D. Lay have shown that the descent spectrum
is invariant under commuting perturbation F such that a power of F is of
finite rank. Also they have conjectured that this perturbation property char-
acterizes such operators F . Recently, M. Burgos, A. Kaidi, M. Mbekhta and
M. Oudghiri provided in [1] an affirmative answer to this question. We gen-
eralizes these results as follows:

Theorem 3.1. Let F be a bounded operator on X. Then the following
assertions are equivalent:

(i) There exists a positive integer k for which F k is of finite rank.

(ii) σe
des(T +F ) = σe

des(T ) for every operator T ∈ L(X) commuting with F .

Proof. (i) ⇒ (ii) Suppose that F k has finite-dimensional range. Then, by
[8, lemma 2.1], we have

dim
(
R(Tn+k−1)/R(T + F )n ∩ R(Tn+k−1)

) ≤ dimR(F k) < ∞ (3.3)

for all positive integer n. Moreover, T has finite essential descent d := de(T ),
therefore dim

(
R(T d)/R(T + F )n ∩ R(Tn+k−1)

)
is finite for n ≥ d, and since

R(T + F )n ∩ R(Tn+k−1) ⊆ R(T + F )n ∩ R(T d) ⊆ R(T d) ,
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we get that dim
(
R(T d)/R(T + F )n ∩ R(T d)

)
< ∞. Consequently,

dim
(
(R(T d) + R(F k))/R(T + F )n ∩ R(T d)

)
< ∞ for all n ≥ d . (3.4)

On the other hand, by interchanging T and T + F in (3.3), we obtain that

dim
(
R(T + F )n+k−1/R(Tn) ∩ R(T + F )n+k−1

)
< ∞ ,

and so

dim
(
R(T + F )n+k−1/R(T d) ∩ R(T + F )n+k−1

)
< ∞ for all n ≥ d . (3.5)

Now by combining (3.4) and (3.5), it follows that

dim
(
(R(T d) + R(F k))/R(T + F )n

)
< ∞ for all n ≥ d + k .

Thus dim
(
R(T +F )n/R(T +F )n+1

)
is finite for every n ≥ d+k; which implies

that de(T + F ) ≤ d + k as desired.
(ii)⇒ (i) First, if we take T = 0, then we obtain that σe

des(F ) is empty, and
hence F is algebraic with finite spectrum σ(F ) = {λ1, λ2, . . . , λn}. Therefore,
we have the following decomposition

X = X1 ⊕X2 ⊕ · · · ⊕Xn ,

where Xi is a closed subspace and the restriction of F − λi to this subspace
is nilpotent.

We claim that if λi 6= 0, Xi is finite dimensional. Suppose to the contrary
that λi 6= 0 and Xi is infinite dimensional. By [1, Proposition 4.3], there exists
a non algebraic operator Si on Xi commuting with the restriction Fi of F to
this space. Let S denote the extension of Si to X given by S = 0 on each
Xj such that j 6= i. Obviously SF = FS, and so σe

des(S + F ) = σe
des(S) by

hypothesis. On the other hand, we have σe
des(S) = σe

des(Si) and σe
des(S +F ) =

σe
des(Si + Fi), and since Fi − λi is nilpotent, the first implication ensures that

σe
des(Si) = σe

des(Si + Fi) = σe
des(Si + λi). Now let α be an arbitrary complex

number in σe
des(S) 6= ∅. Then it follows that α − nλi ∈ σe

des(S) for all n ∈ N,
which implies that λi = 0, the desired contradiction.

Notice that the preceding result can not be extended to compact pertur-
bations. Indeed, consider the operator T = 0 defined on the Hilbert space
with an orthonormal basis {ei,j}∞i,j=1; clearly de(T ) is finite. However, if we
let K to be the operator defined by

Kei,j =
1
ij

ei,j+1 ,
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then we can see easily that K is a compact operator and that ei,n+1 ∈ R(Kn)\
R(Kn+1) for every i ≥ 1 and every n ∈ N. Thus de(K) is infinite.

