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A B S T R A C T

For numerical modelling of dynamic problems, absorbing boundary conditions (ABC) are necessary to attenuate
reflected waves (’box effect’). Different approaches have been developed for this numerical issue, being the
viscous damper (VD-ABC) widely employed. The VD-ABC is not frequency dependent but a total attenuation
is never achieved, and hence a tentative enlargement of the computational domain is adopted. Relevant issues
on VD-ABC are integrative assessment by a signal processing approach. One and two-phases (dry and saturated
soil, respectively) time-domain responses have been considered besides spectral properties and energy content.
P-wave velocity has been modified to consider the fluid bulk modulus. ABC affect differently to each variable,
being the vertical displacement the less sensible. Higher frequencies present great discrepancies although their
energy contribution to the overall signal is not relevant. The results with VD-ABC yield to a feasible reduction
of the size of the computational domain, maintaining the required accuracy.
1. Introduction

In dynamic finite element models (FEM), artificial boundary
schemes are necessary to simulate the continuity of the media and
modelling the radiation of energy outwards of the truncated and finite
computational domain. The use of fixed conditions (displacements
restricted) is inappropriate because of the spurious oscillations that
are reintroduced into the computational domain, when the no-damped
waves in the media reach the boundaries, generating reflected waves
(’box effect’). This effect can seriously alter the computed solution
in the area of interest. Nowadays, this numerical drawback has not
been completely solved, and different numerical approaches are con-
tinuously being developed for addressing this issue from different
frameworks and scopes [1–7].

Focusing on time-domain FEM, they are mainly called as ’absorbing
boundary’ (ABC), but other denominations can be found in the liter-
ature (’Transmitting Boundary’, ’Silent Boundary’, ’Radiating Bound-
ary’, ’Transparent Boundary’, ’Quiet Boundary’, ’Non-reflecting Bound-
ary’ among others). Despite the published approaches, a predominant
methodology for ABC is not established yet, and the pioneer viscous-
damper ABC proposed by Lysmer and Kuhlemeyer [8] is the most
widely employed nowadays. Moreover, several approaches formulated
by other researchers derive into the viscous-damper formulation in
some cases. On the other hand, the researches developed for two-phases
media, such as saturated soils, are very limited.
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Artificial boundaries can be placed far enough from the area of
interest of the model (’Extended boundary’), in order to attenuate
the waves by means of the material damping, before they reach the
boundaries. However, this usually implies a significant increment of the
computational effort. Usually, an suitable ABC scheme and a moderate
extension of the domain are employed together for assuring the accu-
racy and computational efficiency of the model. The selection of the
proper computational domain size is also a relevant task in this topic.
In common practice, a few random time-histories are usually compared
to fit the domain. For fixed boundary conditions, it is expected that the
computed solution improves with the increment of the computational
domain. However, when ABC are applied, it is not easy to verify
whether an enlargement of the domain implies a relevant improvement
on the result or not, despite the increment in the computational cost. In
both cases, the comparison of time-history responses can be tedious and
not enlightened because multiple waves can be superposed, especially
in problems with complex loads.

In this research, a signal processing approach has been applied to
analyse the influence of the viscous-damper ABC in dry and saturated
problems (𝑢 − 𝑝𝑤 Biot’s formulation). For saturated problem, the p-
wave velocity has been modified by means of the bulk modulus of
the fluid according to the expression developed by Yang [9], which
can be implemented in any standard FEM code. According to the
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literature, the efficiency of this viscous-damper ABC is affected by the
angle of incidence of the waves in the boundary. However, complex
phenomena of interaction between the waves in the medium and with
the boundaries progressively transform the resulting signal when it
arrives to the area of engineering interest, which is normally far enough
from the boundaries. To analyse these complex wave transformation
processes, almost 9000 time-history responses have been monitored in
a spatial grid for different types of variables (displacement, stress and
pore pressure). Each time-history has been treated like a signal using
the following signal processing schemes: amplitude and phase response
spectra, directional spectra, energy content by the Parseval’s relation,
bandwidth and spectral coherence. A suitable numerical model has
been developed, preventing the attenuation of the waves by other
damping sources, and considering four computational domain sizes
(small, intermediate, large and huge) for comparison purposes. In
summary, three relevant novelties can be highlighted in this research:
1. the generalization of viscous dampers for two-phase media (saturated
soil), supported on a modification of the p-wave velocity by considering
the fluid bulk modulus in a u-pw Biot’s formulation; 2. the influence of
the viscous dampers on each response variables (stress, displacement
or pore pressure), which has not been systematically analysed before
in the literature; and finally, 3. the influence of each variable on this
numerical issue in the time-histories of each variable, such as the
enlargement of the computational domain, distance and orientation
of the boundaries (rather than the angle of incidence only), which
represent an integrative assessment attending the spectral properties
and energy content of each response by means of a signal-processing
approach, in both dry and saturated problems.

This paper is organized as follows: first, a literature review is
presented, where the general techniques to approach ABC for one
and two-phase media are presented. After that, the generalization of
viscous dampers ABC in saturated media for coupled 𝑢−𝑝𝑤 formulation
adopted in this research is described, describing its numerical imple-
mentation in a FEM code and the corresponding validation examples.
Then, the responses of viscous dampers ABC are analysed by a specific
numerical model. The corresponding time-history responses are jointly
analysed from a signal processing approach. Finally, the most relevant
conclusions derived from this research are highlighted.

2. Literature review

In a semi-infinite elastic media subject to dynamic loading, two
types of waves, body (longitudinal or P-waves and transverse or S-
waves) and surface, can be propagated [10]. For the numerical treat-
ment of the artificial boundaries, aiming to reduce the spurious re-
flected waves on the boundaries, mainly P-waves and S-waves are
considered. A brief review of the main reported procedures to avoid
these reflections is presented next, including those specific for saturated
porous media.

2.1. General techniques to approach ABC for one-phase media

In the literature, different numerical techniques can be found to
implement absorbing boundary conditions (ABC) both for frequency-
domain problems and for time-domain problems, which is the frame-
work considered in the present research.

The pioneer work developed by Lysmer and Kuhlemeyer [8] is the
most successful and widely employed methodology nowadays [11,12].
They used viscous damping forces by means of viscous dampers located
on the boundaries to try to absorb those longitudinal and transverse
waves that reach the boundary, avoiding (or reducing) the reflection of
energy into the computational domain. The efficiency of this technique
does not depend on the frequency content of the waves, but on the
angle of incidence of the body waves on the boundaries. When waves
incise normally to the boundary, the ABC proposed by Lysmer and
Kuhlemeyer presents a perfect absorption, and almost perfect when the
2

angle is higher than 30◦. Slight reflections occur for lower angles of
incidence, although they have been scarcely quantified in the literature
for 2D problems [8,11].

Later, Smith [13] proposed an alternative technique regardless of
frequency-content or angle of incidence of the waves, based on the
superposition of the solution obtained from two opposite 2D-problems
with different boundary conditions, so the reflected waves are can-
celled. This procedure requires an enormous computational cost and
implies linear responses.

Clayton and Engquist [14] extrapolated the ’Paraxial Boundary’ to
a two-dimensional scalar and elastic wave equation, Eq. (1):
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑧2
− 1

𝑣2
𝜕2

𝜕𝑡2

)

𝑢 = 0 (1)

where 𝑣 is the velocity of the wave, 𝑢 is the displacement, 𝑥 and 𝑧 are
he spacial coordinates, and 𝑡 is the time. After solving this equation,
wo waves with equal amplitude and opposite direction of propagation
re obtained: one wave goes out of the domain whereas the other one
oes in. The target of a paraxial approximation is to find a differential
quation to allow the development of the out-waves only, neglecting
he in-waves.

After the solution of Eq. (1), the wave number 𝑘𝑥 (Eq. (2)) is
btained, where 𝜔 is the angular frequency of the wave, 𝑘𝑥 and 𝑘𝑧 are
he wave numbers in 𝑥 and z, respectively, and the sign ± corresponds
o the in-wave and out-wave. The sign associated to the in-wave must
e chosen to cancel it (𝑘𝑥 = 0). The term

(

𝑣𝑘𝑧
𝜔

)

can be approximated
with different orders, resulting in the paraxial boundary condition. It
must be highlighted that for a first-order approximation, this approach
coincides with the viscous-dampers conditions proposed by Lysmer
and Kuhlemeyer [8]. For higher-order of approximations, numerical
instabilities can appear though. This technique is convenient for finite
difference models.

