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a b s t r a c t 

In this work, a system subject to different deterioration processes is analysed. The arrival of the degra- 

dation processes to the system is modelled using a shot-noise Cox process. The degradation processes 

grow according to an homogeneous gamma process. The system fails when a degradation process ex- 

ceeds a failure threshold. The combined process of initiation and growth of the degradation processes 

is modelled and the system reliability is obtained. Heterogeneities are also integrated in the model as- 

suming that the inverse of the scale parameter follows a uniform distribution. A maintenance strategy is 

implemented in this system and the state of the system is checked in inspection times. If the system is 

working at inspection time, a preventive replacement is performed if the deterioration level of a degrada- 

tion process exceeds a certain threshold. A corrective replacement is performed if the system is down at 

inspection time. Under this maintenance strategy, the expected cost rate is obtained. Sensitivity analysis 

on the main parameters of the gamma process is performed. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

It is well known that Condition-Based Maintenance (CBM) is 

 maintenance strategy based on monitoring the operating condi- 

ion of a system. Compared to time-based maintenance, and thanks 

o the development of sensor technologies, CBM usually results in 

ower maintenance costs, avoiding unnecessary preventive mainte- 

ance activities and reducing unexpected failures ( Huynh, 2020 ). 

owever, as Alaswad & Xiang (2017) claim, further research on 

BM is still in great need. Since industrial systems are becoming 

ncreasingly complex and they are likely to suffer from multiple 

egradation processes, further research is needed in modelling the 

aintenance when a system possesses more than one degrada- 

ion path. Systems subject to multiple degradation processes can 

e found in electronic products, heavy machine tools and piping 

ystems ( Liu, Zhao, Liu, & Liu, 2020 ). On a pavement network, sev-

ral different degradation processes, such as fatigue cracking and 

avement deformation, may develop simultaneously ( Wu & Castro, 

020 ). 
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In literature, significant and meaningful prior research has been 

one on reliability and maintenance policies for systems subject 

o multiple degradation processes. An earlier work on this topic is 

 Crk, 20 0 0 ), where a multiple multivariate regression is applied to 

odel the complexity of the processes. Some studies model the 

oint probability assuming that the degradation processes are in- 

ependent ( Bordes, Mercier, Remy, & Dautreme, 2016; Caballé, Cas- 

ro, Pérez, & Lanza-Gutiérrez, 2015; Castro, Caballé, & Pérez, 2015 ). 

t could be the case of components in different production units 

ithout interference. But, in some cases, interaction between adja- 

ent processes has a significant influence on the propagation char- 

cteristics of the rest of the processes. In these cases, the depen- 

ence between degradation processes has to be taken into account. 

ifferent works that deal with dependent degradation processes 

an be found in Wang & Pham (2012) and Castro & Landesa (2019) .

In general, for complex degradation processes, there are also 

wo approaches to model the degradation mechanism of the pro- 

esses. The first approach considers that all the processes start to 

egrade at the same time ( Jia & Gardoni, 2018 ). However, as Ku- 

iewski et al. claim ( Kuniewski, van der, & van Noortwijk, 2009 ), 

t is unlikely that all processes appear at the same time. The sec- 

nd approach assumes that the processes initiate at random times 

nd then grow depending on the environment and conditions of 

he system. In this approach, two stochastic processes have to 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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e combined: the initiation process and the growth process. Let 

 

N 

∗(t) , t ≥ 0 } be the point process of the degradation processes 

ith arrival times S 1 < S 2 < . . . (“initiating events”). Each degrada- 

ion process triggers the “effective event” of failure after a random 

ime D i , where D i are i.i.d. non-negative variables. The sequence 

 

S i + D i } forms a new point process. The initiating events can often 

e interpreted as potentially harmful events affecting a system. The 

wear process” triggered is activated at the moment of the occur- 

ence of the harmful event and continuously increases with time 

 Cha & Finkelstein, 2012 ). This approach has been recently dealt by 

ha & Finkelstein (2018b) assuming that the initiation process fol- 

ows a generalized Polya process. They obtained the survival func- 

ion of the system and an analysis of the residual lifetime was also 

erformed. 

This idea of combining the initiation process and the growth 

rocess is adopted in this paper. Some of the works that use this 

econd approach assume that the degradation processes arrive ei- 

her at a constant rate (using the Poisson process Huynh, Grall, & 

érenguer, 2017 ) or governed by a deterministic intensity function 

using the non-homogeneous Poisson process Caballé et al., 2015 ). 

f the degradation processes appear following a non-homogeneous 

oisson process (NHPP) and all the degradation processes degrade 

ollowing the same degradation mechanism, the combined point 

rocess { S i + D i } follows a non-homogeneous Poisson process. The 

on-homogeneous Poisson assumption facilitates explicit analysis 

nd it has been applied to real data in order to model the corrod- 

ng gas pipeline system over its lifetime ( Tee & Pesinis, 2017 ). How-

ver, modelling the arrival process as a non-homogeneous Poisson 

rocess assumes that the initiation intensity is deterministic along 

he system lifetime. The motivation of our work is the following: 

xternal shocks can accelerate the arrival of new degradation pro- 

esses to the system hence the deterministic intensity of arrivals 

an not be settled. For example, in harsh environments, shocks can 

nduce highly dynamic loads on structures causing cracking prob- 

ems ( Huang, Vasan, Doraiswami, & Osterman, 2012 ). In the case 

f cermets, many cracks are initiated due to mechanical shocks 

 Ishiara, Goshima, Nomura, & Yoshimot, 1999 ). When shocks affect 

o the intensity of arrival of new degradation processes, this phe- 

omenon is better captured by a shot noise Cox process instead of 

 non-homogeneous Poisson process. The shot noise Cox process 

as been employed as a useful tool for modeling the impact on 

he system lifetime of a dynamic environment ( Cha & Finkelstein, 

017; 2018a; Cha, Finkelstein, & Levitin, 2018 ). In this paper, we as- 

ume that the degradation processes initiate at random times un- 

er a shot noise Cox process. From its introduction in reliability by 

emoine & Wenocur (1985) and Lemoine & Wenocur (1986) , differ- 

nt authors have used this process in reliability and maintenance 

ainly for modeling the increment of the failure rate or an abrupt 

egradation increment due to external shocks (see Finkelstein, Cha, 

 Levitin, 2020 and Qiu, Cui, & Yang, 2018 as recent examples of 

he use of shot noise process in maintenance and reliability). 

Sometimes, the degradation processes present substantial vari- 

tions between them causing different degradation patterns. Dif- 

erent models have been proposed to integrate the heterogeneities 

nder the common idea that some parameters are process-specific 

nd different across processes ( Chen, Ye, Xiang, & Zhang, 2015 ). 

n approach to take into account the heterogeneities is to assume 

hat the parameters of the model follow a random variable ( Chen, 

awkes, Scalas, & Trinh, 2018 ). In the case of a gamma process, the

amma distribution in itself is a very attractive candidate for the 

istribution of the scale parameter ( Lawless & Crowder, 2004 ). As- 

uming the gamma distribution for the scale parameter, the joint 

istribution of the scale parameter and the gamma process has 

 closed form expression based on the Snedecor F distribution, 

hich allows the computation of the failure time. This gamma ran- 

om effect has been studied by different authors ( Rodríguez-Picón, 
561 
odríguez-Picón, Méndez-González, Rodríguez-Borbón, & Alvarado- 

niesta, 2018; Tsai, Tseng, & Balakrishnan, 2012; Xiang, Zhu, Coit, & 

eng, 2017 among others). Pulcini (2013) extends the gamma ran- 

om effect assuming that heterogeneity affects to the shape pa- 

ameter. In this paper, unlike the articles mentioned above, we in- 

orporate the random effects in the gamma process to model the 

rocess-specific heterogeneity assuming that the scale parameter 

ollows a uniform distribution. As far as we are concerned, there 

re not many works that model the heterogeneity using a uniform 

istribution. 

