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a Department of Electric Technology, Electronics and Automation, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain 
b Department of Computer and Telematics Systems Engineering, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain   

A R T I C L E  I N F O   

Keywords: 
Unmanned aerial vehicle 
Air quality monitoring 
Gas sensors 
Electronic instrumentation 
Data processing 
Calibration 

A B S T R A C T   

The issue of air pollution and the monitoring of air quality is a very serious problem in today’s society. This 
problem is basically caused by human in activities related to industry, construction, transport, etc. High pollution 
values have become an important risk factor for the health of citizens. Measuring pollution for air quality control 
is not an easy task, as it requires highly specialized equipment, working under special conditions, which makes 
reference systems bulky and costly installations. To this must be added the disadvantages of measuring in areas 
with little or no accessibility. The aim of this work is to develop an unmanned aerial vehicle (UAV) equipped 
with low-cost sensors to monitor air quality both on the move and stationary in a position that is difficult to 
access. It is equipped with sensors for carbon monoxide (CO), ozone (O3), nitrogen monoxide (NO) and nitrogen 
dioxide (NO2) measurement. The electronic instrumentation has been developed in the laboratory for this 
application and it is optimized to minimize interference between the different devices. It also incorporates a 
pneumatic pump and a tube for air sampling outside the influence of the propellers. In this study, a series of 
measurements of the UAV were carried out at a stationary location next to a reference station in order to perform 
the calibration of the sensors. Once calibrated, a series of measurements have been made in motion. The 
experimental results show the accuracy of the measurements of the proposed prototype as well as its robustness 
in-flight measurements.   

1. Introduction 

The problem of air pollution is a matter of great relevance in the field 
of public health since it is the cause of a wide variety of diseases and is 
even responsible for a high number of deaths worldwide [1]. According 
to the EEA (European Environment Agency), nitrogen dioxide particles 
(NO2) and ground-level ozone (O3), are the pollutants that most signif-
icantly affect human health [2]. 

Nowadays, it is widely demonstrated that air pollution can cause 
disease and shorten life [3,4]. Exposure to high levels of pollution over 
long periods of time increases the severity of diseases and can cause from 
deterioration of the respiratory system to premature death [5]. The most 
common diseases caused by air pollution include ischemic heart disease 
[6], stroke [7], chronic obstructive pulmonary disease (COPD) [8], lung 
cancer [9], and can even lead to acute respiratory tract infections in 
children [10]. 

Because of the health implications of air pollutants, it is essential to 
detect them effectively. In recent decades, different alternatives have 

been proposed to carry out these measurements. In general, air pollution 
is monitored through ground stations offering very accurate measure-
ments. However, they usually are very large, heavy and expensive de-
vices [11] and do not allow to evaluate pollution at different heights 
[12], which is critical to understand how local or regional pollutants 
behave [13]. A different alternative employs balloons to detect the 
physicochemical characteristics of atmospheric layers [14]. The main 
advantages of this approach are that balloons can carry a large number 
of instruments and allow measurements to be taken with great reliability 
[15]. Nevertheless, they are expensive, difficult to control and have very 
limited mobility [16]. Satellites are also used to monitor the spatial 
distribution of air pollution [17]. However, this option is very expen-
sive, it is not suitable when measurements of the same place need to be 
taken in short periods of time and in addition, the measurements ob-
tained do not have a high vertical nor horizontal resolution [18]. In 
recent years, Unmanned Aerial Vehicles (UAVs) are being applied to 
measure environmental chemical compounds. In this sense, the use of 
multirotors is gaining special relevance, since they provide a large 
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number of advantages, such as their ability to take measurements at 
different heights, the possibility of accessing hard-to-reach places, their 
easy handling and maneuverability and, in addition, they are vehicles 
that require a relatively low investment [19]. In recent years, several 
works have been proposed to address the challenge of detecting com-
pounds in the air using multirotors. With this aim, different works have 
been published proposing the integration of different types of sensors 
into multirotors to detect atmospheric pollutants [20–23]. In this regard, 
to expand the number of atmospheric variables monitored from multi-
rotors, a platform that integrates different types of sensors capable of 
measuring meteorological conditions, wind direction and atmospheric 
pollutants has been proposed [24]. On the other hand, the possibility of 
reducing air pollution using UAVs has also been studied and in this 
context, a UAV-based system has been adapted to measure and reduce 
air pollution by spreading a scrubbing solution comprising of H2O2 and 
HNO3 in order to reduce the concentration of NO2 in the air [25]. 

