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1. INTRODUCTION

For a long time, the recursive algorithms proposed as a solution of the least
mean-squared error (LMSE) linear estimation problem of signals in stochastic
systems have been expressed by means of Riccati-type difference or differential
equations. Nevertheless, the interest of finding fast algorithms has led many
authors to replace those Riccati-type equations by a set of Chandrasekhar-type
ones. By using this kind of equations, a reduction of the number of operations
at each iteration of the algorithm and so, a decrease in the computation time,
is achieved.

The first authors who used the Chandrasekhar-type equations to solve the
LMSE linear estimation problem in discrete-time systems were Morf et al. [7],
in the mid-seventies. For time-invariant systems, these authors obtained a new
algorithm which, by reducing the number of difference equations contained in
it, improved computationally the celebrated Kalman filter.

From this work, there have been many authors who have proposed
Chandrasekhar-type recursive algorithms to solve different estimation
problems, applying those algorithms to different real situations (air pollution

*This work was partially supported by the ‘Ministerio de Ciencia y Tecnologia’ under
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over an urban area ([1]), image restoration ([6]), digital communication ([16]),
etc.). We will especially mention the results obtained by Sayed and Kailath
[15], who generalized the Chandrasekhar-type algorithm proposed in [7] to
a class of time-variant state-space models; this work constitutes the basis
of subsequent researches in the multichannel and multidimensional adaptive
filtering context (see e.g. [3] and [14]).

On the other hand, assuming that the state space model is not completely
known but only using covariance information, Friedlander et al. [2] derived
Chandrasekhar one-step prediction equations in linear discrete-time stochastic
systems. Recently, by using also covariance information, Nakamori [9] has
proposed a Chandrasekhar-type filtering algorithm for a wide-sense stationary
scalar signal in continuous-time systems. The same problem has been
analyzed in discrete-time systems by Nakamori et al. [13] assuming uncertain
observations, who have also proposed to solve it an algorithm based on
Chandrasekhar-type equations. Our aim, in this paper, is to generalize the
study approached in [13] to the case of uncertain observations with non-
independent uncertainty, perturbed by white and coloured additive noises.

Systems with uncertain observations have been widely studied since many
practical situations (as in communication theory, control systems, robotics,
aerospace navigation, vehicular traffic theory, etc.) can be modelled by this
kind of systems. Its main characteristic is that the signal is not always present
in the observations but its presence in them is subject to a probability. This
property is reflected in the observation equation by means of a multiplicative
noise, described by a sequence of Bernoulli random variables.

The LMSE linear estimation problem of signals has been one of the
aspects approached in this kind of systems. We must first refer to Nahi [8],
who, assuming a full knowledge of the state-space model and independence
between the Bernoulli random variables, proposed a Riccati-type recursive
algorithm to solve this problem. Subsequently, Hadidi and Schwartz [4]
generalized this study considering that the variables modelling the uncertainty
are not necessarily independent; they proved that the recursive property of
the estimators is not always guaranteed and they established a necessary
and sufficient condition for it. In other sense, assuming that the state
model of the signal is not known but only using a factorization of the signal
autocovariance function in a semi-degenerate kernel form, recently, Nakamori
et al. [10],[11],[12] have proposed recursive algorithms to solve the LMSE
linear estimation problem for the case of independent Bernoulli random
variables as well as assuming uncertainty not necessarily independent.
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By wusing also covariance information, in this paper we present a
Chandrasekhar and a Riccati-type algorithm as solution of the LMSE linear
filtering problem of wide-sense stationary signals from uncertain observations
perturbed by white and coloured additive noises with uncertainty not
necessarily independent. The comparison between both algorithms shows
the computational advantages of the Chandrasekhar-type algorithm over the
Riccati-type one. These advantages are clarified in a numerical example on
estimation of signals transmitted in multichannel.

2. THE LMSE LINEAR FILTERING PROBLEM

Let us consider a discrete-time scalar observation equation described by
(1) y(k) = u(k)z(k) +v(k) + vo(k),  2(k) = Hx(k)

where y(k) represents the observation of the signal, z(k), perturbed by a
multiplicative noise, u(k), and by white and coloured additive noises, v(k)
and vy (k), respectively; the signal is expressed as a linear combination of the
components of the n-dimensional state vector, z(k).

