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Introduction

The investigation of the structure of biprojective Banach algebras with
non-trivial radical [3] forces the author to suppose that the idea of projective
cover, which is important in Ring Theory, can be effectively applied to Banach
algebras and modules. But, in fact, the structural results on biprojectivity
can be easier obtained without projective covers, so there are no references
to this matter in [3]. Projective covers of Banach modules are considered in
the present article. Except some assertions in Sections 1 and 6 we restrict
our attention to the finitely generated case. The discussion concentrates on
Banach algebras with conditions on the existence of projective covers.

Recall that for a unital ring R, an epimorphism of R-modules ε : P → X is
called a projective cover (in another terminology, a projective envelope) if P
is projective and a submodule Y coincides with P provided Ker ε+Y = P . A
unital ring R is called semi-perfect if every irreducible left R-module admits a
projective cover. This is equivalent to a stronger condition that every finitely
generated module admits a projective cover. Bass’ structural theorem asserts
that R is semi-perfect if and only if R/RadR is classically semi-simple and
every idempotent in R/RadR can be lifted modulo RadR. (Here RadR is
the Jacobson radical of R.) A detailed discussion on semi-perfect rings is in
[11, Chapter 11] and [6, Chapter 19].

Transferring the idea of projective cover into the Banach algebra context
we have to be careful because of some peculiarities of Topological Homology.
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First, the main subject of Ring Theory is a unital ring. But for Banach
algebras the existence of identity is too strong assumption to include many
interesting examples. Second, we must distinguished two notions for Banach
modules — relative projectivity and strict projectivity. (Usually ’relative’ is
omitted). The first notion is connected with cohomology groups but only the
second condition, which is stronger, can be used as a base for a satisfactory
structural theory. Of course, the difference with the pure algebraic case is of
main interest.

In Section 1, two version of covers — projective and strictly projective —
will be introduced. Their basic properties are considered and a description of
the strictly projective cover of an irreducible module is given. Note that the
dual notion of a strictly injective envelope of a Banach module was considered
in [7], where it was shown that (as in the pure algebraic case) the strictly
injective envelope always exists.

We say that a Banach algebra is semi-perfect (strictly semi-perfect) if
every irreducible left Banach module admits a projective (strictly projective)
cover. Strictly semi-perfect Banach algebras are considered in Section 2. The
main result asserts that a Banach algebra A is strictly semi-perfect if and
only if A/RadA is modular annihilator. Note that this characterization is
more transparent than in the pure algebraic case — we do not need the lifting
idempotents assumption because by Dixon’s theorem every idempotent in the
quotient of a Banach algebra over the radical can be lifted. It will be shown
in Section 3 that a Banach algebra is strictly semi-perfect if and only if every
finitely generated left Banach module over it admits a strictly projective cover.

In the next sections we turn to projective covers. In the general situation,
the existence of a projective cover is not sufficient to obtain structural results.
Indeed, let P → X be a projective cover of an irreducible module X; then we
need to solve the lifting problem

A

²²
P // X.

To do this it is sufficient to assume that the projection A → X is admissible
or P is strictly projective. But we cannot guarantee neither the first nor the
second assumption. The only known way to get over this difficulty is to use
the approximation property. It will be shown in Section 4 that a semi-perfect
Banach algebra such that the quotient by the radical has the approximation
property is strictly semi-perfect. A stronger form of this theorem, which is
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valid for a quasi-biprojective Banach algebra, can be found in Section 6. As
a preliminary result the existence of a projective cover for a wide class of
modules over a quasi-biprojective Banach algebra will be shown.

In [15], Selivanov proved that a finitely generated, projective Banach mod-
ule with the approximation property is strictly projective. Extending this
approach in Section 5 we shall find some assumptions (in particular, on the
approximation property) that imply the existence of a strictly projective cover
for a finitely generated Banach module.

Finally, in Section 7, we consider some application to Harmonic Analysis.
The purpose is to obtain a homological characterization of compactness that
has the same form for groups and their non-commutative analogues. It was
shown by Helemskii that a locally compact group G is compact if and only
if the convolution Banach algebra L1(G) is biprojective [8]. Recently, non-
commutative analogues of this result have appeared; see [1, 19] for Fourier
algebras, [14] for algebras of nuclear operator with “the non-commutative
convolution”, and [2] for Kac algebras and locally compact quantum groups.
But in order to get satisfactory results, Operator Space Theory is essentially
involved in [1, 2, 19]. On the other hand, for algebras of nuclear operators,
biprojectivity is equivalent to finiteness of G not only in the classical case as it
is proved in [14] but in the operator space case also [2]. Thus biprojectivity is
too strong to characterize compactness in this case. We shall show that both
difficulties disappear when we use semi-perfect algebras instead of biprojective
algebras.

1. Projectivity and covers

First, let us recall some standard homological definitions in the Banach
algebra context [8, 9]. Let A be a Banach algebra. For simplicity we assume
that A and all Banach A-modules are endowed with a multiplicative norm.
An epimorphism ν : Y → Z of (one-sided or two-sided) Banach A-modules
is called admissible if there exists a bounded linear operator σ : Z → Y
such that νσ = 1. Also, an epimorphism ν is called strict if the natural
morphism Y/ Ker ν → Z is an isomorphism. It is clear that each admissible
epimorphism is strict. It is an obvious corollary of the open mapping theorem
that an epimorphism ν is strict if and only if it is surjective. (Note that a
morphism of Banach modules is an epimorphism if and only if its range is
dense.)

A Banach A-module P is called projective if for every admissible epimor-
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phism ν : Y → Z and every morphism ψ : P → Z of Banach A-modules there
exists a morphism ϕ : P → Y such that the diagram

Y
ν

²²
P

ϕ
;;w

w
w

ψ
// Z

(1.1)

commutes.
A Banach A-module P is called strictly projective if for every strict epi-

morphism ν : Y → Z and every morphism ψ : P → Z of Banach A-modules
there exists a morphism ϕ : P → Y such that Diagram (1.1) commutes.

Definition 1.1. A strict epimorphism ε : P → X of Banach A-modules
is said to be a cover if for every strict epimorphism ϕ : Y → X and every
morphism ψ such that ϕ = εψ the morphism ψ is a strict epimorphism. If
P is projective (strictly projective), then ε is a projective (strictly projective)
cover. In this case, we say that X admits a projective (strictly projective)
cover.