In short, in this paper, we deal with a system subject to mul- 

iple degradation processes. We assume that the degradation pro- 

esses initiate according to a shot noise Cox process and grows ac- 

ording to a stationary gamma process. The system fails when a 

egradation process exceeds a failure threshold. An inspection pol- 

cy is developed for this system and it is periodically inspected. At 

ach inspection, the decision on whether a preventive replacement 

r a corrective replacement should be taken, is performed. The an- 

lytical expression for the expected cost rate is obtained. 

The main contributions of this paper are summarized in the fol- 

owing aspects. 

• A shot noise Cox process is imposed as process of initiation of 

degradation processes. It extends and generalizes the combined 

model of initiation and growth that assumes a non homoge- 

neous Poisson process of arrivals. The methodology used in this 

paper allows to find easy-to-evaluate expressions for reliability 

expressions. 
• A random effect model is incorporated to the model with the 

novelty of the probability distribution used to deal with the 

heterogeneity between processes. In this paper, a uniform dis- 

tribution is used to model the inverse of the sc. It allows to 

evaluate the moments associated to this process and compare 

the variance between models with heterogeneity and without 

heterogeneity. 
• Providing the analytic cost model for the combined model of 

arrivals and growth. The proposed model allows to get the ana- 

lytic expressions for the quantities related to the maintenance. 

This remainder of the paper is structured as follows. In 

ections 2 and 3 , the arrival and growth processes are described. 

n Section 4 , the combined process of initiation and growth is 

nalyzed. Section 4 explains also the heterogeneity model. In 

ection 5 , the survival time is obtained and it is shown that the 

ailure time distribution is increasing failure rate (IFR). Section 6 is 

evoted to the maintenance analysis. Section 7 shows numerical 

xamples and last section conclude. 

. Arrival processes 

We assume that a system is working in a dynamic environment 

nd it is subject to external shocks. The external shocks arrive to 

he system according to a Poisson process with deterministic rate 

. Suppose that if a shock occurs at epoch T 1 , then at time T 1 + s

he contribution of the shock to the arrival of a degradation pro- 

ess is h (s ) = exp (−δ(s − T 1 )) with δ > 0 . Let T i , i = 1 , 2 , . . . be the

rrival times of the homogeneous Poisson process with rate pa- 

ameter μ and let N(s ) = 

∑ ∞ 

i =1 1 { T i ≤s } be the counting process as- 

ociated with the homogeneous Poisson process. Then, the failure 

ate of the shot noise Cox process at time s , λ∗(s ) , is given by 

∗(s ) = λ0 (s ) + 

N(s ) ∑ 

i =1 

exp (−δ(s − T i )) , s ≥ 0 , (1) 

here the deterministic function λ0 (s ) > 0 provides a Poisson base 

evel for the process. In absence of external shocks or if δ → ∞ , 

 shot noise Cox process reduces to a non homogeneous Poisson 

rocess. 
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Since the intensity λ∗ given by Eq. (1) is stochastic, the expec- 

ation at time s is given by, 

 (λ∗(s )) = λ0 (s ) + E 

( 

N(s ) ∑ 

i =1 

exp (−δ(s − T i )) 

) 

= λ0 (s ) + 

n 

sδ
( 1 − exp (−δs ) ) , (2) 

sing that, conditional on { N(s ) = n } , the vector (T 1 , T 2 , . . . , T n )

as the same distribution as the order statistics of sample 

U 1 , U 2 , . . . , U n ) of size n from the distribution 

 (U ≤ t) = 

t 

s 
, 0 ≤ t ≤ s, 

here 0 < t 1 < t 2 < . . . < t n ≤ s (see Lemoine & Wenocur, 1986 for

ore details). 

Next, we compute the expected number of degradation pro- 

esses at time s . For that, the following lemma, valid for all count- 

ng process whose proof is given in Ross (2014) (pp. 335–336), is 

sed. 

emma 1. Let λ∗(s ) , with s ≥ 0 , be the random intensity function of

he counting process { N 

∗(s ) , s ≥ 0 } having N 

∗(0) = 0 . Then 

 [ N 

∗(s )] = 

∫ s 

0 

E [ λ∗(u )] du. 

Using Lemma 1 , the expected number of degradation processes 

t time s is given by 

 [ N 

∗(s )] = 

∫ s 

0 

E [ λ∗(u ) ] du 

= �0 (s ) + 

μs 

δ
+ 

μ

δ2 
( exp (−δs ) − 1 ) . 

here 

0 (s ) = 

∫ s 

0 

λ0 (u ) du. 

. The stochastic process of growth 

Once a degradation process arrives to the system, the process of 

rowth is activated. We assume that degradation processes grow 

ndependently each other. Due to its mathematical properties, a 

amma process is used as mathematical model of the growth. The 

amma process is a stochastic process with independent gamma- 

istributed increments. The gamma process with shape function 

(t) > 0 and scale parameter β > 0 is a continuous-time stochastic 

rocess { X(t) , t ≥ 0 } with the following properties: 

1. X(0) = 0 with probability one. 

2. X(t 2 ) − X(t 1 ) ∼ Gamma (α(t 2 ) − α(t 1 ) , β) for t 1 ≤ t 2 . 

3. X(t) has independent increments. 

Recall that a random variable X has a gamma distribution with 

hape parameter α > 0 and scale parameter β > 0 if its probability 

ensity function is given by 

f α,β (x ) = 

βα

�(α) 
x α−1 exp 

−βx , x > 0 , (3) 

here 

(α) = 

∫ ∞ 

0 

t α−1 e −t dt. 

e assume in this paper that the system fails when the deteriora- 

ion level of a degradation process first exceeds a failure threshold 

 . Suppose that a degradation process X(t) starts at time 0 and it 

rows according to a homogeneous gamma process with parame- 

ers α and β . Let σL be the first time at which this degradation 

rocess exceeds L . The random variable σ is known as the first 
L 

562 
itting time distribution and it has the following cumulative dis- 

ribution function 

 σL 
(t) = P (X (t) ≥ L ) = 

∫ ∞ 

L 

f αt,β (x ) dx = 

�(αt, βL ) 

�(αt) 
, (4)

or t ≥ 0 where f αt,β is given by (3) and 

(α, x ) = 

∫ ∞ 

x 

z α−1 e −z dz, (5) 

enotes the incomplete gamma function for x ≥ 0 and α > 0 . 

For subsequent analysis, the distribution of σL − σM 

is used in 

his paper for two degradation levels M < L . According to Castro & 

ercier (2016) , the survival function of this variable is given by 

 ̄σL −σM 
(t) = 

∫ ∞ 

x =0 

∫ ∞ 

y = M 

f σM ,X(σM ) (x, y ) F αt,β (L − y ) dy dx, (6) 

here F αt,β denotes the distribution function of a gamma distri- 

ution with parameters αt and β and f σM ,X(σM ) 
denotes the joint 

ensity function of (σM 

, X(σM 

)) provided in Bertoin (1996) as 

f σ h 
M 

,X(σ h 
M 

) (x, y ) = 

∫ ∞ 

0 

1 { M ≤y<M + s } f αx,β (y − s ) μ(ds ) , 

nd μ(ds ) denotes the Lévy measure of the gamma process with 

arameters α and β given by 

(ds ) = α
e −βs 

s 
, s > 0 . 

ence, 

 ̄σL −σM 
(t) = 

∫ ∞ 

x =0 

d x 

∫ ∞ 

s =0 

d s 

∫ M+ s 

y = M 
d y f αx,β (y − s ) μ(ds ) F αt,β (L − y ) dy dx 

= 

∫ ∞ 

x =0 

d x 

∫ ∞ 

s =0 

d s 

∫ M+ s 

y = M 
d y 

α(y − s ) αx −1 

s �(αx ) ∫ L −y 

u =0 

u αt−1 exp (−β(y + u )) βαx + αt 

�(αt) 
du 

The model considered above assume that all the degradation 

rocesses are independent and identically distributed. However, in 

ome cases, the degradation processes degrade at different rates 

ven though no differences in the environment is present Xiang 

t al. (2017) . In the next section, a random effects process-specific 

s used to model such variability. 

