Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Ultra-low temperature spark plasma sintering of super wear-resistant hard B₄C composites

Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz 06006, Spain

ARTICLE INFO

Article history: Received 14 December 2021 Revised 7 January 2022 Accepted 10 January 2022 Available online 17 January 2022

Keywords: B₄C Hard ceramic composites Super-low-wear ceramic composites Spark plasma sintering Liquid-phase sintering

ABSTRACT

The feasibility was investigated of fabricating super wear-resistant hard B₄C composites by spark plasma sintering (SPS) at ultra-low temperature (*i.e.*, 1400 °C) using very high proportions of MoSi₂ aids (*i.e.*, 35–50 vol.%). It is shown that with 40 vol.% MoSi₂ aids already sufficient Si transient liquid phase is formed *in situ* during SPS (by the reaction B₄C+2MoSi₂ \rightarrow SiC+2MoB₂+3Si) to achieve the ultrafast full densification of B₄C at 1400 °C, the Si melting point, simply by pore filling, particle rearrangement, and liquid spreading. Importantly, it is also shown that the resulting B₄C composites are hard (*i.e.*, \approx 23 GPa) and super wear-resistant (*i.e.*, \approx 10⁷ (N·m)/mm³), attributes both deriving from the composites' quadruplex-particulate (*i.e.*, B₄C plus β -SiC, β -MoB₂, and MoSi₂), fine-grained (*i.e.*, <1 µm), fully-dense microstructure. Thus, this work opens a new avenue for the present and future lower-cost fabrication of novel B₄C composites for use in contact-mechanical and tribological applications.

© 2023 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Hard ceramics, understood as those with hardnesses above 20 GPa, are needed in myriad engineering applications requiring high contact-damage and wear resistances (*e.g.*, bearings, valves, nozzles, gears, mechanical seals, armour panels, *etc.*) [1,2]. They are mostly carbides, nitrides, and borides, some developed in the past few decades (*e.g.*, SiC, Si₃N₄, ZrB₂, *etc.*) and others more recently (*e.g.*, B₄C, ZrC, *etc.*) [1,2]. Besides being hard or superhard, these ceramics are also ultra-refractory and therefore virtually undensifiable by solid-state sintering. Consequently, they are usually densified by liquid-phase sintering (with or without pressure), but requiring more demanding sintering conditions than used for the solid-state sintering of the typical oxide structural ceramics (*e.g.*, ZrO₂, Al₂O₃, TiO₂, *etc.*).

B₄C is an outstanding hard ceramic. Known as "black diamond", it is the third hardest compound discovered so far, and can be synthesized routinely in the tons required for the mass fabrication of ceramic pieces [3,4]. It is so extremely hard that it is classed as ultrahard, a subfamily of the hard materials with hardnesses above 30 GPa. Recently, it has been demonstrated that B₄C can be densified at smoother conditions by spark plasma sintering (SPS) with metal disilicides (MeSi₂'s) [5–7]. This is because MeSi₂'s act as reactive sintering additives forming *in-situ* Si (*i.e.*, B₄C+2MeSi₂→SiC+2MeB₂+3Si), which is a transient phase that first melts promoting densification by liquid-phase sintering and then disappears forming more SiC (*i.e.*, Si+C→SiC) [5,6]. Triple-particulate, ultrahard (>30 GPa), toughened (>~4 MPa·m^{0.5}) B₄C-SiC-MeB₂ composites have thus been SPS-ed at temperatures unattainably low for densifying pure B₄C [5–7] (*i.e.*, at 1700 °C). Transient-liquid phase assisted SPS of B₄C has also been achieved with Ti-Al aids (with the resulting composites having high values of hardness (>30 GPa), toughness (>5 MPa·m^{0.5}), flexural strength (>500 MPa), and wear resistance ($\geq 10^7$ (N·m)/mm³)) [8–14].