𝑘𝑥 = ±𝜔
𝑣

√

1 −
(

𝑣𝑘𝑧
𝜔

)2
(2)

For finite element models, Liao and Wong [15] proposed the
methodology known as ’Extrapolation Boundary’ which is based on a
prediction of the boundary displacement computed from an extrapo-
lation of the displacements of the surrounding points. This method is
also related with the concept of paraxial approximation but avoiding its
numerical instabilities, although a large amount of data must be stored
and it could fail when several waves arrive to the boundary at the same
time.

Higdon [16] proposed the ’Multi-directional Boundary’ which is
based on a collection of first-order differential operators. This type of
boundary allows a total absorption of the waves for some particular an-
gles of incidence. By means of the multiplication of several differential
operators this formulation can be generalized to waves with other an-
gles of incidence. For some particular case, this method coincides to the
paraxial approximation. In practice, only the product of two or three
operators is possible, since the reiterative use of higher-order difference
operators is complex to define in an FEM, and moreover, it could trigger
in instability issues. Therefore, ’Multi-directional Boundary’ does not
result in a practical relevant advance, in terms of its accuracy respect
to others techniques, despite of its complex implementation.

Other researchers like Givoli and Hagstrom [17–20] have proposed
different approaches to achieve a non-reflecting boundary conditions
of any order (’High-order ABC’) avoiding the issues pointed out by the
Higdon’s formulation. A review of this high-order methods can be found
in [21].

’Perfectly Matched Layers’ (PML) [22] is another relevant and al-
ternative technique, developed originally for electromagnetic waves. In
this approach, an extra additional layer surrounding the computational
domain is added, with the aim of causing an exponential decay of
the out-waves when they come in this layer, avoiding reflected-waves.
Any frequency or angle of incidence can be absorbed. This method has
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mainly been used in frequency-domain problems, although researchers
like Basu and Chopra [23] tried to expand it to the time-domain. The
accuracy of ‘PML’ is higher than the conventional viscous boundary
although its computational cost increases from 1.5 to 1.75 times and
can be inaccurate for some particular types of waves [11,23].

Researchers like Rabinovich et al. [20,24] or Lancioni [22] com-
pared the ‘PML’ with the ’High-order ABC’ for a 1D-problem both in
the frequency-domain and time-domain, concluding that, in general,
’High-order ABC’ are more accurate than ‘PML’, and its computational
cost is lower. However, the numerical implementation of ‘PML’ in a
finite element code is easier, whereas the implementation of the ’High-
order ABC’ is not trivial, since some modifications of a standard code
are necessary and an especial treatment of the corners of the domain
are necessary.

2.2. Approaches for ABC in saturated porous media

ABC in saturated porous media have been scarcely investigated in
comparison with solid media or dry soils. A wide review was pub-
lished by Zerfa and Loret [25]. Several approaches are reported in the
literature but none of them clearly predominates yet.

In a two phases medium (solid and fluid), three types of waves can
appear, two longitudinal and one transverse [26]. The velocity of the
first longitudinal wave (the highest velocity) depends on the elastic
modulus (𝐸) and Poisson’s coefficient (𝜈), whereas the velocity of the
second longitudinal wave depends on loading frequency and perme-
ability. This second wave is usually neglected because it is quickly
attenuated with depth and dissipates energy by diffusion [25–27].

Degrande and Roeck [28,29] developed an ABC for dynamic prob-
lems in saturated media supported on the Biot’s formulation, trying to
cancel the amplitude of the reflected waves and establish a relationship
between effective stress and pore pressure with the displacement of
the boundary. These ABC are frequency-dependent so they are suitable
for frequency domain problems. For the first longitudinal wave, they
verified that the solid phase and pore pressure displacements are in-
phase, whereas they are out of phase for the second longitudinal
wave which is attenuated. For low-frequency input loads, there is an
important viscous coupling between the solid and fluid phases, and
therefore, the two-phase medium behaves similarly to a one-phase
medium, neglecting the relative displacement of the fluid phase respect
to the solid, and therefore the resulting ABC are equivalent to the
viscous-dampers proposed by Lysmer and Kuhlemeyer [8]. On the other
hand, for a loading with high-frequency content, the viscous coupling
between phases disappears and the saturated porous medium behaves
like a non-dissipative porous medium.

Modaressi and Benzenati [27] applied the previously discussed
paraxial approximation to saturated porous media through the Biot’s
theory, with the 𝑢− 𝑝𝑤 formulation in a frequency-domain framework.
They assumed a linear elastic response and that the permeability is
constant and non-frequency dependent obtaining three waves, two
longitudinal (𝑣𝑝1 , 𝑣𝑝2 ) and one transverse (𝑣𝑠), Eq. (3).

𝑣2𝑝1 = 𝐶2
𝑝

[

1 + 𝑄∗

𝜆 + 2𝜇

]

𝑣2𝑝2 = 𝑖𝜔𝑘′𝑄∗
[

𝜆 + 2𝜇
𝜆 + 2𝜇 +𝑄∗

]

(3)

𝑣2𝑠 = 𝐶2
𝑠

where 𝐶2
𝑝 = (𝜆 + 2𝜇)∕𝜌, 𝐶2

𝑠 = 𝜇∕𝜌 and 𝜌 = (1 − 𝑛)𝜌𝑠 + 𝑛𝜌𝑓 ; 𝜆 and 𝜇 are
the elastic Lame constants; 𝑄∗ is the coupled soil–fluid compressibility;
𝑘′ is the permeability; 𝑛 is the porosity; 𝜌𝑠 and 𝜌𝑓 are the solid particle
and fluid density, respectively; 𝜔 is the angular frequency and 𝑖 denotes
the imaginary number.

When the quotient is 𝑄∗∕(𝜆 + 2𝜇) ≫ 1, two longitudinal waves
propagate in the medium. The first P-wave (𝑣𝑝1 ) does not depend on
the frequency and can be defined similar to 𝐶 plus a complementary
3

𝑝

term which depends on soil–fluid compressibility. The second P-wave
(𝑣𝑝2 ) is attenuated and its velocity is proportional to the square of the
angular frequency of the solicitation and the permeability. When the
quotient is 𝑄∗∕(𝜆 + 2𝜇) ≪ 1, the first P-wave travels with a velocity
equivalent to the longitudinal wave in a one-phase medium, while the
second P-wave is attenuated too, and the velocity is proportional to the
permeability, the frequency and the fluid compressibility.

According to the Modaressi and Benzenati’s proposal, Akiyoshi
et al. [30] extrapolated the paraxial approximation to other formu-
lations (𝑢 − 𝑝𝑤, u-w, u-U), and to a non-linear 2D problem obtaining
satisfactory results even in problems with high non-linearities. In both
researches, despite the followed approach, the ABC obtained keep some
similarities to the viscous-dampers.

Gajo et al. [31] developed a ’Multidirectional absorbing boundary’
for a two-phase elastic saturated porous medium, with an u-U formula-
tion based on the Biot’s theory. They analysed two extreme cases, with
high and low permeabilities. In the case of high-permeability, where the
high-frequency content is relevant and the viscous coupling between
solid and fluid phases is low, two longitudinal and one transverse waves
develop. In the case of low-permeability, where the high-frequency
content is less relevant, the solid–fluid viscous coupling is high and
the medium behaves like a one-phase, and only one longitudinal and
one transverse waves appear. Similar behaviour were outlined by other
researchers [26,28,29]. The transition between high and low coupling
states occurs for a short range of permeabilities and frequency-contents,
hence the modifications in the wave velocities are very limited, and
the possible spurious reflections are low for intermediate cases. For
high permeability, the velocity of the wave does not depend on the
frequency. For low permeability, where the porous medium behaves
like one-phase, the results coincide with the approaches proposed
by Lysmer and Kuhlemeyer [8], and also with Akiyoshi [30] and
Modaressi and Benzenati [27].

Zerfa and Loret [25] proposed to apply viscous stresses on the
absorbing boundaries, assuming an elastic linear isotropic behaviour
for the boundaries, in saturated porous media in the time-domain and
u-w formulation with non-frequency dependent velocity of the waves.
The contribution of the second longitudinal wave is not neglected and
the general case for a high-permeability medium is developed. Dry
soil or low-permeability (undrained) cases are obtained as particular
solutions. The definition of the velocity of the waves for the undrained
case is equivalent to the expression proposed by Gajo et al. [31].

