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Abstract
Purpose Near-infrared spectroscopy (NIRS) sensors measure muscle oxygen saturation  (SmO2) as a performance factor in 
endurance athletes. The objective of this study is to delimit metabolic thresholds relative to maximal metabolic steady state 
(MMSS) using  SmO2 in cyclists.
Methods Forty-eight cyclists performed a graded incremental test (GTX) (100 W-warm-up followed by 30 W min) until 
exhaustion.  SmO2 was measured with a portable NIRS placed on the vastus lateralis. Subjects were classified by  VO2max 
levels with a scale from 2 to 5: L2 = 45–54.9, L3 = 55–64.9, L4 = 65–71, L5 =  > 71, which represent recreationally trained, 
trained, well-trained, and professional, respectively. Then, metabolic thresholds were determined: Fatmax zone, functional 
threshold power (FTP), respiratory compensation point (RCP), and maximal aerobic power (MAP). In addition, power out-
put%, heart rate%,  VO2%, carbohydrate and fat consumption to cutoff  SmO2 point relative to MMSS were obtained.
Results A greater  SmO2 decrease was found in cyclists with > 55  VO2max (L3, L4 and L5) vs. cyclists (L2) in the MMSS. 
Likewise, after passing FTP and RCP, performance is dependent on better muscle oxygen extraction. Furthermore, the MMSS 
was defined at 27%  SmO2, where a non-steady state begins during exercise in trained cyclists.
Conclusion A new indicator has been provided for trained cyclists, < 27%  SmO2 as a cut-off to define the MMSS Zone. 
This is the intensity for which the athlete can sustain 1 h of exercise under quasi-steady state conditions without fatiguing.

Keywords Near-infrared spectroscopy (NIRS) · Muscle oxygen saturation · Exercise physiology · Metabolism and 
performance

Introduction

Currently, sports scientists and coaches use various param-
eters to classify performance in endurance athletes such as 
cycling and triathlon; among these, we find  VO2max, power 
and heart rate at different exercise intensities [1, 2]. During 

a graded exercise test (GXT) it is possible to obtain points 
and/or metabolic thresholds such as the fatmax zone, venti-
latory thresholds, maximum aerobic power (MAP) and the 
functional threshold power (FTP) [3, 4], which can be used 
in well-trained cyclists as a practical and non-invasive alter-
native to estimate the maximum lactate steady state (MLSS) 
[5]. Also, a key parameter is the respiratory compensation 
point (RCP), which allows distinguishing between fatigued 
and non-fatigued work, this occurs due to the worsening of 
metabolic acidosis produced by respiratory compensation 
and is identified by an increase in minute ventilation (VEQ) 
in relation to  CO2 production  (VCO2); this generally occurs 
at approximately 80% VO2max [6, 7]. The FTP and RCP 
show a similar physiological mechanism due to work under 
fatigue conditions [8, 9], which is related to the “maximum 
metabolic steady state” (MMSS), representing the highest 
metabolic rate at which exercise can be maintained almost 
exclusively by oxidative metabolism, representing the upper 
limit of sustainable exercise [10]. Therefore, MMSS is a 
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valuable component when prescribing personalised exer-
cise. Measuring metabolic thresholds is routine in cyclists 
and triathletes because they can accurately track the subtle 
improvements in endurance performance that elite athletes 
attain during a season.