The three studies that there have been so far on SPS of B₄C with MeSi₂'s were aimed at maximizing the mechanical properties, especially the ultra-high hardness, of the resulting B₄C-SiC-MeB₂ composites by optimizing the proportion of MeSi₂ aids [5-7]. Thus, ultrahard B_4C -SiC-MoB₂ (~33 GPa) and B_4C -SiC-TiB₂ (~34 GPa) composites were fabricated by SPS-ing B₄C with 20 vol.% MoSi₂ at 1700 °C [7] and with 12 wt.% TiSi₂ at 1800 °C [6], respectively. Alternatively, because densification of these B₄C composites is assisted by the formation in situ of transient molten Si, it is worth exploring whether the proportion of MeSi₂ aids can also be optimized to yield dense B₄C-SiC-MeB₂ composites by SPS at only \sim 1400 °C, the Si melting point.¹ The aim would be to use greater proportions of MeSi₂ aids than before (*i.e.*, >30 vol.%) to form enough transient Si as to densify B₄C by SPS at 1400 °C only by pore filling, particle rearrangement, and liquid spreading. Although likely softer than the current ultrahard B₄C-SiC-MeB₂ composites, the feasibility of fabricating still very hard (i.e., \geq 20 GPa), superlow-wear (i.e., $\leq 10^{-6}$ mm³/(N·m)) B₄C composites at such a low

https://doi.org/10.1016/j.scriptamat.2022.114516

^{*} Corresponding author.

E-mail address: alortiz@unex.es (A.L. Ortiz).

 $^{^1}$ The Si melting point is ~1410 °C, but in SPS the actual temperature of the powder compact is higher than measured by the optical pyrometers.

Fig. 1. Curves of (A) shrinkage and (B) shrinkage rate as functions of time, once corrected for the expansion of the graphite parts, logged during the SPS tests with target temperature of 1400 °C for the four $B_4C+MOSi_2$ powder batches, as indicated. The regimes of non-isothermal heating (*i.e.*, heating ramp up to 1400 °C at 100 °C/min) and of isothermal heating (*i.e.*, soaking at 1400 °C) are distinguished. Isothermal soaking time was 15, 10, 10, and 5 min for 35, 40, 45, and 50 vol.% MoSi₂ aids, respectively. The flat lines in (B) are baselines. The SPS time count started from the application of the 75 MPa pressure at 300 °C.

SPS time (s)

SPS temperature is tantalizingly appealing. Whether or not this is possible is investigated here for B_4C SPS-ed with $MoSi_2$ aids.

Powders of B₄C (Grade HD20, H.C. Starck; $d_{50} \sim 0.3-0.6 \ \mu$ m) and MoSi₂ (Grade B, H.C. Starck; $d_{50} \sim 3.5-5 \ \mu$ m) were mixed in relative proportions of 65+35, 60+40, 55+45, and 50+50 vol.%. The powder mixtures were then SPS-ed (HP-D-10, FCT Systeme GmbH) within graphite dies (2 cm diameter) in dynamic vacuum at 1400 °C (as measured by an axial optical pyrometer, and reached at 100 °C/min) and 75 MPa pressure (applied at 300 °C), for the time needed for the shrinkage curve to flatten. The resulting B₄C composites, hereafter termed "Comp-B₄C-*x*%MoSi₂" (with *x* = 35, 40, 45, or 50), were ground and diamond polished to a 0.25 μ m finish.

Fig. 1 shows the shrinkage (Fig. 1A) and shrinkage-rate (Fig. 1B) curves as functions of the SPS time for the four $B_4C+MoSi_2$ powder batches. It is seen in Fig. 1A that there is a first shrinkage