Regarding the choice of sensors, the use of low-cost gas sensors (LCS) 
has proven to be a good alternative to address problems in the field of 

atmospheric monitoring [26]. According to the sensor operation prin-
ciple, there is a wide variety of technologies, the most commons being 
electrochemical sensors (EC), semiconductor metal oxide sensors (MOX 
sensors), non-dispersive infrared sensors (NDIR) or photoionization 
detectors (PID). Some authors such as [27] carry out an exhaustive study 
of the technology and the results that have been obtained with this type 
of sensors recently, showing that electrochemical gas sensors are the 
most common choice when it comes to monitoring CO, NO, NO2 or O3. 
In addition, they describe the charasteristic problems that arise when 
working with this type of sensors, such as cross-sensitivity, strong 
dependence on temperature and relative humidity, drift etc. Currently, 
low-cost sensors get better results when working in controlled labora-
tory conditions rather than working in the field, as shown [28]. For this 
reason, when working with low-cost sensors, it is common to resort to 
calibration algorithms that, with reference equipment, allow to adjust 
the sensors, previously calibrated by manufacturers in the laboratory, to 
work in the field. As a calibration tool, recent works [29,30] use Ma-
chine Learning algorithms such as Artificial Neural Networks, or Sup-
port Vector Machines. Once a good calibration model is obtained, new 
challenges can be addressed and in the last few years, there have been 
proposed novel approaches to detect especial situations in quemical 
sensing using UAVs. For instance, the source-receptor distance has be 
predicted even in a turbulence plume by applying low-pass differ-
entiator filters for extracting transient features of gas sensor signals [31]. 
Another work has focused on monitoring dust particles at open-pit mine 
sites integrating opto-electrical dust sensors into UAVs to characterize 
blasting plumes in real time [32]. The use of electrochemical sensors 
embedded in unmanned aerial vehicles has also been applied for 
detecting and monitoring controlled brush fires [33]. Recently, a novel 
approach has developed an e-nose device integrated into UAVs for 
real-time odor quantification in wastewater treatment plants. 

However, as it has been highlighted in a very comprehensive and 
updated review on chemical sensing and small drones [34], the appli-
cation of unmanned aerial vehicles to monitor environmental chemical 
sensing entails new challenges that must be addressed. Specifically, it is 
of vital importance to consider the possible interferences between the 
different sensors used and the vehicle itself [35]. Electromagnetic in-
terferences can seriously affect the operation of both systems, causing 

Fig. 1. Sampling and air quality measurement system components.  

Fig. 2. Hexacopter and detail of the electronic system.  
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Fig. 3. Software programmed in Matlab for transferring the data from the UAV to the PC.  

Fig. 4. Data from reference equipment against data from sensor array.  
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situations of risk not only for the vehicle but also for people in the vi-
cinity. Interferences can also affect measurements taken by sensors, 
leading to erroneous results [36,37]. The calibration problem becomes 
even more complicated when these interferences are taken into account 
[38]. Authors such as [39] address this problem considering also UAV 
flight parameters when sensors are calibrated. Another important 
problem that must be analyzed is the location where sensors should be 
placed in the UAV since the downwash airflow produced by the pro-
pellers can seriously affect the measurements taken by the sensors [40, 
41]. Furthermore, as propellers revolution speed increase, turbulence 
around the UAV becomes more significant, causing the dispersion of air 
compounds [42]. Several studies have been carried out focused on the 
selection of the best position to integrate LCS sensors into UAVs in order 
to precise detect compounds in the air. Experimental approaches show 
that better results are obtained when sensors are integrated into the 

lower part of the UAV instead of in its upper part [43]. Other works have 
been focused on the study of UAV downwash to find out the position 
airflow affects sensors the least [44]. 