Heart rate and power output are often used as indicators 
of workload. These parameters are of interest because of 
their relationship with oxygen consumption during training, 
as wearable watches and sensors are based on these param-
eters to calculate the energy expenditure [11, 12]. However, 
there are some problems in considering HR as an indicator 
of internal workload, because it shows variability in unsta-
ble conditions, for example in the transition from fatigue-
recovery states and psychological disorders such as stress 
[13]. Interestingly, in recent years portable sensors have been 
invented that measure muscle oxygen saturation  (SmO2), 
which is a variable that can be used to monitor training on 
a scale of 0–100% and is validated by brands such as port-
able MOXY [14], as used in cyclists and triathletes. From a 
scientific point of view, decreased  SmO2 is an indicator of 
better performance during cycling [15]. It also has a corre-
lation with  VO2, ventilatory thresholds and MLSS [16–18]. 
However, although there are studies that use  SmO2 during 
GXT to estimate ventilatory threshold points [17, 18] and 
training zones (moderate, heavy and severe intensity) [19], 
there are scientific gaps regarding the physiological behav-
iour during  SmO2 transitions in fatmax zone, FTP, RCP and 
MAP.  SmO2 during fatmax, FTP and CPR relative to MMSS 
could differentiate the performance level of athletes, since, 
as a general rule, performance is a mediator of daily training 
planning [20]. As such, there has been no response with a 
solid scientific basis, so it is important to reach an agreement 
and suggest a new proposal for the  SmO2 interpretation and 
its applicability as an internal load.

Therefore, the objective of this study was to delimit the 
MMSS by VO2max levels using SmO2 in trained cyclists; 
the following hypotheses are considered: (i) the use of SmO2 
during exercise can identify the performance level and meta-
bolic thresholds of the cyclists, and (ii)  SmO2 can be used to 
determine the approximate MMSS from the FTP and RCP 
breakpoints. The objective of this study was to delimit the 
MMSS by  VO2max levels using  SmO2 in trained cyclists.

Methods

Participants

The sample included was 48 trained cyclists and triath-
letes (Experience in endurance training 10.9 ± 4.9 years 
and Skinfold of the vastus laterialis (ATT) 10.7 ± 5.9 mm), 
performance was classified by performance levels using 
the  VO2max (ml/kg/min) with a scale from 1 to 5: level 

1: < 45; level 2: 45–54.9; level 3: 55–64.9 level 4: 65–71; 
level 5: > 71, representing untrained, recreationally trained, 
trained, well-trained, and professional subject groups, 
respectively [2]. For this study, level 1 is ruled out because 
the participants are athletes and no value < 45 of  VO2max 
was found. The descriptive values based on the physiologi-
cal parameters of the subjects are shown in the Table 1. No 
physical limitations or musculoskeletal injuries that could 
affect training were reported. This study was conducted 
during the agonistic season. The study was carried out in 
accordance with the Helsinki Declaration and approved by 
the Bio-Ethical Committee of the University of Extremadura 
with N° registration code: 131/2018. A signed consent was 
obtained from each subject prior to their participation.

Experimental design

The trial design was cross-sectional. Participants carried out 
the test under similar environmental conditions (21–24 °C 
and 45–55% relative humidity) and were asked to abstain 
from performing intense exercise 48 h prior to the test. 
Before the GXT, body mass and Skinfold of Vastus lateri-
alis values were ascertained. Then, a GXT was performed to 
obtain the physiological together with the  SmO2.

Performance assessments

Maximal graded exercise test (GXT)

First, a standardized warm-up of 10 min at 100 W was per-
formed, the set up consisted in increments 30 W·min-3 until 
exhaustion [21]. The end of the test was considered when 
the participant was unable to maintain the power output of 
each final completed stage. During GXT participants were 
monitored through a gas exchange measurement system/
device with breath-by-breath technology and calibrated 
before each test (Metalyzer 3b, CORTEX Biophysik GmbH, 
Leipzig, Germany). Each participant used their own bike 
mounted on a smart training device (Bkool, model Bkool 
one; Madrid, Spain). The protocol was completed with a 
PowerTap P1 (PP1), which produced reliable output power 
readings of 100–500 W, in a seated position (rho ≥ 0.987), 
and an absolute reliability index (150–500 W; COV = 2.3%; 
SEM < 1.0 W) [22]. The PowerTap during cardiopulmo-
nary tests are more ecologically valid, allowing cyclists 
to use their own bicycles [22]. HR was collected via a HR 
monitor (HRM-Tri; Garmin Ltd., Olathe, KS, USA). The 
smart trainer assessed power with internal sensors that were 
paired to a smartwatch for future analysis (Forerunner 735xt, 
Garmin,Olathe, KS, USA). Finally, when GXT was finished, 
a drop of capillary blood was drawn for lactate measurement 
(Lactate Pro 2, Arkray Factory, Inc., Amstelveen, The Neth-
erlands), after 3 min of passive recovery [23].
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Muscle oxygen saturation assessment