jump centred at \sim 460–510 s,² corresponding to SPS temperatures of \sim 1065–1150 °C, after which the shrinkage suddenly accelerates to then tend gradually, already during the soaking at 1400 °C, towards the maximum possible shrinkage. It is seen in Fig. 1B that the maximum shrinkage rate always occurs at \sim 662±4 s. corresponding to the first seconds of soaking at 1400 °C. Note that \sim 1065–1150 °C are the onset SPS temperatures for the reaction $B_4C+2MoSi_2 \rightarrow SiC+2MoB_2+3Si$ [5], and ~1400 °C corresponds to the Si melting point. Importantly, it is also seen in Fig. 1A that the sinterability increases, to a greater or lesser extent, with increasing proportion of MoSi₂ aids because (i) there is greater shrinkage (*i.e.*, densification) at the same SPS time (*i.e.*, temperature) and (*ii*) less soaking time at 1400 °C is required for the shrinkage curve to flatten (i.e., the ultimate densification is reached sooner). This is due to the greater formation of Si with increasing MoSi₂ proportion. Indeed, according to the reaction $B_4C+2MoSi_2 \rightarrow SiC+2MoB_2+3Si$, the nominal abundances of Si formed during SPS when using 35, 40, 45, and 50 vol.% MoSi₂ aids are ~23.19, 26.32, 29.39, and 32.43 vol.%, respectively.

Also importantly, the shrinkage-rate curves in Fig. 1B confirm that densification occurred by liquid phase sintering (LPS) essentially, with only stages of pore filling, particle rearrangement, and liquid spreading, and little or negligible solution-reprecipitation. Indeed, according to LPS theory, upon melt formation there is a densification burst, with full densification being possible if enough liquid is formed [15,16]. The shape of the shrinkage-rate curves, flattening very quickly after the abrupt peak at 1400 °C attributable to molten Si, is proof of this. Indeed, the shape of these shrinkage-rate curves differs from that of those reported for Comp-B₄C-x%MoSi₂ fabricated with lower proportions of MoSi₂ aids ($x \le 15$) because in the latter, given the insufficient molten Si formed (*i.e.*, only ~3.46, 6.88, and 10.24 vol.% Si for 5, 10, and 15 vol.% MoSi₂ aids), there is also an ultimate stage of densification by solid-state sintering [5].

Fig. 2A–D show moderate-magnification scanning electron microscopy (SEM; S-3600 N, Hitachi) images representative of the fracture surface of Comp-B₄C-x%MoSi₂ (x=35-50). It is seen that whereas Comp-B₄C-35%MoSi₂ (Fig. 2A) is slightly porous (*i.e.*, ~5%), Comp-B₄C-40%MoSi₂ (Fig. 2B), Comp-B₄C-45%MoSi₂ (Fig. 2C), and Comp-B₄C-50%MoSi₂ (Fig. 2D) are all three fully dense. Therefore, it is clear that at least \sim 40 vol.% MoSi₂ aids is needed to fully densify B₄C by SPS at 1400 °C (under 75 MPa).³ This led to the nominal formation of \sim 26.32 vol.% molten Si if all the MoSi₂ was consumed, and less if not. Interestingly, Fig. 2A-D also show that Comp-B₄C-x%MoSi₂ (x=35-50) have complex fine-grained multiparticulate microstructures, with a lower and greater relative abundances of B₄C (darker-grey phase) and Si/Mo-rich second phases (whiter and lighter-grey phases), respectively, as the proportion of MoSi₂ aids increases (confirmed in Supplementary Figs. SI1 and SI2). The fine grain size⁴ (*i.e.*, $<1 \mu$ m) is because SPS at 1400 °C promoted densification with little, if any, coarsening by solutionreprecipitation.

According to the X-ray diffraction (XRD; D8 Advance, Bruker AXS) patterns shown in Fig. 2E, the Si/Mo-rich second phases are β -SiC, β -MoB₂, and MoSi₂. However, there is no Si, which proves that densification occurred by transient LPS [15,16]. SiC and MoB₂

 $^{^2}$ Specifically, at ${\sim}460$ s (or 1065 °C), 490 s (or 1115 °C), 500 s (or 1135 °C), and 510 s (or 1150 °C) for 50, 45, 40, and 35 vol.% MoSi_2, respectively.

 $^{^3}$ Prolonging the SPS time of Comp-B_4C-35%MoSi_2 at 1400 °C beyond 15 min would not have resulted in further densification, which requires the use of a slightly higher SPS temperature.