The present work proposes an LCS device integrated into a multi-
rotor, lightweight, low cost and low consumption, specifically designed 
for the detection of pollutants in the air. In addition, the problems 
resulting from both, electromagnetic interferences and downwash 
airflow generated by the propellers of the UAV, have been addressed. In 
the following sections, the measurement system will be described, the 
UAV will be explained in detail, as well as the integration of the mea-
surement system in it. Next, four calibration algorithms will be pro-
posed: Multiple Linear Regression (MLR), Artificial Neural Network 
(ANN), Random Forest (RF) and Support Vector Machine (SVR). These 
four techniques will be evaluated later by means of statistics that will 
allow choosing the method that works best so that, once the appropriate 
method is in place, the sensors can be calibrated. The results will then be 
presented before and after calibration. In addition, flights have been 
performed to check the stability and correct operation of the system to 
detect changes in pollutant concentrations. The results of these flights 
are shown in Section 3. Finally, Section 4 summarizes the main con-
clusions of this work. 

Table 1 
Original data metrics.  

Pollutant MAE MSE R2 Mean 

O3  19.21  436.99  -0.26  31.38 
NO2  5.52  47.69  0.68  20.13 
NO  5.44  77.54  0.67  13.45 
CO  126.52  19,654.84  0.11  284.95  

Table 2 
Metrics by algorithm. The best value is underlined.  

Pollutant MAE MSE R2 

MLR ANN RF SVR MLR ANN RF SVR MLR ANN RF SVR 

O3  7.36  7.31  9.95  7.38  71.22  74.67  136.89  71.33  0.79  0.78  0.60  0.79 
NO2  2.10  2.03  2.56  2.74  7.27  6.93  10.29  11.23  0.94  0.95  0.93  0.92 
NO  4.00  2.70  2.31  2.92  23.37  14.83  12.47  12.03  0.90  0.94  0.95  0.95 
CO  39.35  52.60  46.38  45.35  2560.63  5687.55  3494.28  3464.52  0.79  0.53  0.71  0.71  

Fig. 5. Barplot of the metrics.  
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2. Material and methods 

2.1. Air quality measurement system 

There are four main elements mounted on the drone: the control 
electronics, the gas sensors, the air sampling elements (tubes and pump) 
and the battery. First, the control electronics is responsible for receiving 
the information from the sensors and storing and/or transmitting it. The 
main unit is a low-power ST microcontroller based on a high- 
performance 32-bit core running at a frequency of up to 80 MHz. 
Additionally, the PCB incorporates a humidity and temperature sensor 
(SHT21, Sensirion) and a GPS module in order to gather more infor-
mation about the environment. The data collected from all sensors is 
stored in a microSD every 5 s. Besides, a ZigBee (Xbee, Digi) commu-
nication module has been incorporated into the design to establish low- 
power wireless communication with a computer. Hence, the computer, 
with the XBee coordinator node connected via USB, will display in real- 
time the information from the sensors during the flight. For this purpose, 
a graphical application (Fig. 3) has been developed in Matlab which 

plots sensor data as it is received through the serial port (USB). 
In order to measure air quality, four sensors, supplied by Alphasense, 

have been incorporated to detect NO2, O3, CO and NO. Specifically, the 
sensors included are OX-A431, NO2-A43F, CO-A4 and NO-A4 models. 
These are electrochemical sensors with four electrodes: working elec-
trode, counter electrode, reference electrode and auxiliary electrode. An 
active sampling system has been included to lead the air to the sensors, 
thus preventing any sudden changes in pressure that could worsen 
sensing performance. Regarding the effects produced by downwash, 
several works have focused on studying this type of turbulence in mul-
tirotor UAVs [45,46]. During flight, the downflow of the rotor develops 
downwards in a cylindrical shape, however, beyond the propellers these 
turbulences disappear [47]. According to this evidence, the proposed 
solution to avoid turbulences caused by multirotor propellers (down-
wash) is to incorporate a pump with a flow rate of 280 ml/min and a 35 
cm PVC tube placed horizontally on the UAV. This measurement is ob-
tained by adding a few centimeters to the distance between the center of 
the UAV and the end of the propeller. In this way, the tube collects the 
air sample outside the field of influence of turbulence, while the pump 

Fig. 6. Time series of each pollutant (O3, NO2, NO y CO) after MLR is applied.  
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Fig. 7. NO2 data after and before being calibrated with MLR.  

