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1. INTRODUCTION

Let K be an algebraically closed field. An important distinction in the class
of finite dimensional associative K-algebras with identity is established by the
representation types: such an algebra A is said to be of finite type if there
are only finitely many indecomposable A-modules up to isomorphism; A is of
tame type if in every dimension the indecomposable A-modules admit a para-
metrization by a finite number of one-parameter families; A is of wild type
if there exists an A-K(X,Y)-bimodule M free of finite rank over K(X,Y)
such that the functor M ®g(x,yy — : mod K(X,Y) — mod A preserves in-
decomposability and sends non-isomorphic modules to non-isomorphic ones.
A well-known result [10], [4] claims that every algebra is of one of these types.

Consider the class Alg(d) of all associative algebras with identity having
dimension d over an algebraically closed field. This class is axiomatizable in
a suitable first order language. In [18], Jensen an Lenzing proved that the
subclass F(d) of Alg(d) formed by the algebras of finite representation type,
as well as the class of algebras of infinite representation type, are finitely ax-
iomatizable. Let AlgP(d) denote the subclass of Alg(d) consisting of algebras
over fields of characteristic p. In [19], the first author showed that the subclass
T (d) of Alg(d) formed by the algebras of tame type is axiomatizable and an
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explicit system of axioms was given. Moreover, it was shown that finite axio-
matizability of TP(d) = T (d) N AlgP(d) as a subclass of AlgP(d) is equivalent
to the fact that ‘tame type is open’, that is, the conjectured claim that the
tame algebras form an open set in the variety of algebras algy (d) with the
Zariski topology, for every algebraically closed field K (see [13]).

The Galois covering theory of algebras is one of the most important tools in
representation theory. For a locally bounded K-category Aand a group G of
K-automorphisms of A acting freely on objects of A, the quotient A = A /G of
this action is again a K-category. In case A has finitely many objects (that is,
the action of G has only finitely many orbits), the category A can be identified
with a finite dimensional K-algebra. The natural projection functor

F:A—— A

is called a Galois covering of A defined by the group GG. The relations between
the module categories Mod A and Mod A and other uses of Galois coverings
may be seen in the extensive literature [2, 5, 6, 7, 9, 12, 16, 22, 26]. Of
particular interest for us, are the results of Gabriel [12], completed in [23],
claiming that A is locally representation-finite (that is, for each object = of A
there are only finitely many indecomposable representations M: A — mod K,
with M (z) # 0) if and only if A is of finite type; and the results [7, 9] showing
that the tameness of A implies the tameness of A. Althought, it is known that
tameness of A does not imply the tameness of A [14], it has been conjectured
(and a proof announced by Drozd and Ovsienko [11]) that for certain groups

G the implication holds. See also [9] for an important partial result.

CoNJECTURE GCPT (Galois Coverings Preserve Tameness). Assume
that G is a torsion-free group acting freely on objects of A. Then A is tame
if and only if A is tame.

The aim of this work is to discuss some model-theoretic aspects of the the-
ory of Galois coverings. The main idea is that preservation of representation
type under Galois coverings is related with the axiomatizability of classes of
algebras, and their coverings, defined by the representation type. For this
purpose, the language of graded algebras is convenient. Indeed, every Galois
covering of A with a group acting freely on objects can be obtained from a
grading of A [16], [17].

We show in Section 3 that the class 7 gr(d) of tame graded algebras is an
axiomatizable subclass of Gralg(d) - the class of graded algebras of dimension
d over an algebraically closed field, see Section 3 for the details. Let Gralg?(d)
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be the subclass of Gralg(d) consisting of algebras over fields of characteristic
p. The main result of the paper is the following.

THEOREM A. If TgrP(d) = Tgr(d) N GralgP(d) is a finitely axiomat-
izable subclass of Gralg?(d), then Conjecture GCPT holds for countable
p'-residually finite groups G (in particular, for countable free groups).

Recall that a group G is residually finite if for every element g # 1 there
exists a normal subgroup H of G of finite index such that g ¢ H. If p is a prime
then we say that G is p’-residually finite if in addition the normal subgroup
H can be chosen such that [G : H] is not divisible by p. For convenience, we
agree that p’-residually finite means just residually finite when p = 0. Note
that every free group is p’-residually finite for every prime p, see [25].

