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1. Introduction and definitions

Let T ∈ L(X) be a bounded operator on an infinite-dimensional complex
Banach space X and denote by α(T ) and β(T ) the dimension of the kernel
kerT and the codimension of the range T (X), respectively. Let us denote by

Φ+(X) := {T ∈ L(X) : α(T ) < ∞ and T (X) is closed},

the class of all upper semi-Fredholm operators, and by

Φ−(X) := {T ∈ L(X) : β(T ) < ∞},

the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined by Φ±(X) := Φ+(X) ∪ Φ−(X), whilst the class of all
Fredholm operators is defined by Φ(X) := Φ+(X) ∩ Φ−(X). The ascent p :=
p(T ) of an operator T is the smallest non-negative integer p such that kerT p =
kerT p+1. If such integer does not exist we put p(T ) = ∞. Analogously, the
descent q := q(T ) of an operator T is the smallest non-negative integer q such
that T q(X) = T q+1(X), and if such integer does not exist we put q(T ) = ∞.
It is well-known that if p(T ) and q(T ) are both finite then p(T ) = q(T ), see
[21, Proposition 38.3]. Two other important classes of operators in Fredholm
theory are the class of all upper semi-Browder operators

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞},
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and the class of all lower semi-Browder operators

B−(X) := {T ∈ Φ−(X) : q(T ) < ∞}.

The two classes B+(X) and B−(X) have been introduced in [19] and studied
by several other authors, for instance [29]. The class of all Browder operat-
ors (known in the literature also as Riesz-Schauder operators) is defined by
B(X) := B+(X) ∩ B−(X). Note that if T ∈ B+(X) then the index, defined
by ind T := α(T )− β(T ) is less than or equal to 0, whilst if T ∈ B−(X) then
ind T ≥ 0, see [21, Proposition 38.5]. The class of all Weyl operators W(X)
is defined by

W(X) := {T ∈ Φ(X) : ind T = 0}.
Note that B(X) ⊆ W(X), since every Fredholm operator with finite ascent
and finite descent has necessarily index 0, see [21, Proposition 38.6].

The classes of operators defined above motivate the definition of several
spectra. The upper semi-Fredholm spectrum is defined by

σuf(T ) := {λ ∈ C : λI − T /∈ Φ+(X)},

the lower semi-Fredholm spectrum is defined by

σlf (T ) := {λ ∈ C : λI − T /∈ Φ−(X)},

whilst the semi-Fredholm spectrum and the Fredholm spectrum are defined,
respectively, by

σsf(T ) := {λ ∈ C : λI − T /∈ Φ±(X)}
and

σf(T ) := {λ ∈ C : λI − T /∈ Φ(X)}.
Analogously, the upper semi-Browder spectrum of T ∈ L(X) is defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},

the lower semi-Browder spectrum of T ∈ L(X) is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)},

whilst the Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)}.
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Note that
σub(T ) = σlb(T ∗), σlb(T ) = σub(T ∗).

The Weyl spectrum of T ∈ L(X) is defined by

σw(T ) := {λ ∈ C : λI − T /∈ W(X)}.

Evidently,

σsf(T ) ⊆ σf(T ) ⊆ σw(T ) ⊆ σb(T ) = σw(T ) ∪ acc σ(T ),

where we write acc K for the accumulation points of K ⊆ C
The single valued extension property was introduced by Dunford [13],

[14] and has, successively, received a more systematic treatment in Dunford-
Schwartz [15]. It also plays an important role in local spectral theory, see the
monograph of Laursen and Neumann [24]. In this article we shall consider
the following local version of this property, which has been studied in recent
papers [6], [4], [5], [7] and previously by Finch [18].

Definition 1.1. Let X be a complex Banach space and T ∈ L(X). The
operator T is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0), if for every open neighborhood U of λ0, the only
analytic function f : U → X which satisfies the equation (λI − T )f(λ) = 0
for all λ ∈ U is the function f ≡ 0.

An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point
λ ∈ C.

Trivially, an operator T ∈ L(X) has SVEP at every point of the resolvent
ρ(T ) := C\σ(T ). Moreover, from the identity theorem for analytic function it
easily follows that T ∈ L(X) has SVEP at every point of the boundary ∂σ(T )
of the spectrum σ(T ). In particular, T has SVEP at every isolated point of
σ(T ).