 $^{^4}$ There are, however, some larger grains in the microstructures (Supplementary Fig. S11), identified as MoB₂ grains by EDS (Supplementary Fig. S12). Also, these grains are more abundant with increasing proportion of MoSi₂ aids (Supplementary Fig. S11).

Fig. 2. Moderate-magnification SEM image representative of the fracture surface of (A) Comp-B₄C-35%MoSi₂, (B) Comp-B₄C-40%MoSi₂, (C) Comp-B₄C-45%MoSi₂, and (D) Comp-B₄C-50%MoSi₂. Imaging was done with secondary electrons at 15 kV. (E) XRD patterns of Comp-B₄C-x%MoSi₂ (x=35-50), as indicated. Peak assignations are included. The XRD patterns were acquired with pure CuK α_1 incident radiation and were indexed using the PDF2 database. The intensity scale is logarithmic to facilitate observation of the weaker peaks.

are the reaction products expected when B_4C reacts with $MoSi_2$ and all the transient Si is consumed to form more SiC, whereas the unreacted $MoSi_2$, which in this case is the limiting reactant, is due to the slow reaction kinetics at 1400 °C. One implication is then that the abundances of molten Si formed *in situ* during SPS are lower than the nominal ones, but, albeit less than 26.32 vol.%, still sufficient in Comp-B₄C-40%MoSi₂ to achieve full densification by pore filling, particle rearrangement, and liquid spreading. This is because the solid particles are not monosized spheres and therefore pack above 74%, so less than 26 vol.% liquid phase is actually required. Another implication is that Comp-B₄C-x%MoSi₂ (x=3550) are quadruplex-particulate composites, not triplex-particulate composites as were those fabricated in earlier work with up to 25 vol.[%] MoSi₂ aids [7].

Consumption of all the $MoSi_2$ seems unlikely if the aim is to fabricate these B_4C composites at only 1400 °C. First, less than 40 vol.% $MoSi_2$ aids cannot be used because then full densification is not achieved at 1400 °C. Second, prolonging the SPS time (*i.e.*, the soaking time at 1400 °C) is impractical because it has no effect on the reaction kinetics. Third, using higher SPS temperatures deviates from the processing goal pursued, and is not a solution because even Comp- B_4C -30% $MoSi_2$ SPS-ed at 1700 °C con-

Fig. 3. Hardness of Comp-B₄C-x%MoSi₂ as a function of the proportion of $MoSi_2$ aids (x=35–50 vol.%). The mean values and standard deviations reported are of ten separate measurements.

tains residual MoSi₂ [7] so that Comp-B₄C-*x*%MoSi₂ ($x \ge 35$) SPSed at 1400–1700 °C would still contain MoSi₂. Indeed, at this point, the optimal approach is hence to densify Comp-B₄C-20%MoSi₂, not Comp-B₄C-40%MoSi₂, at ~1700 °C to thus maximize the hardness [7]. And fourth, consuming all the MoSi₂ to form more β -SiC and β -MoB₂ is unreasonable because more B₄C will also be consumed and unreacted excess Si would likely form, which would complicate the SPS cycles without any hardness benefit. Therefore, residual MoSi₂ is a price to pay for the lower-temperature SPS of these B₄C composites. Nonetheless, MoSi₂ in the microstructures is not a major concern if Comp-B₄C-*x*%MoSi₂ (*x*=35–50) are very hard.