Proposition 1.2. Suppose that ε1 : P1 → X and ε2 : P2 → X are strictly
projective covers. Then there exists a topological isomorphism α : P1 → P2

such that the diagram

P1
α //____

ε1
½½5

55
55

5 P2

ε2
¥¥ªª

ªª
ªª

X

(1.2)

commutes.

Proof. Since P1 is strictly projective, there exists a morphism α such that
Diagram (1.2) commutes. The epimorphism ε2 is a cover, hence α is a strict
epimorphism. Since P2 is strictly projective, there exists a morphism β such
that αβ = 1. Then ε1β = ε2αβ = ε2. The epimorphism ε1 is a cover;
therefore β is a strict epimorphism. Since β is injective, it is an isomorphism
and α = β−1.

The unitization of a Banach algebra A is denoted by A+. A left Banach
A-module X is called n-generated for n ∈ N if there exists x1, . . . , xn ∈ X such
that each x ∈ X can represented as x =

∑
k=1 ak ·xk for some a1, . . . , an ∈ A.

A cyclic module is just a 1-generated one.
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Proposition 1.3. Let X be an n-generated left Banach A-module for
some n ∈ N, and let ε : P → X be a strictly projective cover. Then P is topo-
logically isomorphic to a closed complemented submodule in An

+ containing
in An.

Proof. Let x1, . . . , xn be generators of X. Consider the morphism of left
Banach A-modules

σ+ : An
+ → X : (a1, . . . an) 7→

n∑

k=1

ak · xk (ak ∈ A+).

Since An
+ is strictly projective, there exists a morphism χ such that the dia-

gram
P

ε
²²

An
+

χ
;;vvvv

σ+

// X

commutes. Set χ′ := χ|An . It is obvious that εχ′ = σ+|An . Since σ+|An is a
strict epimorphism and ε is a cover, χ′ is a strict epimorphism. The module
P is strictly projective, hence there exists a morphism ϕ : P → An such that
χ′ϕ = 1. It is clear that χϕ = 1; therefore P is topologically isomorphic to a
closed complemented submodule in An

+ containing in An.

Corollary 1.4. Let X be a cyclic left Banach A-module, and let ε : P →
X be a strictly projective cover. Then P is topologically isomorphic to Ap for
some idempotent p in A.

Proof. It follows from Proposition 1.3 (with n = 1) that P is topologically
isomorphic to a closed complemented left ideal in A+ containing in A. Hence
there is an idempotent p ∈ A+ such that P ∼= A+p. For every a ∈ A+ the
product ap is in A, in particular, p = 1 · p ∈ A. Thus, P ∼= Ap.

Remarks 1.5. Suppose that A is a Banach algebra that does not contain a
non-trivial idempotent. It follows from Corollary 1.4 that every cyclic Banach
A-module does not admit a strictly projective cover.

Lemma 1.6. A maximal submodule in a cyclic Banach module is closed.

Proof. A cyclic Banach A-module has the form A/I, where I is a closed
modular left ideal in A. Suppose that Y is a maximal submodule in A/I. By
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σ denote the natural projection A → A/I. It is easy to see that σ−1(Y ) is
a modular left ideal in A. Hence it is contained in a maximal modular left
ideal J [9, Proposition 1.3.25]. Consequently, J/I is a proper submodule in
A/I and Y ⊂ J/I. Since Y is maximal, Y = J/I. The ideal J is closed in A;
therefore J/I is closed in A/I.

Proposition 1.7. Let ε : P → X be a strictly projective cover of an
irreducible Banach module X. Then Ker ε is the largest proper submodule
in P .

Proof. Assume the converse. Then there exists a submodule Z0 such that
Z0 6⊂ Ker ε. It follows from Corollary 1.4 that P is a cyclic A+-module. It
is well known that every submodule in a finitely generated module over a
unital ring is contained in a maximal submodule [11, 2.3.11]. Then there is
a maximal submodule Z that contains Z0. Obviously, Z 6⊂ Ker ε. Note that
Ker ε is maximal; therefore Ker ε + Z = P . Lemma 1.6 implies that Z is
closed. Hence the embedding Z → P is a morphism of Banach modules, and
the composition Z → P

ε→ X is surjective. Since ε is a cover, Z → P is
surjective also. Consequently, Z = P . This contradicts with the maximality
of Z.

Lemma 1.8. Suppose that a Banach module X contains a largest proper
submodule Y . If, in addition, Y is closed, then ε : X → X/Y is a cover.

Proof. Let ψ : Z → X be a morphism, let and ϕ : Z → X/Y be a strictly
epimorphism of Banach modules such that ϕ = εψ. Then ψ(Z) ⊂ Y or
ψ(Z) = X. In the first case we get the impossible equality ϕ = 0. In the
second case ψ is surjective. This concludes the proof.

For a left Banach A-module X set

κX : A ⊗̂A X → X : a⊗A x 7→ a · x.

(Here ⊗̂A is the symbol for the projective tensor product of Banach
A-modules.) If κX is surjective then by the open mapping theorem there ex-
ists a constant C > 0 such that for each x ∈ X we can choose µ(x) ∈ A ⊗̂A X
with κXµ(x) = x and ‖µ(x)‖ ≤ C‖x‖. (The map µ : X → A ⊗̂A X may be
non-linear.)

The next assertions will be used in Section 4.
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Lemma 1.9. Suppose that κX is surjective and fix a map µ as above.
Then for each y ∈ A ⊗̂A X and each decomposition y =

∑∞
i=1 ai ⊗A xi, where

(ai) ⊂ A, (xi) ⊂ X, and
∑

i ‖ai‖ ‖xi‖ < ∞, we have

y =
∑

i

ai · µ(xi).

Proof. For every i fix a decomposition µ(xi) =
∑

j bij⊗A tij , where (bij) ⊂
A, (tij) ⊂ X, and

∑
j ‖bij‖ ‖tij‖ < ∞. Whence xi =

∑
j bij · tij . Finally,

∑

i

ai · µ(xi) =
∑

i

∑

j

aibij ⊗A tij

=
∑

i

∑

j

ai ⊗A bij · tij =
∑

i

ai ⊗A xi = y.

Corollary 1.10. Let X be an n-generated left Banach A-module with
generators t1, . . . , tn. Then A ⊗̂A X is an n-generated left Banach A-module
and every y1, . . . , yn such that κX(yi) = ti for i = 1, . . . , n are generators of
A ⊗̂A X.