For an arbitrary operator T ∈ L(X) and a closed subset F of C, the glocal
spectral subspace XT (F ) is defined as the set of all x ∈ X for which there exists
an analytic function f : C\F → X which satisfies the identity (λI−T )f(λ) =
x for all λ ∈ C\F . The basic role of SVEP arises in local spectral theory since
every decomposable operator enjoys this property. Recall that T ∈ L(X) is
said to have the decomposition property (δ) if X = XT (U) +XT (V ) for every
open cover {U, V } of C. The decomposability of T ∈ L(X) may be defined
in several way, for instance as the union of the property (β) and the property
(δ), see [24, Theorem 2.5.19] for relevant definitions. Note that the property
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(β) implies that T has SVEP, whilst the property (δ) implies SVEP for T ?,
see [24, Theorem 2.5.19].

Let us consider the quasi-nilpotent part of T , that is the set

H0(T ) := {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0}.

It is easily seen that ker (Tm) ⊆ H0(T ) for every m ∈ N. Moreover, H0(λ0I−
T ) = XT ({λ0}) for all λ0 ∈ C, see Vrbová [33] or Mbekhta [26].

The analytic core of T is the set K(T ) of all x ∈ X such that there
exists a sequence (un) ⊂ X and δ > 0 for which x = u0, and Tun+1 = un

and ‖un‖ ≤ δn‖x‖ for every n ∈ N. It easily follows, from the definition,
that K(T ) is a linear subspace of X and that T (K(T )) = K(T ). In general,
K(T ) ⊆ T∞(X), where T∞(X) :=

⋂∞
n=1 Tn(X) is the hyper-range of T .

Indeed, if x ∈ K(T ) and (un) ⊂ X is a sequence for which uo = x and
Tun+1 = un for every n = 0, 1, . . . then x = uo = Tnun ∈ Tn(X) for every
n = 0, 1, . . . .

Recall that T ∈ L(X) is said bounded below if T is injective and has closed
range. Let σa(T ) denote the classical approximate point spectrum of T , i.e.
the set

σa(T ) := {λ ∈ C : λI − T is not bounded below}.

Theorem 1.2. For a bounded operator T ∈ L(X), X a Banach space,
and any λ0 ∈ C the following implications hold:

(i) H0(λ0I−T ) closed ⇒ H0(λ0I−T )∩K(λ0I−T ) = {0} ⇒ T has SVEP
at λ0 [4].

(ii) If σa(T ) does not cluster at λ0 then T has SVEP at λ0, [7].

The following equivalences have been proved in [4] and [7]. These equi-
valences have been established in the more general situation of operators on
Banach spaces which are of Kato-type. Recall that every semi-Fredholm op-
erator is of Kato-type by the classical result of Kato [22].

Theorem 1.3. If T ∈ Φ±(X) the following statements are equivalent:

(i) T has SVEP at λ0;

(ii) p(λ0I − T ) < ∞;

(iii) σa(T ) does not cluster at λ0;

(iv) H0(λ0I − T ) is finite-dimensional.
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2. Weyl’s theorems

We first begin by establishing several equivalences for every bounded op-
erators defined on Banach spaces. If T ∈ L(X), we let

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T is Browder},

and, if we write isoK for the set of all isolated points of K ⊆ C, then we let

π00(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T ) < ∞}

denote the set of isolated eigenvalues of finite multiplicities. Clearly,

p00(T ) ⊆ π00(T ) for every T ∈ L(X).

Theorem 2.1. For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) π00(T ) = p00(T );
(ii) σw(T ) ∩ π00(T ) = ∅;
(iii) σsf(T ) ∩ π00(T ) = ∅;
(iv) (λI − T )(X) is closed for all λ ∈ π00(T );
(v) H0(λI − T ) is finite-dimensional for all λ ∈ π00(T );
(vi) K(λI − T ) is finite-codimensional for all λ ∈ π00(T );
(vii) (λI − T )∞(X) is finite-codimensional for all λ ∈ π00(T );
(viii) β(λI − T ) < ∞ for all λ ∈ π00(T );
(ix) q(λI − T ) < ∞ for all λ ∈ π00(T ).

Proof. (i) ⇒ (ii) We have p00(T ) = σ(T ) \ σb(T ), so σb(T ) ∩ p00(T ) = ∅
and this obviously implies σw(T ) ∩ π00(T ) = ∅, since σw(T ) ⊆ σb(T ).