Let Tfgr be the subclass of Gralg(d) consisting of tuples (K, A, G), where
G is a torsion free group and A is basic G-graded K-algebra. We show the
following partial converse of Theorem A.

THEOREM B. Assume that the Conjecture GCPT holds and tame algebras
induce open subsets of the varieties of algebras alg (d) for any algebraically
closed field K of characteristic p. Then T grP(d) N'Tfgr is finitely axiomatiz-
able as a subclass of Tfgr” = Tfgr N Gralg”?(d).

Most of the research for this work was done during a visit of the first
author to UNAM in February 2002. The results were presented during the
ICRA meeting in Patzcuaro, Mexico, in August 2004.

2. GRADED ALGEBRAS AS MODELS FOR A LANGUAGE

Let us recall some basic notions of model theory. For more on this we refer
to [3], [24], [18].

Fix a first order language L. Let C C B be classes of models for L. A set
3. of sentences is a set of axioms for C as a subclass of B if for every model
M in B, M belongs to C if and only if all sentences from Y. are satisfied in
M. The class C is finitely axiomatizable as a subclass of B provided there
exists a finite set of axioms for C as a subclass of B. This is equivalent to the
existence of one axiom defining the subclass C of B.

By Lo$ Ultraproduct Theorem (see [21], [18, Theorem 1.5], [3, Theorem
4.1.9]) if C is an axiomatizable class of models then it is closed under formation
of ultraproducts. Let us recall this important construction.
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A nonempty family F of subsets of a set [ is called an ultrafilter over I if
the following conditions are satisfied:

g F;

e if A, B € F then ANB € F;

e if Ac Fand BC I then AUB € F;
e if A¢d Fthen I\ A€ F.

Given a family (M;);ec; of models the ultrafilter F over I induces an equival-
ence relation ~ in the product [],.; M; defined by (m;)icr ~ (mj)icr if and
only if m; = m/) for F-almost all i € I, that is, there exists U € F such that
m; = m, for alli € U. We denote by (m;)” the equivalence class of an element
(m;) with respect to the relation “~”, and by [[;.; M;/F the ultraproduct of
(M;)ier with respect to F, that is, the set of all equivalence classes by “~ 7.
The ultraproduct is equipped with the canonical interpretation of symbols
from L.

We describe a first order language GA, such that graded algebras of fixed
dimension d over a field can be treated as models for GA; forming an axio-
matizable class.

Let L = (z1,29,...,4+,-,0,1) be the first order language of the theory of
fields and G = (g1, 92,...,0,(—)"1, 1) -the language of the theory of groups.
We define GA, as the disjoint union of two copies L, Lo of . and G. We
call a variable from IL; (resp. Lo, G) a variable of first (resp. second, third)
sort. We include into GA, another function symbol “-” associating to a pair
of variables of first and second sort a variable of the second sort. Finally we
add d constants aq,...,aq of second sort and d constants gi,...,gq of third
sort. A model for GAy is a triple

(K,A,G,-: KxA— A/{a1,...,aq} €T A{g1,.-.,94} C Q)

where K, A, G are models for ;, Ly, and G respectively (sometimes we
identify models with underlying sets) and - : K x A — A is an interpretation
of the “new” function symbol “-”. In case it is not misleading we write
(K, A,G) to denote the above model. Using the same symbols for constants
and their interpretations does not lead to a confusion.

It is easy to write first order sentences in the language GA, expressing
the properties that K is an algebraically closed field, A is a d-dimensional
associative K-algebra with a unit element, a4, ..., a4 is a K-basis of A, and
G is a group (see [18]).
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Consider the following sentence (easily expressible in the language GA,):
If v = (Vijk)ijk=1,..d 15 a system of structure constants of A with respect
to the basis ai,...,aq, that is, a;a; = Zzzl Yijkay for 4,5 = 1,...,d, then
9i9j = gi provided vy;;, # 0 for every i,5,k =1,....d.