Proof. It is sufficient to choose µ such that µ(ti) = yi and apply Lemma 1.9.

Proposition 1.11. Let X be a left Banach A-module. If the morphism
κX : A ⊗̂A X → X is surjective, then it is a cover.

Proof. Suppose that ϕ : Y → X is a strict epimorphism and ψ : Y →
A ⊗̂A X is a morphism such that ϕ = κXψ. Then there is a constant C and
a map ν : X → Y right inverse for ϕ and such that ‖ν(x)‖ ≤ C‖x‖. Let
us set µ = ψν. Lemma 1.9 implies that every y ∈ A ⊗̂A X has the form
y =

∑
i ai · µ(xi), where

∑ ‖ai‖ ‖xi‖ < ∞. Hence y =
∑

i ψ(ai · ν(xi)). This
means that ψ is surjective, i.e. it is a strict epimorphism.

I conclude this section with an example, which was the first motivation to
consider projective covers in the Banach algebra context. Banach spaces F and
E endowing with a non-trivial continuous bilinear functional 〈·, ·〉 : F ×E → C
form a dual pair of Banach spaces. The Banach space E ⊗̂ F is a Banach
algebra with respect to the multiplication

(e⊗ f) · (e′ ⊗ f ′) := 〈f, e′〉(e⊗ f ′).
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It is easy to see that E is a left Banach E ⊗̂F -module with the multiplication
specified by (e ⊗ f) · e′ := 〈f, e′〉e, and F⊥ := {e ∈ E : 〈F, e〉 = 0} is a closed
submodule in E.

Proposition 1.12. Let (F, E, 〈·, ·〉) be a dual pair of Banach spaces. Then
the morphism of Banach (E ⊗̂F )-modules E → E/F⊥ is a strictly projective
cover.

Proof. Let Y be a submodule in E such that Y 6⊂ F⊥, i.e. there exists
e0 ∈ Y \F⊥. Then there is f0 ∈ F such that 〈f0, e0〉 = 1. Therefore for every
e ∈ E we have (e ⊗ f0) · e0 = e. Hence Y = E. This yields that F⊥ is the
largest proper submodule in E. It follows from Lemma 1.8 that E → E/F⊥

is a cover.
Now fix e ∈ E and f ∈ F such that 〈f, e〉 = 1. Then E is isometrically

isomorphic to (E ⊗̂F )(e⊗f) = (E ⊗̂F )+(e⊗f). The latter module is strictly
projective. This completes the proof.

2. Strictly semi-perfect Banach algebras

Definition 2.1. We say that a Banach algebra A is
(A) semi-perfect if every irreducible left Banach A-module admits a pro-

jective cover;
(B) strictly semi-perfect if every irreducible left Banach A-module admits

a strictly projective cover.

It will be shown later on (Corollary 2.7) that Condition (B) is equivalent
to the similar condition for right modules, but the following question is open.

Question 2.2. Is it true that a Banach algebra is semi-perfect if and only
if every irreducible right Banach module over it admits a projective cover?

The discussion on semi-perfect Banach algebras is in Sections 4 and 6. In
this section and the next one we concentrate our attention on strictly semi-
perfect Banach algebras.

Recall that a complex associative algebra is called modular annihilator if
it is semi-prime and the right annihilator of every maximal modular left ideal
is not trivial. For example, the algebras of compact operators, approximable
operators, and nuclear operators in a Banach space are modular annihilator.
The reader can find a detailed treatment on modular annihilator algebras in
[13, Section 8.4].
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Proposition 2.3. If a semi-simple Banach algebra is strictly semi-perfect,
then it is modular annihilator.

Proof. Let A be a semi-simple, strictly semi-perfect Banach algebra, and
let I be a maximal modular left ideal in A. Then X := A/I is an irreducible left
Banach module. Therefore there exists a strictly projective cover ε : P → X.

(1) We claim that ε is an isomorphism. First, Corollary 1.4 implies that
P ⊕ Q ∼= A for some left Banach module Q. Let J be an arbitrary maximal
modular left ideal in A. By Proposition 1.7, Ker ε is the largest proper sub-
module in P . Then P ⊂ J or J = Ker ε⊕Q. Hence Ker ε ⊂ J . It follows that
J ⊂ RadA. Since RadA = 0, the strict epimorphism ε is injective; therefore
it is an isomorphism.

(2) We have seen that X is strictly projective. Consequently, there exists a
morphism ϕ : X → A right inverse for the projection A → X. Let b := ϕ(u+I),
where u is a right modular identity for I. Since ϕ is injective, b 6= 0. Therefore
for every a ∈ I

ab = ϕ(a · (u + I)) = ϕ(au + I) = ϕ(a + I) = 0,

i.e., b is in the right annihilator of I. Hence A is modular annihilator.

Corollary 2.4. A unital, semi-simple, strictly semi-perfect Banach al-
gebra is classically semi-simple.

Proof. Proposition 2.3 says that a semi-simple, strictly semi-perfect Ba-
nach algebra is modular annihilator. By [13, Theorem 8.4.14] a unital, mod-
ular annihilator, Banach algebra is finite-dimensional. Finally, a semi-simple,
finite-dimensional algebra is classically semi-simple.

Proposition 2.5. (sf. [6, Lemma 27.16B]) If I is a two-sided closed ideal
in a strictly semi-perfect Banach algebra A, then A/I is strictly semi-perfect.

Proof. Set B := A/I and let X be an irreducible left Banach B-module.
Then X is an irreducible left Banach A-module with respect to the natural
multiplication. Since A is strictly semi-perfect, there exists a strictly projec-
tive cover ε : P → X. Note that I ·X = 0; therefore

ε′ : P/I · P → X : y + I · P 7→ ε(y),

is a well-defined morphism of Banach B-modules.
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(1) We claim that P/I · P is strictly projective. Suppose that

ψ : P/I · P → Z

is a morphism and ν : Y → Z is a strict epimorphism of Banach B-modules.
Both morphisms can be considered as morphisms of A-modules. Since P is a
strictly projective A-module, there exists a morphism of Banach A-modules
χ such that the big triangle in the diagram

Y

ν

²²
P

χ

55kkkkkkkkkk // P/I · P
ϕ

;;x
x

x
x

x

ψ
// Z

(2.1)

is commutative. It follows from I · Y = 0 that there is a morphism of Banach
B-modules ϕ : P/I · P → Y lifting ν. This means that P/I · P is strictly
projective.