(ii) ⇒ (iii) Obvious, since σsf(T ) ⊆ σw(T ).
(iii) ⇒ (iv) If λ ∈ π00(T ) then λI−T is semi-Fredholm, hence (λI−T )(X)

is closed.
(iv) ⇒ (v) Let λ ∈ π00(T ). If (λI−T )(X) is closed then λI−T ∈ Φ+(X).

Since T has SVEP at every isolated point of σ(T ), by Theorem 1.3 then
H0(λI − T ) is finite-dimensional.

(v) ⇒ (vi) If λ is an isolated point of σ(T ), then H0(λI−T ) is the range of
the spectral projection P associated with the spectral set {λ}, see Proposition
49.1 of Heuser [21], whilst K(λI − T ) is the kernel of P , see [30], so X =
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H0(λI − T ) ⊕ K(λI − T ). Hence, if H0(λI − T ) is finite-dimensional then
K(λI − T ) is finite-codimensional.

(vi) ⇒ (vii) Immediate, since K(λI−T ) ⊆ (λI−T )∞(X) for every λ ∈ C.
(vii) ⇒ (viii) Clear, since (λI − T )∞(X) ⊆ (λI − T )(X) for every λ ∈ C.
(viii) ⇒ (i) For every λ ∈ π00(T ) we have α(λI − T ) < ∞, and hence if

β(λI−T ) < ∞ then λI−T ∈ Φ(X). Since λ is an isolated point of σ(T ) SVEP
of T and T ∗ at λ ensures that p(λI−T ) and q(λI−T ) are finite, by Theorem
1.3 and Theorem 2.9 of [4]. Therefore π00(T ) ⊆ p00(T ), and since the opposite
inclusion is satisfied by every operator it then follows that π00(T ) = p00(T ).

(i) ⇒ (ix) Clear.
(ix) ⇒ (viii) If q(λI − T ) < ∞ by Proposition 38.5 of [21] we have β(λI −

T ) ≤ α(λI − T ) < ∞.

The reduced minimum modulus of a non-zero operator T is defined by

γ(T ) := inf
x/∈ker T

‖Tx‖
dist(x, kerT )

.

It is well-known that T (X) is closed if and only if γ(T ) > 0.

Theorem 2.2. The statements (i)-(ix) of Theorem 2.1 are equivalent to
the following condition:

(x) The mapping λ → γ(λI − T ) is not continuous at each λ0 ∈ π00(T ).

Proof. Observe first that if λ0 ∈ π00(T ) there exists a punctured disc D0

centered at λ0 such that

(1) γ(λI − T ) ≤ |λ− λ0| for all λ ∈ D0.

In fact, if λ0 is isolated in σ(T ) then λI−T is invertible, and hence has closed
range, in a punctured disc D centered at λ0. Take 0 6= x ∈ ker(λ0I−T ). Then

γ(λI − T ) ≤ ‖(λI − T )x‖
dist (x, ker(λI − T ))

=
‖(λI − T )x‖

‖x‖
=

‖(λI − T )x− (λ0I − T )x‖
‖x‖ = |λ− λ0|.

Clearly, from the estimate (1) it follows γ(λI − T ) → 0 as λ → λ0 so the
mapping λ → γ(λI − T ) is not continuous at a point λ0 ∈ π00(T ) if and only
if γ(λ0I − T ) > 0, or equivalently, (λ0I − T )(X) is closed. Therefore the
condition (iv) of Theorem 2.1 is equivalent to the condition (x).
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Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = π00(T ).

A classical result of H. Weyl [34] prove that hermitian operators satisfy Weyl’s
theorem. This result has been extended to several classes of operators, for
instance to hyponormal operators, to Toeplitz operators, and to other classes
of operators including seminormal operators [8], see [9] and [10].

Theorem 2.3. Suppose that T ∈ L(X), or T ∗ has SVEP. Then Weyl’s
theorem holds for T if and only if one of the equivalent conditions (i)-(ix) of
Theorem 2.1, or the condition (x) of Theorem 2.2, holds. If both T and T ∗

have SVEP, then Weyl’s theorem holds for T if and only if σf (T )∩π00(T ) = ∅.

Proof. If T or T ∗ has SVEP then σw(T ) = σb(T ), see Corollary 2.8 of [3].
If Weyl’s theorem holds for T then

π00(T ) = σ(T ) \ σw(T ) = σ(T ) \ σb(T ) = p00(T ),

so the condition (i) of Theorem 2.1 is satisfied. Conversely, suppose that
π00(T ) = p00(T ). Then π00(T ) = σ(T ) \ σb(T ) = σ(T ) \ σw(T ).