We are interested in analyzing the LMSE linear filtering problem of the
signal, z(k); for this purpose, we will assume the following hypotheses on the
processes involved in the observation equation (1):

H1. The signal process {z(k); k > 0} is a zero-mean wide-sense stationary
process whose autocovariance function, K,(k,s) = E[z(k)z(s)] =
K,(k — s), can be factorized as K,(k,s) = HO®K,,(k — 1,s), where
® denotes the system matrix in the state-space model of z(k) and
K,.(k—1, s) represents the crosscovariance function of the state z(k—1)
and the signal z(s).

H2. The additive noise {v(k); k > 0} is a zero-mean wide-sense stationary
white process with autocovariance function E[v(k)v(s)] = Rox(k — s),
being dx the Kronecker delta function.

H3. The coloured additive noise {vy(k); k > 0} is also a zero-mean wide-
sense stationary process, with autocovariance function K,,(k,s) =
Elvy(k)vo(s)] = Kyo(k — s), which can be factorized as Ky, (k,s) =
Py K,,(k—1,s), being @ the system matrix in the state-space model of
vo(k)-
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H4. The multiplicative noise {u(k); k£ > 0} describing the uncertainty in the
observations is a sequence of identically distributed Bernoulli random
variables with initial probability vector (1 — p,p)T and conditional
probability matrix P(k/j). The (2,2)-element of this matrix is assumed
to be independent of k and j, that is,

p22(k/j) = P(u(k) = 1/u(j) =1) = p2, k#j.

Consequently, the necessary and sufficient condition for the existence of
recursive linear estimators proposed by Hadidi and Schwartz [4] (that is,
p22(k/j) is independent of j for all j < k) is satisfied. Moreover, under
these considerations, it is clear that

if k=y

Eu(k)u(j)] = { szg, if k#j

H5. The state and the noise processes, i.e. {z(k); k > 0}, {u(k); k > 0},
{v(k); k> 0} and {vo(k); k > 0}, are mutually independent.

From these hypotheses, we have approached the LMSE linear estimation
problem of the signal z(k) given the observations until time k, {y(1),...,y(k)};
as a result, we have obtained two recursive algorithms to calculate this
estimator, denoted by Zz(k, k). Next, we will specify how the algorithms have
been derived and we will also establish some comparisons between them.

First of all, it can be easily observed from (1), that the filter of the signal is
given by z(k, k) = Hz(k, k), where Z(k, k) represents the state filter. For this
reason, our interest is focused on obtaining an algorithm for Z(k, k), which
can be expressed as

k
2(k,k) = Y _h(k,i)y(i)
i=1
where h(k,i), i =1,...,k denotes the impulse-response function.

As a consequence of the Orthogonal Projection Lemma (OPL) (see e.g.
[5]), Z(k, k) satisfies the Wiener-Hopf equation which, from the hypotheses on
the model, is given by

k
@) h(k,s)W = pKy,(k,s) — z;h(k,z)K(z, s), 1<s<k

1= _
W =R+ p(l —pr)HK;,(0), K(i,s) =ppeHK;,(i,s) + Ky/(i,s)-
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Moreover, the OPL also guarantees that z(k, k) can be expressed as
z(k, k) = z(k,k — 1) + h(k, k)[y(k) — y(k, k — 1)]

where Z(k, k—1) and y(k, k—1) represent the LMSE one-stage linear predictors
of (k) and y(k), respectively. Taking again into account the OPL and the
hypotheses on the model, it is deduced that

z(k,k—1)=®z(k—1,k—1)

Gk, k — 1) = peeHEF(k — 1,k — 1) + Boto(k — 1,k — 1)
where vy(k — 1,k — 1) represents the LMSE linear filter of vo(k — 1). Similarly
to the above reasoning, denoting now by g(k,7), ¢ = 1,...,k the impulse-

response function, the Wiener-Hopf equation associated with vy (k, k) is given
by

k
(3) gk, )W = Ky (k,8) = > _g(k,)K (i,s), 1 <s <k
=1

and the filter of the coloured noise verifies
60(]{:5 k) = @an(k —L1k— 1) + g(ka k)[y(k) - @\(k’k - 1)]

As a result of these considerations, let us observe that the algorithm for
Z(k,k) only requires the determination of formulas for the filtering gains,
h(k,k) and g(k,k). Next, we show different manners to calculate them and
we establish comparisons between the corresponding algorithms.