(2) It remains to show that ε′ is a cover. Suppose that ϕ : Y → X is a
strict epimorphism and ψ is a morphism of Banach B-module such that the
diagram

P/I · P
ε′

²²
Y

ψ
;;xxxxxxxxx

ϕ
// X

commutes. By M denote the inverse image of Imψ in P . By Proposition 1.7,
M ⊂ Ker ε or M = P . The first case impossible because it implies ψ = 0. So
M = P ; hence Imψ = P/I · P . This proves that ε′ is a cover.

Theorem 2.6. A Banach algebra A is strictly semi-perfect if and only if
A/RadA is modular annihilator.

Proof. (⇒) It follows immediately from Propositions 2.5 and 2.3.
(⇐) Let X be an irreducible left Banach A-module. Denote the projection

A → A/RadA by σ and set B := A/RadA. It is clear that X is an irreducible
left Banach B-module. Since B is modular annihilator, X is topologically
isomorphic (as a B-module, hence, as an A-module) to Bq for some non-
trivial idempotent q ∈ B [13, Theorem 8.4.5(e)]. Every idempotent in a
Banach algebra can be lifted modulo the radical [13, Proposition 4.3.12(d)].
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Hence there is an idempotent p ∈ A such that σ(p) = q. Obviously, Ap is a
strictly projective left Banach A-module.

We claim that the restriction of σ to Ap considered as a map onto Bq is a
cover. By Lemma 1.8, it suffices to show that Ap contains the largest proper
submodule and this submodule is closed. Since Ap is a direct summand in
A+, it contains a maximal submodule, say Y . Then Y ⊕A(1−p) is a maximal
left ideal in A. This implies RadA ⊂ Y ⊕A(1− p). Hence Ap ∩ RadA ⊂ Y .

Now suppose towards the contradiction that σ(Y ) 6= 0. Since Bq is irre-
ducible, σ(Y ) = Bq. Therefore there is y ∈ Y such that y − p ∈ RadA. But
y−p ∈ Ap; hence y−p ∈ Y . Finally, p ∈ Y ; thus, Y = Ap. The contradiction
with the maximality of Y shows that Y ⊂ Kerσ = RadA. Consequently,
Y = RadA ∩ Ap. Thus, Ap contains a unique maximal left submodule and
this submodule is closed.

Corollary 2.7. A Banach algebra is strictly semi-perfect if and only
if every irreducible right Banach module over it admits a strictly projective
cover.

Proof. It follows from [13, Theorem 8.4.5] that a Banach algebra is mod-
ular annihilator if and only if the opposite Banach algebra is modular annihi-
lator. So the statement follows immediately from Theorem 2.6.

3. Finitely generated modules over strictly
semi-perfect Banach algebras

Let A be a complex associative algebra (possibly, non-unital), and let X
be a finitely generated left A-module with generators t1, . . . , tn. Consider the
morphism of left Banach A-modules

σ : An → X : (a1, . . . , an) 7→
n∑

k=1

ak · tk (ak ∈ A)

and denote by K the kernel of σ. Consider the set Mn(A) of all n × n-
matrices with entries from A as an algebra with respect to the usual matrix
multiplication.

Proposition 3.1. Let K ′ be the subset in Mn(A) such that for every
(ajk) ∈ K ′ the element (aj1, . . . , ajn) ∈ K for j = 1, . . . , n. Then K ′ is a
modular left ideal in Mn(A).
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Proof. Suppose that (ajk) ∈ K ′. Then
∑

k ajk ·tk = 0 for each j = 1, . . . , n.
Therefore for every (bij) ∈ Mn(A) and every i = 1, . . . , n

σ
(∑

j

bijajk

)
=

∑

j,k

bijajk · tk = 0.

This means that the matrix (bij)(ajk) = (
∑

j bijajk) belongs to K ′. Thus, K ′

is a left ideal.
Fix ujk ∈ A (j, k = 1, . . . , n) such that tj =

∑
k ujk · tk for every j. We

claim that the matrix (ujk) is a right modular identity for K ′. Indeed, if
(bij) ∈ Mn(A), then for each i = 1, . . . , n

σ
(∑

j

bijuj1 − bi1, . . . ,
∑

j

bijujn − bin

)
=

∑

k

(∑

j

bijujk − bik

)
· tk

=
∑

j

bij

(∑

k

ujk · tk
)
−

∑

k

bik · tk = 0,

i.e., (bij)(ujk)− (bik) ∈ K ′.

We need a simple lemma.

Lemma 3.2. A finite sum of minimal left ideals in a semi-prime Banach
algebra is closed.

Proof. It is easy to check by induction on the cardinality of a generating
set that a finite sum of minimal left ideals a semi-prime Banach algebra A has
the form Ap for some idempotent p.

Proposition 3.3. Let A be a semi-simple Banach algebra with dense
socle, and let X be a finitely generated left Banach A-module. Then X is topo-
logically isomorphic to

⊕m
i=1 Api for some minimal idempotents p1, . . . , pm

in A.

Proof. Fix a submodule in An such that X ∼= An/K. The set K ′ defined
in Proposition 3.1 is a modular left ideal in Mn(A). We can treat Mn(A) as a
Banach algebra with some multiplicative norm. For example, Mn(A) can be
identified with A ⊗̂Mn(C), where Mn(C) is endowed with the operator norm.

Denote by S the socle of A. Then Mn(S) is dense in Mn(A). It is not hard
to see that a right modular identity u = (ujk) for K ′ can be chosen in Mn(S)
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[3, Lemma 3.4]. The set {ujk : j, k = 1, . . . , n} is contained in a finite sum of
minimal left ideals in A. Denote this sum by I. Since

(∑

j

ajuj1 − a1, . . . ,
∑

j

ajujn − an

)∈ K, (aj ∈ An),

we have An = In + K. By Lemma 3.2 In is a Banach A-module. Obviously,
X ∼= An/K ∼= In/(In∩K). The module In is semi-simple (i.e. a sum of simple
modules); hence all its quotient modules are semi-simple. Therefore X is
topologically isomorphic to a semi-simple, finitely generated Banach module.
Since the radical of A is trivial and the socle is dense, A is modular annihilator
[13, Proposition 8.7.2(c)]. Hence for every simple summand in X there is an
algebraic isomorphism onto Api for some minimal idempotent pi (i = 1, . . . , m)
[13, Theorem 8.4.5(e)]. Since Api is closed, this isomorphism is topological [9,
Corollary 6.2.10]. Thus, X ∼= ⊕m

i=1 Api topologically.