Local muscle oxygen saturation (SmO2) was assessed with 
a near-infrared spectroscopy (NIRS) device (MOXY, For-
tiori Design LLC, Minneapolis, Minnesota, USA). Which 
is valid for measuring  SmO2 (ICC: r = 0.773–0.992) [24]. 
It was attached firmly to the belly of the right vastus later-
alis muscle (midway between lateral epicondyle and greater 
trochanter of femur) using a dark elastic strap to avoid light 
contamination and movement artifacts. The vastus lateralis 
was selected based on previous evidence and considering the 
role of this muscle in cycling [25]. The skinfold thickness 
at the NIRS measurement site (VL) was measured using a 
skinfold caliper (Harpenden Ltd.) to ensure that the skin-
fold thickness was < 1/2 of the distance between the emit-
ter and the detector. (25 mm). The raw muscle O2 satura-
tion (SmO2) signal was treated with a soft spline filter to 
reduce noise created by movement [26] using a Minitab 19 
(Minitab, Inc, State College, PA; www. minit ab. com, USA).

For the data analysis the following guidelines were 
followed:

(1) The average value of the last minute of the 3-min step 
was used.

(2) Data was excluded when changes in  SmO2 > 10% were 
observed, compared to the previous  SmO2 value, this 
was considered as measurement error.

(3) Data that gave 0% of reading were excluded due to the 
apparent lost signal. The data was viewable in real time 
to the NIRS technology expert researchers and muscle 
oxygenation measurement, using ANT + technology 
software (Golden Cheetah version 3.4, USA) and joint 
data processing software (Excel 2016, Microsoft Office 
365, USA).

Gas exchange analysis to determine metabolic 
thresholds

Fatmax Zone: The Fat oxidation (FAT), carbohydrate oxi-
dation (CHO) were calculated using appropriate stoichio-
metric equations [27] and energy equivalence, based on 
the measured values achieved

Data analysis to determine Fatmax involved the meas-
ured values approach in the stage with the highest recorded 
fat oxidation value and the corresponding ̇VO2 [21].

FAT
(
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)

= (1.67 × VO2) − (1.67 × VCO2) ∗ 9,
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Maximum Metabolic Steady State (MMSS): MMSS is 
considered to be the highest oxidative metabolic rate that can 
be sustained during continuous exercise. However, there are 
several indices that are often used to identify the MMSS [28]

1. Functional Thresholds Power (FTP): The FTP was cal-
culated with the maximum incremental cycle test meth-
odology until exhaustion to find the resulting maximum 
power, from which the FTP is obtained by the following 
equation [29]:

2. Respiratory Compensation Point (RCP): The RCP is 
defined as the anabrupt and positive ‘‘acceleration’’ 
in VE/VO2 versus  VO2 and VE/VCO2 versus  VO2 data 
[30], and was confirmed by a simultaneous reduction 
of the end-expiratory pressure of  CO2 [20] This was 
determined by 2 independent exercise physiologists by 
visual inspection. We also provide the VEQ values as a 
reference for each performance group. V-slope load was 
identified in that intensity of exercise which, in a plot of 
the minute production of  CO2 over the minute utilization 
of oxygen  (VO2), shows an increase in the slope above 
1.0 [31]. The  VO2max was defined as the highest plateau 
(two successive maximal within 150 mL·min−1, averag-
ing the data every 5 s) reached [32].

3. SmO2 Transition to metabolic threshold: The transition 
point of muscle oxygenation was identified as the differ-
ence in the  SmO2 values from FTP to RCP/VT2.