3. FILTERING ALGORITHMS

In the following theorems, we present two algorithms to calculate the
LMSE linear filter of the signal, Z(k, k); the difference between them is that
the filtering gains are calculated by a different way: in one of them, they are
obtained from Chandrasekhar-type equations whereas, in the other, Riccati-
type equations are used.

THEOREM 1. Given the observation equation (1) with the hypotheses H1-
Hb, the filter of the signal is given by z(k,k) = HZz(k,k), where Z(k,k) is
recursively obtained from the following relations

z(k,k)=2z(k—1,k—1)
(4) + h(k, k) [y(k) — p2HOZ(k — 1,k — 1) — ®oUo(k — 1,k — 1)};
z(1,1) = h(1,1)y(1)
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vo(k, k) = ®ovo(k — 1,k — 1)

(5) +g(k, k) [y(k) — p2 HO Z(k — 1,k — 1) — ®otp(k — 1,k — 1)];
'/U\O(la 1) = g(la 1)y(1)

The filter gains, h(k,k) and g(k, k), are calculated as follows
h(k, k) = [h,(k 1,k —1) — ®h(k — 1,1) [pe HOh(k — 1,1)

(6) + @og(k - 1,1)] ]

-1
x (1= [P HOR(k — 1,1) + @og(k — 1, 1)]’]

g%iﬁ:[ﬂk—Lk—l}—@mw—lJ)@ﬂHQMk—LD
M) +@0g(k —1,1)] |
x [~ [pn H®R(E —1,1) + Sog(k — 1,12 !

where h(k,1) and g(k, 1) satisfy the following relations
(8)  h(k,1) = ®h(k — 1,1) — h(k, k) [paa H®R(k — 1,1) + Bog(k — 1,1)]

(9) g(ka 1) = (I)Og(k - 15 ]-) - g(kak) [pQQH‘I)h(k - 15 1) + CI)Og(k - 15 1)]
with initial conditions

(10) h(1,1) = pKy. (0) [R + pH Ky, (0) + Ky (0)] !

(11) g(1,1) = K,y (0) [R 4 pHK ,,(0) + K,y (0)] "

Proof. Let us firstly observe that equations (4) and (5) have been already
derived in the above section. Hence, we will next focus on deducing the
recursive formulas for the filtering gains. So, if we replace k by £ — 1 and s
by s —1 in (2) and subtract the resultant expression from (2), we obtain the
following expression

h(k,s) — h(k — 1,5 — )] W = —h(k, 1)K (1, s)
k
_Z[h(k,i)—h(k—l,i—l)]F(i,S), 2<s5<k.
=2
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Then, if we define a function J satisfying
k
(12) J(k,s)W =K(1,s) = > J(k,i)K(i,s), 2<s<k
=2

it is immediately obtained that
(13) h(k,s) —h(k—1,s—1) = —h(k,1)J(k,s), 2<s<k.
Next, considering k — 1, if we multiply (2) by pa2H® and (3) by ®¢, and we

add the resultant expressions, then we have, for 1 <s<k—1,
[pQQH@h(k -1, 3) +q)09(k -1, 3)] W = E(ka 3)

(14) kil . . ey
— " [poe HOME — 1,3) + @og(k — 1,4)] K (i, ).

i=1
Replacing s by kK —s+1 in the above expression and taking into account that,
from the stationary properties, K (i,s) = K(s,1), it is immediately obtained
that

[po2 H®R(k — 1,k — s+ 1) +®¢g(k — 1,k — s+ 1)] W

k
=K(1,s) = [poHOh(k—1,k—i+1)
=2

1

+ Bog(k —1,k—i+1)K(G,s), 2<s<k.
Then, by comparing this equation with (12), it is clear that
(15) J(k,s) = pooHOh(k—1,k—s+1)+Pog(k—1,k—s+1), 2<s<k

and, hence, by putting s = k in (15) and by substituting the resultant equation
n (13) for s = k, we obtain
h(k,k) —h(k — 1,k — 1)

(16) = —h(k, 1) [p2a HOR(k — 1, 1) + Bog(k — 1,1)].