In the following proposition we need only algebraic properties of modular
annihilator algebras — the existence of any norm on A is not assumed.

Proposition 3.4. Let A be a modular annihilator algebra, and let S be
the socle of A. Then every finitely generated left A-module is finitely generated
as a left S-module.

Proof. Suppose that X is a finitely generated left A-module. Then X/(S ·
X) is finitely generated also. Further, X/(S · X) is finitely generated as an
A/S-module. Since A is a modular annihilator, the algebra A/S is radical
[13, Theorem 8.4.5(c)]. It easy to see that each finitely generated module over
a radical algebra is trivial. Therefore X = S · X. This proves that X is a
finitely generated S-module.

Lemma 3.5. Let I be a left ideal in an algebra A, and let X is a left A-
module finitely generated as an I-module. Then every morphism of I-modules
from X to every A-module is a morphism of A-modules.

The proof is straightforward.
In the proof of the following theorem we need the notions of a small sub-

module and the radical of a module. A submodule X0 in a module X is called
small if for a submodule Y in X the equality X0 + Y = X implies Y = X.
The radical of a module X is the intersection of all its maximal submodule
or, equivalently, the sum of all its small submodules [11, 9.1.1, 9.1.2]. The
notation is radX.
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Theorem 3.6. Let A be a Banach algebra such that A/RadA is modu-
lar annihilator. Then every finitely generated left (right) Banach A-module
admits a strictly projective cover.

Proof. Suppose that X is a finitely generated left Banach A-module. Let
R := Rad A. Then X/R ·X is a finitely generated left Banach A/R-module.
Denote the socle of A/R by S. By Proposition 3.4, X/R ·X a finitely gener-
ated S-module; therefore it is a finitely generated Banach S-module. Since S
is a two-sided ideal in the semi-simple algebra A/R, it is also semi-simple. It
follows from Proposition 3.3 that there are minimal idempotents q1, . . . , qm in
S such that X/R ·X and

⊕m
i=1 Sqi are topologically isomorphic as S-modules.

It is obvious that Sqi = (A/R)qi for every i. Lemma 3.5 implies that X/R ·X
and

⊕m
i=1(A/R)qi are isomorphic as Banach A/R-modules. Denote by ϕ the

composition of the natural map

m⊕

i=1

Api →
m⊕

i=1

(A/R)qi

and the isomorphism between the latter module and X/R ·X.
By [13, Proposition 4.3.12(d)], there exist idempotents pi ∈ A such that

qi = pi + R. The Banach A-module P :=
⊕m

i=1 Api is strictly projective.
Hence there is a morphism ψ of left Banach modules such that the diagram

X

²²
P

ψ
;;vvvvvvvvvv

ϕ
// X/R ·X

commutes. Since Api is finitely generated, Rpi = R·(Api) is a small submodule
in Api [11, Theorem 9.2.1(d)]. Therefore

Kerϕ =
m⊕

i=1

Rpi ⊂ radP.

Since P is finitely generated, radP is a small submodule in P [11, Theorem
9.2.1(c)]. Obviously, Kerψ ⊂ Kerϕ. Thus, Kerψ is contained in a small
submodule; hence it is small itself. Therefore ψ is a cover in the category of
pure A-modules; whence it is a cover in the category of Banach A-modules.

The proof of the right case is similar.
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Combining Theorems 2.6 and 3.6, and using the obvious fact that an irre-
ducible module is finitely generated, we obtain the following result.

Theorem 3.7. The following are equivalent for a Banach algebra A:

(i) A is strictly semi-perfect;

(ii) every cyclic left (right) Banach A-module admits a strictly projective
cover;

(iii) every finitely generated left (right) Banach A-module admits a strictly
projective cover.

4. Semi-perfect Banach algebras and the
approximation property

Remind that a Banach space E has the approximation property if for every
compact subset K in E and every ε > 0 there exists a bounded linear operator
ϕ : E → E of finite rank such that

‖ϕ(x)− x‖ < ε for all x ∈ K.

Proposition 4.1. If a semi-simple Banach algebra with the approxima-
tion property is semi-perfect, then it is modular annihilator.

Proof. Let A be a semi-simple, semi-perfect Banach algebra with the ap-
proximation property, and let X be a irreducible left Banach A-module. Then
there exists a projective cover ε : P → X. Assume that Ker ε 6= 0 and fix some
non-trivial y ∈ Ker ε. Since A has the approximation property, and P is pro-
jective, there exists χ ∈ Ah(P, A+) such that χ(y) 6= 0 [8, Corollary IV.4.5].
By Proposition 1.7, Ker ε = rad P . On the other hand, χ(radP ) ⊂ RadA+

[11, 9.1.4(a)]. But by assumption RadA+ = RadA = 0; therefore χ(y) = 0.
This contradiction implies that ε is an isomorphism. So we see that every ir-
reducible left Banach A-module is projective. Since A has the approximation
property it follows from [16, Corollary 4.39] that A is modular annihilator.

Note that the second part of the proof of Proposition 2.3 is just a simple
form of the argument from [16, Corollary 4.39] cited in the previous proof.

Proposition 4.2. If I is a two-sided closed ideal in a semi-perfect Banach
algebra A, then A/I is semi-perfect.
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Proof. The argument is exactly as in the proof of Proposition 2.5. We need
only to assume that the epimorphism ν in Diagram (2.1) is admissible.

Theorem 4.3. Let A be a semi-perfect Banach algebra such that A/RadA
has the approximation property. Then A is strictly semi-perfect.

Proof. It follows from Propositions 4.2 and 4.1 that A/RadA is modular
annihilator. Theorem 2.6 implies that A is strictly semi-perfect.

So we get a new proof of Selivanov’s theorem: if A is a Banach algebra
such that A/RadA has the approximation property and every left Banach A-
module is projective, then A is classically semi-simple. Indeed, since A+/A is
projective, A is unital. Thus, Theorem 4.3 and Corollary 2.4 can be applied to
A/RadA. It follows that A/Rad is finite-dimensional; whence A → A/RadA
is admissible. Since the left module A/RadA is projective, RadA has the
right identity; therefore RadA = 0.