3. Generalization of viscous dampers-ABC in saturated media for
coupled 𝒖− 𝒑𝒘 formulation

A 𝑢− 𝑝𝑤 formulation supported on Biot’s theory is presented to out-
line the generalization of the ABC for saturated porous media proposed
in this research. The numerical scheme has been implemented in the
academic FEM-code GeHoMadrid (GHM) [32]. The 𝑢 − 𝑝𝑤 formulation
proposed by Zienkiewicz et al. [33–35] for solving the Biot’s equations
by means of the finite element method is adopted herein. The fluid
acceleration relative to the solid skeleton is neglected, thus the absolute
displacement of the solid phase (𝑢) and pore water pressure (𝑝𝑤) are
the governing variables in this formulation, which is neither accept-
able for very high-frequencies content or impact loading problems,
nor nearly incompressible material. After the corresponding spacial
discretization, a Newmark time-step integration algorithm is employed,
using a second-order differential scheme for displacement and a first-
order for pore pressure [36,37]. The resulting system is shown in Eqs.
(4) to (7), which are coupled by the matrix [𝑄] and where 𝛥 ̈̄𝑢 and 𝛥 ̇̄𝑝
are the unknowns that can be iteratively solved after each time-step
according to Eqs. (8) to (12). In the case of dry soil, Eq. (5) and the
term [𝑄] are omitted.
(

[𝑀] + 𝛾𝛥𝑡 [𝐶] + 𝛽𝛥𝑡2 [𝐾]
)

𝛥 ̈̄𝑢𝑛 − (𝜃𝛥𝑡 [𝑄])𝛥 ̇̄𝑝𝑛 =
{

−𝐺𝑢
𝑛+1

}

(4)
(

𝜃𝛥𝑡 [𝑄]𝑇
)

𝛥 ̈̄𝑢𝑛 +
(

𝜃 [𝑆] + 𝜃2𝛥𝑡 [𝐻]
)

𝛥 ̇̄𝑝𝑛 =
{

− 𝜃 𝐺𝑝
}

(5)

𝛾 𝛾 𝛾 𝑛+1
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where:
{

𝐺𝑢
𝑛+1

}

= [𝑀] ̈̄𝑢𝑛+1 + [𝐶] ̇̄𝑢𝑛+1 − [𝑄] 𝑝̄𝑛+1 + ∫𝛺
[𝐵]𝑇 𝜎′𝑛+1𝑑𝛺 −

{

𝑓 𝑢
𝑛+1

}

(6)
{

𝐺𝑝
𝑛+1

}

= [𝑄]𝑇 ̇̄𝑢𝑛+1 + [𝐻] 𝑝̄𝑛+1 + [𝑆] ̇̄𝑝𝑛+1 −
{

𝑓 𝑝
𝑛+1

}

(7)
̈̄𝑛+1 = ̈̄𝑢𝑛 + 𝛥 ̈̄𝑢𝑛 (8)
̇̄ 𝑛+1 = ̇̄𝑢𝑛 + ̈̄𝑢𝑛𝛥𝑡 + 𝛾𝛥 ̈̄𝑢𝑛𝛥𝑡 (9)

̄𝑛+1 = 𝑢̄𝑛 + ̇̄𝑢𝑛𝛥𝑡 +
1
2
̈̄𝑢𝑛𝛥𝑡

2 + 𝛽𝛥 ̈̄𝑢𝑛𝛥𝑡
2 (10)

̇̄𝑝𝑛+1 = ̇̄𝑝𝑛 + 𝛥 ̇̄𝑝𝑛 (11)

𝑝̄𝑛+1 = 𝑝̄𝑛 + ̇̄𝑝𝑛𝛥𝑡 + 𝜃𝛥 ̇̄𝑝𝑛𝛥𝑡 (12)

𝑀], [𝐶], [𝐾], [𝑄], [𝐻] and [𝑆] are the mass, the viscous damping,
he stiffness, the coupling, the permeability and the compressibility
atrices, respectively. {𝑓 𝑢} and {𝑓 𝑝} are the force vectors for the solid
hase and the fluid phase, whereas 𝑢̄ and 𝑝̄ are the global displacement
nd pore pressure vectors, respectively. The integral term corresponds
o the effective stress and the matrix with the derive of the shape
unctions. The dots over each variable refer to the order of derivative
nd the subindices 𝑛 and 𝑛 + 1 refer to the previous and current time-
teps, where the time (𝑡) is defined as 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡, with 𝛥𝑡 the
ime-step. The superindices 𝑢 and 𝑝 refers to soil displacement or pore
ressure, respectively. The variables 𝛾, 𝛽 and 𝜃 are the Newmark’s
ime-integration coefficients.

.1. Velocity of waves in saturated media

The ABC considered in this research are based on the viscous
amper approach originally proposed by Lysmer and Kuhlemeyer [8],
eneralized to saturated porous media by means of a modification
f the velocity of the first longitudinal wave according to the ex-
ressions developed by Yang [9], where the compressional wave ve-
ocity is linked with the Skempton’s pore pressure coefficient. The
roposed formulation for time-domain problems is equivalent to the
araxial approximation employed by Modaressi and Benzenati [27]
n the frequency-domain. For a dry soil, this ABC coincides with the
riginal Lysmer and Kuhlemeyer’s proposal.

Lysmer and Kuhlemeyer [8] proposed a viscous-dampers located in
ll the degrees of freedom of the boundary elements, trying to simulate
he wave radiations out of the domain. In FEM, they are modelled
y means of normal and shear stresses, Eqs. (13) and (14), applied
long the boundary of the computation domain [38], which depend
n the velocities of the waves. As exposed, in soil dynamics problems,
he second longitudinal wave can be neglected since it tends to be
ttenuated for low-frequency problems [9,26], which is also consistent
ith the 𝑢−𝑝𝑤 formulation considered herein. Therefore, a compressive
ave which propagates in both solid and fluid phases, and a transverse
ave, which propagates only in the solid phase, must be absorbed by

he artificial boundaries numerical schemes.

= 𝜌𝑣𝑝𝑢̇𝑛 (13)

𝜏 = 𝜌𝑣𝑠𝑢̇𝑡 (14)

here 𝜎 and 𝜏 are the normal and the shear stress on the boundaries of
he model, respectively; ̇𝑢𝑛 and 𝑢̇𝑡 are the normal and the tangential ve-
ocity of the medium, respectively; 𝑣𝑝 is the compressive wave velocity;
𝑠 is the shear wave velocity and 𝜌 is the density of the medium.

For a solid medium or dry soil, the velocities of the waves are
omputed as Eqs. (15) and (16), where 𝐸 is the modulus of elasticity, 𝐺
s the shear modulus, 𝜈 is the Poisson’s ratio and 𝐾𝑏 is the bulk modulus
efined as 𝐾𝑏 =

𝐸
3(1−2𝜈) .

𝑝 =

√

𝐸(1 − 𝜈)
(1 − 2𝜈)(1 + 𝜈)𝜌

=

√

√

√

√

𝐾𝑏 +
4
3𝐺

𝜌
(15)

𝑣𝑠 =
√

𝐺 =
√

𝐸 (16)
4

𝜌 2(1 + 𝜈)𝜌 b
For a saturated medium, the expression for the compressive wave
velocity obtained by Yang [9], from Skempton’s pore pressure parame-
ter (𝐵), has been adopted according to Eq. (17). Comparing Eqs. (17) to
(15), the coupled soil–fluid compressibility is considered respect to the
dry case, which is simplified as 𝐾𝑓∕𝑛 for fully saturated porous medium
with incompressible particles [9], where 𝐾𝑓 is the bulk modulus of the
pore water, 𝑛 is the porosity, and 𝜌𝑠𝑎𝑡 is the density of the medium given
by Eq. (18), where 𝜌𝑠 and 𝜌𝑓 denote the density of the soil particles and
fluid, respectively. Since the S-waves do not propagate by a fluid phase,
the velocity of the transverse wave is computed by Eq. (16) regardless
the type problem.