Since this expression for h(k,k) depends on h(k,1), next we will derive a
recursive formula for it. For this purpose, if we multiply (2) for £k — 1 by ®
and we subtract it from (2), we have

[h(k,s) —®h(k — 1,8)]W = —h(k, k)K (k, )

k—1
i = [h(k,i) — Bh(k —1,))] K(i,s), 1<s<k-—L
=1
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Next, if we compare (17) with (14), it is immediately deduced the following
expression

h(k,s) — ®h(k — 1,s)

= —h(k,k) [pooHO®h(k —1,8) + $og(k — 1,s)], 1<s<k-1

which leads to (8) by putting s = 1. Moreover, from (8) and (16), expression
(6) is derived.

By following a similar reasoning, formulas (7) and (9) for g(k, k) and g(k, 1)
are obtained.

Finally, the initial conditions (10) and (11) are immediately derived by
putting k = s =1 in (2) and (3). 1

Next we present the Riccati-type algorithm. Tts proof is omitted since it
can be easily obtained by following an analogous reasoning to that used by
Nakamori et al. [12].

THEOREM 2. If we consider the observation equation (1) satisfying the
hypotheses H1-H5, the filter of the signal z(k) is given by z(k, k) = Hz(k, k),
where Z(k, k) can be calculated from the recursive relations

z(k,k) =@z(k—1,k—1)

+ h(k, k) [y(k) —ppeH®Z(k— 1,k — 1) — ®ovo(k — 1,k — 1)];

7(0,0) =0

vo(k, k) = Potip(k — 1,k — 1)
+9(k k) [y(k) — poH®Z(k — 1,k — 1) = Rovo(k — 1,k — 1)];
v0(0,0) = 0.
The filter gains, h(k, k) and g(k, k), are given by

h(k,k) = [pKy. (k. k) — peo®S(k — 1)®"HT — T (k — 1)| I~ (k)
g(k. k) = [Kyy(k, k) — poo®oTT (k — 1)®THT — 93U (k — 1)] T (k)

where I1(k), S(k), T'(k) and U(k) are calculated as follows
(k) = R+ pKZL (k,k)HT + Ky, (k, k) — p3, HOS(k — 1)®T HT
— oo ®oHOT (k — 1) — poo®TT (k —1)dT HT — d2U(k — 1)

S(k) = ®S(k —1)®T + h(k, k)TI(k)AT (k,k); S(0) =0
T(k) = ®o®T (k — 1) + g(k, k)h(k, k)II(k); T(0) =0
U(k) = ®3U (k — 1) + ¢*(k, k)II(k); U(0) = 0.
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By comparing the algorithms presented in Theorems 1 and 2, it is observed
that, since the state vector z(k) has dimension n, the number of operations
which have to be performed at each iteration of the Chandrasekhar-type
algorithm is 3n+ 3, whereas for the Riccati-type algorithm, are 3n+ @ +4
the operations needed. The reduction regarding the number of operations to
perform, which is more significant as the dimension of the state vector is
larger, implies that the computation time is smaller and, hence, that the
Chandrasekhar-type algorithm is more advantageous than the Riccati-type
one in a computational sense. These computational advantages can be clearly
observed in the example that we present in the following section.

Finally, as a measure of the estimation accuracy, the filter error variance,

P(k,k)=E [{z(k) - %\(k,k)}Q], can be calculated as

P(k,k) = H [Ky,(k, k) — S(k)H"]
where S(k) is given in Theorem 2.