If this sentence is satisfied in a model (K, A, G, ay,...,a4,91,...,9q4) then
A admits a G-grading

D4,

geG

where A, is spanned by all a; such that g; = g and A; = 0 when g ¢
{91,--.,94}- Then ay,...,aq is a homogeneous basis for A and g; is the
degree of a; for i =1,...,d.

Conversely, given a G-graded K-algebra A and its homogeneous basis we
can identify it with a model for GA,. Note that nonisomorphic models can
represent isomorphic graded algebras - fixing the model requires a choice of
homogeneous basis of an algebra.

We see that d-dimensional algebras over algebraically closed fields which
are graded by a group form an axiomatizable class of models for GA 4, we
denote this class by Gralg = Gralg(d). If p is 0 or a prime we denote by
Gralg? the subclass of Gralg consisting of all models (K, A, G) such that
the characteristic of the field K is p. Note that Gralg® is an axiomatizable
subclass of Gralg and Gralg? is finitely axiomatizable as a subclass of Gralg.

Given a model (K, A,G,a1,...,a4,91,...,9q) corresponding to a G-grad-
ing @geG A, of A and a normal subgroup H of G, we denote by (K, A,G/H) =
(K,A,G/H,ay,...,aq,91H,...,94H) the model corresponding to the G/H-
grading A = @Dgeq/n Ay, where A = @ Ay

Let C be a subclass of Gralg.

9€G,gH=9g

DEFINITION 2.1. The class C C Gralg is called essential provided any
model

(K,A,G,a1,...,a4,91,---,94) € Gralg

belongs to C if and only if (K, A,G",a1,...,a4,91,---,94) € C, where G’ is the
subgroup of G generated by g1,..., g4

Let p be zero or a prime.

LEMMA 2.2. Let G be p'-residually finite, countable group. There exists
a descending sequence G, n € N, of normal subgroups of G of finite index
not divisible by p, such that (), .y Gn = {1}.
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Proof. Given an element g # 1 of G let
¢$g: G — H,

be a group homomorphism with H, of finite order not divisible by p and
¢¢(g9) # 1. Enumerate the elements of G = {g1,...,9n,... }. Let

Upt G — ﬁHm

m=1

be the homomorphism defined by v, (g) = (¢g,,(9))m<n for n=1,2,... . We
set G, = Ker,. Observe that in case p # 0 the index of GG, is not divisible
by p as a divisor of [[,, ., |Hg,[- 1§

DEFINITION 2.3. The class C is closed under finite covers of p'-order if
(K, A, G) € C provided there is a finite normal subgroup H of G with |H| not
divisible by p such that (K, A,G/H) € C. If p =0, we say that C is just closed
under finite covers.

DEFINITION 2.4. The class C is preserved under algebraically closed base
field extensions if for any model A = (K, A,G,aq,...,a4,91,--.,94) and an
algebraically closed field extension K C L, the model A belongs to C if and
only if

ARL=(LA®kL,Ga1®1,...,a9®1,91,...,94) €C.

Throughout we omit the phrase “algebraically closed” in the above name
because no other fields will be considered.

PROPOSITION 2.5. Let p be 0 or a prime. Assume that C is an essential
class in Gralg(d) preserved under base field extensions and finite covers of
p'-order. Suppose that C is axiomatizable. Let (K, A,G) € Gralg, where G
is countable and p'-residually finite. Let H be a normal subgroup in G.

Then (K, A, Q) € C provided (K, A,G/H) € C.

Proof. Let Gy, n € N, be a descending sequence of normal subgroups of G
of finite index not divisible by p such that (), .y Gn = {1}. Set H, = G,,N H.
Let F be an ultrafilter over N containing no finite sets.
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Assume that (K, A,G/H) belongs to C. Since C is preserved by finite
covers of p'-order it follows that (K, A,G/H,) € C for all n € N. Since C is
axiomatizable, the ultraproduct

(H(K,A, G/Hn)) /]—“,
neN

which is isomorphic to the model

<L, A®kL, < 11 (G/Hn)) /]—", a1®1,...,a4®1, (g1 Hp) cns - - s (gdHn)feN)

neN

where L is the ultrapower K" /F, belongs to C as well.