𝑣𝑝 =

√

√

√

√

𝐾𝑏 +
4
3𝐺 + 𝐾𝑓

𝑛
𝜌𝑠𝑎𝑡

(17)

𝜌𝑠𝑎𝑡 = (1 − 𝑛)𝜌𝑠 + 𝑛𝜌𝑓 (18)

.2. Numerical implementation

The numerical implementation of the ABC described in a standard
inite element code is outlined. The corresponding coefficients of the
amping matrix [𝐶] linked to the nodes placed on the absorbing bound-
ry must be modified according to Eq. (19) [39]. For a 2D problem,
q. (19) should be added to each node 𝑖 and each components of the
irection, 𝑥 and 𝑦, of the boundary.
𝑖
𝑥 = 𝑚𝑖𝜌𝐴𝑓 𝑣

𝑖
𝑥 = 𝑚𝑖𝜌(𝐿𝑓 𝑒)

(

𝑣𝑝 cos 𝛼𝑓 + 𝑣𝑠 sin 𝛼𝑓
)

𝐶 𝑖
𝑦 = 𝑚𝑖𝜌𝐴𝑓 𝑣

𝑖
𝑦 = 𝑚𝑖𝜌(𝐿𝑓 𝑒)

(

𝑣𝑝 sin 𝛼𝑓 + 𝑣𝑠 cos 𝛼𝑓
) (19)

here 𝐴𝑓 denotes the area of the face of the elements placed in the
bsorbing boundary (for 2D problems is reduced to the length of the
ace of the element placed on the boundary, (𝐿𝑓 ) multiplied by a
hickness (𝑒), normally equal to unity). 𝑣𝑖𝑥 and 𝑣𝑖𝑦 are the velocities
f the solid phase at the node 𝑖 in 𝑥 and 𝑦, respectively. 𝛼𝑓 is the
ngle of the absorbing element face with the vertical direction. 𝑚𝑖 is
contribution coefficient which considers the participation of each

ode of the face of the element. For linear-elements (2 nodes by face)
𝑖 = 1∕2, whereas for quadratic elements (3 nodes by face) 𝑚𝑖 = 1∕4

or the two-external nodes and 𝑚𝑖 = 1∕2 for the internal one. Finally,
t must be highlighted that when 𝛼𝑓 = 0◦ (vertical boundary), 𝑣𝑥 = 𝑣𝑝
nd 𝑣𝑦 = 𝑣𝑠, and vice-versa for horizontal boundaries (𝛼𝑓 = 90◦).

.3. Validation examples

The numerical implementation of the ABC detailed above has been
hecked by 1D-examples for dry soil (solid medium) and saturated
oil (two-phase medium). Both examples have been solved considering
inear elastic materials without any damping and using the Newmark’s
ethod 𝛾 = 1∕2, 𝛽 = 1∕4 and 𝜃 = 1∕2, when corresponds (free of
umerical damping) [36,37], and a time-step equal to 0.01 s. In the dry
ase, the numerical solution with fixed boundaries and ABC are com-
ared to the analytical solution [40]. For the saturated example, the
onsolidation of a semi-infinite column is compared for three different
ength-columns (30 m, 60 m and 100 m) with fixed boundaries and ABC
or the shortest one, to compare the behaviour of the reflected waves
n different length domains. Details about the geometries, boundary
onditions, loading and check points are sketched in Figs. 1 and 2 for
ry and saturated cases, respectively. In Fig. 1, a constant (in time)
niformly distributed load is applied on the left side of the bar. The
ocations of the displacements computed are marked on the bars with

cross and the corresponding distances are sketched (5 m and 15 m
rom loading sides in figures 1 and 2, respectively). The properties of
he materials and the wave velocities are summarized in Tables 1 and
.

The time histories of the displacement and pore pressure are also
lotted in Figs. 1 and 2. For 1D problems, the absorption at the

oundary is perfect because the waves incise perpendicularly to the
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Fig. 1. Validation example: dry case (semi-infinite solid bar).
Table 1
Properties of the materials for the validation examples.
Dry case 𝜌 = 2000 kg∕m3 𝐸 = 2 ⋅ 107 N∕m2 𝜈 = 0

Saturated case 𝜌𝑠 = 2700 kg∕m3 𝜌𝑓 = 1000 kg∕m3 𝜌𝑠𝑎𝑡 = 1971.43 kg∕m3

𝐸 = 3 ⋅ 107 N∕m2 𝜈 = 0.2 𝑛 = 0.428
𝐾𝑓 = 8 ⋅ 106 Pa 𝑘 = 1 ⋅ 10−5 m∕s

(𝜌: density of the dry medium; 𝐸: modulus of elasticity; 𝜈: Poisson’s ratio; 𝐺: shear
modulus; 𝐾𝑏: bulk modulus; 𝜌𝑠: density of the soil particles; 𝜌𝑓 : density of the fluid;
𝜌𝑠𝑎𝑡: density of the saturated medium; 𝑛: porosity; 𝐾𝑓 : bulk modulus of the pore water; 𝑘:
permeability).
Table 2
Wave velocities to compute the coefficients
of damping matrix [𝐶] as Eq. (19) for the
validation examples.
Dry case 𝑣𝑝 = 100 m/s (Eq. (15))

𝑣𝑠 = 70.71 m/s (Eq. (16))

Saturated case 𝑣𝑝 = 162.41 m/s (Eq. (17))
𝑣𝑠 = 79.63 m/s (Eq. (16))

(𝑣𝑝: compressive wave velocity; 𝑣𝑠: shear
wave velocity).

boundary. The implemented ABC perfectly matches the solution of
reference for both problems. In the cases solved with a fixed boundary,
artificial oscillations are constantly been reintroduced in the time-
history responses because of the reflection of the waves towards the
computational domain after impacting on the boundary. These re-
flected waves invalidate the numerical solution at the control point.
In the saturated case, where different lengths of column have been
considered, it must be highlighted that the first reflected wave in the
response appears at different times, the longer the column, the later it
appears, because the wave arrives later to the boundary. By comparing
the solution from ABC with respect to the fixed boundary, it can be
observed that the ABC solution perfectly matches the fixed solution
until the reflected wave appears in each case. Moreover, it can be
observed that ABC time histories are kept without any oscillations along
the time in consonance with the type of load applied. This example
corresponds to a one-dimensional problem, where the waves can only
travel in the longitudinal direction of the bar and the viscous-damper
is aligned in the bar and the waves direction, therefore the absorption
is perfect. It must be pointed out that in the saturated case, the ABC
properly works even for the shortest column, and the artificial waves
in the displacement and pore pressure responses are out of phase.

4. Numerical investigation of viscous dampers-ABC

Plenty of artificial waves are reintroduced into the computational
domain because the fixed boundaries act like sources of new waves. The
5

time-responses can be chaotic because multiple waves (both original
and reflected waves) are superposed, and therefore, the improvement
achieved by the ABC cannot be easily evaluated. For viscous-dampers
ABC, the main interest has been focused on the arrival of the waves
on the boundary, highlighting that the angle of incidence determines
the possible reflected waves. However, attention should also be paid to
how the resulting waves are approaching towards the area of interest,
which is normally farther from the boundaries. Complex processes of
interaction and transformation between waves can occur during the
propagation of the waves in the medium.

In this section, the position (distance and orientation) of the fixed
boundaries and the influence of the viscous damper-ABC are analysed
from a signal processing framework by means of several robust numeri-
cal schemes which are mainly supported on the spectral properties and
energy content of the response. According to this framework, each time-
history response, computed from a time-domain FEM, is analysed like a
signal. An exhaustive numerical analysis has been carried out for plane
strain problems, in both dry and saturated soil.

4.1. Description of the numerical model

The numerical model developed in this research is defined by four
computational domain sizes, which are progressively incremented, as
is sketched in Fig. 3. It is well-known that the larger the computational
domain, the less artificial waves in the domain because of the fixed
boundaries. Similar considerations have been also employed by other
researchers [11,41]. The model corresponds to a square region with
symmetry condition on the left-vertical boundary, the ground surface
is the upper boundary, and the rest of the boundaries represent the
outgoing medium. The sizes considered are 10 × 10 m (M1010),
20 × 20 m (M2020), 35 × 35 m (M3535) with both fixed and ABC
conditions, and 50 × 50 m (M5050) with ABC condition for reference
solution. For preventing uncertainties in the comparative study, the
following numerical parameters have been adopted for all the models.