4. FILTERING OF SIGNALS TRANSMITTED IN MULTICHANNEL

Let us consider the problem of estimating a wide-sense stationary scalar
signal process, {z(k);k > 0}, which can be transmitted through several
channels randomly picked. Specifically, in this example, we have considered
four transmission channels (although the results can be easily generalized to
an arbitrary number of channels); each of these channels is characterized by
the following observation equation

(18) Channel i : y(k) = u;(k)z(k) + v(k) + vo(k) i=1,...,4

that is, in the ¢-th channel, the signal is perturbed by a multiplicative noise,
{ui(k); k > 0}, modelled by a sequence of independent Bernoulli random
variables with P(u;(k) = 1) = p; and by white and coloured additive noises,
{v(k); k > 0} and {vg(k); k > 0}, respectively. We also assume that the signal
is expressed as a function of the state vector xz(k) by means of the relation
z(k) = Hx(k).

Denoting by ¢; the probability that the signal is transmitted by the i-th
channel, the equation (18) can be rewritten as y(k) = u(k)z(k) +v(k) +vo (k),
where {u(k);k > 0} is a sequence of Bernoulli random variables with p =
P(u(k) =1) = 2321 pigi, for all £ > 0, and conditional probability matrix
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given by
Siia(l—p)? i api(1—pi)
4 4
o1 = ps Y01 — s
Py = | @R N Dl vkizo
Y i1 aipi(1 — pi) Y i1 9iP;
S g S @b

Let us also suppose that the white additive noise, {v(k); k > 0}, is gaussian
with zero mean and constant variance R = 0.12, and that the only available
information on the signal is its autocovariance function defined by

(1-a3)(1 - a3)(1 — arag)ai™

(g — 1) (a3 — ay) .
(1—o)(1 —ad)(1 — aro)as™”

(a1 —ao)(ag —ag) \
(1-a})(1 —a3)(1 —arag)of”

(1 — a3)(a2 — a3)

K, (i) = 0.25 [

—1
X [1 + a1ag + apa3 + agas — agagas(@rasas + a1 + s + ag)]

being afl, a;l, agl, the roots of the equation 1 + a1z + azz? + azz® = 0,
with a1 = —1.6, ag = 0.76 and a3 = —0.096. Then, by using the factorization
technique proposed by Nakamori et al. [10], it is obtained

0 10 0.25
H=(100), &= 0 0 1 |, Km0 =| 0239
0.096 —0.76 1.6 0.2154

In a similar way, if we consider that the autocovariance function of the coloured
noise is given by .
Ky, (i) = 0.25(=0.2)*, i>0

from the factorization technique we have that &y = —0.2.

Let us note that, for applying the algorithms, it is necessary to know
the values of ¢; and p; for ¢ = 1,2,3,4, which lead to the values of p and
p22 = P(u(k) = 1/u(k—1) = 1). In this example, we have considered ¢; = 0.1,
qo = 0.15, g3 = 0.35, ¢4 = 0.4 and different values of p;, which yield to the
fixed value p = 0.75, and different values of pog, specifically:

p1=p2=p3=ps =075 = p=prp=0.75

‘p1 =p2 =p3 =0.95; py =045 = p=0.75; pys = 0.83
-p1 =p2 =0.15; p3 =p1 =095 = p=0.75; pyo =0.91
Ppr=p2=0; ps=ps=1 = p=0.75 pp =1
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We may remark that the algorithms corresponding to situation poo = 0.75
coincide with that of case of uncertain observations with uncertainty modelled
by independent random variables.

By considering the different values of pyy previously mentioned, we have
performed 300 iterations of the Chandrasekhar-type algorithm and we have
calculated the filtering error variances.

In Figures 1-4, the simulated signal and the filtering estimate are shown;
the filtering error variances are drawn in Figure 5. These figures show that as
poo increases the estimates of the signal are worse.

Finally, we have calculated the ratio between the computation times of
the Chandrasekhar-type algorithm and that corresponding to the Riccati-type
algorithm; the results have been 0.4545, 0.2941, 0.5454 and 0.375 for pay =
0.75, 0.83, 0.91 and 1, respectively. From these values, we conclude that
the algorithm based on Chandrasekhar equations is computationally more
efficient, since it reduces considerably the computation time.
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Figure 1: Signal and its filtering estimate for pse = 0.75.
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