If both T and T ∗ have SVEP then σf (T ) = σw(T ), see Corollary 2.12
of [6].

Theorem 2.3 improves a recent result obtained by Curto and Han [12], S.
V. Djordjević, Duggal and Han [17]. They showed the result of Theorem 2.3
only in the case T has SVEP. Note that in [12, Theorem 2.2] the equivalence
of the conditions (i)-(ix) of Theorem 2.1, and of the condition (x) of Theorem
2.2 was proved under the assumption that T has SVEP. Our methods, which
are simpler, also show that these equivalences are valid for any operator T ∈
L(X).

The condition (v) of Theorem 2.1, is an useful tool in order to prove that
Weyl’s theorem holds for several important classes of operators. To see this
we need to show an intermediate result. Recall first that a bounded operator
T ∈ L(X) is said to be isoloid if every isolated point of σ(T ) is an eigenvalue
of T .

Theorem 2.4. Suppose that for T ∈ L(X), X a Banach space, the fol-
lowing condition holds:

(2) H0(λI − T ) = ker(λI − T ) for all λ ∈ C.
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Then Weyl’s theorem holds for f(T ), where f is any analytic function defined
on an open neighborhood of σ(T ).

Proof. Clearly, T has SVEP by Theorem 1.2. Moreover, by definition
of π00(T ) the quasi-nilpotent part H0(λI − T ) is finite-dimensional for all
λ ∈ π00(T ). Hence by Theorem 2.3 Weyl’s theorem holds for T . Now, by
Corollary 2.6 of Curto and Han [12] the spectral mapping theorem holds for
T , i.e., σw(f(T )) = f(σw(T )), see also [2].

We show now that T is isoloid. Since 0 is an isolated point in σ(T ), then
0 is a non-removable singularity of (λI −T )−1, and hence admits the Laurent
expansion

(λI − T )−1 =
∞∑

n=1

Pn

λn
+

∞∑

n=0

λnQn

for every λ for which 0 < |λ| < ε, with Pn, Qn ∈ L(X). Since P1 = P and
Pn = Tn−1P , for all n = 1, 2, . . . (cf. [21, p. 209]), from TP = 0 it follows
that Pn = 0 for all n ≥ 2. Hence 0 is a simple pole of the resolvent (λI−T )−1.
By Proposition 50.2 of [21] we conclude that p(T ) = q(T ) = 1 and 0 is an
eigenvalue of T . Therefore T is isoloid. By [25, Lemma] it then follows that

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(σw(T )),

and hence σw(f(T )) = σ(f(T )) \ π00(f(T )), so f(T ) satisfies Weyl’s the-
orem.

Remark 2.5. Theorem 2.4 applies to several operators and subsumes res-
ults proved for special classes of operators:

(a) A map T : A → A is said a multiplier if (Tx)y = x(Ty) holds for all
x, y ∈ A. Every multiplier of a semi-simple Banach algebra A satisfies the
condition (2). In fact, λI − T is a multiplier for every λ ∈ C, so by Theorem
1.8 of [4] the condition (2) is satisfied. In particular, if Tµ is the convolution
operator of the group algebra L1(G) of a locally compact Abelian group G
then Weyl’s theorem holds for Tµ.

(b) Recall that T ∈ L(X) is said paranormal if ‖Tx‖ ≤ ‖T 2x‖‖x‖ for all
x ∈ X. T is called totally paranormal if λI − T is paranormal for all λ ∈ C.
Every totally paranormal operator satisfies the condition (2), see Laursen [23].
The fact that Weyl’s theorem for f(T ) has been observed in [32, Theorem 2.7].

A bounded operator T ∈ L(H) on a Hilbert space is said to be hyponormal
if ‖T ∗x‖ ≤ ‖Tx‖ for all x ∈ X. It is easily seen that every hyponormal
operator is totally paranormal. The class of totally paranormal operators



weyl’s theorem 33

includes also subnormal operators and quasi-normal operators, since these
operators are hyponormal, see [11]. Theorem 2.4 then implies Weyl’s theorem
for these classes of operators, see [8], [9] and [10].