Statistic analysis

A descriptive analysis of the data extracted from the incre-
mental test was applied and the Shapiro Wilk normality 
test was applied for each variable. When normality was 
reached, the two-way repeated measures analyses of vari-
ance ANOVA test was performed to identify the effects of 

FTP = Outputpower(W) × 0.865 − 56.484.

the two categories:  VO2max levels and metabolic thresholds 
relative to MMSS. Then a bonferroni post hoc was applied 
to identify the internal differences between the groups. In 
addition, the receiver operating characteristic (ROC) curves 
was used to establish a cutoff for  SmO2 at the MMSS value, 
and the area under curve (AUC) was used to evaluate the 
performance of a classifier, where the threshold cut-off val-
ues were defined by the points representing the highest con-
comitant sensitivity and specificity, the AUC was interpreted 
according to with the following guidelines: not informative 
(AUC = 0.5), less accurate (0.5–0.7), moderately accurate 
(0.7–0.9), high precision (0.9–1) and perfect discriminatory 
test (AUC = 1.0) [33]. Also, a differential analysis of the per-
formance variables was performed using the  SmO2 cut-off 
established in relation to MMSS. The level of significance 
was established at p < 0.05 with 95% confidence intervals. 
The results were expressed as mean ± standard deviation. All 
analyzes were performed with SPSS software (version 22).

Results

Table 1 shows the mean values of the general physiologi-
cal parameters during a GET, differences were found in 
level 2 vs level 3,4 and 5, in the variables weight, VO2max 
(p ≤ 0.001), HRmax (p ≤ 0.001), Resting HR (p ≤ 0.001), 
Lactate (p ≤ 0.001), Power W (p ≤ 0.001), Fat% (p = 0.000) 
and SmO2 (p ≤ 0.005), observing a worse performance at 
level 2.

Table 2 shows the SmO2 values comparing by perfor-
mance levels in the metabolic thresholds: Fatmax, transi-
tion between FTP and RCP and MAP. Differences were 
found in level 2 vs level 5 (FO Δ = 17 p ≤ 0.005; FTP ∆ = 14 
p ≤ 0.001; RCP Δ = 17 p ≤ 0.001; MAP Δ = 12 p ≤ 0.001). 
Likewise, differences were found between level 2 vs level 
3 and 4 in  SmO2 at the FTP and RCP  (SmO2 difference of 

Table 2  Comparison of muscle oxygen saturation (%) by  VO2max levels during metabolic thresholds in cyclists and triathletes

Results are presented as mean ± SD
*Significantly different between levels (p < 0.05), pos hoc analysis = (a) 2 vs. 5; (b) 3 vs. 5; (c) 4 vs. 5; (d) 2 vs. 3; (e) 2 vs. 4; (f) 3 vs. 4

Levels VO2max 
(ml/kg/min)

SmO2
Fatmax

Maximal Metabolic Steady State SmO2
Maximum 
Aerobic Power 
(MAP)

SmO2 breaking 
point to FTP

SmO2 Transition to 
metabolic threshold

SmO2 breaking point 
to RCP/VT2

1L  < 45 – – – – –
2L 45–54.9 59 ± 21 (30–93) 42 ± 14 (34–45) 2 ± 0.1 40 ± 15 (34–42) 22 ± 14 (10–40)
3L 55–64.9 53 ± 10 (36–70) 31 ± 8 (28–33) 5 ± 0.5 26 ± 8 (25–28) 19 ± 6 (15–22)
4L 65–71 48 ± 14 (42–54) 30 ± 14 (26–32) 6 ± 0.7 24 ± 10 (23–25) 10 ± 2 (7–14)
5L  > 71 42 ± 8 (35–50) 28 ± 10 (26–28) 5 ± 0.4 23 ± 4 (20–25) 12 ± 3 (10–15)

Pos-hoc a a, d, e a, e 
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levels 2 vs levels 3 and 4 Δ = 18; Δ = 21; Δ = 22; p ≤ 0.001 
and Δ = 13; Δ = 16, respectively).

