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Abstract
This paper focuses on the development of a surrogate model to predict the macro-
scopic elastic properties of polymer composites doped with spherical particles. To
this aim, a polynomial chaos expansion based Kriging metamodeling technique has
been developed. The training experimental design is constructed through a dataset
of numerical representative volume elements (RVEs) considering randomly dispersed
spherical particles. The RVEs are discretized using finite elements, and the effective
elastic properties are obtained by implementing periodic boundary conditions. Para-
metric analyses are reported to assess the convergence of the scale of the RVE and
the mesh density. The accuracy of the proposed metamodelling approach to bypass
the computationally expensive numerical homogenization has been evaluated through
different metrics. Overall, the presented results evidence the efficiency of the pro-
posed surrogate modelling, enabling the implementation of computationally intensive
techniques such as material optimization.
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1 Introduction

The field of composite materials design has represented an area of rapid and steady
growth since the early 1960s, with groundbreaking impacts across many scientific
disciplines and industries [1–3]. Composite materials are defined as the artificial com-
bination of two or more materials, usually known as phases, comprising from classical
reinforced concrete or masonry to next-generation nano-modified composites. The
simplest composite configuration combines two materials, a doping filler (inclusions)
and the host matrix material. The theoretical estimation of the effective properties of
composites is of critical importance to enable their design, minimizing the need for
physical prototypes and experimentation and thus reducing costs and production times.
However, the development of high-fidelity models of composite microstructures may
be a challenging task involving extraordinary computational burden.

When designing high-strength composite materials, it is of pivotal importance to
estimate the overall elastic constitutive tensor of the compositeC∗. To do so, a RVE is
usually defined as the material domain containing a sufficient number of inclusions to
statistically represent the composite as a whole. The dimensions of the RVE must be
much smaller than the characteristic length over which the macroscopic loading varies
in space. From a mathematical standpoint, let us consider two-phase RVE occupying
a domain O ⊂ R

3 with boundary � = ∂O . The elastic properties of the composite
are defined by the geometric arrangement of the matrix Om and the inclusions O f ,
satisfyingOm ∪O f = O with respective (fourth order) elastic tensorsCm andC f . Let
us denote ζm and ζ f the volume fractions of thematrix phase and the filler, respectively,
given by ζs = |Os |/|O|, s = m, f , where |·| relates the volume of the constituent
phases. The elastic response of the RVE to a certain boundary force field φ0 and a
volume force field g is governed by an elliptic steady-state problem [1, 4–10]:

⎧
⎨

⎩

−div [Cε(φ(x))] = g in O
φ(x) = 0 on �m

Cε(φ) · ν = φ0 on� f
(1)

where φ is the displacement field, �m ∪ � f = � with �m ∩ � f = ∅, and ν the outer
unit normal to �. The strain tensor ε is defined through the displacement field φ as:

εi j = 1

2

(
∂φi

∂x j
+ ∂φ j

∂xi

)

(2)

and it is related to the stress tensor by the generalized Hooke’s law σ = Cε. The
stiffness tensor of a material point x in the RVE is given by C as:

C(x) =
{
Cm(x) if x ∈ Om

C f (x) if x ∈ O f

Extracting the exact solution of the displacement field from Eq. (1) is a challenging
task, and closed-form solutions can be only found for simplified or ideal composite
microstructures. Nonetheless, in practical applications, it suffices to determine the
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overall behaviour of the composite at the macroscale, that is the asymptotic behaviour
(homogenization) of Eq. (1) [11]. This is achieved through the homogenised version
of Eq. (1) including the homogenised elastic tensor of the composite material C∗ as:

⎧
⎨

⎩

−div [C∗ε(φ(x))] = g in O
φ(x) = 0 on �m

C∗e(u) · ν = φ0 on � f
(3)

Numerical homogenisation techniques such as the Finite Element Method (FEM)
[12–14] constitute a popular approach to solve Eq. (3). In general terms, these tech-
niques discretize the RVE into discrete elements, and solve the weak form of Eq. (3).
Although these techniques enable a high-fidelity representation of the geometry of the
microstructure, the computational time and computer resources may be substantial.
This is particularly limiting when dealing with random arrangements of inclusions,
which require the use of considerably dense discretization meshes. Such high compu-
tational demandsmay hinder or preclude their implementation inmaterial optimization
or uncertainty propagation analyses, which often require an elevated number of model
evaluations.