(c) A bounded operator T ∈ L(X) is said to be transaloid if the spectral
radius r(λI − T ) is equal to ‖λI − T‖ for every λ ∈ C. If T is transaloid
then T satisfies the condition (2), see Lemma 2.3 and Lemma 2.4 of [12].
Weyl’s theorem for f(T ) has been proved in [12, Theorem 2.5]. It should be
noted that the assumption of SVEP in Lemma 2.4 and Theorem 2.5 of [12] is
redundant.

The condition (v) of Theorem 2.1 generally does not ensure that T has
SVEP. This is the case, see [25], of operators for which the following growth
condition Gm (m ≥ 1) holds: there is a K > 0 for which

‖(λI − T )−1‖ ≤ K

dist (λ, σ(T ))m
for all λ ∈ σ(T )

Clearly, by Theorem 2.3 it follows that, if we add SVEP to the condition Gm,
then Weyl’s theorem holds for T , as it has been observed in [25, Corollary].

In the following theorem we shall consider operators T ∈ L(X) for which
the condition K(T ) = {0} holds. This condition may be viewed as an abstract
shift condition since it is verified by every weighted unilateral right shift T on
`p(N), with 1 ≤ p < ∞, defined by

Tx :=
∞∑

n=1

ωnxnen+1 for all x = (xn)n∈N ∈ `p(N),

where the weight ω = (ωn)n∈N is a bounded sequence of positive real numbers,
and (en) stands for the canonical basis of `p(N). In fact for these operators it
is easily seen that T∞(X) = {0} and hence K(T ) = {0}.

Observe that Theorem 2.3 works for unilateral weighted left shift T on
`p(N). In fact, although these operators need not to have SVEP the dual
T ∗ are right shifts and hence have SVEP, see Theorem 16 of [5]. Moreover,
Theorem 2.3 applies also to bilateral weighted shifts on `p(Z), see [24] for
relevant definitions, since, by Theorem 18 and Corollary 19 of [5], at least one
of the operators T and T ∗ has SVEP.

Theorem 2.6. Suppose that for a bounded operator T ∈ L(X) on a
Banach space X we have K(T ) = {0}. If T is not quasi-nilpotent then T
obeys Weyl’s theorem.
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Proof. The condition K(T ) = {0} entails that T has SVEP. In fact, since
ker (λI − T ) ⊆ K(T ) for all λ 6= 0, from our assumption we obtain that
ker (λI − T ) ∩ K(λI − T ) = {0} for every λ ∈ C, and hence, by Corollary
3 of [5], T has SVEP at every λ ∈ C. Moreover, σ(T ) = σb(T ) = σw(T )
and σ(T ) is connected, see [31]. From this it follows that σ(T ) \ σw(T ) = ∅.
Since ker (λI − T ) = {0} for all λ 6= 0 we then conclude that π00(T ) ⊆ {0}.
Now, suppose that T does not satisfy Weyl’s theorem. Then π00(T ) = {0},
so 0 is an isolated point of σ(T ). Since σ(T ) is connected it then follows that
σ(T ) = {0}, i.e., T is quasi-nilpotent.

Corollary 2.7. If T ∈ L(X) is a non quasi-nilpotent weighted unilateral
right shift T on `p(N), with 1 ≤ p < ∞, then T obeys Weyl’s theorem.

Note that, by Theorem 1.6.3 of [24], the condition of being non-quasi-
nilpotent for weighted unilateral right shift T is equivalent to several other
conditions, for instance to be not decomposable, or not to be a Riesz operator.

Remark 2.8. The previous theorem cannot, in general, be reversed. In
fact, if V is the quasi-nilpotent Volterra operator on the Banach space X :=
C[0, 1], defined by

(V f)(t) :=
∫ t

0
f(s)ds for all f ∈ C[0, 1] and t ∈ [0, 1],

then K(V ) = {0}, since V is quasi-nilpotent, see [26]. Moreover, since V is
injective we have π00(V ) = ∅ = σ(V ) \ σw(V ). We note in passing that this
argument also shows, in general, that if K(T ) = {0} and T is injective then
T obeys Weyl’s theorem. Consequently, every weighted right shift with none
of the weights ωn = 0 obeys Weyl’s theorem.