Note that the map G — ([1,cn(G/Hy))/F defined by g — (gHp)l .y is
an injection, since (), oy Hy = {1}.

Now (K, A,G,aq,...,a4,91,--.,94) belongs to C because C is essential and
closed under base field extensions. |1

3. THE CLASS OF TAME GRADED ALGEBRAS

Let T gr(d) denote the subclass of Gralg = Gralg(d) formed by all models
(K, A, G) such that A is representation tame as graded algebra. By Wgr(d) we
denote the complement Gralg\ 7 gr(d) consisting of all wild graded algebras.

Let (K, A,G) € Gralg. Let gr-mod“(A) denote the category of all finitely
generated G-graded A-modules.

Given a finite subset S of G let A(S) be the K-algebra defined as

A(S) = @ Bs, s,

81,52€8

where By, 5, = Asl—ls2. We equip A(S) with a multiplication: the product of
bs,.so € Bs, s, and by, 1, € By, 1, equals the product by, ,bs, 1, in A if s9 = 14,
s7'ta € S and it is zero otherwise. Observe that bs, s,b1,.4, € Bs, ts-

Let gr-mod%(A) be the full subcategory of gr-mod“(A) formed by all
graded modules M = @geG M, such that g € S whenever M, # 0.

LEMMA 3.1. (1) For every finite set S C G the categories gr-mod$(A)
and mod(A(S)) are equivalent.

(2) The graded algebra A is tame (that is, the category gr-mod®(A) is
tame) if and only if for every finite set S C G the algebra A(S) is tame.
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Proof. For the assertion (1) see [16, Theorem 2.5], whereas (2) follows from
(1) by standard arguments (see also [8]). |

Observe that a system of structure constants of A(S) can be derived from
a system of structure constants of A with respect to a homogeneous basis by
an elementary formula. It follows that given a finite set S every first order
property of A(S) can be expressed by a first order property of (K, A, G).

Fix G, S and a natural number /. Given a sentence ¢ in the language A of
the theory of algebras over fields, let ¢*° be a sentence in the language GA
such that (K, A,G) = ¢"° if and only if (K, A(S)) = ¢ and dimg A(S) = I,
for every model (K, A,G) € Gralg(d). Note that dimg A(S) < |S|dimg A.

Let X; be a set of axioms for the class of tame algebras in Alg(l), the class
of l-dimensional algebras over algebraically closed fields [19]. The following
theorem is an immediate consequence of the above remarks and Lemma 3.1 (2).

THEOREM 3.2. Let E be the set of all sentences of the form

d|s|,s

1,8
b1 V"'V¢d|5\ ’

where ¢; € ¥y, | = 1,...,d|S| and S runs through all finite subsets of G.
Then E is a set of axioms for the class T gr(d) as a subclass of Gralg(d).

We shall need a geometric criterion for tameness of graded algebras. Let us
present it without details since it is a realisation of a well known idea. Given
a graded algebra (K, A,G) and a function m : G — N such that m(g) = 0
for all but a finite number of g € G, let grmod 4(m) denote the variety of
graded modules M = @ M, such that dimx My = m(g) for g € G. The
group Gl(m) = ], Gl(m(g), K) acts on grmod 4(m) in such a way that
the orbits of this action correspond to the isomorphism classes of graded A-
modules. Let par(A, G, m) be the “number of parameters” of this action, that
is, the maximum of the values dim X —dim Gl(m)z , where z € X, taken over
all irreducible components X of grmod 4(m). The following fact is essentially
contained in [27] and [13].

LEMMA 3.3. Let (K, A, G) € Gralg.

(1) The graded algebra A is tame if and only if par(4, G,m) < 3 o m(g)
for every function m : G — N such that m(g) = 0 for almost all g € G.

(2) The graded algebra A is wild if and only if there exists a function
m : G — N such that m(g) = 0 for almost all ¢ € G and a positive real
number c satisfying par(A, G,Im) > cl? for every | € N.
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Let us recall in the language of graded algebras the concept of the push-
down functor. Let (K, A,G) € Gralg and assume that H is a normal sub-
group of G. We consider the G/H-grading of A induced by the previous
G-grading. There is a pair of functors

F
gr-mod%(A) <7—A gr-mod %/ (A)

such that if M = P ; M, is a G-graded A-module then

F\(M)= @ Fr(M)g,
G€G/H

where F)(M)g = @ cq gn—g My

The functor F, sends a G/H-graded A-module N = @gcq/y Ny to the
G-graded A-module @ ¢ Fo(N)g, where Fo(N)g = Nyp.