In view of these limitations, we propose in this work the construction of a surro-
gate model to bypass computationally dense FEM models for the homogenization of
composite materials. Specifically, we propose the use of polynomial-chaos expansion
based Kriging metamodelling. The surrogate model is trained using a training dataset
or experimental design constructed by a discrete set of evaluations of the numerical
homogenization model covering the design space of the parameters of interest [15,
16]. Once trained, thanks to the minimal computational cost involved in the evaluation
of the metamodel, uncertainty propagation analyses are conducted to characterize the
elastic properties of the composite in statistical terms. In this work, we focus on the
analysis of epoxy composites doped with glass microsphere particles. These com-
posites exhibit remarkable mechanical properties such as high bending/compression
strength, bulkmodulus, wear resistance and coefficient of friction, finding awide range
of applications in numerous fields such as automotive, aeronautics and biotechnology
[17–19].

The remainder of this paper is organized as follows. Section 2 outlines the FEM
homogenisation approach used to estimate the effective properties of RVEs of epoxy
doped with glass microsphere particles. Section 3 shows the theoretical formulation of
the proposed surrogate model. Section 4 presents the numerical results and discussion
and, finally, Sect. 5 concludes this work.

2 Numerical homogenisation of glass microsphere/epoxy resin
composites

Several strategies can be followed for the numerical homogenisation of composite
materials. The simplest one consists in the use of periodic unit cells [20], contain-
ing a canonical arrangement of particles which are assumed to replicate periodically
throughout the composite material. Themesh density required to discretize such RVEs
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Fig. 1 Example of a cubic RVE with a side length of 200 μm and doped with ≈ 15% volume fraction of
glass microspheres (a) and FEM mesh (12138 nodes) (b)

is limited and so is the computational burden involved in the homogenisation. Nev-
ertheless, most composite materials present a certain degree of randomness in the
dispersion of the reinforcing fillers. Although there are 2D models capable of repre-
senting this randomness [21], it is often necessary to implement more computationally
intense 3D random RVEs [22]. In this case, different simplifying assumptions can be
also adopted, including RVEs allowing particles to intersect with the RVE boundaries
(see e.g. [23]), and the more general case of intersecting particles [24]. In this work,
we implement a general cubic 3D model with allows particle intersection with the
cell boundaries. For the construction and analysis of the material microstructure, a
combination of scripts generated in MATLAB environment and in the commercial
FEM code ANSYS are used. Specifically, the adopted methodology for defining the
geometry of the cubic RVE involves the following four steps:

1. Given the particle radius, generate a particle center coordinates (x, y, and z). That
center is allowed to fall outside of the volume.

2. Check if the particle cuts any of cubic surfaces. If so, symmetric particles—one,
three or seven, depending if the original one cuts one, two or three cell faces,
respectively—are generated in order to impose RVE periodicity.

3. Check if all particles generated in the previous step intersect the previous existing
ones. If this is not the case, the proposal particle is accepted, otherwise return to
step 1.

4. Repeat until the desired filler volume fraction is achieved.

Once the geometry is set up, it is discretized inANSYSusing 4-nodes linear thetrae-
dral solid elements (SOLID 285). A sample of one of the generated RVEs is shown in
Fig. 1a and the corresponding mesh is depicted in Fig. 1b.

To compute the effective properties of composite, it is assumed that the material
can be defined as the periodic replication of the previously defined RVE as shown in
Fig. 2a. Therefore, to determine the effective elastic properties of one single isolated
RVE, periodic boundary conditions must be applied. The general periodic boundary
conditions on the cell faces of a RVE are given by [25]:
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Fig. 2 Schematic representation of a periodic composite and definition of the RVE (a). Periodic boundary
conditions for a pair of nodes located on the opposite surfaces A− and A+ (b)

ui = ε̂i j x j + vi , (4)