Fig. 3 shows the hardness of Comp-B₄C-*x*%MoSi₂ (*x*=35–50) determined by Vickers indentation (MV-1, Matsuzawa) at 98 N load. It is seen that the four have hardnesses of 20 GPa or greater, attributable to their phase composition dominated by covalent carbides (*i.e.*, B₄C and SiC) and transition-metal diborides (*i.e.*, MoB₂) as well as to their fine-grained microstructures. Therefore, this demonstrates the feasibility of fabricating very hard B₄C composites by ultra-low temperature SPS with MoSi₂ aids, in the sense that 1400 °C represents a homologous temperature for B₄C of only ~0.56 (because the B₄C melting point is ~2490 °C). It is also seen

Fig. 4. Compendium of results deriving from the sliding-wear tests for Comp-B₄C-40%MoSi₂. (A) Friction curve measured as a function of the distance slid, (B) 3-D image and 2-D profile representative of the wear track, obtained by optical profilometry, (C) OM image showing the damage at the macro-scale, (D) elemental composition map of O inside and outside the wear track, obtained by EDS in the SEM, and (E) moderate-magnification SEM image showing the interior of the wear track at the micro-scale, at the location indicated in (C). Imaging (3-D profilometry, OM, and SEM/EDS at 30 kV with secondary electrons) was done at the conclusion of the wear tests.

Fig. 5. SEM images representative of the crack propagation in the polished surface of Comp-B₄C-40%MoSi₂. (A) A crack being markedly deflected, (B) a crack being bridged and deflected, (C) a crack propagating inside a second-phase cluster while being bridged, and (D) a crack suffering evident branching (marked with arrows). The insets in (B) show specific details. Imaging was done with secondary electrons at 30 kV.

that the hardness of Comp-B₄C-x%MoSi₂ (x=35–50) first increases and then decreases with increasing proportion of MoSi2 aids, being optimal for 40 vol.% MoSi2 (i.e., ${\sim}23$ GPa). Thus, Comp-B₄C-35%MoSi₂ is, despite its greater content of ultrahard B₄C, somewhat softer than Comp-B₄C-40%MoSi₂ due to its slight porosity, and Comp-B₄C-45%MoSi₂ and Comp-B₄C-50%MoSi₂ are so as well due to their increasing contents of softer β -SiC, β -MoB₂, and MoSi₂. Importantly, Comp-B₄C-x%MoSi₂ (x=35-50), and particularly Comp-B₄C-40%MoSi₂, are much harder than the typical widely used oxide structural ceramics (e.g., Y-TZP (<16 GPa) [17,18], MgAl₂O₄ (<17 GPa) [19,20], Al₂O₃ (<18 GPa) [21,22], etc.) fabricated at similar or slightly higher temperatures (i.e., ~1300-1500 °C) and harder than, or at least as hard as, other nonoxide structural ceramics (e.g., LPS-ed SiC (<24 GPa) [23,24], LPSed Si₃N₄ (<19 GPa) [25], etc.). fabricated at much higher temperatures (*i.e.*, >1800 °C).

Fig. 4 shows relevant results deriving from pin-on-disk wear tests (THT1000, Anton Paar) performed on Comp-B₄C-40%MoSi₂, the hardest of the present four Comp-B₄C-x%MoSi₂ (x=35–50), in ambient conditions at 40 N load, 12.5 mm/s linear sliding speed, 2-mm track radius, and 1000 m sliding distance, with 6.02 mm diameter diamond-coated SiC counter-balls (Dball G10, Nova Diamant). It is seen in Fig. 4A that the steady-state coefficient of friction is only ~0.053(3), indicating a smooth contact surface due to the absence of porosity in the material. According to the 3-D images obtained by optical profilometry (Profilm 3D, Filmetric), a typical one shown in Fig. 4B, even after sliding for 1000 m the wear scar remains very shallow (*i.e.*, depth of ~0.7 μ m). The wear volume calculated from representative 2-D scar profiles (Fig. 4B) is only ~0.00197(1) mm³, which results in a specific wear rate (SWR)