Fig. 8. Temporal variation of sensor signal during flight 1.  
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provides a continuous air flow that facilitates the measurement of 
contaminants. 

Finally, the system is powered by two Li-Ion batteries of 3.7 V and 
2800 mAH: one for the electronics and sensors, and another for the 
pump and the GPS module. Fig. 1 shows an outline of the main com-
ponents that make up the sampling and air quality measurement system 
and Fig. 2 shows the measurement system mounted on the drone (de-
tailing the main components). 

It should be noted that, in order to avoid any electromagnetic 
interference from the drone, both the control electronics and the gas 
sensors have been shielded to isolate them. For this purpose, these two 
elements have been introduced into metallized boxes, thus creating 
Faraday cages. In this way, the electromagnetic field inside these boxes 
is canceled. 

The weight of the complete system is approximately 750 g, so it is 
easily supported by the drone used without assuming a great loss of 
power. 

2.2. UAV description and sensor integration 

In this work, a hexacopter multirotor has been used with dimensions 
of 120 cm in diameter and 40 cm in height. The flight controller used is a 
PIXHAWK module that integrates a 32-bit ARM Cortex M4 core with an 
FPU processor. The complete system contains acceleration sensors, gy-
roscopes and GPS for stabilization and navigation control. Communi-
cation with the vehicle is provided with a 2.4 GHz radio channel, which 
allows the transmission of information up to a distance of approximately 
1 Km. An additional telemetry device has also been incorporated for 
data communication with the ground station. In addition, the chassis 
structure is made of carbon fiber, which considerably decreases the 

weight of the vehicle, which is 2.4 kg. The vehicle, along with the 
measuring device, air capture and batteries, has a total weight of 3.6 kg. 
To obtain greater autonomy, 4-cell and 5 mAh batteries have been 
incorporated, enabling flights of up to 20 min. Finally, a software tool 
(Mission Planner) has been used for setting up the vehicle and planning 
the flights. 

The location where the LCS device is placed in the UAV is of vital 
importance to make a stable flight and maintain the center of gravity. 
This is the reason why most of the measuring components have been 
placed centered on top of the vehicle in such a way that they do not 
affect its stability. As regards the position of the tube, it is placed over 
the X-axis of the vehicle, in such a way that it protrudes outside the 
propellers, thus avoiding most of the downwash airflows. 

Fig. 3 shows a snapshot of the application programmed in Matlab for 
data acquisition. 

2.3. Data processing - Calibration 

The electrochemical sensors detailed above have been calibrated to 
ensure the validity of the results. To this end, a fixed reference station 
has been used by placing the device in parallel. It should be noted that 
the reference equipment used in this work belongs to the Extremadura 
Network for the Protection and Research of Air Quality (REPICA) of the 
Regional Ministry of Ecological Transition and Sustainability of the 
Junta de Extremadura. The equipment of which these reference stations 
consist is as follows.  

– O3: THERMO 49i-B3ZAA (Absortion UV)  
– NOx: THERMO 42i-BZMTPAA (chemiluminescence)  
– CO: THERMO 48i-BCSAA (infrared absorption spectroscopy) 

Fig. 9. Violin plot of signals during flight 1 separated by flight stage.  
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This equipment collects the data every ten minutes, so, in order to be 
able to compare the information, the data from the drone-mounted de-
vice has been averaged over periods of 10 min. Initially, as it is shown in 
Fig. 4, a clear deviation between concentrations measured by the sensors 
and the actual concentration measured at the reference station, is 
detected. 

This deviation was attributed to the sensors being calibrated by the 
manufacturer under controlled laboratory conditions rather than in an 
outdoor environment. When working under outdoor conditions, sensor 
operation is affected by environmental variables, especially temperature 
and relative humidity [48]. 

To calculate the concentration, the manufacturer uses an internal 
algorithm that converts the values of the sensor electrodes into pollutant 
concentration values. 