Define
πa

00(T ) := {λ ∈ iso σa(T ) : 0 < α(λI − T ) < ∞}.
Clearly, for every T ∈ L(X), we have

p00(T ) ⊆ π00(T ) ⊆ πa
00(T )

Theorem 2.9. For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) σub(T ) ∩ πa
00(T ) = ∅;

(ii) σuf(T ) ∩ πa
00(T ) = ∅;
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(iii) (λI − T )(X) is closed for all λ ∈ πa
00(T );

(iv) H0(λI − T ) is finite-dimensional for all λ ∈ π00(T ) and (λI − T )(X) is
closed for all λ ∈ πa

00(T ) \ π00(T );
(v) q(λI − T ) < ∞ for all λ ∈ π00(T ) and (λI − T )(X) is closed for all

λ ∈ πa
00(T ) \ π00(T );

(vi) The mapping λ → γ(λI − T ) is not continuous at each λ0 ∈ πa
00(T ).

Proof. (i) ⇒ (ii) is clear, since σuf(T ) ⊆ σub(T ).
The implication (ii) ⇒ (iii) follows since λI − T ∈ Φ+(X) for every λ ∈

πa
00(T ).

(iii) ⇒ (iv) From π00(T ) ⊆ πa
00(T ) we see that λI − T ∈ Φ+(X) for each

λ ∈ π00(T ). The SVEP at every λ ∈ π00(T ) is equivalent, by Theorem 1.3, to
saying that H0(λI − T ) is finite-dimensional for all λ ∈ π00(T ). The second
assertion is obvious.

(iv)⇒ (v) Since, as observed in the proof of Theorem 2.1, for every isolated
point λ ∈ σ(T ) we have X = H0(λI − T ) ⊕ K(λI − T ), then K(λI − T )
has finite codimension for every λ ∈ π00(T ). For every λ ∈ C the inclusion
K(λI−T ) ⊆ (λI−T )(X) holds, which obviously implies that β(λI−T ) < ∞.
Therefore, λI − T ∈ Φ(X) for all λ ∈ π00(T ). Finally, the SVEP of T ∗ at λ
implies, by Theorem 2.9 of [4], that q(λI − T ) < ∞ for all λ ∈ π00(T ).

(v)⇒ (i) Suppose that λ ∈ πa
00(T )\π00(T ). Then (λI−T )(X) is closed and

from the inclusion α(λI−T ) < ∞ we see that λI−T ∈ Φ+(X). By assumption
σa(T ) does not cluster at λ, hence by Theorem 1.3 p(λI −T ) < ∞. Therefore
λ /∈ σub(T ).

Suppose now the other case, λ ∈ π00(T ). By [21, Proposition 38.5] the
condition q(λI−T ) < ∞ implies that β(λI−T ) ≤ α(λI−T ) < ∞, and hence
λI − T ∈ Φ(X). Finally, by Theorem 1.3 the SVEP at the isolated point λ of
σ(T ) implies that p(λI − T ) < ∞, and hence λ /∈ σub(T ).

(vi) ⇔ (iv) The proof is analogous to that of Theorem 2.2.

The Weyl (or essential) approximate point spectrum σwa(T ) of a bounded
operator T ∈ L(X) is the complement of those λ ∈ C for which λI − T ∈
Φ+(X) and ind (λI − T ) ≤ 0. Note that σwa(T ) is the intersection of all
approximate point spectra σa(T + K) of compact perturbations K of T , see
[27]. The Weyl surjectivity spectrum σws(T ) is the complement of those λ ∈ C
for which λI − T ∈ Φ−(X) and ind (λI − T ) ≥ 0. Note that σws(T ) is the
intersection of all surjectivity spectra σs(T + K) of compact perturbations K
of T , see [27]. Clearly,

σwa(T ) ⊆ σub(T ) and σws(T ) ⊆ σlb(T ).
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Moreover, the two spectra σwa(T ) and σws(T ) are dual each other, i.e.,

σwa(T ) = σws(T ?) and σws(T ) = σwa(T ?).

Furthermore, σw(T ) = σwa(T ) ∪ σws(T ).

Theorem 2.10. If T or T ∗ has SVEP then

σwa(T ) = σub(T ) and σws(T ) = σlb(T ).

Proof. Suppose first that T has SVEP. By Corollary 2.4 of [28] we know
that σub(T ) = σwa(T ) ∪ acc σa(T ), so, to show that σub(T ) = σwa(T ), it
suffices to prove that acc σa(T ) ⊆ σwa(T ).

Suppose that λ /∈ σwa(T ). Then λI − T ∈ Φ+(X) and the SVEP at
λ ensures that σa(T ) does not cluster at λ, by Theorem 1.3. Hence λ /∈
acc σap(T ).