A regular mesh with 0.5 × 0.5 m quadrilateral elements of 4-
nodes has been used. The horizontal displacements of the left boundary
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Fig. 2. Validation example: saturated case (semi-infinite saturated soil column).
Fig. 3. Computational domain sizes, boundary conditions, loading and check points (𝑅𝑖, 𝜃𝑖, 𝑅𝑚).
(symmetry) are restricted while the lower and right boundaries, fixed
or ABC are imposed depending on the case. For the saturated models,
null pore water pressure condition is imposed on the ground.

A punctual down-vertical triangular load, with amplitude and dura-
tion equal to 1000 N and 0.4 s (2.5 Hz), respectively, is applied on the
left node on ground-surface, Fig. 3. This simple load has been used to
excite the system with the aim of highlighting properly the frequency-
content linked exclusively to the artificial waves after reflecting on
6

the boundaries or their absence in the ABC solutions. Other complex
loading cases cannot be considered to prevent the mixture of frequen-
cies between the response to the input load and the reflected waves.
According to the literature [8,11], the response of viscous dampers does
not depend on the frequency content of the input load. Therefore, it can
be asserted that the waves which are propagating in the medium are
due exclusively to the free-vibration of the system and the reflected
waves.



Soil Dynamics and Earthquake Engineering 166 (2023) 107743J. Arias-Trujillo and S. López-Querol

n
o
e
u
t
s
M
𝜃
𝛥
t
o
a

t
o
F
t
w
h
t
a
𝜃
i

p
e
s

𝜎
a
e
o
M
c

4

h
𝜃
r
t
t

Table 3
Material properties for the numerical model.
Dry case 𝜌 = 2000 kg∕m3 𝐸 = 6.67 ⋅ 107 N∕m2 𝜈 = 0.25

Saturated case 𝜌𝑠 = 2700 kg∕m3 𝜌𝑓 = 1000 kg∕m3 𝜌𝑠𝑎𝑡 = 2000 kg∕m3

𝐸 = 6.67 ⋅ 107 N∕m2 𝜈 = 0.25 𝑛 = 0.412
𝐾𝑓 = 8 ⋅ 106 Pa 𝑘 = 1 ⋅ 10−5 m∕s

(𝜌: density of the dry medium; 𝐸: modulus of elasticity; 𝜈: Poisson’s ratio; 𝐺: shear
modulus; 𝐾𝑏: bulk modulus; 𝜌𝑠: density of the soil particles; 𝜌𝑓 : density of the fluid;
𝜌𝑠𝑎𝑡: density of the saturated medium; 𝑛: porosity; 𝐾𝑓 : bulk modulus of the pore water; 𝑘:
permeability).
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Table 4
Wave velocities to compute the coefficients
of damping matrix [𝐶] as Eq. (19) for the
numerical model.
Dry case 𝑣𝑝 = 200 m/s (Eq. (15))

𝑣𝑠 = 115.5 m/s (Eq. (16))

Saturated case 𝑣𝑝 = 223 m/s (Eq. (17))
𝑣𝑠 = 115.5 m/s (Eq. (16))

(𝑣𝑝: compressive wave velocity; 𝑣𝑠: shear
wave velocity).

Neither material damping or numerical damping are included in this
umerical experiment, in order to prevent other sources of dissipation
r attenuation of the waves, except by the ABC. Therefore, linear
lastic isotropic material is considered, which corresponds to the most
nfavourable model to analyse the ABC behaviour. The properties of
he material and wave velocities are listed in Tables 3 and 4, where
imilar p and s-wave velocities are used in both types of problems.
oreover, the Newmark’s integration algorithm 𝛾 = 1∕2 𝛽 = 1∕4,
= 1∕2 (free of numerical damping) has been chosen, and a time-step
𝑡 = 0.005 𝑠, which allows to analyse high-frequency components, up
o 100 Hz according to Nyquist frequency criterion. The computation
f each case has been maintained during 3 s to assure that an enough
mount of reflected waves takes place.

A dense radial grid of check points has been monitored to track
he transformation of the time-responses when approaching to the area
f interest, which has been established close to the point of loading.
or that, six concentric distances (named as radius 𝑅𝑖) measured from
he loading point, have been defined from 𝑅1 = 2 m to 𝑅6 = 7 m,
ith increment equal to 1 m. For each radius, nineteen angles (𝜃𝑖)
ave been established to consider the influence of the orientation of
he boundaries in the resulting signal registered in each point. These
ngles are defined by increments of 15◦ in clockwise direction, from
1 = 0◦ (ground surface) to 𝜃19 = 90◦ (symmetry boundary), as shown
n Fig. 3.

This analysis has been developed for displacement, stress and pore
ressure (saturated case only) time-history responses, since the influ-
nce of the boundaries on each variable is unknown in advance and
hould be investigated. The following nomenclature is used herein: 𝑢ℎ

and 𝑢𝑣 are the horizontal and vertical displacements, respectively; 𝜎ℎ,
𝑣 and 𝜏 are the horizontal, vertical and shear stresses, respectively;
nd 𝑝𝑤 is the pore pressure. As reference, the computational costs of
ach domain respect to the smallest one (M1010), measure in terms
f computational time, are 2.4, 19, 232.4 times higher for M2020,
3535 and M5050, respectively. Very Slight differences in terms of

omputational cost have been observed between fixed and ABC models.

.2. Time-history and frequency response

For comparison purposes and the sake of briefness, the time-
istories 𝑢ℎ, 𝜎𝑣 and power 𝑝𝑤 have been monitored at 𝑅 = 2 m-
= 45◦ as representative examples. The corresponding frequency

esponse spectra are also included, which are supported on the ampli-
ude and unwrapped phase response spectra computed by the Fourier
ransform (rectangular window) of each time-history. They can reveal
7

he frequency-content of each signal highlighting the amount of waves
ravelling in the medium. Amplitude spectra denotes the contribution
f each frequency (wave) to the overall response, whereas phase spectra
epresents the alignment of the waves in time.

Figs. 4 (dry problem) and 5 (saturated problem) show the responses
btained with ABC and fixed boundary conditions for the four compu-
ational domain sizes. In both cases, plenty of oscillations (reflected
aves) due to the fixed boundary can observed, which are more

elevant for the results of displacements and pore pressures. For each
omain, the reflected waves are highlighted in the amplitude spectra by
eans of peaks associated to the different frequencies. On the contrary,

he ABC solutions present smoothed patterns with lower amplitudes,
nd good agreement between the two largest computational domain
izes investigated. In the case of the fixed boundary solutions, the
horter computational domain size, the higher increment of the amount
f waves in the response, namely, more peaks of great amplitude
ssociated to higher frequencies. Moreover, the fixed-responses for the
ifferent computational sizes are out of phase, whereas ABC-solutions
re in-phase since their phase spectra are constantly linear almost
he whole range of frequencies, and in general they also coincide
or most of the domains, especially for 𝜎𝑣. This suitable alignment
etween phase-spectra for different domains reveals that the waves in
he medium are well-organized, reducing the interaction between them
nd the cluttered time responses.

.3. Directional spectra

Directional spectra display information on the distribution of the
mplitude spectra and frequency-content of each time-history accord-
ng to the direction 𝜃. The influence of the boundaries, distance and
rientation, can be analysed on each variable inside the region of
nterest. Firstly, the improvement achieved with ABC versus fixed
oundaries has been plotted in Figs. 6 (dry problem) and 7 (saturated
roblem) for the computational domain M3535 and the closest radius
o the boundaries, 𝑅 = 7 m. The frequency axis has been trimmed
own for improving the compression of the graphs. In these figures, it
an be observed that the ABC have significantly smoothed the spectra,
emoving ripples and peaks in the whole range of frequencies and
irections, and reducing the amplitude for all the variables investigated
espect to the fixed solutions. The general trend between ABC and fixed
olutions matches for 𝑢𝑣, 𝜎𝑣, 𝜏 and 𝑃𝑤 but a higher disagreement is
bserved for the lower values of 𝜃 in 𝑢ℎ and the lower and upper values

of 𝜃 in 𝜎ℎ, far from the ground surface, so the horizontal responses
can be affected by the fixed boundaries. It must be pointed out that
the range of frequencies, the amplitude of which is significant, varies
for each variable. A wider range of frequencies is observed in the
stress than in the displacement or pore pressure time-histories, although
slight differences can also be observed between horizontal and vertical
displacements.