.1. Random effects 

The random effects model is a useful tool for modeling the 

ariability in the different degradation rates and the heterogeneity 

mong different degradation processes. In this section we assume 

hat the degradation processes can be described by a gamma pro- 

ess with random effects. To implement this random effects model, 

e assume that the scale parameter of the gamma process is ran- 

om. It means that both the mean and the variance of the process 

re affected by the random effect parameter. Some authors have 

reviously studied the random effects model in the gamma process 

sing different probability distributions for the scale parameter. 

ne of the most popular is the gamma distribution since it pro- 

ides a closed-form expression using a Fisher distribution ( Lawless 

 Crowder, 2004 ). 

Inspired by the simplicity of its distribution and by the fact that 

n Bayesian theory, when no a prior statistical information about 

he parameters is given uniform distribution is used ( Guida, Cal- 

bria, & Pulcini, 1989 ), a uniform distribution is used to model the 

nverse of the scale parameter of the gamma process. 

Let { X h (t) , t ≥ 0 } be a gamma process with random effects β
hat controls the heterogeneity among the different degradation 

rocesses. We assume that { X h (t) , t ≥ 0 } is a homogeneous gamma 

rocess with parameters α and β , where β−1 follows a uniform 
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Fig. 1. Density function f X h (t) for α = 1 , t = 5 and β−1 uniform in (1 , b) . 
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istribution in (a, b) with 0 < a < b < ∞ . Then, the corresponding

robability density function of X h (t) is given by 

f X h (t) (u ) = 

∫ b 

a 

f αt,β (u ) 
1 

b − a 
dβ−1 

= 

1 

(b − a ) 

�(αt − 1 , u/b) − �(αt − 1 , u/a ) 

�(αt) 
, u ≥ 0 , (7) 

here �(·, ·) denotes the upper incomplete gamma function given 

y Eq. (5) . 

Figure 1 plots the density f X h (t) (u ) for t = 5 for a stationary

amma process with shape parameter α = 1 and scale parameter 
−1 following a uniform distribution in (1 , b) . As we can see, the 

urtosis of this distribution increases with respect to b. 

Let σ h 
L 

be the first time in which the process with random ef- 

ects exceeds the failure threshold L . The survival function of σ h 
L 

an be evaluated as 

 σ h 
L 
(t) = P (X h (t) ≥ L ) 

= 

∫ ∞ 

L 

f X h (t) (u ) du, 

here f X h (t) (u ) is given by (7) . In this random effects model, each

rocess degrades according to a gamma process but the degrada- 

ion behavior differs from process to process and the resulting pro- 

ess is not longer gamma distributed. 

Moments of X h (t) can be evaluated as 

[ X 

n 
h (t)] = 

n −1 ∏ 

n ∗=0 

( αt + n 

∗) E[1 /βn ] 
563 
= 

n −1 ∏ 

n ∗=0 

( αt + n 

∗) 
1 

n + 1 

n ∑ 

k =0 

a k b n −k . 

ence, the expectation of X h (t) is given by 

 (X h (t)) = 

αt(a + b) 

2 

, 

ith variance 

 ar(X h (t)) = E (X h (t) 2 ) − (E (X h (t))) 2 

= 

(αt + (αt) 2 )(b 2 + ab + a 2 ) 

3 

− (αt) 2 (a + b) 2 

4 

= 

αt(b 2 + ab + a 2 ) 

3 

+ 

(αt) 2 

12 

(a − b) 2 . 

or fixed t < ∞ , and assuming that 0 < a < b < ∞ , X h (t) has finite

ean and variance. 

Expectation and variance of the random effects process 

 

X h (t) , t ≥ 0 } increase with the time. As in the case without het- 

rogeneities, expectation increases linearly with the time. In the 

ase of the variance, unlike the case without heterogeneities, vari- 

nce does not increase linearly with the time. Figure 2 a and b 

how the expectation and variance of the process { X h (t) , t ≥ 0 } for 

 stationary gamma process with shape parameter α = 1 and β−1 

ollowing a uniform distribution in (1 , b) . 

It is well known that, in a gamma process X(t) without het- 

rogeneity, the ratio Var (X(t)) / E (X(t)) does not depend on time. 

owever, in the gamma process with heterogeneity presented in 
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Fig. 2. Expectation and variance of X h (t) versus t for α = 1 and β−1 uniform in (1 , b) . 
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t

	

his paper, the quotient 

Var (X h (t)) 

E (X h (t)) 
= 

2(1 + αt)(b 2 + ab + a 2 ) 

3(a + b) 
− αt(a + b) 

2 

= 

4(b 2 + ab + a 2 ) + αt(b − a ) 2 

6(a + b) 
, (8) 

s no longer constant (increases with t). As Pulcini (2013) claims, 

he presence of a noticeable heterogeneity should ensure that the 

atio (8) increases with the time. Figure 3 shows the ratio given by 

q. (8) of the process { X h (t) , t ≥ 0 } for a stationary gamma process 

ith shape parameter α = 1 and β−1 following a uniform distribu- 

ion in (1 , b) . As we can see, the ratio is increasing with the time. 

The random effects model with heterogeneity modelled us- 

ng a uniform distribution is next compared to a random ef- 

ects model with heterogeneity modelled using a gamma dis- 

ribution and compared to a model without heterogeneity. For 

hat, let 

{ 

X (1) 
h 

(t) , t ≥ 0 

} 

, 

{ 

X (2) 
h 

(t) , t ≥ 0 

} 

and { X(t) , t ≥ 0 } be 

hree stochastic processes where X (1) 
h 

(t) denotes the degradation 

evel at time t for a gamma process with shape parameter α
nd scale parameter β1 where β−1 

1 
follows a uniform distribu- 

ion U(a, b) , X (2) 
h 

(t) denotes the degradation level at time t for a

amma process with shape parameter α and scale parameter β2 

here β2 follows a gamma distribution with parameter k 1 and k 2 
amma (k 1 , k 2 ) and X(t) denotes the degradation level at time t for 

 gamma process with shape parameter α and scale parameter β3 

ith deterministic β3 . To compare the three processes, firstly the 

xpectations are standardized imposing 

[ X 

(1) 
h 

(t)] = E[ X 

(2) 
h 

(t)] = E[ X (t)] , t ≥ 0 . 

o get the same expectation, the parameters of the three processes 

ulfill 

1 

β3 

= 

a + b 

2 

= 

k 1 
k 2 

. (9) 

ince the three processes have the same expectation, we get that 

he comparison in terms of variances is reduced to the compari- 

on of the moments of second order E [ X (1) 
h 

(t) 2 ] , E [ X (2) 
h 

(t) 2 ] and

 [ X(t) 2 ] . We get that 

 [ X 

(1) 
h 

(t) 2 ] = 

(
αt + (αt) 2 

)
E 

[
1 

β2 
1 

]
= 

(
αt + (αt) 2 

)b 2 + ab + a 2 

3 
564 
 [ X 

(2) 
h 

(t) 2 ] = 

(
αt + (αt) 2 

)
E 

[
1 

β2 
2 

]
= 

(
αt + (αt) 2 

)k 1 (k 1 + 1) 

k 2 

E [ X (t) 2 ] = 

(
αt + (αt) 2 

)
E 

[
1 

β2 
3 

]

omparing X (1) 
h 

(t) and X (2) 
h 

(t) with parameters fulfilling Eq. (9) in 

erms of variances, we get that 

 ar(X 

(1) 
h 

(t)) ≥ (≤) V ar(X 

(2) 
h 

(t)) ⇔ 

2(b 2 + ab + a 2 ) 

3( a + b) 
− 1 ≥ ( ≤) k 1 . 

ence, the variances of the two processes V ar(X (1) 
h 

(t)) and 

 ar(X (2) 
h 

(t)) depend on the parameters of the processes. Compar- 

ng the random effect model with uniform distribution and the 

rocess without heterogeneity, we get that 

 [ X 

(1) 
h 

(t) 2 ] = 

(
αt + (αt) 2 

)b 2 + ab + a 2 

3 

E [ X (t) 2 ] = 

(
αt + (αt) 2 

) (a + b) 2 

4 

ence V ar(X (1 
h 

(t)) ≥ V ar(X(t)) for all t and parameters fulfilling 

q. (9) . Hence for two processes with the same expectation, a 

amma process without heterogeneity shows a lower variance 

ith respect to a gamma process with random effects model under 

 uniform distribution. 