Question 4.4. Does there exist a semi-perfect Banach algebra that is not
strictly semi-perfect?

This question can be considered as a general form of an old problem in Topo-
logical Homology [10, Problem 6]: Does exist a semi-simple Banach algebra
that is not classically semi-simple and such every left Banach module (or every
irreducible left Banach module) over it is projective?

5. Projective covers of finitely generated modules
with the approximation property

The following assertion is [15, Lemma 1].

Theorem 5.1. A Banach space E has the approximation property if and
only if for every Banach space E1, every compact subset K in E1 ⊗̂ E, and
ε > 0 there exist a bounded linear operator ϕ : E → E of finite rank such that
‖(1⊗ ϕ)(u)− u‖ < ε for all u ∈ K.

This result is the basis for the following approximation theorem: If X is
a projective left Banach A-module with the approximation property, then 1X

can be approximated uniformly on compact subsets of X by morphisms of the
form

y 7→
k∑

i=1

χi(y) · xi, where χi ∈ Ah(X, A+) and xi ∈ X,
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[15, Theorem 1]. (Here Ah(·, ·) is the set of morphisms of left Banach A-
modules.) Applied to finite subsets, this statement, in turn, gives a very useful
theorem: If X is a finitely generated projective left Banach A-module with
the approximation property, then X is strictly projective [15, Theorem 2].

We need a modification of these results. For a left Banach module X
consider the morphism of left Banach modules

π̂X : A ⊗̂X → A ⊗̂A X : a⊗ x 7→ a⊗A x.

Theorem 5.2. Let X be a left Banach A-module with the approximation
property. Suppose that there exists a morphism of left Banach modules

ρ̂X : A ⊗̂A X → A ⊗̂X

such that π̂X ρ̂X = 1. Then for every compact subset K in A ⊗̂A X and every
ε > 0 there are χ1, . . . , χn ∈ Ah(A ⊗̂A X, A) and x1, . . . , xn ∈ X such that

∥∥y −
n∑

i=1

χi(y)⊗A xi

∥∥ < ε for all y ∈ K.

Proof. Denote by K1 the compact subset ρ̂X(K) in A ⊗̂ X. By Theo-
rem 5.1, there exist a bounded linear operator ϕ : X → X of finite rank such
that ‖u− (1⊗ϕ)(u)‖ < ε for all u ∈ K1. Since ‖π̂X‖ ≤ 1, for every y ∈ K we
have

‖y − π̂X(1⊗ ϕ)ρ̂X(y)‖ ≤ ‖ρ̂X(y)− (1⊗ ϕ)ρ̂X(y)‖ < ε. (5.1)

The operator ϕ has the form ϕ(x) =
∑n

i=1 fi(x)xi, where fi ∈ X∗ and xi ∈ X.
Whence,

π̂X(1⊗ ϕ)ρ̂X(y) =
n∑

i=1

χi(y)⊗A xi,

where χi = (1⊗ fi)ρ̂X . To conclude the proof, it remains to apply (5.1).

Theorem 5.3. Let X be a finitely generated left Banach A-module with
the approximation property. Suppose that there exists a morphism of left
Banach A-modules ρ̂X : A ⊗̂A X → A ⊗̂X such that π̂X ρ̂X = 1. Then A ⊗̂A X
is strictly projective.

Proof. Let t1, . . . , tm be generators of X. Choose y1, . . . , ym ∈ A ⊗̂A X
such that κX(yj) = tj for all i. Consider the morphism of Banach modules

σ : Am → A ⊗̂A X : (a1, . . . , am) 7→
m∑

j=1

aj · yj . (5.2)
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It follows from Corollary 1.10 that σ is surjective. The open mapping theorem
implies that there is a constant C > 0 such that for every y ∈ A ⊗̂A X there
exist a1, . . . , am ∈ A with y =

∑
j aj ·yj and

∑
j ‖aj‖ ≤ C‖y‖. By Theorem 5.2

we can choose χ1, . . . , χn ∈ Ah(A ⊗̂A X,A) and x1, . . . , xn ∈ X such that

∥∥yj −
n∑

i=1

χi(yj)⊗A xi

∥∥ < 1/C

for all j = 1, . . . , m.
Take an arbitrary element y in A ⊗̂A X and write it as y =

∑
j aj · yj with∑

j ‖aj‖ ≤ C‖y‖. Then

∥∥y −
n∑

i=1

χi(y)⊗A xi

∥∥ ≤
m∑

j=1

‖aj‖
∥∥yj −

n∑

i=1

χi(yj)⊗A xi

∥∥

<
1
C

m∑

j=1

‖aj‖ ≤
∥∥

m∑

j=1

aj · yj

∥∥ = ‖y‖.
(5.3)

Let ψ takes y to
∑n

i=1 χi(y) ⊗A xi . Since (5.3) holds for every y, we have
‖1− ψ‖ < 1. Consequently, ψ is an invertible element in the Banach algebra
Ah(A ⊗̂A X, A ⊗̂A X) [9, Proposition 1.2.39].

Now consider the morphisms of Banach modules

τ :A ⊗̂A X → An : y 7→ (χ1ψ
−1(y), . . . , χnψ−1(y)),

σ′ :An → A ⊗̂A X : (b1, . . . , bn) 7→
n∑

i=1

bi ⊗A xi.

Note that

σ′τ(y) =
n∑

i=1

χiψ
−1(y)⊗A xi = ψψ−1(y) = y.

Thus, the left Banach A-module A⊗̂AX is topologically isomorphic to a direct
summand in An.

Further, write xi =
∑

j cij · tj for each i = 1, . . . m, and set

θ : An → Am : (b1, . . . , bn) 7→ (∑

i

bici1 , . . . ,
∑

i

bicim

)
.
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Since c · y = c⊗A κX(y) for every c ∈ A and y ∈ A ⊗̂A X, we obtain

σθ(b1, . . . , bn) =
∑

j,i

bicij · yj =
∑

j,i,k

bicij ⊗A κX(yj)

=
∑

j,i

bicij ⊗A tj =
∑

j,i

bi ⊗A cij · tj

=
∑

i

bi ⊗A xi = σ′(b1, . . . , bn).

Therefore θτ is a right inverse morphism for σ. Since (5.2) defines a mor-
phism from Am

+ to A ⊗̂A X that extends σ, the latter module is topologically
isomorphic to a direct summand in the strictly projective module Am

+ . Thus,
A ⊗̂A X is strictly projective.