To show the equality σlb(T ) = σws(T ) suppose that λ /∈ σlb(T ). Then
λI − T ∈ Φ−(X) and q(λI − T ) < ∞. Since λI − T ∈ Φ−(X) the SVEP at λ
implies by Theorem 1.3 that p(λI −T ) < ∞. Hence p(λI −T ) = q(λI −T ) <
∞, and consequently α(λI − T ) = β(λI − T ) < ∞, see Proposition 38.6 of
Heuser [21]. Therefore λ /∈ σws(T ) and this shows that σws(T ) ⊆ σlb(T ).

On the other hand, if λ /∈ σws(T ) then λI − T ∈ Φ−(X) with β(λI − T ) ≤
α(λI − T ). Again, the SVEP at λ gives by Theorem 1.3 that p(λI − T ) < ∞,
hence, always by Proposition 38.5 of [21], α(λI − T ) = β(λI − T ). At this
point, by Proposition 38.6 of Heuser [21] the finiteness of p(λI − T ) implies
that also q(λI−T ) is finite, and hence λ /∈ σlb(T ). Therefore, σlb(T ) ⊆ σws(T )
and the proof of the second equality is complete in the case that T has SVEP.

Suppose now that T ∗ has SVEP. Then by the first part σub(T ∗) = σwa(T ∗)
and σlb(T ∗) = σws(T ∗). By duality it then follows that σlb(T ) = σws(T ) and
σub(T ) = σwa(T ).

We say that a-Weyl’s theorem holds for T ∈ L(X) if

πa
00(T ) = σa(T ) \ σwa(T ).

It is known [27] that

a-Weyl’s theorem ⇒ Weyl’s theorem.

In [27] it is shown that cohyponormal operators obey to the a-Weyl’s theorem.
In [16] it is shown that if T ∗ is quasihyponormal then a-Weyl’s theorem holds
for T .
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Theorem 2.11. If T or T ∗ has SVEP, then a-Weyl’s theorem holds for T
if and only if one of the equivalent conditions (i)-(vi) of Theorem 2.9 holds.

Proof. Observe first that both πa
00(T ) and σub(T ) are subsets of σa(T ) and

the condition σub(T ) ∩ πa
00(T ) = ∅ obviously implies that

πa
00(T ) ⊆ σa(T ) \ σub(T ) ⊆ σa(T ) \ σwa(T ).

To establish the a-Weyl’s theorem for T we need to show the reverse inclusion
σa(T ) \ σwa(T ) ⊆ πa

00(T ).
Suppose that T has SVEP and λ ∈ σa(T ) \ σwa(T ). Then λ ∈ σa(T ) and

λI − T ∈ Φ+(X). Clearly, since (λI − T )(X) is closed, λI − T is not injective
and hence 0 < α(λI − T ) < ∞. On the other hand, since λI − T ∈ Φ+(X),
by Theorem 1.3 the SVEP at λ is equivalent to saying that σa(T ) does not
cluster at λ, and consequently λ ∈ πa

00(T ).
Finally, suppose that T ∗ has SVEP and λ ∈ σa(T ) \ σwa(T ). The SVEP

of T ∗ yields, by Corollary 2.9 of [3] and Theorem 2.10, that

σwa(T ) = σub(T ) = σw(T ) = σb(T ).

Moreover, σa(T ) = σ(T ) by [24, Proposition 1.3.2], and hence

λ ∈ σa(T ) \ σb(T ) = σ(T ) \ σb(T ) = p00(T ) ⊆ πa
00(T ),

so the proof is complete.

The equivalences established in Theorem 2.11 was proved by Curto and
Han [12, Corollary 3.3] under the condition that T has SVEP. Our methods
are, which are considerably simpler, show that the equivalences established in
Theorem 2.9 are valid also without assuming SVEP.

Theorem 2.12. If T ∗ has SVEP then the following statements are equi-
valent:

(i) Weyl’s theorem holds for T ;

(ii) a-Weyl’s theorem holds for T .

Proof. We have only to show the implication (i) ⇒ (ii). If T ∗ has SVEP
then σa(T ) = σ(T ), see [24, Proposition 1.3.2], so πa

00(T ) = π00(T ). Again, as
in the proof of Theorem 2.11, since T ∗ has SVEP then

σw(T ) = σb(T ) = σub(T ) = σwa(T ).
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If Weyl’s theorem holds for T then

πa
00(T ) = π00(T ) = σ(T ) \ σw(T ) = σa(T ) \ σwa(T ),

and hence a-Weyl’s theorem holds for T .