Expression (7) allows us to obtain the likelihood function 

or observed data. Suppose now that X h (t) is recorded at times 

 1 , t 2 , . . . , t n with observations x 1 , x 2 , . . . , x n . The x -increments are

efined by 	x j = x j − x j−1 for j = 1 , 2 , . . . , n and x 0 = 0 and the

-increments are defined by 	t j = t j − t j−1 with t 0 = 0 . Using

7) for fixed α and for a realization of β−1 , the joint density of 

 

	x 1 , 	x 2 , . . . , 	x n ) is given by the product 

f (	x 1 , 	x 2 , . . . , 	x n ) = 

∏ n 
j=1 (	x j ) 

α	t j −1 ∏ n 
j=1 �(α	t j ) 

βαt n exp (−βx n ) . (10) 

Suppose that m degradation processes 
{

X h,i (t) , t ≥ 0 
}

for i = 

 , 2 , . . . , m are observed with the i th process observed at times

 0 ,i < t 1 ,i , . . . , < t n i ,i with values x 0 ,i < x 1 ,i , . . . , < x n i ,i . Analogously

o Lawless & Crowder (2004) , the joint density of the increments 

x j,i = x j,i − x j−1 ,i for the i process is given by (10) replacing 	x j 
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Fig. 3. Var(X h (t)) /E(X h (t)) versus t with β−1 uniform in (1 , b) . 
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y 	x j,i , 	t j by 	t j,i . The product across i = 1 , 2 , . . . , m and the

ntegration with respect to β gives the likelihood function of the 

bserved data in the m processes. 

 (α, a, b) = 

1 

(b − a ) m 

m ∏ 

i =1 

∏ n i 
j=1 

(	x j,i ) 
α	t j,i −1 ∏ n i 

j=1 
�(α	t j,i ) 

×�(αt n,i − 1 , x n,i /b) − �(αt n,i − 1 , x n,i /a ) 

x 
αt n,i 

n,i 

. (11) 

Inference about (α, a, b) can be based on the usual maximum 

ikelihood procedures using Eq. (11) . 

xample 1. Different degradation processes have been simulated 

rom t = 0 to t = 30 for α = 1 . 5 and β−1 uniform in (1 − 0 . 3 , 1 +
 . 3) . The trajectories are plotted in Figs. 4 a and 5 b for six degrada-

ion processes and twenty six degradation processes respectively. 

For fixed α = 1 . 5 and β−1 uniform in (1 − α∗, 1 + α∗) , Figs. 4 b

nd 5 b show the negative of the logarithm of the likelihood of 

he six simulation processes versus α∗. As we can check, the min- 

mum of this function is reached for α∗ = 0 . 39 with a value of -

73.5824 (for 6 simulated processes) and α∗ = 0 . 302 with a value 

f the negative of the likelihood of -431.5405 for 26 degradation 

rocesses. 

. Combined process of arrival and growth 

Since the shot noise process with intensity given by Eq. (1) is 

 Cox process, this section shows some previous well-known re- 

ults about general Cox processes. These results are used to evalu- 

te quantities of interest of the model. The degradation processes 

tart at random times S , S , . . . following a shot noise Cox process
1 2 

565 
ith intensity given by (1) and then they grow independently fol- 

owing a homogeneous gamma process with parameters α and β . 

ext, we shall analyse the combined process of arrival and growth. 

We define the deterioration level of the degradation process k 

t time t as 

 k (t) = X 

(k ) (t − S k ) , t ≥ S k , 

here X (k ) denotes a homogeneous gamma process with param- 

ters α and β . We set X (i ) with i ∈ N to be i.i.d of a stationary

amma process with parameters α and β . 

Let W k be the time where the deterioration level of the degra- 

ation process k exceeds the threshold L . Hence, W k is given by 

 k = S k + σL , for k = 1 , 2 , . . . 

igure 6 shows a realization of the combined process. 

Let N L (t) be the number of degradation processes whose de- 

erioration levels exceed the failure threshold L at time t , that is, 

 L (t) = 

∞ ∑ 

k =1 

1 { W k ≤t } . (12) 

he distribution of the counting process { N L (t) , t ≥ 0 } is next ob- 

ained. 

Before obtaining the distribution of { N L (t) , t ≥ 0 } , some defini- 

ions and properties of the Cox processes are first recalled. These 

roperties allow to obtain the combined expression for arrival and 

rowth of the degradation processes. 

Because Cox process are essentially Poisson processes, most re- 

ults for Poisson processes have counterparts for Cox processes us- 

ng an expectation to take into account the stochastic intensity. 

he preservation of basic point process operations is an example 
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Fig. 4. Trajectories and log likelihood. 

Fig. 5. Trajectories and log likelihood. 
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f these results. We focus on the random translation of a point 

rocess, the so-called displaced process. 

efinition 1. Let { N 

∗(t) , t ≥ 0 } be a counting process with oc- 

urrence times S 1 , S 2 , . . . and suppose that { D 1 , D 2 , D 3 , . . . } , i = 

 , 2 , . . . is a sequence of independent and identically distributed, 

on-negative random variables independent of S i . The point pro- 

ess { N(t) , t ≥ 0 } whose occurrence times are { S i + D i } for i = 

 , 2 , . . . is called a displaced process. 

It is well known that if { N 

∗(t) , t ≥ 0 } follows a non- 

omogeneous Poisson process with intensity λ∗(t) , then the 

isplaced process { N(t) , t ≥ 0 } with occurrence times given by 

 

T i + D i } is also a non homogeneous Poisson process Caballé et al. 

2015) with intensity 

(t) = 

∫ t 

0 

λ∗(u ) f (t − u ) du, t ≥ 0 , 

here f denotes the common density of the random variables D i . 

This preservation of the random translation of a non homo- 

eneus Poisson process has the counterpart for the Cox process. 

t is explained in the following result (see References Serfozo, 

990 and Möller, 2005 for more details). 
566 
emma 2. If { N 

∗t) , t ≥ 0 } is a Cox process with stochastic intensity 
∗(t) , then the displaced process { N(t) , t ≥ 0 } with occurrence times 

iven by { T i + D i } is also a Cox process with stochastic intensity 

(t) = 

∫ t 

0 

λ∗(u ) f (t − u ) du, t ≥ 0 , 

here f denotes the common density of the random variables D i . 

Since, in this paper, the arrival process (the shot noise Cox pro- 

ess) is a Cox process, using Lemma 2 , the mathematical model for 

he counting process { N L (t) , t ≥ 0 } given by Eq. (12) is obtained 

nd it is shown in the next result. 

emma 3. Let S 1 , S 2 , . . . be the occurrence times of the shot noise

ox process with stochastic intensity given by (1) , then the displaced 

rocess { N L (t) , t ≥ 0 } with occurrence times given by { S i + σL } is also 

 Cox process with stochastic intensity 

L (t) = 

∫ t 

0 

λ∗(u ) f σL 
(t − u ) du, t ≥ 0 , (13) 

here f σL 
denotes the density of the first hitting time σL with distri- 

ution given by Eq. (4) . 
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Fig. 6. Realization of the combined process. 
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The expectation of the stochastic intensity λL (t) of the com- 

ined process of arrivals and growth is obtained. 

emma 4. The expectation of the stochastic intensity of the displaced 

rocess { N L (t) , t ≥ 0 } with occurrence times given by { S i + σL } and 

here S i are given by a shot noise Cox process with intensity given 

y Eq. (1) is given by 

 [ λL (t)] = λ0 F σL 
(t) + μ

∫ t 

0 

H(u ) f σL 
(t − u ) du, 

here f σL 
is the density function of the hitting time σL and H(t) is 

iven by 

(t) = 

∫ t 

0 

e −δu du. 

roof. As we explained before, { N L (t) , t ≥ 0 } is a Cox process with 

ntensity λL (t) given by (13) with expectation 

 [ λL (t)] = 

∫ t 

0 

E [ λ∗(u )] f σL 
(t − u ) du, 

nd, using E [ λ∗(u )] given in (2) , the result is obtained using Fubini

heorem since λ∗ is integrable. �

Finally, Lemma 4 allows us to obtain the expected number of 

egradation processes that exceed the failure threshold L at time t

iven by Eq. (12) . To derive E [ N L (t)] , Lemma 1 is used. 