The above functors are defined on homomorphisms in the obvious way and
it is not hard to prove that F) is the left adjoint to F,. Given a G-graded
module M = @ . My, we denote by

VM : F)\(F.(M)) — M

the homomorphism adjoint to the identity map on F,(M). Observe that
FX(Fo(M)) = @D eq Mg, where My = @ cop My and if (my)gegn € Mg
then VM((mg/)g/) = Zg/ Mmygr.

If H is a finite group then there is also a map

AM M — F)\(F.(M))

sending m € M, to (my)gecqn, where mgy = m for all ¢'.
Note that when H is finite the functor F) coincides with the right adjoint
to Fy and Ay is the homomorphism adjoint to the identity map on Fo(M).

LEMMA 3.4. Assume that H is a finite normal subgroup of G and M is a
G-graded A-module. We have:

(a) VMAM = |H| ’idM;

(b) if char K does not divide |H|, then the module M is a direct summand
of Fi(Fu(M));

(c) if char K does not divide |H| and (K, A,G/H) is wild, then (K, A, G)
is wild.
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Proof. The assertions (a) and (b) are immediate. Let us remark that they
are essentially contained in [12, 3.4]. The point (c) follows from (b) thanks to
Lemma 3.3: let m : G/H — N be a function such that

par(A,G/H,lm) > cl?
for some ¢ > 0 and all natural /; one can prove using (b) that
par(A, G, |H|lm) > cl?

for all I, where m is the composition of the natural projection G — G/H
with m. |

LEMMA 3.5. Let p be 0 or a prime. The classes Wgr(d) and WgrP(d) :=
Wagr(d) N Gralg? are essential and closed under base field extensions. The
class WqrP(d) is closed under finite covers with p'-orders.

Proof. 1t is obvious that Wgr(d) and WgrP(d) are essential. The assertion
about base field extensions follows from [19] (applied to the algebras A(S),
S C G). Finally, WgrP(d) is closed under finite covers with p’-orders by
Lemma 3.4 (c). 1

THEOREM 3.6. Let p be 0 or a prime. Assume that the class T grP(d) is
finitely axiomatizable as a subclass of Gralg?. Let (K, A,G) € Gralg?, where
G is a countable p'-residually finite group and let H be a normal subgroup of
G such that (K, A,G/H) is a wild graded algebra. Then (K, A,G) is also a
wild graded algebra.

Proof. Follows from 3.5 and 2.5. |11

Theorem A is a corollary of 3.6. In order to see this, recall from [16] the
relationship between gradings and Galois coverings of algebras. Every Galois
covering A — A with covering group G acting freely on objects of A induces
a grading A = gec Ag- The first assertion in the following theorem follows
by [16] whereas the second one is routine.

PROPOSITION 3.7. (1) The category gr;modG(A) of G-graded finite di-
mensional A-modules is equivalent to mod(A). N
(2) The representation types of gr-mod®(A) and mod(A) coincide.

Proof of Theorem A. In view of Proposition 3.7, Theorem A follows from
Theorem 3.6 applied to H =G. 1
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4. FINAL REMARKS AND COMMENTS

4.1. The formulation of the Conjecture GCPT as well as known results
on representation finite algebras [12], [2] suggest that the algebras graded by
torsion-free groups form a relevant class.

Let Tfgr be the subclass of Gralg(d) consisting of models (K, A, G) such
that A is basic and G is torsion-free. Note that this class is axiomatizable.
Indeed, the property “A is basic” is equivalent to the invertibility of 1 —c(ab—
ba) for any a,b,c € A. Set Tfgr? = Tfgr N Gralg”(d).