Secondly, in order to assess the influence of the enlargement of the
domain, the directional spectra for the four computational sizes with
ABC at 𝑅 = 7 m have been compared in Figs. 8 (dry problem) and 9 (sat-
urated problem). For all variables, the spectra corresponding to M3535
and M5050 properly match, M1010 presents the most discrepant pat-
tern in all cases, whereas M2020 is closer to the larger domains in stress
and pore pressure responses and further for displacements. Therefore,
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Fig. 4. Dry problem: time-history responses and frequency spectra at 𝑅 = 2𝑚 − 𝜃 = 45◦.
Fig. 5. Saturated problem: time-history responses and frequency spectra at 𝑅 = 2𝑚 − 𝜃 = 45◦.
r
i
e

M5050-ABC can be suitable used as reference solution for comparison
purposes. According to the previous comparison, the length of the range
of relevant frequencies that affects more each signal (time-history)
varies for each variable, but it is independent of the computational
domain size for ABC solutions.

4.4. Energy approach: Parseval’s relation

In the literature, the verification of the suitable behaviour of a
viscous dampers ABC is normally simplified to the comparison of some
particular time-histories responses. However, in this research an energy
approach, supported on the Parseval’s relation, is proposed to evaluate
the viscous dampers ABC. The time and frequency representations of a
signal are equivalent, and therefore the Parseval’s relation establishes
that a time-domain signal and its corresponding frequency-domain
representation must have the same energy content [42]. From a discrete
Fourier transform, this relationship can be defined as Eq. (20), which
asserts that the total energy (𝐸𝑡) of a time signal 𝑥(𝑡) is equal to the total
energy of its discrete Fourier transform 𝑋(𝑓 ) along the whole range of
8

frequencies, where 𝑡 and 𝑓 are the time and frequency, respectively,
and 𝑁 the number of individual samples in the signal.

𝐸𝑡 =
𝑁−1
∑

𝑡=0
|𝑥(𝑡)|2 = 1

𝑁

𝑁∕2
∑

𝑓=0
|𝑋(𝑓 )|2 (20)

The relative energy error of each time-history has been defined with
espect to the solution of reference (M5050-ABC) and has been plotted
n Figs. 10 and 11 for dry and saturated problems, respectively. The
nergy error is expressed with respect to the length 𝑅𝑚 − 𝑅𝑖, which

corresponds to the shortest path for the arrival of the reflected waves
to each checkpoint. 𝑅𝑖 represents the distance between the point-load
and the check-point and 𝑅𝑚 is the length between the point-load and
the nearest boundary passing by this particular check-point, as shown
in Fig. 3. The lower the values of 𝑅𝑚 −𝑅𝑖, the closer a boundary to the
checkpoint is, independently of 𝜃. ABC and fixed boundary conditions
and the computational sizes M1010, M2020 and M3535 are analysed
for all the variables.

The errors for ABC, in terms of energy content in the signal (time-
history) are significantly lower than for the fixed boundary conditions,
excluding 𝑢𝑣 computed with M1010 and M2020. In these two partic-
ular cases, the fixed-solutions present an anomalous behaviour due to
the shortness of the computational domain, since the reflected waves
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Fig. 6. Dry problem: comparison of directional spectra at 𝑅 = 7 m for M3535 computed with ABC and fixed boundary conditions.
Fig. 7. Saturated problem: comparison of directional spectra at 𝑅 = 7 m for M3535 computed with ABC and fixed boundary conditios.
disturb the time-history responses from the beginning, obtaining almost
null values of 𝑢𝑣, and therefore almost null values of energy, which is
unrealistic. Surprisingly, in the case of 𝑢ℎ and 𝜎ℎ computed with fixed
conditions, the larger the computational domain, the greater the energy
error, which are also consistent with the time-histories and frequency
spectra in Figs. 4 and 5 (case of 𝑢ℎ). Probably, this reveals that the
chaotic swarm of waves travelling in the media can be re-organized
attending to its frequency content as the computational domain is
larger, which seems to be more relevant for horizontal variables than
for the others. Therefore, for fixed solutions, the relative energy error
does not always improve for larger computational domains. For all
the variables in the ABC solutions, both magnitude and dispersion
of the errors are significantly reduced in a staggered manner as the
computational domain size is increased. In the case of M3535, the
error tends to be constant and independent of the distance to any
boundaries (𝑅𝑚 − 𝑅𝑖) in all the variables, achieving a relative energy
error lower than 0.5%. In the case of M2020, the dispersion of the
error is slightly higher, but lower than ≈2%. Hence it can be stated that
an enlargement from M3535 to M5050, computed with ABC, does not
introduce an improvement in the accuracy of the responses. Moreover,
despite the reflected waves in the boundaries presenting multiple angles
9

of incidence, the influence on the time-history response in the area of
interest is negligible.

4.5. Bandwidth

The bandwidth is an spectral property that defines the range of
frequencies in which the energy of a signal is contained. By means
of the bandwidth parameter, the effect of the boundaries over the
frequency components of each signal is investigated. To highlight the
whole range of frequencies that appears in the signal, the occupied
bandwidth for a threshold of the 99% of the energy is established. It
has been observed that the lowest frequency is similar in all the cases,
nearly null, and therefore the widest values of bandwidth have been
considered regardless the check point position. For each variable and
computational domain, the relative energy error (𝐸𝑟𝑟𝑜𝑟𝐸) and the rela-
tive bandwidth errors (𝐸𝑟𝑟𝑜𝑟𝐵𝑤) with respect to the reference solution
(M5050ABC) have been listed in the Table 5, for both types of problems
and boundary conditions. From this table, it can be observed that the
bandwidth errors for the fixed problems are significantly higher than
ABC, which implies that the bandwidth for ABC is narrower because of
the reduction of the frequency-content, especially the high-frequencies,
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Fig. 8. Dry problem: comparison of directional spectra at 𝑅 = 7 m for the four computational domain sizes with ABC.
Fig. 9. Saturated problem: comparison of directional spectra at 𝑅 = 7 m for the four computational domain sizes with ABC.
because they avoid artificial waves thanks to the viscous-dampers.
On the other hand, a slight influence of the computational domain
size can be observed on the relative bandwidth errors between ABC
solutions, whereas it has a more relevant influence on the energy errors,
as exposed above. Therefore, it can be concluded that, for ABC, an
enlargement of the computational size slightly affects to the bandwidth,
namely the frequency content and high-frequencies, but it reduces the
artificial energy content of the signal.

4.6. Spectral coherence

For statistical signal processing and time-series analyses, the spec-
tral coherence is an statistic that compares two signals and indicates
how well one signal corresponds to the other one at each frequency,
measuring the linear correlation between them [43]. The coherence
(𝐶𝑥𝑦) between two signals 𝑥 and 𝑦 depends on frequency and it is
calculated from Eq. (21), where 𝑃𝑥𝑥 and 𝑃𝑦𝑦 are the power spectral
densities of the x-signal and y-signal, respectively, and 𝑃𝑥𝑦 is the cross
power spectral density. Spectral coherence varies between 0 and 1, and
when two signals are exactly identical, the coherence is equal to 1.
10
Therefore, the higher the coherence, the greater the similarity between
the two analysed signals.

𝐶𝑥𝑦 =
|𝑃𝑥𝑦|

2

𝑃𝑥𝑥𝑃𝑦𝑦
(21)

To investigate the influence of the enlargement of the computa-
tional domain and the corresponding reduction in the energy error
highlighted above depending on the frequency, the spectral coherence
is estimated for ABC solutions, comparing the computational domains
M1010, M2020 and M3535 with respect to M5050. The values are
plotted in Figs. 12 and 13 for dry and saturated cases, respectively,
and for all the check-points located at 𝑅 = 7 m, which is the nearest
distance to the boundaries.

As expected, the lowest values of coherence can be found for
M1010, in a wider range of 𝜃 and frequencies, for most of the anal-
ysed variables. Comparing M2020 and M3535, the shape-patterns of
the spectral coherence along 𝜃 and frequency are very similar. This
behaviour supports the discussion previously outlined for ABC, since
despite of the enlargement of the computational domain, the range of
frequencies is not significantly altered. The coherence in M3535 with
respect to M2020 slightly improves for the stresses and pore pressure,
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Fig. 10. Dry problem: relative energy error of each time-history.
Fig. 11. Saturated problem: relative energy error of each time-history.
and moderately does so for the displacement too. In both cases, the
spectral coherence of the stress responses are significantly lower than
1 for the upper range of frequencies and the extremal values of 𝜃, which
indicate locations mainly close to the ground surface and to the symme-
try boundary. However, the coherence obtained for the pore pressure
is close to 1 except for the higher frequencies, regardless 𝜃. For the
vertical displacement, the coherence is fairly uniform, independently
of 𝜃 and frequency, closer to 1 as the domain is larger, whereas for the
horizontal displacements, the coherence is significantly lower than 1
for a range of frequencies and 𝜃 wider than the rest of variables.