as low as $\sim 4.92(3) \cdot 10^{-8}$ mm³/(N·m) (*i.e.*, a wear resistance as great as $\sim 2.03(1) \cdot 10^7$ (N·m)/mm³), well within the realm of mild wear [26]. Importantly, Comp-B₄C-40%MoSi₂ thus wears essentially as slowly (SWR in the order of $10^{-8} \text{ mm}^3/(N \cdot m)$) as other ultrahard B_4C -based materials SPS-ed at much higher temperatures do [7,12].⁵ Consistently with the low SWR, the surface of the wear track appears, as seen by optical microscopy (Epiphot 300, Nikon) in Fig. 4C, quite smooth (i.e., polished) and shows only light abrasion, with microscopic wear markings consisting mostly of mild scratches by plastic deformation caused by the asperities of the counter-sphere [27,28]. Also, there is formation of a discontinuous oxide tribolayer (confirmed in Supplementary Fig. SI3), located near the edges where the contact stresses are higher [29], which contributed to the very low wear. The oxidic nature of the tribolayer indicates that no SiC, MoB₂, or MoSi₂ particles were pulled out from the material microstructure and smeared onto the wear track. Indeed, no evidence of grain pull-out is observed within the wear track in the higher-magnification SEM image of Fig. 4E (confirmed in Supplementary Fig. SI4). Thus, these novel B₄C composites wear according to the mode/mechanism already observed for other ultrahard B₄C-based materials (*i.e.*, by two-body abrasion dominated by plastic deformation).

The question may then arise as to why $Comp-B_4C-40\%MoSi_2$ is in principle more appealing than a possible B_4C composite SPS-ed

 $^{^5}$ For example, also tested at 40 N for 1000 m, Comp-B_4C-20%MoSi_2 SPS-ed at 1700 °C, with $\sim\!33$ GPa hardness, wore at $\sim\!3.73\cdot10^{-8}$ mm³/(N·m) [7]; a monolithic B_4C ceramic SPS-ed at 2100 °C, with $\sim\!32$ GPa hardness, did so at $\sim\!3.8\cdot10^{-8}$ mm³/(N·m) [12]; and a B_4C composite SPS-ed at 1800 °C using 7 vol.% Ti-Al aids, with $\sim\!33$ GPa hardness, did so at $\sim\!3.1\cdot10^{-8}$ mm³/(N·m) [12].

at 1400 °C using ~15-26 vol.% Si aids, as required to achieve full densification (not yet attempted).⁶ Even though the B₄C-Si composite would likely be harder than Comp-B₄C-40%MoSi₂ due to its higher B_4C content (~85-74 vs ~40 vol.%), the fact is that Comp- $B_4C-40\%MoSi_2$ is sufficiently hard and presumably much tougher, and this latter is also a highly desirable attribute given the brittleness of B₄C materials [2,3,30]. Indeed, as observed for other B₄C composites with carbide and/or boride second phases [5-8,33-38], the singular multi-particulate microstructure of Comp-B₄C-40%MoSi₂ (and of Comp-B₄C-x%MoSi₂ (x=35-50)) must offer major impedance to crack advance because the SiC and MoB₂ grains/clusters formed in situ during SPS, as well as the residual MoSi2 grains, will act as toughening phases. In this regard, Fig. 5 shows SEM images representative of how tortuously the radial cracks emanating from the Vickers indent corners propagate through Comp-B₄C-40%MoSi₂ due to the occurrence of crack deflection (Fig. 5A,B), bridging (Fig. 5B,C), and branching (Fig. 5D), with an estimated fracture toughness of 4.5–5 MPa \cdot m^{1/2} which is twice that of the B_4C monoliths [30]. Therefore, besides being very hard and super wear-resistant, Comp-B₄C-40%MoSi₂ is also toughened, which is a long-sought-for synergy in B₄C materials for structural applications.

With these results in mind, future work should thus be directed towards the challenge of fabricating these novel B_4C composites, ideally nanostructured or with ultrafine-grained microstructures, by near-net-shape manufacture [9,11,39–42] and (conventional and ultrafast) low-temperature pressureless sintering. This would pave the way towards facilitating their industrial scalability, even with them having improved mechanical/tribological properties if the grain size is more refined. However, achieving this will require the development of $B_4C+MOSi_2$ suspensions or pastes suitable for the wet shaping of green parts and the optimization of their sintering cycles, tasks which, however, lie beyond the scope of the present study.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Junta de Extremadura under Grants nos. IB20017, TA18014, and GR18149 (co-financed with FEDER Funds).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.scriptamat.2022. 114516.