Let us consider for a weighted unilateral right shift T on `p(N), with weight
ω = (ωn)n∈N, the following quantity:

c(T ) := lim
n→∞ inf(ω1 · · ·ωn)1/n.

Corollary 2.13. If T ∈ L(X) is a non quasi-nilpotent weighted unilat-
eral right shift T on `p(N), with 1 ≤ p < ∞. If c(T ) = 0, then T obeys
a-Weyl’s theorem.

Proof. If c(T ) = 0 then T ∗ has SVEP, see Theorem 16 of [5]. Moreover,
by Corollary 2.7 Weyl’s theorem holds for T , so Theorem 2.12 applies to T .

A bounded operator T ∈ L(X) is said to be reguloid if for every isolated
point λ of σ(T ), λI − T is relatively regular, i.e., there exists Sλ ∈ L(X) such
that (λI−T )Sλ(λI−T ) = λI−T . It is well known that T ∈ L(X) is relatively
regular operator if and only kerT and T (X) are complemented. It is easily
seen that every reguloid operator is isoloid [20, Theorem 14].

Examples of reguloid operators are multipliers of semi-simple Banach al-
gebras, because every isolated point λ0 of σ(T ) is a simple pole of the resolvent
R(λ, T ) := (λI − T )−1, see [1], so ker (λ0I − T ) is the range of the spectral
projection P0 associated with λ0, whilst (λ0I − T )(X) is the kernel of P0, see
[21, Proposition 50.2]. Clearly, by Theorem 2.3 every reguloid operator T for
which T or T ∗ has SVEP obeys to Weyl’s theorem, since the condition (iv) of
Theorem 2.1 is satisfied.

Theorem 2.14. Suppose that T ∈ L(X) is reguloid and let f be any
analytic function defined on an open neighborhood U of σ(T ). The following
assertions hold:

(i) If T or T ∗ has SVEP then Weyl’s theorem holds for f(T ).
(ii) If T ∗ has SVEP, then a-Weyl’s theorem holds for f(T ).

Proof. Every reguloid operator is isoloid. Therefore, by [25, Lemma]

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )).
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If T or T ∗ has SVEP then σb(T ) = σw(T ), by Corollary 2.8 of [3], and by
Corollary 2.6 of [12] we also have f(σw(T )) = σw(f(T )). Since T or T ∗ has
SVEP then Weyl’s theorem holds for T , so σ(T ) \π00(T ) = σw(T ). Therefore
σ(f(T )) \ π00(f(T )) = σw(f(T )), i.e. Weyl’s theorem holds for f(T ).

If T ∗ has SVEP then by Theorem 3.3.6 [24] f(T ∗) = f(T )∗ has SVEP, so,
by part (i) and by Theorem 2.12, a-Weyl’s theorem holds for f(T ).

Part (i) of Theorem 2.14 improves a similar result of [12]. In fact, in
Corollary 3.4 of [12] the assumption of the Dunford property (C) for T or T ∗

is stronger than the SVEP for T or T ∗. An example of operator T having
SVEP but not property (C) may be found in [4]. Other examples of operators
which have SVEP but without property (C) may be found among multipliers
of the group algebra L1(G), see Chapter 4 of [24]. It should be noted that
Theorem 2.14 also extends the result of Theorem 2.8 of [17] where Weyl’s
theorem was established only for reguloid operators having SVEP.

For a commutative semi-simple Banach algebra A, let M(A) denote the
commutative Banach algebra of all multipliers. The following result is imme-
diate, since property (δ) for any operator T entails SVEP for T ∗.

Corollary 2.15. Suppose that T ∈ M(A), A a commutative semi-simple
Banach algebra, has property (δ). Then a-Weyl’s theorem holds for f(T ).

The previous result leads to the following interesting application. Let
M(G) be the canonical measure algebra of a locally compact Abelian group
G and denote by Tµ : L1(G) → L1(G) the convolution operator on the group
algebra L1(G). Denote by µ̂ the Fourier-Steltjes transform of µ defined on
the dual group Ĝ, and let M0(G) be the ideal in M(G) of all measures µ for
which µ̂ vanish at infinity on Ĝ.

Corollary 2.16. Suppose that G is a compact Abelian group. If µ ∈
M0(G) has denumerable spectrum, then a-Weyl’s theorem holds for f(Tµ).

Proof. By Theorem 4.11.8 of [24] Tµ has property (δ).
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