Let (K, A,G) € Tfgr. Then the Jacobson radical of A is a homogeneous
ideal and the simple A-modules are gradable, therefore the grading is induced
by a Galois covering A > A, as described at the end of Section 3 (see [16,
Theorem 2.4]). The group G acts freely on objects of A thus, since it is
torsion-free, it acts freely on finite dimensional indecomposable A-modules.

Denote by LRF the subclass of Tfgr consisting of all locally representa-
tion-finite graded algebras, that is, such graded algebras (K, A, G) that given
an element g € G there exists only finitely many isomorphism classes of graded
A-modules M with M, # 0. We denote by LRZ the complementary subclass
of Tfgr consisting of all locally representation-infinite graded algebras.

It follows by finite axiomatizability of the class of representation finite
algebras [18] and Gabriel’s result [12] that the classes LRF and LRZ are
finitely axiomatizable subclasses of Tfgr. Theorem B follows by analogous
reasoning;:

Proof of Theorem B. If Conjecture GCPT holds then any set of axioms
for the class T (d) of tame d-dimensional algebras is at the same time a set
of axioms for Tgr N Tfgr. Therefore it is enough to recall that if the tame
algebras induce open sets in the varieties of algebras alg (d), for any algeb-
raically closed field K of characteristic p, then the class 7P(d) is a finitely
axiomatizable subclass of AlgP(d) by [19]. 1

4.2. Tt is natural to ask how restrictive is the assumption of residually
finiteness of the covering group in the context of our considerations.

Following [15] call a grading A = @geG Ay of the algebra A critical if
there is no surjective group homomorphism f : H — G which is not injective
and a grading A = @,y A), such that:

(i) H is generated by elements h such that A} # 0 (that is, the grading is
full in the terminology of [16]), and

(i) Ag = D@nes1(g) 4h-
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We do not know if there exists a tame critically G-graded algebra A such
that G is not residually finite.

In view of the correspondence between gradings and Galois coverings, this
problem is closely related to the problem of the existence of a tame algebra A =
KQ/I, for a quiver Q and an admissible ideal I, such that the fundamental
group II; (@, I) of the bound quiver (Q, I), see [22], is not residually finite.

A case-by-case inspection shows that there is no such example among local
algebras: if KQ/I is a tame local algebra, then II;(Q,I) is either abelian or
free with two generators or it is a group of the form D, ,, = (z,y | 2" = y™)
for some m,n > 0 (case of quotients of the algebra K(z,y)/(zy, yz,z" —y™)).
All those groups are residually finite, for the case of D, ,,, we give the following
argument.

Let H be the subgroup of D,, ,, generated by the element z. Then H
is normal. Indeed, since y~' = 2z "¢y™ ! we have yz"y ' = y™ = 2". The
quotient D,, ,,,/H is isomorphic to the free product Z,, * Z,, of cyclic groups,
hence it is residually finite by the results of [1].

Now let 1 # g € Dy, . If ¢ ¢ H, then by the above remark there is a
normal subgroup N of D, ,,, such that ¢ ¢ N. Otherwise let g = z*". Let p
be a natural number not dividing km. There is a group homomorphism

[ Dy — Ly

defined by f(z) =m, f(y) = @, where ¢ denotes the coset of ¢ in Z, = Z/pZ
and f(g) # 0. Then Ker f is a required normal subgroup of D, ,,. This
proves that Dy, p, is residually finite.

One of the best known examples of a not residually finite group is G =
(b,t | bt = tb®). This group does not have the Hopf property [25]: there
exists a surjective group endomorphism ¢ : G — G which is not injective.
Indeed, one can define ¢ by setting t — t, b — b%. Then it is easy to observe
that ¢ is surjective but the commutator [b, #~!bt], which is not the identity in
G by Britton’s Lemma [20, Chap. IV.2], belongs to the kernel of ¢. Therefore
G is not residually finite by [20, Theorem 4.10]; see also [25]. Note also that
G is torsion-free by the Torsion Theorem for HNN Extensions [20, Theorem
2.4]. Let us finish the paper with the following:

PROBLEM. Let A be an algebra graded critically by G = (bt | b*t = tb?).
Is A necessarily wild? Does the existence of the endomorphism ¢ reflects on
the structure of the category of (graded) A-modules?
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