where ε̂i j denote the volume average strains, and vi represents the local periodic part
of the displacement components ui on the boundary surfaces. The latter displacement
components are generally unknown and depend upon the applied loading. Indices i
and j denote the global Cartesian directions. In the case of square RVEs like the ones
used in this work and sketched in Fig. 2a; Eq. (4) takes a more explicit expression.
Consider the notation of the cell surfaces A−/A+, B−/B+, and C−/C+ shown in
Fig. 2a. Then, the displacements on a pair of opposite boundary cells (with their normal
along the x j axis) read:

uK+
i = ε̂i j x

K+
j + vK+

i , uK−
i = ε̂i j x

K−
j + vK−

i (5)

where indexes K+ and K− indicate the displacements along the positive and negative
x j direction, respectively. Local fluctuations vK−

i and vK+
i must be identical on every

two opposing faces to comply with the periodicity of the RVE. Therefore, the local
displacement components can be dropped from the formulation by the difference
between the expressions in Eq. (5), leading to:

uK+
i − uK−

i = ε̂i j

(
xK+
j − xK−

j

)
(6)

Therefore, the RVE can be subjected to a desired strain state by imposing proper
displacements on its boundary surfaces. Then, the volume average stresses σ̂i j and
strains ε̂i j in the RVE can be computed as:

ε̂i j = 1

V

∫

V

εi jdV , σ̂i j = 1

V

∫

V

σi jdV (7)

with V being the volume of the RVE. Then, the i j-th component of the elastic tensor
can be directly estimated as C∗

i j = σ̂i j/ε̂i j . Since, in general, the elastic tensor of an
anisotropic material can be written following Voigt’s notation as a symmetric 6 × 6
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matrix as [26]:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1
σ2
σ3
σ4
σ5
σ6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C∗
11 C∗

12 C∗
13 0 0 0

C∗
22 C∗

23 0 0 0
C∗
33 0 0 0

C∗
44 0 0

C∗
55 0

C∗
66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

a total of six virtual tests are required to fully characterize the homogenised tensorC∗
(3 pure dilations and 3 pure distortions). Alternatively, we can rewrite Eq. (9) in terms
of the compliance matrix S∗ as:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

S∗
11 S∗

12 S∗
13 0 0 0

S∗
22 S∗

23 0 0 0
S∗
33 0 0 0

S∗
44 0 0

S∗
55 0

S∗
66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1
σ2
σ3
σ4
σ5
σ6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

so the engineering constants of interest are given in terms of Si j [26]:

E∗
11 = 1

S∗
11

E∗
22 = 1

S∗
22

E∗
33 = 1

S∗
33

(10)

ν∗
12 = − S∗

12

S∗
11

ν∗
13 = − S∗

13

S∗
11

ν∗
13 = − S∗

23

S∗
22

(11)

In the particular case of isotropic materials (like is is the case of a RVE made
of an isotropic matrix material doped with a sufficient number of isotropic spherical
particles), the components C∗

i j in Eq. (9) must satisfy:

C∗
11 = C∗

22 = C∗
33, C∗

12 = C∗
13, C∗

44 = C∗
55 = C∗

66 = C∗
11 − C∗

12

2
, (12)

whereC∗
12 = λ∗ andC∗

44 = μ∗ are the usualLamémoduli.Note that heLaméconstants
are related to the Young’s modulus E∗ and Poisson’s ratio ν∗ of the homogenised
material as follows [27]:

λ∗ = E∗ν∗

(1 + ν∗)(1 − 2ν∗)
, μ∗ = E∗

2(1 + ν∗)
.

The boundary conditions in Eq. (6) have been implemented in ANSYS by coupling
the displacements of opposite nodes and opposite boundaries. For each pair of dis-
placement components at two corresponding nodes with identical in-plane coordinates
(within a certain tolerance) on two opposite cell faces, the corresponding constraint
condition according to Eq. (6) is imposed. As an example, Fig. 2b shows the constraint
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equations to be defined for a pair of nodes located on the opposite surfaces A− and A+.
Interested readers may find further information on the computational implementation
of the boundary conditions in Ref. [25].

3 Polynomial-chaos expansion based Kriging

Consider a mathematical model M which maps a M-dimensional input parameter
space to a 1-dimensional output space.