Figure 1 represents the ROC curve to assess the cut-off 
of  SmO2 and maximum metabolic steady state in relation to 
FTP and CPR, established from VO2max level 3 (> 55 ml/
kg/min). We found an 63% (AUC) with a SE = 0.039; 
p = 0.001 and lower and upper limits = (0.55–0.70%), which 
indicates a value of 26.80 for  SmO2, Sensitivity = 0.595 
and Specificity = 0.558, hence we propose 27%  SmO2 as an 
approximation to MMSS and < 27  SmO2 as a reference for 
the fatigue thresholds.

Figure 2 shows differences by  VO2max levels with the 
SmO2 kinetics during GET. First, we observed better MSSS 
and better  SmO2 performance at levels 4 and 5 (W:289 ± 51; 
 SmO2: 26 ± 8 and L5 = W: 301 ± 25;  SmO2: 24 ± 4) vs 2 and 
3 (L2 = W: 214 ± 35;  SmO2: 40 ± 14 and L3 = W: 252 ± 41; 
 SmO2: 29 ± 8 p ≤ 0.001). It was also observed that levels 3, 
4 and 5 use less  SmO2 than level 2 after passing MMSS (L:3 
9 ± 6; L4:10 ± 7 and L5: 7 ± 8 vs 15 ± 8 p ≤ 0.001).

Likewise, we highlight that before exceeding the MMSS, 
the use of oxygen is similar in all the performance groups 
where no difference was observed (L2: 26 ± 15; L3: 28 ± 17; 
L4: 27 ± 19 and L5: 22 ± 18, respectively). Finally, it can be 
seen that in levels 3, 4 and 5 the  SmO2 vs the output power 
is reached close to 27%, in level 2 a delay is observed and 
 SmO2 at the MMSS is greater than 27% (possibly between 
40 and 45%).

Table 3 shows the differences by  VO2max levels, using 
the reference point of 27%  SmO2, considering it as a fatigue 
threshold, once the MMSS is exceeded. Also, shows physi-
ological parameters. Differences were found between level 
2 y 3 with the level 5 in time (L5 vs. L2: Δ = 4.0 p ≤ 0.005; 
L3: Δ = 2.0 p ≤ 0.001) and W/kg (level 5 vs level 2:Δ = 0.71 
p ≤ 0.005; level 3: Δ = 0.44 p ≤ 0.005), also is observed that 
the level 5 group consumed more fat when reaching the 
30%  SmO2 point (L5 vs. L2: Δ = 2.1 p ≤ 0.001; L3: Δ = 1.9 
p ≤ 0.001 Δ = 1.7 p ≤ 0.001). 

Discussion

This study used  SmO2 to check performance differences 
by  VO2max levels through the measurement of metabolic 
thresholds associated with MMSS such as FTP and RCP. The 
main finding is that subjects trained from a  VO2max > 55 can 

Fig. 1  An analysis of the receptor operating characteristics (ROC) 
curve to evaluate the cut-off for muscle oxygen saturation and maxi-
mum metabolic steady state

Fig. 2  Reference of muscle oxy-
gen saturation at the maximal 
metabolic steady state: compari-
son by  VO2max levels
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take into consideration  SmO2 values of  < 27% as the inter-
nal training load nears FTP and RCP. Also, it is assumed 
that below 27%  SmO2 the maximum metabolic steady state 
occurs and is observable by critical oxygenation, as recently 
discovered by Feldmann and Erlacher [34].