For most of the variables, lower values of coherence are observed for
high-frequencies, and therefore the reduction in the energy error due
to the enlargement of the computational domain observed previously,
affects mainly to this range of high-frequencies. Since the range of high
frequencies is normally out of practical interest, the obtained results
11
with ABC are suitable, since the coherence approaches 1 in the range
of frequencies of practical interest.

5. Conclusions

A signal processing approach has been applied to analyse the be-
haviour of the viscous-damper ABC in time-domain FEM. Each time-
history is treated like a signal, attending to its frequency and energy
content and spectral properties. ABC has been investigated in dry media
and saturated problems, with a 𝑢 − 𝑝𝑤 formulation modifying the
velocity of the first longitudinal wave considering only the fluid bulk
modulus [9]. For comparison purposes, both ABC and fixed boundary
conditions have been investigated by means of a numerical model
without material or numerical damping, monitoring displacements,
stresses and pore pressure along a dense spatial grid of check points.
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Table 5
Relative energy (E) and bandwidth (Bw) errors.
Variable Size Dry case Saturated case

ErrorE (%) ErrorBw (%) ErrorE (%) ErrorBw (%)

ABC Fixed ABC Fixed ABC Fixed ABC Fixed

𝑢ℎ
M1010 3.93 1.59 0.58 6.34 3.90 0.99 0.6 6.4
M2020 1.09 6.42 0.46 2.19 1.05 1.7 0.46 2.13
M3535 0.19 10.57 0.22 1.32 0.21 6.11 0.28 1.75

𝑢𝑣
M1010a 9.08 0.99 0.21 6.87 8.74 1 0.2 5.06
M2020a 2.11 0.15 0.08 0.61 2.04 0.62 0.08 1.08
M3535 0.44 0.74 0.03 0.71 0.43 0.35 0.03 1.33

𝜎ℎ
M1010 10.84 2.93 0.98 11.77 5.74 1.53 1.39 6.82
M2020 1.05 8.52 0.49 3.8 1.11 2.94 0.51 4.07
M3535 0.15 10.89 0.38 1.24 0.19 6.52 0.39 2.31

𝜎𝑣
M1010 0.33 25.59 0.8 7.58 0.34 7.21 3.02 6.37
M2020 0.19 42.07 0.49 3.1 0.18 15.66 3.07 3.09
M3535 0.03 10.99 0.07 2.16 0.012 7.08 3.03 3.12

𝜏
M1010 2.4 13.48 0.39 8.67 2.62 5.89 1.07 8.88
M2020 0.046 7.26 0.80 7.87 0.08 4.51 1.05 7.81
M3535 0.006 4.63 0.81 6.78 0.008 3.48 1.01 7.05

𝑃𝑤

M1010 – – – – 0.18 1.72 0.74 4.82
M2020 – – – – 0.09 5.37 0.29 1.32
M3535 – – – – 0.014 4.25 0.2 1.29

aAnomalous behaviour exposed above.
he scope of this research is focused on the characterization of time-
istory responses close to the area of interest, alternatively to the
raditional approach about the angle of incidence on the boundaries,
y means of a digital signal processing approach. Especial attention
as been paid to the size of the computational domain, which is a
rucial task in this matter, from both accuracy and computational-cost
oints of view. For saturated porous media, the modification of p-wave
roposed is suitable according to the validation examples. The main
onclusions are listed below.

– The influence of ABC or fixed boundary conditions is not homoge-
eous for all variables, being the vertical displacement the least sensible
o the ABC.

– Numerous reflected waves due to the fixed boundaries have been
ighlighted by the spectral characterization of the signals. For the
hortest computational domain, a high amount of reflected waves with
reat amplitude, linked to higher frequencies, are observed. Whereas
or ABC solutions, smoother spectral patterns with lower amplitude and
ithout ripples or peaks have been obtained.

– ABC solutions are in-phase thanks to the reduction of the fre-
uency content of the signal after ABC, but not in fixed conditions.

– For ABC solutions, the spectral characterization of M3535 and
5050 is quite in agreement between dry and saturated problems. The

hortest domain (M1010) presents striking differences in the spectral
atterns in most of the cases, whereas the intermediate size (M2020)
pproaches the larger domains in stress and pore pressure responses but
ot in displacement. For fixed boundaries, the solution does not always
mprove with the increment of the domain.

– The estimated energy errors of the signals for ABC are significantly
ower in most of the variables respect to the corresponding fixed solu-
ions. In general, the larger computational domain, the lower energy
rror for ABC. Inside the area of interest, the energy error is lower than
% in M2020 and 0.5% in M3535, which tends to be independent of the
istance and the angles of incidence on the boundaries. An enlargement
rom M3535 to M5050 is not worth it.

– The range of frequencies is wider for stress than pore pressure
nd displacements. The bandwidth is considerably wider for fixed so-
utions than for ABC, where the high-frequency content is removed. The
nfluence of the enlargement of the computational domain on the band-
idth of ABC is not significant. The spectral coherence also supports

hese findings, since M1010 presents the lowest values of coherence
or a wider range of orientations, frequencies and variables, whereas
2020 and M3535 are similar. The spectral coherence depends on
12
each variable being the vertical displacement the least sensible to
the frequency content and boundary orientation. The lowest values of
coherence correspond to high-frequencies, hence the enlargement of
the computational domain reduces the energy of those waves associated
to high-frequency.

It is worth to highlight that, in a practical application of this
research, there is no need to repeat the same analysis as have been
conducted in the present research, as the previously listed conclusions
will be valid. Therefore, this research presents results of direct and
practical application in the numerical analysis of soil dynamic prob-
lems. Some general user’s guidelines can be outlined: viscous-dampers
ABC (VD-ABC) can be confidently used with intermediate sizes of
domain of computation. Small domains should be avoided since errors
are still relevant despite ABC, whereas it is not worth to use large
or huge domains since the accuracy does not significantly improve
but so does the computational cost. For a tentative approximation of
the computational domain, it is recommended to compare the time-
histories responses of several variables between two possible sizes,
and in particular, the comparison of only vertical displacements is not
recommended. Finally, if any damping source (material or numerical) is
included in the model, the behaviour of VD-ABC will enhance respect
to the findings observed in this research. Not specific considerations
should be taken into account between dry and saturated problems.
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Fig. 12. Dry problem: spectral coherence for ABC solutions between M1010, M2020 and M3535 respect to M5050.
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Fig. 13. Saturated problem: spectral coherence for ABC solutions between M1010, M2020 and M3535 respect to M5050.



Soil Dynamics and Earthquake Engineering 166 (2023) 107743J. Arias-Trujillo and S. López-Querol
References

[1] Kontoe S, Zdravkovic L, Potts DM. An assessment of the domain reduction
method as an advanced boundary condition and some pitfalls in the use
of conventional absorbing boundaries. Int J Numer Anal Methods Geomech
2009;33(3):309–30.

[2] Duhamel D, Nguyen TM. Finite element computation of absorbing boundary
conditions for time-harmonic wave problems. Comput Methods Appl Mech Engrg
2009;198:3006–19.

[3] Semblat JF, Lenti L, Gandomzadeh A. A simple multi-directional absorbing layer
method to simulate elastic wave propagation in unbounded domains. Internat J
Numer Methods Engrg 2011;85(12):1543–63.

[4] Li P, Song EX. A viscous-spring transmitting boundary for cylindrical wave
propagation in saturated poroelastic media. Soil Dyn Earthq Eng 2014;65:269–83.

[5] Li P, Song EX. A general viscous-spring transmitting boundary for dynamic
analysis of saturated poroelastic media. Int J Numer Anal Methods Geomech
2016;40(3):344–66.

[6] Shi L, Wang P, Y. Cai Y, Cao Z. Multi-transmitting formula for finite element
modeling of wave propagation in a saturated poroelastic medium. Soil Dyn
Earthq Eng 2016;80:11–24.