Pollutant(ppb) =
(
SWE − SWE,0

)
− n

(
SAE − SAE,0

)

s
(1)  

Where SWE and SAE are the values of the working electrode and the 
auxiliary electrode respectively. SWE,0 and SAE,0 are the offset of the 
working electrode and that of the auxiliary electrode, n is a temperature- 
dependent parameter given by the manufacturer (from the guide tables 
for correction of zero background current due to temperature within the 
range of − 30 ◦C to +50 ◦C [49]), and s is the sensitivity to the pollutant. 

Fig. 4 shows that the concentration of the pollutants, calculated from 
the manufacturer’s algorithm, do not correspond to the data measured 
by the reference. For this reason, it is more appropriate to work with the 

values of the electrodes and try to find an alternative calibration algo-
rithm, than using the formula given by Alphasense (1). This approach is 
evidenced in a large number of references in the literature and it is the 
usual procedure that must be followed when working with this type of 
sensors in outdoor conditions [29,30,39,50–53]. 

Developing a calibration algorithm that returns the real concentra-
tion of each pollutant means replacing Eq. (1) with another one (2) that 
returns the gas concentration as a function of the working electrode, the 
auxiliary electrode (WEi and AEi) of each pollutant (i = NO2, O3, NO, 
CO), temperature (T) and relative humidity (RH). 

f (WEi, AEi, T, RH) = [Pollutant] (2) 

To solve this problem, Machine Learning Algorithms are usually 
used. In this work, four different approaches have been tested: Multiple 
Linear Regression, Artificial Neural Network, Support Vector Regression 
and Random Forest. 

Machine learning techniques need a first stage of training in order to 
optimize their internal parameters. To optimize the algorithms a train 
and test set have been temporally separated. The first 60% of data cor-
responds to the training set, while the remaining 40% has been set aside 
to validate the model. These four methods are briefly described below. 

2.3.1. Multiple Linear Regression 
First, a Multiple Linear Regression (MLR) based on least-squares 

adjustment was implemented. This alternative seeks to express the 
concentration of each pollutant as a linear combination of electrode 
values, temperature and relative humidity. The chosen combination will 

Fig. 10. Temporal variation of sensor signal during flight 2.  
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be one that minimizes the residuals, that is, the Euclidean distance be-
tween the calculated points and the actual value of the pollutant. 

2.3.2. Artificial Neural network 
The second method tested was an artificial neural network (ANN). In 

this case, a multilayer perceptron network type has been designed. A 
rectified linear unit has been chosen as activation function. On the other 
hand, as solver, we have used the stochastic gradient descent. 

The optimal system obtained consists of a network composed of 10 
inputs (8 electrodes, ambient temperature and relative humidity), 2 
hidden layers formed by 2 neurons in each and 1 output neuron. 

All this parameters have been chosen according to previous work 
[54] where we tested a similar procedure in order to calibrate a fix air 
quality monitoring station. 

2.3.3. Support Vector Regression 
Support Vector Regression (SVR) is based on a similar principle as 

the support vector machine (SVM) which are widely used in classifica-
tion tasks, however SVR focuses on regression rather than classification 
[55]. This is achieved by minimizing the error condition through the 
so-called "linear ε-insensitive loss function". In addition, the represen-
tation by means of Kernel functions offers a non-linear problem solution, 
projecting the information to a space of characteristics of greater 
dimension which increases the computational capacity of the linear 
learning machines. In the implementation of the SVR, the main pa-
rameters programmed are the radial basis Kernel function and a toler-
ance of 10− 3. 

2.3.4. Random Forest 
Finally, the Random Forest (RF) technique was tested, a technique 

that works by implementing a large number of decision trees 

simultaneously. 
These four techniques have been developed in Python 3.8, using the 

scikit-Learn 0.24.1 package. 
The methods that have been described were tested and their con-

figurations were optimized. After that, the one that showed the best 
results was selected as the optimal method. This selection was per-
formed by comparing the values calculated by the algorithm with the 
ground truth, given by the reference station. To compare, statistical 
indices such as the coefficient of determination (R2), mean absolute 
error (MAE) and mean square error (MSE), were calculated. 