 [ N L (t) ] = 

∫ t 

0 

E [ λL (s )] ds = 

∫ t 

0 

E [ λ∗(u )] F σL 
(t − u ) du, 

here E [ λ∗(u )] is given by (2) . 

Notice that Lemmas 3 and 4 have a counterpart in the random 

ffects case replacing f σL 
by f 

σ h 
L 

which is the density probability 

unction of σ h . 

L 

567 
Next section analyzes the failure time for this system. The fail- 

re time distribution is obtained and it is shown that it is increas- 

ng failure rate. 

. Time to the system failure 

The system can be considered to be failed if at least one of 

he degradation processes reaches its failure threshold. We assume 

hat the failure threshold is L for all the degradation processes. 

Let W [1] be the instant at which, for the first time, the deterio- 

ation level of a degradation process exceeds the failure threshold 

, 

 [1] = min 

i =1 , 2 , ... 
{ W i } . 

he probability distribution of W [1] is next obtained. 

emma 5. Let W [1] be the instant at which, for the first time, the de-

erioration level of a degradation process exceeds the failure threshold 

 . Then, the survival function of W [1] is given by 

 ̄W [1] 
(t) = exp 

(
−λ0 

∫ t 

0 

F σL 
(u ) du − μ

∫ t 

0 

(
1 − exp 

(
−

∫ u 

0 

e −δw F σL 
(u − w ) dw 

))
du 

)

here F σL 
is given by (4) . 

roof. As we obtained above, counting process { N L (t) , t ≥ 0 } is a 

ox process with intensity λL (t) given by (13) . Hence 

 ̄W [1] 
(t) = P (N L (t) = 0) 

= E 

[
exp 

{
−

∫ t 

0 

λL (u ) du 

}]

= E 

[
exp 

{
−

∫ t 

0 

λ∗(u ) F σL 
(t − u ) du 

}]
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= exp 

{
−λ0 

∫ t 

0 

F σL 
(u ) du 

}
E 

×
[ 

exp 

{ 

−
∫ t 

0 

N(t) ∑ 

i =1 

e −δ(u −T i ) F σL 
(t − u ) 1 { u>T i } du 

} ] 

. 

iven N(t) = n with n > 0 , we get that 

P 
(
W [1] > t | N(t ) = n 

)
= C 1 (t) E 

[ 

n ∏ 

i =1 

exp 

{
−

∫ t 

0 

e −δ(u −T i ) F σL 
(t − u ) 1 { u>T i } du 

}] 

= C 1 (t) E 

[(
exp 

{
−

∫ t 

0 

e −δ(u −U) F σL 
(t − u ) 1 { u>U } du 

})]n 

, 

here 

 1 (t) = exp 

(
−λ0 

∫ t 

0 

F σL 
(u ) du 

)
, t ≥ 0 , (14) 

nd U is a uniform variable in the interval (0 , t) . Then 

P 
(
W [1] > t | N(t ) = n 

)
= C 1 (t) 

(∫ t 

s =0 

1 

t 
exp 

{
−

∫ t 

s 

e −δ(u −s ) F σL 
(t − u ) du 

}
ds 

)n 

, 

herefore 

 ̄W [1] 
(t) = 

∞ ∑ 

n =0 

P (W [1] > t| N(t) = n ) P (N(t = n )) 

= C 1 (t) exp (−μt) + 

∞ ∑ 

n =1 

P (W [1] > t) P (N(t = n )) 

= C 1 (t) exp (−μt) + C 1 (t) exp (−μt) 
∞ ∑ 

n =1 

A (t) n 

t n 
(μt) n 

n ! 

here A (t) is given by 

 (t) = 

∫ t 

0 

exp 

(
−

∫ x 

0 

e −δw F σL 
(x − w ) dw 

)
dx. 

ence 

 ̄W [1] 
(t) = C 1 (t) exp (−μt) + C 1 (t) exp (−μt) ( exp (A (t) μ) − 1 ) 

= C 1 (t) exp (−μt)) exp (A (t) μ

= C 1 (t) C 2 (t) 

here C 1 (t) is given by (14) and C 2 (t) equals to 

 2 (t) = exp 

(
−μ

∫ t 

0 

(
1 − exp 

(
−

∫ x 

0 

e −δw F σL 
(x − w ) dw 

))
dx 

)
,

(15) 

nd the result holds. �

emma 6. Let W [1] be the instant at which, for the first time, the de-

erioration level of a degradation process exceeds the failure threshold 

 . Then W [1] is increasing failure rate (IFR). 

roof. Using Lemma 5 , the failure rate function of W [1] is given 

y 

 W [1] 
(t) = 

−C ′ 1 (t) 

C 1 (t) 
+ 

−C ′ 2 (t) 

C 2 (t) 
, 

here C 1 and C 2 are given by (14) and (15) respectively. By making 

ertain calculations, we get that 

 W [1] 
(t) = λ0 F σL 

(t) + μ

(
1 − exp 

(
−

∫ t 

0 

e −δw F σL 
(t − w ) dw 

))
, 
568 
ith derivative 

 

′ 
W [1] 

(t) = λ0 f σL 
(t) + μ exp 

(
−

∫ t 

0 

exp 

−δw F σL 
(t − w ) dw 

)

×
(∫ t 

0 

e −δw f σL 
(t − w ) dw 

)
nd it is non-decreasing in t independent of the monotony of the 

ailure rate of σL . �

Notice that Lemmas 5 and 6 have a counterpart replacing F σL 

y F 
σ h 

L 
. 

The limit of r W [1] 
(t) is given by 

lim 

→∞ 

r W [1] 
(t) = λ0 + μ( 1 − exp (−1 /δ) ) . 

The increasing failure rate implies that the preventive mainte- 

ance is potentially worth implementing to improve the system re- 

iability. 

. Maintenance policy 

It is assumed that the degradation of the degradation processes 

annot be directly and instantaneously observed. The system is 

onitored through periodic inspections which reveal the exact 

tate of the degradation processes without error. Failures are non 

elf-announcing , so that system failures are only detected through 

nspections. This paper makes the following assumptions. 

1. The system is inspected each T time units and the following 

decisions are taken. 
• If the degradation level of a degradation process exceeds a 

preventive maintenance threshold M but the system is not 

failed, a preventive replacement is performed and the sys- 

tem is replaced by a new one. 
• If the system is failed, a corrective replacement is performed 

and the system is replaced by a new one. 
• If there is no degradation processes in the system or their 

degradation levels do not exceed the preventive mainte- 

nance threshold, the system is left as it is. 

2. Replacements are immediately performed and the duration 

time of these replacements is negligible. 

3. A sequence of costs is associated with the different mainte- 

nance actions: 
• A cost of C c monetary units is incurred when a corrective 

replacement is performed. 
• A cost of C p monetary units is incurred when a preventive 

replacement is performed. 
• The cost of the inspections is equal to C I monetary units. 
• The downtime cost is equal to C d monetary units per time 

units. 