M : x ∈ D ⊂ R
M → y ∈ R

Due to uncertainties in the input vector, x is considered a random variable with known
probability distribution. A surrogate model or metamodel is a mathematical function
M̂ which aims to emulate the originalmodelM , but at a lower computational cost. The
general procedure to construct a surrogate model can be summarized in the following
steps:

1. Sample a training set T and a validation set V covering the parameter design
space:

T =
{
x(1), . . . , x(N )

}
⊂ D (13)

V =
{
x(1), . . . , x(K )

}
⊂ D (14)

2. Evaluate model M on set T .
3. Solve an optimization problem to identify the parameters of the surrogate model.
4. Assess the metamodel’s accuracy by evaluating M and M̂ on set V .

In this work, we propose the combination of Kriging and polynomial chaos
expansion. Kriging metamodelling has been widely used in the literature to bypasss
models exhibiting important local effects and/or nonlinearities, while polynomial-
chaos expansion has proved highly efficient to represent the global response of models
with no marked local effects. In this work, we employ a combination of Kiring and
polynomial chaos expansion as a computationally efficientmetamodelwith both global
and local modelling capabilities.

3.1 Polynomial-chaos expansion

Polynomial-chaos expansion (PCE) approaches conceive the output response y of a
mathematical model M as [28]:

y = M (x) =
∑

α∈NM

aα�α(x) (15)
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where:

• aα , α = (α1, . . . , αM ), αi ∈ N are the coefficients of the expansion.

• �α(x) =
M∏

i=1

ψ(i)
αi

(xi ) are multivariate polynomials.

• ψ
(i)
αi are orthogonal polynomials depending on the stochastic nature of the input

variables x (e.g. Legendre or Hermite polynomials). In this work Legendre poly-
nomials will be used, as variables under study are supossed to follow an uniform
distribution.

Although the expression (15) can be proved exact for an infinite number of poly-
nomials, in practice only finite terms of

∑
α∈NM aα�α(x) can be computed. As a

consequence, different strategies can be taken into account to truncate the polynomial
series. The simplest one consists in selecting all the polynomials whose total degree
|α| = ∑M

i=1 αi belongs to the set

A M,p =
{
α ∈ N

M : 0 ≤ |α| ≤ p
}

where the cardinality of A M,p is equal to

(
M + p

p

)

= (M + p)!
M !p! .

Nonetheless, when M and p are big enough, this procedure of polynomial selection
may lead to computing a large number of coefficients, resulting in large computational
burdens. As an alternative, an hyperbolic truncation scheme can be employed. This

approach consists in selecting all multi-indices with q-norm ‖α‖q =
(∑M

i=1 α
q
i

) 1
q

less or equal to p, i.e.:

A M,p,q =
{
α ∈ N

M : ‖α‖q ≤ p
}

.

This strategy has been proved efficient due to the fact that high interaction terms
tend to have coefficients close to zero in many practical applications. Note that, when
q = 1, this scheme corresponds with the previous

Although substantial cost reductions can be achieved using the hyperbolic trunca-
tion scheme, the number of coefficients in the expansion may still be considerable. A
more cost-efficient solution can be obtained by using the adaptive least-angle regres-
sion (LAR) algorithm [29]. LAR constructs a set of expansions incorporating an
increasing number of basis polynomials �α , from 1 toP = card

(
A M,p,q

)
. Then, the

resulting sequence of index sets is used to construct different expansions and the best
metamodel is selected by a cross validation procedure. Finally, the expansion coeffi-
cients a = {aα, α ∈ A M,p ⊂ N

M } are obtained by minimizing the expectation of
the least squares errors:
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a = arg min
a∈RP

1

N

N∑

i=1

(
M (x(i)) −

∑

α∈A
aαψα(x(i))

)2
. (16)

where x(i) ∈ T , i = 1, . . . , N .
Once Eq. (16) has been solved, the resulting PCE surrogate model can be written

as follows:
y = M (x) ≈ M̂PCE (x) =

∑

α∈A
âαψα(x). (17)

3.2 Kriging

The Kriging model assumes that the response of a computational model M (x) can
be modelled as the sum of a deterministic trend and a stochastic process as:

M̂K (x) = T (x) + Z (x), (18)

where T (x) is a regression model, often termed the trend of the Krigng model, and
Z (x) is a zero-mean stochastic process. An interpretation of Eq. (18) is that deviations
from the regressionmodel may resemble a sample path of a properly chosen stochastic
process [30]. Depending on the nature of the trend part T (x), we can distinguish
simple, ordinary on universal Kriging models. Simple Kriging assumes that T (x) is
a known constant value, Ordinary Kriging supposes thatT (x) is an unknown constant
value and, finally, Universal Kriging considers thatT (x) can be described by a general
linear regression model:

T (x) =
P∑

k=1

βk fk(x). (19)

Ordinary Kriging is one of the most popular metamodelling approaches in the
literature [31], although a proper definition of the trend part in Universal Kriging can
lead tomore accurate results, as evidenced in the numerical results presented hereafter.
Note that simple and ordinary Kriging are special cases of Universal Kriging.

Like in the case of PCE, calibrating a Kriging surrogate model requires solving
an optimization problem. The stochastic process Z (x) is determined by an auto-
correlation function:

R(x, x′) = R(|x − x′|; θ) (20)

depending on the distance between points x and x′ and on some hyperparameters
θ ∈ R

M to be determined. This function describes the correlation between points of
the input space R

M . In general, the correlation decreases with distance |x − x′|, and
larger values of θ leads to a faster decreasing. In this work, Gaussian auto-correlation
functions are considered as [32]:

R
(
x, x′; θ

) =
M∏

�=1

e−θ�(x�−x′
�)

2
. (21)
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The computation of hyper-parameters θ is usually performed by either the
maximum-likelihood-estimation [33] (ML) or by the leave-one-out cross validation
[34] (CV), which are described by the following minimization problems:

θ̂ML = argmin
θ

[
1

N
(y − �a)T R−1 (y − �a) (detR)1/N

]

(22)

θ̂CV = argmin
θ

[

yTR−1diag
(
R−1

)−2
R−1y

]

. (23)

It is no clear which approach leads to better results [34], depending the answer
on the specific problem under study. In this work, both techniques have been imple-
mented achieving very similar results. In order to solve the optimization problems
in Eqs. (22) or (23), different techniques can be employed. In general, optimization
techniques can be classified as local (e.g. gradient-based) or global optimization tech-
niques (e.g. genetic or differential evolution algorithms). While local optimisation
algorithms are generally less computationally demanding, there may be difficulties
to find global extrema and the solutions often get stuck in local minimum. For this
reason, a genetic algorithm has been used in this work to solve the problems above.

3.3 Polynomial chaos expansion based Kriging

Polynomial chaos expansion based Kriging is a surrogate model that combines in a
simple way the two previous approaches, taking advantage of both techniques’ char-
acteristics. Following [35], a PCE-Kriging (PCK) surrogate model is an Universal
Kriging model where the trend partT (x) is particularized as the truncated PC expan-
sion using the LAR procedure as follows:

M̂PCK (x) =
∑

α∈A
aα�α(x) + Z (x), A ⊂ N

M (24)

Then, building the PCK metamodel consists in two steps. First, the optimal set of
orthonormal polynomials �α is determined using the LAR procedure (for α ∈ A

the truncation set). Subsequently, the hyperparameters θ̂ of the stochastic process
are determined considering the previous PCE expansion as the trend part. As antici-
pated above, PCE approximates well the global behavior of the computational model,
whereas Kriging manages the local variability of the model output [35].

4 Numerical results and discussion

In this section, numerical results obtained after the homogenization process are pre-
sented. Firstly, a preliminary convergence study to evaluate the required mesh density
and the scale of the RVE is shown. Afterwards, the training of the PCE-Kriging meta-
model is presented and numerical results are reported to evaluate its computational
efficiency and accuracy. The material properties of epoxy and glass spheres have been
taken from Ref. [36] and listed in Table 1.
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Table 1 Mechanical properties of the constituent phases of epoxy doped with glass micro-spheres

Epoxy polymer Glass spheres

Young’s modulus (GPa) 3.0 76.0

Poisson’s ratio 0.4 0.23

Radius (µm) – 20–35

4.1 Convergence analysis of the RVE length andmesh density

In order to assess the quality of the numerical RVE, two important aspects need to be
carefully appraised: the mesh density and the size of the RVE. The discretization of the
RVE must be fine enough to ensure that the isotropic homogenised constitutive tensor
C∗ is mesh independent. On the other hand, the length of the RVE must be defined in
such a way that it is effectively representative of the composite material as a whole.
Therefore, the size of the RVE must be defined after a convergence analysis, ensuring
that the estimates of the homogenised elastic tensor reach convergence values.