2.4. Experimental development 

To validate the system, two different types of measurements have 
been carried out: static and in-flight. All the tests have been carried out 
in the area of Badajoz (Extremadura, Spain). 

Static measurements have been used to calibrate the gas sensors 
before performing measurements in motion. This phase is of great 
importance in the use of this type of sensor since, apart from correcting 
possible offset and slope effects, it is essential to correct the effects 
derived from changes in temperature and humidity. These calibration 
measurements have been carried out in a central area of the city because 
higher concentrations are reached there, thus allowing better perfor-
mance of the algorithms. The device has been placed in parallel with a 
mobile reference station for approximately two months (from November 
16, 2020, to January 20, 2021). 

Once the algorithm for calibration and correction of the data has 
been created and implemented, flight tests are performed. The flight 
tests seek, first of all, to verify that the operation of the drone does not 
affect the behavior of the sensors. Therefore, two short flights 
(approximately 5 min) have been performed and observed for 

Fig. 11. Violin plot of signals during flight 2 separated by flight stage.  
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disturbances in sensor signals caused by the movement of the drone. 
Next, the ability of the device to react to changes in concentration and 
locate sources of contamination is checked. For this purpose, another 
flight has been completed around an artificial source of NO2. This source 
was originated from the reaction between nitric acid and copper:  

4HNO3 + Cu → Cu(NO3)2 + 2NO2 + 2H2O                                       (3) 

As can be seen in expression (3), the acid reacts with copper forming 
nitrogen dioxide (reddish-brown gas) as well as copper nitrate and 
water. In this way, it is possible to visualize the NO2 cloud at all times. 
Finally, it should be noted that these flights have been performed in a 
non-central area, 80 m away from a fixed reference station, which al-
lows the actual concentrations of pollutants to be checked during the 
flight. 

3. Results and discussion 

3.1. Static measurements 

In this section, the static measures and the calibration results are 
presented. First, the values of the three statistics (MAE, MSE and R2) are 
shown in table format (Table 1) along with the average value of each 
pollutant before calibration. It can be seen that MAE and MSE values are 
higher in the case of CO. This occurs according to expected because CO 
concentration was higher than the concentration for the other three 
pollutants in the period in which the tests were carried out. This is 
appreciated by seeing the mean value. 

Table 2 shows the three metrics that evaluate the model when 
applying each of the four techniques described in Section 2.3. Green 
highlights which algorithm is giving the best results for each pollutant 
and for each metric. For example, Neural Network is the one with the 
lowest mean absolute error. However, mean squared error and R2 are 
better in the case of Multiple Linear Regression. Fig. 5 shows a barplot in 
which the information in Table 2 is summarized. These results suggest 
that multiple linear regression is the algorithm that works best when it 
comes to obtaining an estimated value of the concentration, especially in 
the case of NO2 and O3. This technique gives the highest values for the 
coefficient of determination, while maintaining relatively low values of 
MAE and MSE compared to the other three algorithms. Time series for 
each pollutant are shown in Fig. 6 when a correction based on multiple 
linear regression is applied. 

As shown in Table 2 and Fig. 5, the coefficient of determination (R2) 
is lower in the case of CO than in the rest of the pollutants. This deviation 
is mainly related to the unit of measurement of the reference for CO. The 
reference station used during static tests measures CO concentration in 
mg/m3, while NO2, O3 and NO concentration were measured in µg/m3, 
which implies a lower resolution in CO data. This loss of precision in the 
original data means less accuracy after calibration. 

Finally, Fig. 7 shows an overall better performance when it comes to 
the NO and NO2 series, with low values of MAE and MSE and reaching R2 

values of up to 0.95. 
In summary, despite the low initial correlation between reference 

equipment and sensors and the CO data format, multiple linear regres-
sion calibration allows time series to be adjusted and much more reliable 

Fig. 12. Line chart of NO2 signal from the NO2-A43F sensor throughout the flight along with the actual concentration signal from the reference station.  
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data to be obtained. This calibration was applied to the sensors before in- 
flight measurements to ensure data quality. 