According to the findings, athletes with a greater training 
status (higher  VO2max levels) achieved a better performance 
in reducing  SmO2 values [15]. A greater  SmO2 decrease 
is related to power output increase [24, 34]. Likewise, our 
study determined that  SmO2 in the fatmax zone only showed 
a difference with athletes of Level 5 “ > 71  VO2max” vs. 
Level 2 “ < 55  VO2max”; however, in the MAP zone there 
is only a difference between the greater capacity “ > 65 
 VO2max”. This explains that the differences between ath-
letes in energy expenditure during high-intensity exercise 
and the use of muscle oxygen to generate ATP as metabolic 
fuel [35]. Figure 2 also shows a greater  SmO2 decrease in 
athletes with higher  VO2max after passing the FTP and CPR 
breakpoint. Therefore, fatigue resistance depends on the 
ability to maintain critical oxygenation (CO) over time with 
lower  SmO2 values [19]. OC is the ability of the muscle to 
maintain adequate oxygen supply to match oxygen demand 
as the basis for steady-state exercise theory [34, 36]

In our study, athletes >  65VO2max achieved greater 
desaturation levels than less highly trained athletes; this is 
supported by Fontana et al. [37], who found that the oxy-
gen used after passing the RCP is lower and depends on the 
capacity for ATP production that comes from non-oxidative 
metabolic pathway. To explain the physiological mecha-
nisms of the progressive decrease in  SmO2 and increase in 
 VO2 from a systemic perspective, it is the result of a linear 
increase in cardiac output (i.e., systemic blood flow) and 
a hyperbolic increase in the arterio-venous  O2 difference 
(that is, systemic  O2 extraction) until depletion [38]. Port-
able NIRS-derived local  O2 extraction  (SmO2) within active 
tissues does not show the same hyperbolic profile as sys-
temic measurements, indicating that the central and periph-
eral profiles of  O2 extraction and blood flow are different 
[39]. However, these studies did not discuss the changes 

in metabolic pathways within the muscle, which, once the 
MMSS-related with fatigue thresholds are exceeded, are 
less dependent on oxygen to generate power [40–42]. As a 
results, there is a muscle  O2 extraction reserve that can only 
be used at the GTX end, that is, at high intensities (> 85% 
 VO2max), which is observable in a greater  SmO2 decrease 
and greater oxygen extraction capacity by the muscle [43]. 
This was seen in our study, as higher  VO2max can desaturate 
more oxygen, so  SmO2 can be considered as a performance 
factor in high intensity exercise.

Likewise, a better interaction between the supply and 
extraction of  O2 by the muscle depends on the recruitment 
of motor units covered by the muscle fibres; in this sense, 
the type II fibres are activated to a higher level after the FTP 
and RCP breakpoints, and, therefore, there is a metabolic 
pathway change; being an ‘oxygen independent’ energy sys-
tem [44], a lower extraction of muscle oxygen was observed 
since type II fibres have less oxidative capacity and need 
less oxygen to function, but they achieve better performance 
in the high-intensity zones due to their glycolytic capacity 
to maintain a greater force and power production [42, 43]. 
This, has also been demonstrated in the greater progressive 
recruitment of fast-contracting motor units (type II fibres) 
in the vastus lateralis muscle with EMG at the end of the 
exercise (> 80%) where there is less extraction of tissue oxy-
gen [45].

On the other hand, among the factors that explain the 
 SmO2 decrease after FTP and RCP are an increase in the 
oxygen partial pressure and hydrogen (H), a decrease in 
pH and the  CO2 partial pressure within the active muscles 
[46], which cause a vasodilator response when the high 
intensity exercise cannot be sustained [47]. The demand 
of oxygen extraction then follows in a hyperbolic and non-
linear way, due to the muscles’ attempts to restore PCr/
ATP by the non-oxidative pathway, which is why small 
increases in muscle oxygen occur during the heavy and 
severe intensity domains  (VO2 phase II and III) [43]. Like-
wise, previous studies determined that the  VO2 slowing 
at the exercise end causes an increase in the respiratory 

Table 3  Comparison of physiological parameters at “27%  SmO2” by performance levels in cyclists and triathletes

Results are presented as mean ± SD
*Significantly different between levels (p < 0.05) = (a) 2 vs. 5; (b) 3 vs. 5; (c) 4 vs. 5; (d) 2 vs. 3; (e) 2 vs. 4; (f) 3 vs. 4

Levels VO2max (ml/
kg/min)

Time
(min)