We mention that when the operator F is assumed to be of finite-rank
in the previous theorem, then the commutativity condition is redundant. In
fact, M. Mbekhta and V. Müller have proved in [14] that if T is a bounded
operator on X, then σe

des(T + F ) = σe
des(T ) for every finite rank operator F

on X. Hence, if we let F(X) denote the set of finite-rank operators on X,
then we have:

σe
des(T ) ⊆

⋂

F∈F(X)

σdes(T + F ) . (3.6)

Let isoK denote the set of isolated point of every subset K of C, and
accK = K \ isoK the set of its accumulation points. In the next result
we show that the inclusion (3.6) becomes equality if we complete σe

des(T ) by
the set, σ+

sf (T ), formed by the complex numbers λ such that T − λ is not
semi-Fredholm of positive index.

Theorem 3.2. If T is a bounded operator on X, then

σe
des(T ) ∪ accσ+

sf (T ) =
⋂

F∈F (X)

σdes(T + F ) .

Proof. Suppose that λ is a complex number for which there exists a finite-
rank operator such that d(T + F ) is finite, then λ /∈ σe

des(T ). Moreover, it
follows from Corollary 2.4 that T + F − µ is a surjective operator, and hence
T − µ is semi-Fredholm with positive index, when µ is in a small punctured
neighbourhood of λ. This shows that λ /∈ accσ+

sf (T ). For the converse, sup-
pose λ /∈ σe

des(T ) ∪ acc σ+
sf (T ). Then there exists δ > 0 such that T − λ is

semi-Fredholm with positive index for 0 < |λ| < δ. Now, by [12, Theorem
2.1], there exists a finite-rank operator F such that T +F −λ is onto for every
0 < |λ| < δ. Finally, since de(T ), and so de(T + F ), is finite, Theorem 2.1
implies that d(T + F ) is finite. This completes the proof.

4. Essential descent and closed range

Let T be a bounded operator on X. A well-known result of T. Kato [9,
Lemma 332] states that if R(T ) has finite codimension then it is closed. A
more general version of this result is done by S. Goldberg [3]: if R(T ) has a
closed complement M in X, then it is closed.
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The closedness of the range can not follow for operators with finite essential
descent. In fact, if we consider the operator T defined on the Hilbert space
H with orthonormal basis (en)n∈N by Te2n = 1

ne2n−1 and Te2n−1 = 0. Then
R(T ) is not closed and d(T ) = 2.

Proposition 4.1. Let T ∈ L(X) be an operator with finite-essential de-
scent d and let k be a positive integer. If N(T d) ∩ R(T k) has a closed com-
plement in N(T d), then R(T k) is closed.

Proof. Let M be a closed subspace of N(T d) such that N(T d) = M ⊕
N(T d) ∩ R(T k). Since d := de(T ) is finite, then so is de(T k) ≤ de(T ), and
hence it follows by (1.2) that codim(R(T k)+N(T d)) is finite. Thus there exists
a finite dimensional subspace M1 such that X = [R(T k) + N(T d)] ⊕ M1 =
R(T k)⊕M ⊕M1, which shows that R(T k) is closed.

Note that if T is an operator with finite-essential descent and finite-
dimensional kernel, then we obtain immediately from Proposition 4.1 that
R(T ) is closed. However, for such operator T , the range is of finite-codi-
mension, i.e., de(T ) = 0. In fact, we have codim R(T ) = codim(N(T d) +
R(T )) + dim(N(T d) + R(T ))/R(T ). Clearly, codim(N(T d) + R(T )) is finite
because de(T ) is finite. Also, since dim N(T ) is finite, then so is dimN(T d),
and hence (N(T d) + R(T ))/R(T ) is finite-dimensional. Thus codim R(T ) is
finite.

Corollary 4.2. Let T be a bounded operator on X such that de(T ) = 1.

(i) If dim
(
N(T ) ∩ R(T )

)
is finite, then R(T ) is closed.

(ii) If X is a Hilbert space, then N(T ) ∩R(T ) is closed if and only if R(T )
is closed.

Also as consequence of Theorem 2.1 and Corollary 4.2 we derive the fol-
lowing proposition:

Proposition 4.3. Let T ∈ L(X) and λ be a complex number such that
de(T − λ) = 1.

(i) If there exists a sequence of complex numbers {λn}n converging to λ
and such that dimN(T − λn) is finite for all n ≥ 1 then R(T − λ) is
closed.

(ii) If R(T −λ) is not closed, then λ is in the interior of the point spectrum
and dimN(T − λ) = ∞ in a neighborhood of λ.
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