First, let { N M 

(t) , t ≥ 0 } be the number of degradation processes 

hat exceed the preventive threshold M at time t . That is, 

 M 

(t) = 

∞ ∑ 

i =1 

1 { S i + σM ≤t } . 

sing a similar reasoning to the development of { N L (t) , t ≥ 0 } , the 

oint process { N M 

(t) , t ≥ 0 } follows a Cox process with stochastic 

ntensity 

M 

(t) = 

∫ t 

0 

λ∗(u ) f σM 
(t − u ) du, t ≥ 0 , (16) 

here λ∗(u ) is given by (1) 

Let V [1] be the instant at which, for the first time, the deteriora- 

ion level of a degradation process exceeds the preventive thresh- 

ld M. Using a similar reasoning to the method developed above, 
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he distribution of V [1] can be expressed as 

 ̄V [1] 
(t) = E 

[
exp 

{
−

∫ t 

0 

F σM 
(t − u ) λ∗(u ) du 

}]
, t ≥ 0 , 

here F σM 
is given by Eq. (4) replacing L by M. 

Let R be the time to a replacement, that is, the time to a pre-

entive replacement or a corrective maintenance. Hence, 

 = 

∞ ∑ 

k =0 

(k + 1) T 1 { kT ≤V [1] ≤(k +1) T } , 

ith expectation 

 [ R ] = 

∞ ∑ 

k =0 

(k + 1) T P (kT ≤ V [1] ≤ (k + 1) T ) (17) 

= T 

∞ ∑ 

i =0 

F̄ V [1] 
(iT ) . 

et N I (R ) be the total number of inspections performed on the sys- 

em in a replacement cycle, then 

 [ N I (R )] = 

E [ R ] 

T 
= 

∞ ∑ 

i =0 

F̄ V [1] 
(iT ) . (18) 

reventive maintenance probability 

A preventive replacement is performed at time (k + 1) T if the 

ystem is not failed at time (k + 1) T and the preventive threshold

is exceeded for the first time in (kT , (k + 1) T ] , that is, 

kT ≤ V [1] ≤ (k + 1) T < W [1] 

}
. 

Let { N L −M 

(t) , t ≥ 0 } be the following counting process 

 L −M 

(t) = 

∞ ∑ 

n =0 

1 { V i +(σL −σM ) ≤t } , (19) 

here the distribution of σL − σM 

is given by Eq. (6) . Since { V i } , 
or i = 1 , 2 , . . . is a Cox process with intensity λM 

given by (16) ,

he translated process N L −M 

(t) given in (19) is a Cox process with 

ntensity 

L −M 

(t) = 

∫ t 

0 

λM 

(u ) f σL −σM 
(t − u ) du, 

here f σL −σM 
(·) denotes the density of (6) . 

Let P p ((k + 1) T ) be the preventive maintenance probability at 

ime (k + 1) T . That is, 

 p ((k + 1) T ) = P 
(
kT ≤ V [1] < (k + 1) T ≤ W [1] 

)
. 

his probability is developed as follows. 

 p ((k + 1) T ) = 

∫ (k +1) T 

kT 

f V [1] 
(u ) P 

(
(k + 1) T ≤ W [1] | V [1] = u 

)
du 

= 

∫ (k +1) T 

kT 

f V [1] 
(u ) ̄F σL −σM 

((k + 1) T − u ) P 

×( N L −M 

(u, (k + 1) T ) = 0 ) du. 

ince { N L −M 

(t) , t ≥ 0 } is a Cox process, we get that 

P (N L −M 

(u, (k + 1) T ) = 0) 

= E 

[
exp 

{
−

∫ (k +1) T 

u 

λM 

(v ) F σL −σM 
((k + 1) T − v ) dv 

}]
. 

et g(u, (K + 1) T ) be the following expectation 

(u, (K + 1) T ) = E 

[
exp 

{
−

∫ (k +1) T 

u 

λM (v ) F σL −σM 
((k + 1) T − v ) dv 

}]
. 
569 
sing Eq. (16) 

M 

(t) = λ0 F σM 
(t) + 

N(t) ∑ 

i =1 

∫ t 

0 

e −δ(u −T i ) f σM 
(t − u ) du, 

nd given N((k + 1) T ) = n , for n > 0 , we get that 

g n (u, (K + 1) T ) = exp 

{
−λ0 

∫ (k +1) T 

u 

F σM 
(v ) F σL −σM 

((k + 1) T − v ) dv 
}

E 

[
exp 

{
−

∫ (k +1) T 

u 

(∫ v 

w =0 

e −δ(w −U) f σM 
(v − w ) 1 { w>U } 

)
F σL −σM 

((k + 1) T − v ) 
}]

= D 1 (u, (K + 1) T ) D 2 (u, (K + 1) T ) , 

here U is a uniform variable in (0 , (k + 1) T ) and D 1 ((K + 1) T )

nd D 2 ((K + 1) T ) are given by 

 1 (u, (k + 1) T ) = exp 

{
−λ0 

∫ (k +1) T 

u 

F σM 
(v ) F σL −σM 

((k + 1) T − v ) dv 
}

, (20) 

nd 

 2 (u, (K + 1) T ) = 

(∫ (k +1) T 

s =0 

1 

(k + 1) T 
exp 

×
{

−
∫ (k +1) T 

v = u 
L σM (v − s ) F σL −σM 

((k + 1) T − v ) 1 { v >s } dv 
})n 

= 

B (u, (K + 1) T ) n 

(k + 1) n T n 

here 

 (u, (K + 1) T ) = 

∫ (k +1) T 

s =0 

exp 

{
−

∫ (k +1) T 

u 

L σM (v − s ) F σL −σM 
((k + 1) T − v ) dv 

}

nd 

 σM 

(x ) = 

∫ x 

0 

e −δz f σM 
(x − z) dz. 

inally, the preventive maintenance probability at time (k + 1) T is 

iven by 

(u, (K + 1) T ) = 

∞ ∑ 

n =0 

g n (u, (k + 1) T ) P[ N((k + 1) T ) = n ] 

= exp (−μ(K + 1) T ) D 1 (u, (k + 1) T ) 

+ exp (−μ(K + 1) T ) D 1 (u, (k + 1) T ) 

×
∞ ∑ 

n =1 

B (u, (K + 1) T ) n 

k + 1) n T n 
μn (k + 1) n T n 

n ! 

= exp (−μ(K + 1) T ) D 1 (u, (k + 1) T ) exp (μB (u, (k + 1) T )) , 

(21) 

here D 1 (u, (k + 1) T ) is given by (20) . Finally, the probability of a

aintenance preventive at time (k + 1) T is given by 

 p ((k + 1) T ) = 

∫ (k +1) T 

kT 

f V [1] 
(u ) ̄F σL −σM 

((k + 1) T − u ) g(u, (K + 1) T ) du. (22)

orrective maintenance probability 

Let P c ((k + 1) T ) be the probability of a corrective maintenance. 

his probability is given by 

 c ((K + 1) T ) = P (kT ≤ V [1] ≤ W [1] ≤ (K + 1) T ) . 

sing (22) , we get that 

P c ((k + 1) T ) 

= 

∫ (k +1) T 

kT 

f V [1] 
(u ) 

(∫ (K+1) T 

u 

d 

dv 
(
F̄ σL −σM 

((k + 1) T − v ) g(v , (K + 1) T ) 
)

dv 
)

du,

(23

here g(v , (K + 1) T ) is given by (21) . 
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Fig. 7. Expected cost rate versus T and M. 
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.1. Expected downtime in a replacement cycle 

Let E d (kT , (k + 1) T ) be the expected downtime in (KT , (k +
) T ) . This expectation is given by 

E d (kT, (k + 1) T ) 

= 

∫ (k +1) T 

kT 

f V [1] 
(u ) 

(∫ (K+1) T 

u 

d 

dv 
(
F̄ σL −σM 

((k + 1) T − v ) g(v , (K + 1) T ) 
)

( (K + 1) T − v ) dv ) du, (24) 

here g(v , (K + 1) T ) is given by (21) 

To evaluate the performance of the maintenance strategy, the 

inimization of the asymptotic cost rate is applied. The renewal 

heorem (see Tijms, 2013 for more details) provides a simple ex- 

ression of this asymptotic cost rate since it reduces the renewal 

rocess to the first renewal. In this paper, a renewal cycle is de- 

ned as the period of time between two consecutive replacements 

f the system. The expected cost rate for this maintenance model 

s given by 

 (T , M) = 

E [ C ] 

E [ R ] 

here E [ C] denotes the expected cost in a replacement cycle and 

 [ R ] denotes the expected time to a replacement cycle. Hence 

C(T, M) 

= 

C c 
∑ ∞ 

k =1 P c (kT ) + C p 
∑ ∞ 

k =1 P p (kT ) + C I E [ N I ] + 

∑ ∞ 

k =0 C d E d (kT, (k + 1) T ) 

E [ R ] 
, (25) 

here E [ R ] , E [ N I ] , P p (kT ) , P c (kT ) , and E d (kT , (k + 1) T ) are given by

qs. (17) , (18), (22), (23) and (24) respectively. The search of the 

ptimal maintenance strategy is reduced to find the values T opt and 

 opt that minimize the function C(T , M) given by Eq. (25) . Next

ection focuses on numerical examples. 