VO2max (%) Heart Rate (%) Power (W%) Carbohydrates
(Kcal/min)

Fat (Kcal/min) W/Kg

1L  < 45 – – – – – – –
2L 45–54.9 13 ± 4 80 ± 14 87 ± 13 89 ± 18 10.8 ± 3.3 2.4 ± 2.9 3.2 ± 1.0
3L 55–64.9 14 ± 3 75 ± 12 87 ± 8 80 ± 24 12.6 ± 2.5 2.2 ± 1.9 3.3 ± 0.7
4L 65–71 16 ± 3 67 ± 10 85 ± 3 72 ± 12 11.7 ± 3.8 3.2 ± 3.0 3.5 ± 0.8
5L  > 71 18 ± 7 66 ± 8 82 ± 7 72 ± 11 11.4 ± 4.6 6.1 ± 2.9 3.9 ± 0.7

Pos-hoc a, b a, b, c a, b
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muscle work, and this attenuates the increase in blood flow 
and  O2 transport in the legs [48]. This also supports the 
proposal to use < 27%  SmO2 in trained subjects, not as a 
breakpoint but rather as a fatigue threshold. Therefore, it 
is necessary to understand that critical oxygenation occurs 
after this threshold < 27%  SmO2.

Finally, we highlight that there is already a breakpoint in 
oxygenated HBO within the muscle; that is, in a similar way 
to  SmO2, the signal from this breakpoint is a reliable bio-
marker of exercise intensity which is closely associated with 
 VO2 at the RCP [49, 50], since it occurs at the same meta-
bolic rate [37]. The RCP is close to 27% SmO2 (between 26 
and 30%) observed in AUC (Fig. 1), which indicates that the 
MMSS may be before or after 27% SmO2, depending specif-
ically on the degree of training. In this sense, Table 3 shows 
that when comparing all of the performance variables at the 
established point from 27% of each subject, no differences 
were found. This means that a gold-standard point within 
the  SmO2 scale (0–100%) demarcates the intensity domain; 
because it will always be the same value. For example, with 
improvements in the  VO2max% level, the fatigue zone would 
be delayed and better tolerated. Therefore, we suggest that 
the  SmO2 value relative to MMSS represents the same meta-
bolic rate for all groups. Our study found differences only 
in fat consumption (kcal/min) and with the greater capacity 
to produce power per weight (W/kg) in Level 5 vs Level 2 
because the oxidative capacity resulting from the greater 
use of oxygen by type II fibres is inversely correlated with 
exercise economy and a lower capacity to produce power 
output [51]. It was observed that those at Level 5 maintained 
more power with the use of lower VO2max% (Table 3). This 
approach should be tested with different training programs 
and GXT protocols.

Limitations and recommendations

A limitation of our study was the non-measurement of 
critical power (CP), which denotes the transition from 
the intensity of heavy-severe exercise with relatively lit-
tle error (SE, 11%), while the MMSS tend to underesti-
mate by 11%. Also, RCP and VT2 overestimate CP by 6 
and 21%, respectively [52]; therefore, 27%  SmO2 is not an 
exact point and may overestimate some untrained athletes 
and non-cyclists. Also, during training, the cadence must 
be taken into account, since the use of muscle oxygenation 
is affected by acceleration [53]. Although there were small 
differences in the use of CH, HR%, power% and  VO2max% 
in our study (Table 3), they were not statistically significant. 
This does not mean that it is not possible to train for targets 
over fatigue threshold or set point of < 27%  SmO2, but this 
must be tested with seasonal training effects.

Conclusion

To summarise, trained cyclists and triathletes with a > 55 
 VO2max (ml/kg/min) could use values lower than 27% 
 SmO2 as high-intensity zones and breakpoints relative to 
FTP and RCP, which is the intensity at which the athlete 
can sustain 1 h of exercise in quasi-steady-state conditions 
without fatiguing. Also, a greater  SmO2 decrease is better 
in more highly trained athletes, this can be used to measure 
peripheral adaptations to training.
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