Corollary 5.4. Under the conditions of Theorem 5.3, we have that κX :
A ⊗̂A X → X is a strictly projective cover.

The proof is immediate from Proposition 1.11 and Theorem 5.3.

6. Modules over quasi-biprojective Banach algebras

A Banach algebra A is called quasi-biprojective if A2 = A and there exists
a morphism of Banach A-bimodules ρ̂ that is right inverse for

π̂ : A ⊗̂A → A ⊗̂A A : a⊗ b 7→ a⊗A b

[17, 18]. It is shown in [18, Theorem 3.13] that the following Banach algebras
are quasi-biprojective:

• `p for p ≥ 1;

• the Shatten ideals Sp for p ∈ [1, 2];

• Lp(G) for p ≥ 1, the continuous function space C(G), and the Fourier
algebra A(G), where G is a compact group, all with respect to the
convolution product.

Now set
κ : A ⊗̂A A → A : a⊗A b 7→ ab.

Proposition 6.1. Let A a Banach algebra such that A2 = A, and let X
be a left Banach A-module such that κX : A ⊗̂A X → X is surjective. Then

κ ⊗A 1: A ⊗̂A A ⊗̂A X → A ⊗̂A X
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is a topological isomorphism.

Proof. First, note that κ ⊗A 1 is surjective. This is just the projectivity
property of ⊗̂A: since κX is a strict epimorphism, then κ ⊗A 1 = 1⊗A κX is
a strict epimorphism.

Second, to prove that κ⊗A1 is injective it is sufficient to show that (κ⊗A1)∗

is surjective. We can identify (A ⊗̂A X)∗ and (A ⊗̂A A ⊗̂A X)∗ with the spaces
of corresponding multilinear functionals. So we need to check that for every
continuous trilinear functional f : A×A×X → C that is balanced, i.e.

f(ab, c, x) = f(a, bc, x) = f(a, b, c · x) for all a, b, c ∈ A and x ∈ X,

there exists a continuous balanced bilinear functional g : A×X → C such that

f(a, b, x) = g(ab, x) for all a, b ∈ A and x ∈ X. (6.1)

Since κX is surjective, it follows from [8, Propostition II.3.6] that for x ∈ X
there are sequences (cj) ⊂ A and (xj) ⊂ X such that x =

∑∞
j=1 cj · xj and∑

i ‖cj‖ ‖xj‖ < ∞. If x =
∑m

j=1 c′j · x′j is another such decomposition, then
∑

j

f(ab, cj , xj) = f(a, b, x) =
∑

j

f(ab, c′j , x
′
j)

for all a, b ∈ A. Since A2 = A, the sum
∑

j f(a, cj , xj) does not depend on
the decomposition of x for every a ∈ A. So

g(a, x) :=
∑

j

f(a, cj , xj), (a ∈ A, x ∈ X)

is well defined. It is easy to see that g : A×X → C is bilinear, balanced (i.e.
g(ab, x) = g(a, b · x) for all a, b ∈ A and x ∈ X), and (6.1) is satisfied. By
the open mapping theorem, there exists a constant C > 0 such that for every
ε > 0 the decomposition of x can be chosen with

∑
i ‖cj‖ ‖xj‖ ≤ C‖x‖ + ε.

This implies that the functional g is continuous.

Theorem 6.2. Let A be a quasi-biprojective Banach algebra, and let X
be a left Banach A-module such that κX : A ⊗̂A X → X is surjective. Then

(A) the left Banach A-module A ⊗̂A X is projective;
(B) the morphism

π̂X : A ⊗̂X → A ⊗̂A X : a⊗ x 7→ a⊗A x

admits a right inverse morphism of left Banach A-modules.
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Proof. (A) Let ρ̂ be the morphism from the definition of a quasi-bipro-
jective algebra. By Proposition 6.1, κ ⊗A 1 is a topological isomorphism.
Therefore

ρ′ := (ρ̂⊗A 1)(κ ⊗A 1)−1 (6.2)

is a right inverse morphism of left Banach modules for

(π ⊗A 1) : A ⊗̂A ⊗̂A X → A ⊗̂A X,

where π is the morphism associated with the multiplication. Therefore the
module A ⊗̂A X is projective.

(B) Let ρ′ be a right inverse for πA⊗A 1; for example, it can be defined by
(6.2). Since πA ⊗A 1 ∼= π̂X(1 ⊗̂κX), the morphism (1 ⊗̂κX)ρ′ is right inverse
for π̂X .

Now we can get the main result of this section.

Theorem 6.3. Suppose that A is a quasi-biprojective Banach algebra and
X is a left Banach A-module such that

κX : A ⊗̂A X → X : a⊗A x 7→ a · x

is surjective. Then κX is a projective cover.

Proof. It follows immediately from Theorem 6.2(A) and Proposition 1.11.

Corollary 6.4. A quasi-biprojective Banach algebra is semi-perfect.

Proof. It suffices to note that for a finitely generated Banach A-module X
the morphism κX is surjective.

Theorems 5.3 and 6.2 allow us to get a modification of Theorem 4.3 in the
case where algebra is quasi-biprojective. For the proof we need the following
assertions.

Theorem 6.5. [3, Theorem 5.3(A)] Let A be a Banach algebra such that
A2 = A. Suppose that there exists a closed two-sided ideal R0 contained in
RadA, containing the prime radical, and such that A/R0 has the approxima-
tion property. If X is an irreducible left Banach A-module such that A ⊗̂A X
is projective, then X has the approximation property.
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Theorem 6.6. Suppose that the conditions of Theorem 6.5 are satisfied
for the algbera A. If X is an irreducible left Banach A-module such that there
exist a morphism of left Banach A-modules ρ̂X : A⊗̂AX → A⊗̂X right inverse
for π̂X , then κX is a strictly projective cover.

Proof. By Theorem 6.5, X has the approximation property. So we can
apply Corollary 5.4.

Now we can prove the last result of this section.

Theorem 6.7. Let A be a quasi-biprojective Banach algebra. Suppose
that there exists a closed two-sided ideal R0 contained in RadA, containing
the prime radical, and such that A/R0 has the approximation property; then
A is strictly semi-perfect.