Figure 3 reports the convergence analysis of the mesh density, carried out on a
100 μm edge cell containing 31 particles, showing the Young’s moduli E1, E2 and
E3 versus the total number of nodes in the mesh. Following the constitutive relation
(10), the Young’s modulus in the i-th (i = 1, 2, and 3.) direction is represented by
the ratio between the stress and the strain along this direction, that is Ei = σi/εi .
Seven different meshes with increasing densities have been considering, including
6525, 12138, 42519, 90443, 158881, 231181 and 318727 nodes. Assuming the finest
mesh attains the real values, the 4th one—150000 nodes— presents differences with
the last one—320000 nodes—less than 0.5%.

A similar procedure has been carried out with the purpose of finding the minimal
cell size that assures the isotropy of the RVE. To do so, four different cubic cells
have been created, with edge lengths of 120, 180, 240 and 300 µm respectively. In
this light, ratios E1/E2, E1/E3 and E2/E3 are furnished versus the total number
of nodes in the RVE in Fig. 4. The composite material can be assumed as isotropic
when these ratios are close to 1 (within a certain tolerance). Due to the 3D nature of
the numerical model, increasing the edge sizes of the cell under study dramatically
raises the computational burden in the homogenization. For instance, while the RVE
with edge length 180 µm needs about 35 minutes to perform the homogenization, the
RVEs with edge lengths of 240 µm and 300 µm require more than two and ten hours,
respectively. As a consequence, a RVE size of 240 µm has been chosen as a trade-off
between accuracy and computational cost. Note that even the smallest cells also show
a good behaviour in terms of isotropy, although a greater size has been chosen in order
to minimize numerical approximation errors.

4.2 Surrogate modeling

Following the theoretical framework introduced in Sect. 3.3, a PCE-Kriging meta-
model has been constructed using 20 training points and validatedwith 10 independent

123



1566 Journal of Mathematical Chemistry (2022) 60:1555–1570

0 0.55 1.1 1.65 2.2 2.75 3.3
4.64

4.66

4.68

4.7

4.72
·10−3

E
1
(M

pa
)

nodes vs E1

0 0.55 1.1 1.65 2.2 2.75 3.3
4.7

4.73

4.76

4.79
·10−3

E
2
(M

pa
)

nodes vs E2

0 0.55 1.1 1.65 2.2 2.75 3.3
4.76

4.79

4.82

4.85
·10−3

number of nodes ×105

E
3
(M

P
a)

nodes vs E3

Fig. 3 Variation of the elastic constants Ei versus the total number of nodes of numerical RVEs of random
glass microsphere/epoxy composite

0 1.4 2.8 4.2 5.6 7
0.95

1

1.05

E
1
/E

2

nodes vs E1/E2

0 1.4 2.8 4.2 5.6 7
0.95

1

1.05

E
1
/
E
3

nodes vs E1/E3

0 1.4 2.8 4.2 5.6 7
0.95

1

1.05

number of nodes ×105

E
2
/E

3

nodes vs E2/E3

Fig. 4 Ratios of elastic moduli Ei /E j , i, j = 1, 2, 3 versus the edge length of cubic RVEs of random
glass microsphere/epoxy composite
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points. The variables included in the model are the particle size, ranging from 20 to
3 µm, and the volume fraction of particles, ranging from 0 to 20%. Both the training
set T and the validation set V have been selected by means of the Latin Hypercube
Sampling [37] procedure. To evaluate the accuracy of the surrogate model, the coef-
ficient of determination R2 and the normalized average absolute Error (NAAE) are
considered as:

R2 = 1 −
∑K

i=1

(
ŷ(i) − y(i)

)2

∑K
i=1

(
ȳ − y(i)

)2 , N AAE =
∑K

i=1|ŷ(i) − y(i)|
K

√
1

k−1

∑K
i=1

(
ȳ − y(i)

)2
, (25)

where V = {
x (1), . . . x (K )

}
is the validation set, and

Y =
{
y1 = M (x (1)), . . . , yK = M (x (K ))

}
(26)

Ŷ =
{
ŷ1 = M̂PCK (x (1)), . . . , ŷK = M̂PCK (x (K ))

}
(27)

are the outputs of the numerical model and the surrogate model evaluated on V ,
respectively.