[7] Xu C, Song J, Du X, Zhao M. A local artificial-boundary condition for simulating
transient wave radiation in fluid-saturated porous media of infinite domains.
Internat J Numer Methods Engrg 2017;112(6):529–52.

[8] Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media. J Eng Mech
Div ASCE 1969;95(4):859–77.

[9] Yang J. Pore pressure coefficient for soil and rock and its relation to
compressional wave velocity. Geotechnique 2005;55(3):251–6.

[10] Kramer SL. Geotechnical earthquake engineering. Englewood Cliffs, NJ:
Prentice-Hall; 1996.

[11] Kontoe S. Development of time integration schemes and advanced boundary
conditions for dynamic geotechnical analysis [Ph.D. thesis], London, United
Kingdom: Department of Civil and Environmental Engineering. Imperial College
of Science, Technology and Medicine; 2006.

[12] Al-Homoud AS, Whitman RV. Seismic analysis and design of rigid bridge abut-
ments considering rotation and sliding incorporating non-linear soil behavior.
Soils Dyn Earthq Eng 1999;18:247–77.

[13] Smith WD. A nonreflecting plane boundary for wave propagation problems. J
Comput Phys 1974;15(4):492–503.

[14] Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic
wave equations. Bull Seismol Soc Am 1977;67(6):1529–40.

[15] Liao ZP, Wong HL. A transmitting boundary for the numerical simulation of
elastic wave propagation. Int J Soil Dyn Earthq Eng 1984;3(4):174–83.

[16] Higdon RL. Radiation boundary conditions for elastic wave propagation. SIAM
J Numer Anal 1990;27(4):831–69.

[17] Givoli D. High-order nonreflecting boundary conditions without high-order
derivatives. J Comput Phys 2001;170:849–70.

[18] Givoli D, Hagstrom T, Patlashenko I. Finite element formulation with high-order
absorbing boundary conditions for time-dependent waves. Comput Methods Appl
Mech Engrg 2006;195:3666–90.

[19] Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions
for the wave equation: Extensions and improvements. J Comput Phys
2008;227:3322–57.

[20] Rabinovich D, Givoli D, Bielak J, Hagstrom T. A finite element scheme with
a high order absorbing bondary condition for elastodynamics. Comput Methods
Appl Mech Engrg 2011;200:2048–66.
15
[21] Givoli D. High-order local non-reflecting boundary conditions: A review. Wave
Motion 2004;39:319–26.

[22] Lancioni G. Numerical comparison of high-order absorbing boundary conditions
and perfectly matched layers for a dispersive one-dimensional medium. Comput
Methods Appl Mech Engrg 2012;209-212:74–86.

[23] Basu U, Chopra AK. Perfectly matched layers for transient elastodynamics of
unbounded domains. Internat J Numer Methods Engrg 2004;59:1039–74.

[24] Rabinovich D, Givoli D, Bécache E. Comparison of high-order absorbing bound-
ary conditions and perfectly matched layers in the frequency domain. Int J
Numer Methods Biomed Eng 2010;26:1351–69.

[25] Zerfa Z, Loret B. A viscous boundary for transient analyses of saturated porous
media. Earthq Eng Struct Dyn 2004;33:89–110.

[26] Han B, Zdravkovic L, Kontoe S. Numerical and analytical investigation
of compressional wave propagation in saturated soils. Comput Geotech
2016;75:93–102.

[27] Modaressi H, Benzenati I. Paraxial approximation for porelastic media. Soils Dyn
Earthq Eng 1994;13:117–29.

[28] Degrande G, Roeck G. An absorbing boundary condition for wave propagation in
saturated poroelastic media. Part I: Formulation and efficiency evaluation. Soils
Dyn Earthq Eng 1993;12:411–21.

[29] Degrande G, Roeck G. An absorbing boundary condition for wave propagation in
saturated poroelastic media. Part II: Finite element formulation. Soils Dyn Earthq
Eng 1993;12:423–32.

[30] Akiyoshi T, Fuchida K, Fang HL. Paraxial approximation for porelastic media.
Soils Dyn Earthq Eng 1994;13:387–97.

[31] Gajo A, Saetta A, Vitaliani R. Silent boundary conditions for wave propagation in
saturated porous media. Int J Numer Anal Methods Geomech 1996;20:253–73.

[32] Fernandez Merodo JA, Mira P, Pastor M, Li T. GeHoMadrid user manual.
Technical report- internal report, CEDEX (Madrid); 1999.

[33] Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T. Computational
geomechanics with special reference to earthquake engineering. Chichester: John
Wiley & Sons; 1999.

[34] Zienkiewicz OC, Chang CT, Bettess P. Drained, undrained, consolidating and
dynamic behaviour assumptions in soils. Geotechnique 1980;30(4):385–95.

[35] Zienkiewicz OC, Shiomi T. Dynamic behaviour of saturated porous media. The
generalized Biot formulation and its numerical solution. Int J Numer Anal
Methods Geomech 1984;8:71–965.

[36] Newmark NM. A method of computation for structural dynamics. J Eng Mech
Div ASCE 1959;85:67–94.

[37] Arias-Trujillo J, Blazquez R, Lopez-Querol S. A methodology based on a transfer
function criterion to evaluate time integration algorithms. Soils Dyn Earthq Eng
2012;37:1–23.

[38] Kouroussis G, Verlinden O, Conti C. Finite-dynamic model for infinite me-
dia: Corrected solution of viscous boundary efficiency. ASCE J Eng Mech
2011;137(7):509–11.

[39] Toshinawa T, Ohmachi T. Ground motion simulation by using simplified
three-dimensional finite element method. In: Proceedings of the earthquake
engineering, tenth world conference. Balkema, Rotterdam; 1992, p. 851–6.

[40] Verruijt A. Soil dynamics. Delft University of Technology; 2005.
[41] Kellezi L. Local transmitting boundaries for transient elastic analysis. Soil Dyn

Earthq Eng 2000;19:533–47.
[42] Smith SW. The scientist and engineer’s guide to digital signal processing. 502407

San Diego, CA, United States: California Technical Publishing; 1997.
[43] Bendat JS, Piersol AG. Random data: analysis and measurement procedures, Vol.

729. John Wiley & Sons; 2011.

http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb1
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb2
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb2
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb2
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb2
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb2
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb3
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb3
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb3
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb3
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb3
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb4
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb4
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb4
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb5
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb5
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb5
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb5
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb5
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb6
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb6
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb6
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb6
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb6
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb7
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb7
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb7
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb7
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb7
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb8
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb8
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb8
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb9
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb9
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb9
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb10
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb10
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb10
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb11
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb12
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb12
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb12
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb12
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb12
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb13
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb13
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb13
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb14
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb14
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb14
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb15
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb15
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb15
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb16
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb16
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb16
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb17
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb17
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb17
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb18
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb18
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb18
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb18
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb18
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb19
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb19
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb19
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb19
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb19
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb20
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb20
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb20
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb20
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb20
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb21
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb21
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb21
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb22
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb22
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb22
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb22
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb22
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb23
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb23
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb23
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb24
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb24
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb24
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb24
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb24
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb25
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb25
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb25
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb26
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb26
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb26
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb26
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb26
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb27
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb27
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb27
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb28
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb28
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb28
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb28
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb28
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb29
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb29
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb29
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb29
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb29
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb30
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb30
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb30
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb31
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb31
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb31
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb32
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb32
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb32
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb33
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb33
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb33
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb33
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb33
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb34
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb34
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb34
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb35
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb35
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb35
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb35
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb35
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb36
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb36
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb36
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb37
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb37
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb37
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb37
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb37
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb38
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb38
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb38
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb38
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb38
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb39
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb39
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb39
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb39
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb39
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb40
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb41
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb41
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb41
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb42
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb42
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb42
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb43
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb43
http://refhub.elsevier.com/S0267-7261(22)00588-7/sb43

	A signal-processing approach to assess viscous-damper absorbing boundary conditions for dry and saturated soils in time domain dynamic problems
	Introduction
	Literature Review
	General techniques to approach ABC for one-phase media
	Approaches for ABC in saturated porous media

	Generalization of viscous dampers-ABC in saturated media for coupled u-pw formulation
	Velocity of waves in saturated media
	Numerical implementation
	Validation examples

	Numerical investigation of viscous dampers-ABC
	Description of the numerical model
	Time-history and frequency response
	Directional spectra
	Energy approach: Parseval's Relation
	Bandwidth
	Spectral coherence

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