Proof. It follows from Theorem 6.2(B) that for each irreducible left Banach
A-module X there exists a morphism of left Banach A-modules ρ̂X such that
π̂X ρ̂X = 1. So we can apply Theorem 6.6, which states that κX : A⊗̂AX → X
is a strictly projective cover.

In view of this theorem and Corollary 6.4 the following question is natural.

Question 6.8. Is every quasi-biprojective Banach algebra strictly semi-
perfect?

7. Examples from Harmonic Analysis

A Kac algebra is a quadruple (M, ∆,κ, ϕ), where M is a von Neumann
algebra, ∆ is a co-associative normal ∗-homomorphism from M to its spatial
tensor square, κ : M → M is a co-involution, and ϕ is a weight on M , that
satisfies to certain axioms [5, 2.2.5]. It is well known that the predual space
of M is a Banach algebra with respect to the multiplication (ω ∗ θ)(x) :=
(ω ⊗ θ)∆(x) (ω, θ ∈ M∗, x ∈ M). Before to give a necessary and sufficient
condition for M∗ to be strictly semi-perfect, we need the following observation.

Lemma 7.1. Let (M, ∆,κ, ϕ) be a Kac algebra. Then the algebra M∗ is
semi-simple.

Proof. It follows from the definition of κ [5, 2.2.5] that κ∗ : M∗ → M∗ is an
isometric involution. To prove that M∗ is semi-simple it suffices to show that
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there exists an injective ∗-representation of M∗ [9, Theorems 4.5.20, 4.5.35].
But it is easy to see that the Fourier representation of M∗ (as defined in [5,
2.5.3]) is injective.

A Kac algebra is said to be of compact type if there is a normal state F on
M that is left invariant in the sense that

(ω ⊗ F )∆(x) = ω(1)F (x)

for all ω ∈ M∗ and x ∈ M ; in this case, F coincides with ϕ up to a scalar; for
the details and the discussion see [2].

Theorem 7.2. A Kac algebra (M, ∆,κ, ϕ) is of compact type if and only
if the Banach algebra M∗ is strictly semi-perfect.

Proof. (⇒) If (M, ∆,κ, ϕ) is of compact type, then all irreducible ∗-rep-
resentations of M∗ is finite-dimensional. For an irreducible ∗-representation
α denote its dimension by dα. Let {uα

ij} ⊂ M be the set of coefficients of
irreducible ∗-representations. (Here α runs over all equivalence classes of
irreducible ∗-representations of M∗ and i, j = 1, . . . , dα.) Then

∆(uα
ij) =

∑

k

uα
ik ⊗ uα

kj . (7.1)

The functional x 7→ ϕ(xuα
ij) belongs to M∗; denote it by ûα

ij . Let S be the
linear span of {ûα

ij}.
Let x ∈ M and ω ∈ M∗. By the definition of a Kac algebra [5, 2.2.1],

(1⊗ ϕ)
(
∆(x)(1⊗ uα

ij)
)

= (κ ⊗ ϕ)
(
(1⊗ x)∆(uα

ij)
)
.

Combining this with (7.1), we have

(ω ∗ ûα
ij)(x) = (ω ⊗ ϕ)

(
∆(x)(1⊗ uα

ij)
)

= (ωκ ⊗ ϕ)
(
(1⊗ x)∆(uα

ij)
)

=
∑

k

ωκ(uα
ik)û

α
kj(x).

Thus, S is a left ideal in M∗.
Since S is dense in M∗ and ûα

ij ∗ ûβ
kl = d−1

α δαβδjkû
α
il (see, for example, [4,

Proposition 2.2]), the socle of M∗ is dense (in fact, S is the socle). By [13,
Proposition 8.7.2(c)], M∗ is modular annihilator. Lemma 7.1 and Theorem 2.6
imply that M∗ is strictly semi-perfect.
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(⇐) Denote by I0 the kernel of τ : M∗ → C : ω 7→ ω(1). It is easy
to see that τ is an algebra homomorphism. Therefore I0 is a modular ideal.
If M∗ is strictly semi-perfect, then, by Lemma 7.1 and Proposition 2.3, it
is modular annihilator. It follows from [13, Proposition 8.4.3(b)] that there
is a minimal idempotent p ∈ M∗ such that I0p = 0. Since M∗/I0 is one-
dimensional, M∗ = I0 ⊕M∗p. Whence I0 is a complemented left ideal in M∗.
By [2, Proposition 1.2(1), Theorem 2.3] (M, ∆,κ, ϕ) is of compact type.

Since the convolution algebra L1(G) and the Fourier algebra A(G) of a
locally compact group are preduals of Kac algebras, we get the following
result.

Corollary 7.3. Let G be a locally compact group.
(A) The Banach algebra L1(G) is strictly semi-perfect if and only if G is

compact.
(B) The Banach algebra A(G) is strictly semi-perfect if and only if G is

discrete.

Both statements in the corollary can be proved without a reference to Kac
algebras; but the argument is the same as in Theorem 7.2.

Let G be a locally compact group, and let p ∈ (1,∞). Denote the Banach
space of nuclear operators on Lp(G) by N p(G). In [12], Neufang introduced a
“non-commutative convolution” onN p(G) and proved thatN p(G) is a Banach
algebra with respect to this convolution. Some homological property ofN p(G)
are studied in [14].

Theorem 7.4. The Banach algebra N p(G) is strictly semi-perfect if and
only if G is compact.

Proof. (⇒) It follows from [12, Satz 5.3.4] that there is a closed two-sided
ideal I in N p(G) such that N p(G)/I ∼= L1(G). By Proposition 2.5, if N p(G)
is strictly semi-perfect, then L1(G) is strictly semi-perfect. Corollary 7.3(A)
implies that G is compact.

(⇐) By [12, Satz 5.3.4], N p(G) I = 0. Hence I is a radical algebra. Since
L1(G) is semi-simple, I = RadN p(G) [13, Theorem 4.3.2(c)]. If G is com-
pact, then, by Corollary 7.3(A), L1(G) is strictly semi-perfect. Applying The-
orem 2.6 and Proposition 2.3 we obtain that N p(G) is strictly semi-perfect.

Remark 7.5. In all results of this section “strictly semi-perfect” can be
replaced to “semi-perfect”. We just have to make a little change in the proof
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of sufficiency of Theorem 7.2 and use Proposition 4.2 instead of Proposition 2.5
in the proof of necessity in Theorem 7.4.
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