The estimates of the surrogate model of the effective Young’s modulus and Pois-
son’s ratio random glass microsphere/epoxy composite are shown as functions of the
particles’ size and volume fraction in Fig. 5. The validation datapoints obtained by
the numerical homogenisation of the RVE are also depicted with red scatter points.
Overall, the Young’s modulus of the homogenised material is determined with error
measures of R2 = 0.9991 and NAAE = 0.0237, thus evidencing the great perfor-
mance of the PCK metamodel. It is noticeable in Fig. 5 that almost all the variability
of the material properties is due to the volume fraction of the reinforcement particles,
whit the particles’ size has almost negligible effect. This agrees with some previously
reported results in the literature (see e.g. [38, 39]). With regard to the estimation of
the effective Poisson’s ratio, error measures of R2 = 0.9983 and NAAE = 0.0320
are obtained, which also proves high accuracy in the metamodeling. It is also impor-
tant to remark the high computational efficiency attained by the developed surrogate
model. Specifically, while the numerical FEM takes about three hours for one single
homogenisation, the metamodel only takes a few seconds to perform 30,000 model
evaluations.

5 Concluding remarks and future work

In this study, highly accurate PCK surrogate models have been developed to bypass
the computationally intensive numerical homogenization of the elastic properties of
random glass microsphere/epoxy composites. To do so, numerical RVEs considering
random arrangements of glass microspheres embedded in epoxy have been developed.
The effective elastic properties of the RVEs have been obtained through numerical
homogenisation and periodic boundary conditions. On this basis, an experimental
design of 20 training points and 10 validation points have been obtained. Then, the
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Fig. 5 Young’s modulus and Poisson’s ratio of random glass microsphere/epoxy composites estimated by
the surrogatemodel as functions of the particles’ radius and volume fraction. The validation points computed
by the numerical homogenisation of 3D RVEs are denoted with red scatter points (Color figure online)

training dataset has been used to train the PCK surrogate models considering the
homogenised Young’s modulus and Poisson’s ratio as independent variables, and the
particle’s size and volume fraction as design parameters. The reported results evidence
that, although a limited training dataset comprising only 20 training points has been
used, the developed surrogate model exhibits high accuracy and extraordinarily low
computational evaluation times. The reported results demonstrate that the volume
fraction of the reinforcement particles critically determine the overall elastic properties
of the composite.

Ongoing research is focusing on the incorporation of more design variables in the
metamodeling, including the elastic properties of the constituent phases. Addition-
ally, future work will address the consideration of randomness and uncertainty in the
design variables. This will allow to evaluate the propagation of uncertainties in the
definition of the constituent properties to the effective elastic behavior of random glass
microsphere/epoxy composites.

In addition, the proposed scheme can be applied to the computationally intensive
molecular dynamics (MD) simulation [40]. A typical atomistic MD system computes
the forces between 100, 000 atoms, and through solving the Newton law of motion,
updates their position and velocity. This process must be replicated millions of times
and requires several days to complete on a standard HPC node. Communication algo-
rithms adapted to MD have been evaluated in terms of efficiency by using d-meshes
[41] or by an optimal dimension reduction scheme of the full original parameters space
[42]. In view of this, the calculation potential of PCK applied to MD simulation con-
stitutes a future work proposal, not only to characterize the macromolecular response
but also to analyze the relative importance of the input random variables involved
through an metamodel global sensitivity analysis study.

Another relevant chemical problem is the study of potential energy surfaces (PES).
A PES is a mathematical relationship between the energy of a molecule (or a set of
molecules) and its geometry. However, computing the energy of such system with
sufficient accuracy implies excessive computational requirements. In order to bypass
this problem, Kriging technique has recently been used to reduce the computational
burden of such problems [43]. However, we believe that PCK approach may could be
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of interest in this type of problems to obtain higher quality surrogate models, taking
also advantage of the good properties of both PCE and Kriging itself.
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