3.2. In-flight measurements 

The flight test results are intended to verify that the movement of the 
drone does not interfere with sensor signals. For this purpose, two flights 
of the drone were carried out with the measuring device mounted on it. 
In the first flight, the drone only takes off and stabilizes at a flight height 
of 2 m for several minutes to finally ascend to 3 m and then land. Fig. 8 
shows the temporal variation of each of the sensor signals during, 
before, and after the flight. Thereby, we compare the behavior of the 
signal in flight and idle (landed with the propellers deactivated). 
Although there are variations in the signals, they do not seem to increase 
significantly during the flight. On these graphs, the ten-minute value of 
the reference station has also been depicted for that period. 

When representing the signals of each phase of flight in a violin di-
agram, it can be found that pollutant concentration values do not reach 
different values than those reached while the drone is landed and idle 
(Fig. 9). Therefore, it can be inferred that the coupled gas monitoring 
system is not significantly affected by the downwash and the vertical 
movements of the drone. 

A second flight, in which the drone performs rotational and trans-
lational movements, was carried out to verify the correct performance of 
the system. Outlining the flight procedure, from 10:27:00 the drone 
rotates 720º constantly for approximately 3 min and 40 s. At 10:31:00 
the drone moves forward for 25 s and immediately backs up to the same 
starting point without rotation. Fig. 10 shows that the temporary signal 
in the case of the NO2 sensor creates a valley during the flight. Since no 
similar disturbance appears in the rest of the sensors, it is not likely to be 
a consequence of the movement of the drone and could be considered to 
be due to a real variation in the concentration of NO2 in the environ-
ment. Even so, the variation of the signal is of the order of 2 μg/m3, so it 
is not of great relevance. As before, when representing the violin dia-
grams (Fig. 11), it can be observed that the variation of the data is not 
significant with respect to the variation of pollution found in the air 
(variation while the drone is landed). 

On the other hand, the results obtained in the last flight, carried out 
with a nearby NO2 source, are shown. Fig. 12 shows the temporal graph 
of the NO2 signal from the NO2-A43F sensor throughout the flight along 
with the actual concentration signal from the reference station. The 
graph is accompanied by some screenshots of some of the key moments 
of the test. The main stages of the flight are detailed below. At 11:45:30 
the flight begins at 23 m distance from the NO2 source. At 11:46:36 the 
drone approaches within 2 m of the source, although the reaction 
generated is ending and the NO2 cloud generated is barely perceptible. 
At 11:47:26 the drone moves away from the source again up to 23 m and 
the chemical reaction is reactivated providing more copper. At 11:50:10 
it starts to approach the source, reaching again a distance below 2 m at 
approximately 11:50:56 and the sampling tube is positioned in the 
vertical of the beaker. At 11:51:31 the drone moves away from the 
source of NO2 and it is observed that the signal descends. At 11:52:26 the 
drone approaches the source for the last time, but the chemical reaction 
seems to have ended. At 11:54:51 the drone is landed. Concerning the 
signal of the reference station, it does not suffer great variations because 
it is located 80 m from the NO2 source. In addition, as detailed above, 
these data are averaged every ten minutes. It is observed that when the 
drone is close to the NO2 source and it is active, the NO2-A43F sensor 
responds quickly and noticeably. 

4. Conclusions and future trends 

In this work, we present the development of an unmanned aerial 
vehicle with an electronic system for real-time air pollution monitoring 
by means of mobile intelligent detection in areas with little or no 
accessibility. The device incorporates a high-precision measurement 
system with sensors for measuring O3, NO, NO2, and CO. In addition, 
monitoring data is available as real-time information. 

The main conclusion of this experiment is that the presented proto-
type can be used for pollutant detection and air quality monitoring with 
an accuracy of up to 0.95 (R2) for NO2 and NO pollutants. The system 
has been calibrated by evaluating different techniques based on machine 
learning. A major finding of this work is that, with the sampling and 
isolation system developed, the monitoring device is not affected at any 
time by the movement of the drone, the downwash effect or electro-
magnetic disturbances. 

Future work will consider the possibility of carrying out more field 
tests and longer flights that will provide additional insight into the 
behavior of the system. 
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