. Numerical examples 

In this section, numerical examples obtained by simulation of 

he stochastic processes involved in the model are shown. The ex- 

ression (25) for the objective cost function is difficult to manage 
570 
t since it evolves infinity sums. A classical way to evaluate the 

bjective cost function is to perform simulations on the points of 

he mesh and to find the optimal combination by visualization (see 

uynh, 2020 ) or using optimization metaheuristic methods such 

s genetic algorithms ( Bautista, Castro, & Landesa, 2021 ). We ana- 

yze the optimal maintenance strategy considering a model with- 

ut heterogeneity and a model with heterogeneity. 

.1. β Deterministic 

We assume that degradation processes start according to a 

tochastic intensity given by 

(t) = 1 + 

N(t) ∑ 

i =1 

e −0 . 5(t−T i ) , t ≥ 0 , (26) 

here N(t) denotes the Poisson process of shocks with parame- 

er μ = 2 shocks per time unit. The degradation processes degrade 

ccording to a gamma process with shape parameter α = 1 . 1 and 

cale parameter β = 1 . 4 . It is assumed that the system fails when

 degradation process exceeds the failure threshold L = 10 . The 

ollowing costs are also assumed (m.u. monetary units, t.u. time 

nits) 

 p = 100 m.u., C c = 200 m.u., C I = 50 m.u., C d = 60 m.u. per t.u.. (27)

he search of the optimal maintenance policy corresponds to find 

he pair (T , M) that optimize the function C(T , M) given by (25) .

hat is, to find T opt and M opt that fulfill 

(T opt , M opt ) = inf { C(T , M) , M ≤ L } 
To obtain Fig. 7 , 60 0 0 simulations were performed on a grid of

ize 10 in the interval (0,25) for T and a grid of size 8 in (0,10) for

. By visualization, the optimal values obtained for the time be- 

ween inspections and the preventive threshold are T opt = 6 . 3333 

nd M opt = 6 . 1429 with an optimal expected cost of 35.3005 mon- 

tary units per unit time. 

Several sensitivity analysis were conducted to determine how 

he stochastic intensity affects the proposed model and to analyze 
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Table 1 

Sensitivity analysis on the values of α and β for the optimal expected cost rate. 

α \ β 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 19.8048 21.4489 25.7375 27.8152 30.7940 30.7778 35.7045 

1.15 22.4085 24.1170 28.1522 31.0347 32.3892 35.7728 39.1335 

1.3 24.9069 27.3980 31.9920 33.3075 36.1599 39.5103 41.4842 

1.45 27.6355 29.7365 34.2041 34.8008 37.3992 40.4628 46.5984 

1.6 29.0795 30.4875 34.9262 38.3855 41.6051 46.3327 46.8082 

1.75 30.4135 35.9786 37.9817 44.6625 45.7936 48.6405 52.9519 

1.9 30.5336 36.1878 42.7939 45.5782 49.2110 52.4083 60.1414 

Table 2 

Sensitivity analysis on the values α and β for the optimal value of T . 

α \ β 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 8.2220 8.0979 6.7767 6.2052 6.0996 6.4665 4.5638 

1.15 7.5315 7.1678 6.2315 5.7359 5.1743 5.2126 4.6818 

1.3 7.4103 6.0552 6.5784 5.3184 5.0614 5.1942 4.8545 

1.45 6.3486 5.9120 5.4764 5.2139 4.6110 4.5256 4.8004 

1.6 5.8572 5.7846 5.2789 4.4831 4.1643 4.3130 3.9727 

1.75 5.2285 4.9454 4.6661 4.3905 4.2302 3.9181 4.2534 

1.9 5.6905 4.6343 4.3063 3.9870 3.9727 4.2653 4.7039 

Table 3 

Sensitivity analysis on the values of α and β for the optimal value of M. 

α \ β 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 3.9426 2.1435 2.6667 1.6410 1.7250 2.7337 1.6285 

1.15 1.2083 2.6261 2.1233 2.6294 2.6088 1.6989 2.9067 

1.3 4.0309 1.3344 2.9083 2.5836 2.2619 2.0369 2.3512 

1.45 1.1294 1.6428 1.3248 2.4431 1.8680 1.5133 1.8599 

1.6 2.2714 1.8112 2.3257 1.3541 2.8780 1.4741 1.3602 

1.75 1.9457 2.2737 1.1288 1.2540 2.0906 1.1675 1.9039 

1.9 2.3188 2.8609 3.0805 1.2140 2.1427 1.6137 1.5923 

Table 4 

Sensitivity analysis on the values of C c and C p for the optimal expected cost rate. 

C c \ C p 90 92.5 95 97.5 100 102.5 105 107.5 110 

190 32.05 32.11 35.77 34.97 36.74 35.35 36.91 36.56 35.76 

192.5 33.32 38.32 33.63 31.32 35.63 40.54 37.32 41.83 38.93 

195 46.17 33.80 50.28 51.64 51.88 52.29 36.58 37.80 40.59 

197.5 38.60 41.46 37.50 37.91 36.74 38.06 36.38 44.02 38.95 

200 33.52 36.48 40.35 39.34 35.00 37.06 33.76 33.77 40.38 

202.5 34.21 35.43 39.97 38.45 39.47 35.05 36.99 36.51 36.97 

205 34.38 35.60 36.67 35.68 35.27 37.16 33.11 45.96 49.05 

207.5 35.04 34.76 32.51 35.66 40.10 36.01 40.27 37.81 38.92 

210 36.57 37.45 37.00 38.76 37.74 39.62 43.93 39.07 39.50 

t

s

t

d

a

a

p

1  

3

v
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t
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t
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α  
he robustness of the solution when different parameters vary. As- 

uming that the degradation processes start according to the in- 

ensity given by Eq. (26) , assuming that the system fails when the 

egradation level of a process exceeds the failure threshold L = 10 

nd with β deterministic, Table 1 shows the influence of the shape 

nd scale parameters of the gamma process on the optimal ex- 

ected cost rate with a shaded grey scale when α and β vary from 

 to 1.9 increasing by 0.15 at each step. Along with Tables 1, 2 and

 show the optimal values of T and M for each combination of 

alues of α and β . Table 4 studies the influence of preventive and 

orrective maintenance costs on the total optimal cost. To observe 

he variation of the cost for preventive maintenance, 9 points have 

een considered in the interval [90,110], while the cost for correc- 

ive maintenance has been inspected in the interval [190,210], also 

ith 9 points. This table has been obtained by fixing the optimal 

alues for T and M obtained previously. 

Table 1 shows that α and β have both effect on the optimal 

xpected cost. It is worth noting that more differences in the op- 

imal expected cost are found when the scale parameter varies. 

imilarly, as we can see in Table 2 , both parameters have effect 

n the optimal value for the time between inspections T . However 
o  

571 
able 3 does not show a clear influence of the parameters in the 

ase of the optimal value for the preventive threshold M. The same 

an be said for Table 4 regarding to the influence of maintenance 

osts in the model. 

As it is shown in Table 1 , the optimal expected cost decreases 

s α and β decreases. However, as it is shown in Table 2 , the opti-

al time between inspections decreases when α and β increases. 

igher values for the scale and shape parameter of the gamma 

rocess mean a faster deterioration hence inspections tend to be 

ore frequent to reduce costs. 

.2. Random effects model 

This section assumes that the scale parameter β is random. As 

efore, the degradation processes start according to the stochastic 

ailure rate given by Eq. (26) being N(t) a Poisson process with pa- 

ameter μ = 2 . We assume that the shape parameter of the gamma 

rocess is equal to α = 1 . 1 and the scale parameter β−1 follows a

niform distribution in the interval (1 / 1 . 4 − α∗, 1 / 1 . 4 + α∗) , with
∗ = 0 . 1 . As above, the system fails when the level of degradation

f a process exceeds L = 10 and the sequence of costs given by Eq.
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Table 5 

Sensitivity analysis on the values of α and b for the optimal expected cost rate in a model 

with random effects. 

α \ b 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 26.1538 28.3350 31.8173 32.9500 38.0842 44.5595 48.0884 

1.15 27.2921 30.9587 34.4670 38.8324 45.0903 46.3951 54.5271 

1.3 37.6802 37.1068 42.1956 44.4267 49.5072 56.1529 58.2646 

1.45 32.5948 39.7887 44.3998 49.9204 53.8380 56.2251 61.2970 

1.6 37.4109 42.5415 48.5337 53.8215 55.9734 60.1671 67.9211 

1.75 39.4109 46.8386 56.7378 58.7266 60.9805 61.7760 64.8222 

1.9 46.9104 51.9782 57.3185 60.1173 63.9612 66.7328 66.8821 

Table 6 

Sensitivity analysis on the values of α and b for the optimal value of T in a model with 

random effects. 

α \ b 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 8.3615 9.3511 10.8538 11.6696 13.6147 13.8070 14.9346 

1.15 7.4953 8.3954 9.3891 10.4470 11.4916 12.3747 13.6643 

1.3 6.7435 8.0170 8.8949 9.2960 10.3069 11.4964 12.1105 

1.45 6.5243 6.9606 7.9728 9.0949 9.4303 10.1668 11.6343 

1.6 5.8121 6.7253 8.0823 8.6948 9.0396 9.4426 10.3791 

1.75 5.7501 6.0871 6.9204 7.4151 8.1554 8.7310 9.5734 

1.9 5.4413 5.8472 6.4068 6.8895 8.0662 8.1205 8.8067 
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Fig. 8. Expected cost rate versus T and M in a model with random effects. 
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27) is imposed. To analyse the optimal maintenance strategy, a 

rid of size 10 in the interval (0,25) has been considered for T . 

imilarly, a grid of size 8 has been considered for M in (0,10). For 

ach combination of M and T , 60 0 0 simulations were performed. 

igure 8 shows the results of the expected cost rate versus T and 

. By inspection, the optimal values are obtained for T opt = 6 . 3333

nd M opt = 4 . 8571 with an optimal expected cost rate equals to 

7.1962 monetary units per time unit. Compared to the model 

ithout heterogeneity of the previous subsection, both objective 

ost functions show the same pattern. The case without hetero- 

eneity shows a lower optimal expected cost rate ( C(T opt , M opt ) =
5 . 3005) monetary units per time unit than the case with het- 
572 
rogeneity C(T opt , M opt ) = 37 . 1962) monetary units per time unit 

both processes have the same expectation). 

The sensitivity analysis of the expected cost rate and the opti- 

al values for T and M is summarized in Tables 5 , 6 and 7 , with α
arying from 1 to 1.9 with increments of 0.15 units and β−1 fol- 

owing a uniform distribution in (b − α∗, b + α∗) , being α∗ = 0 . 1

nd b varying in the same manner as α, from 1 to 1.9 also with 

ncrements of 0.15 units. Table 8 represents the variation in the 

xpected cost rate when the costs for preventive maintenance and 

orrective maintenance vary, using the values of T and M obtained 

n the optimization of the model. 
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Table 7 

Sensitivity analysis on the values of α and b for the optimal value of M in a model with 

random effects. 

α \ b 1 1.15 1.3 1.45 1.6 1.75 1.9 

1 2.7979 1.1639 2.2698 3.6165 1.6126 3.4845 3.3828 

1.15 1.3415 5.5418 1.6695 3.1643 1.8576 2.7601 3.7015 

1.3 1.4256 1.1350 1.6613 3.2311 3.1447 1.9884 2.3213 

1.45 2.9804 1.7815 1.5055 1.4391 2.4255 1.5748 5.2194 

1.6 1.7922 2.3719 3.4496 2.5720 3.2729 3.6388 1.6719 

1.75 3.5678 2.5439 3.6870 1.2555 3.2687 2.2337 3.3523 

1.9 1.4376 3.1995 1.1186 2.0668 1.3907 4.2251 2.5016 

Table 8 

Sensitivity analysis on the values of C c and C p for the optimal expected cost rate in a model with 

random effects. 

C c \ C p 90 92.5 95 97.5 100 102.5 105 107.5 110 

190 31.15 36.48 33.77 36.77 33.09 33.18 43.31 39.84 33.40 

192.5 37.24 35.31 32.65 33.58 37.47 33.56 34.54 32.91 31.88 

195 32.96 33.19 34.71 31.13 32.93 31.62 34.08 34.78 33.02 

197.5 33.65 45.19 34.26 36.21 34.43 43.83 36.55 42.48 34.34 

200 33.51 43.01 39.67 31.93 39.48 36.13 34.60 33.81 37.08 

202.5 34.02 36.24 33.92 35.40 36.48 33.11 35.94 34.56 34.61 

205 35.99 33.67 44.57 38.59 35.89 39.22 33.87 41.78 38.03 

207.5 34.59 30.98 33.59 35.03 36.18 43.77 50.11 36.11 33.27 

210 39.02 34.31 37.23 34.18 34.70 35.04 36.52 39.06 39.01 
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As in the model without heterogeneity, the optimal expected 

ost rate shown in Table 5 also increases as α increases. That 

s, more deterioration implies higher costs. In this particular ex- 

mple, the random choice of the parameter β has the same ef- 

ect as α on the resulting expected cost rate: it increases when 

increases. Similarly, Table 6 shows that the optimal value of 

 decreases as α increases. An increase in the deterioration im- 

lies more frequent inspections. Finally, no trend seems to be 

ound for the optimal values of the preventive threshold M or in 

he variation of maintenance costs C c and C p shown in Tables 7 

nd 8 , respectively. 

. Conclusions, future extensions and limitations of this work 

A system subject to multiple degradation processes is analyzed 

n this paper. Degradation processes start according to a shot noise 

ox process and grow according to homogeneous gamma pro- 

esses Under this framework, the combined model of initiation and 

rowth is modelled as a Cox process. Using properties of the Cox 

rocesses, the distribution to the system lifetime is obtained. It is 

hown that, in absence of maintenance, the system lifetime dis- 

ribution is increasing failure rate hence a preventive maintenance 

olicy is worth implementing to improve the system reliability. The 

nalysis is also completed with degradation process-specific het- 

rogeneity considering a random effects model using a uniform 

istribution. A classical maintenance strategy is implemented for 

his system. As before, the probability expressions of the objective 

ost function are closed forms that allow intuitive interpretations. 

t is due to the mathematical tractability of the shot noise Cox pro- 

ess induced by a Poisson process. 

Although in this paper starting points of the degradation pro- 

esses follow a shot noise Cox process, the result can be extended 

onsidering a different Cox process such as a Weibull renewal pro- 

ess. Or, even, a non-Cox distribution such as a Hawkes process. 

nother crucial assumption in this paper is that the degradation 

rocesses evolve independently and according to the same degra- 

ation pattern. For future research, different degradation patters 

or the degradation processes and dependence between the pro- 

esses could be considered. 
573 
With respect to the limitations of the paper, the most important 

imitation refers to the lack of real data that support the proposed 

aintenance model. 
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