References

- [1] R. Riedel, Handbook of Ceramic Hard Materials, Wiley-VCH, Weinheim, 2000.
- [2] V. Kanyanta, Microstructure-Property Correlations for Hard, Superhard, and Ul-
- trahard Materials, Springer International Publishing, 2016.
- [3] F. Thevenot, J. Eur. Ceram. Soc. 6 (4) (1990) 205-225

- [4] A.K. Suri, C. Subramanian, J.K. Sonber, T.S.R.Ch. Murthy, Int. Mater. Rev. 55 (1) (2010) 4–40.
- [5] C. Ojalvo, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 39 (9) (2019) 2862–2873.
 [6] Y. Wang, Q. Liu, B. Zhang, H. Zhang, Y. Jin, Z. Zhong, J. Ye, Y. Ren, F. Ye, W. Wang, Ceram. Int. 47 (8) (2021) 10665–10671.
- [7] V. Zamora, C. Ojalvo, F. Guibertau, O. Borrero-López, A.L. Ortiz, J. Eur. Ceram. Soc. 41 (16) (2021) 68–75.
- [8] W. Ji, R.I. Todd, W. Wang, H. Wang, J. Zhang, Z. Fu, J. Eur. Ceram. Soc. 36 (10) (2016) 2419–2426.
- [9] C. Ojalvo, R. Moreno, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 40 (2) (2020) 226–233.
- [10] C. Ojalvo, R. Moreno, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 40 (9) (2020) 3406–3413.
- [11] C. Ojalvo, R. Moreno, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 40 (12) (2020) 4354–4360.
- [12] C. Ojalvo, E. Sánchez-González, F. Guiberteau, O. Borrero-López, A.L. Ortiz, J. Eur. Ceram. Soc. 40 (15) (2020) 5286–5292.
- [13] A.L. Ortiz, C.A. Galán, O. Borrero-López, F. Guiberteau, Scr. Mater. 177 (2020) 91–95.
- [14] C. Ojalvo, V. Zamora, R. Moreno, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 41 (3) (2021) 1869–1877.
- [15] R.M. German, Sintering Theory and Practice, Wiley, New York, 1996.
- [16] R.M. German, Liquid Phase Sintering, Plenum Press, New York, US, 1985.
- [17] J. Alonso, F. Rodríguez-Rojas, O. Borrero-López, A.L. Ortiz, F. Guiberteau, Int. J. Appl. Ceram. Technol. 16 (5) (2019) 1954–1961 17.
- [18] F. Rodríguez-Rojas, R. Cano-Crespo, O. Borrero-López, A. Domínguez-Rodríguez, A.L. Ortiz, J. Eur. Ceram. Soc. 41 (6) (2021) 3595–3602.
- [19] T. Mroz, L.M. Goldman, A.D. Gledhill, D. Li, N.P. Padture, Int. J. Appl. Ceram. Technol. 9 (1) (2012) 83–90.
 [20] O. Borrero-López, A.L. Ortiz, A.D. Gledhill, F. Guiberteau, T. Mroz, L.M. Goldman,
- N.P. Padture, J. Eur. Ceram. Soc. 32 (12) (2012) 3143–3149.
- [21] R.G. Munro, J. Am. Ceram. Soc. 80 (8) (1997) 1919–1928.
- [22] Q. Wang, C. Ramírez, C.S. Watts, O. Borrero-López, A.L. Ortiz, B.W. Sheldon, N.P. Padture, Acta Mater. 186 (2020) 29–39.
- [23] O. Borrero-López, A.L. Ortiz, F. Guiberteau, N.P. Padture, J. Eur. Ceram. Soc. 27 (11) (2007) 3351–3357.
- [24] M. Khodaei, O. Yaghobizadeh, S.H.N. Alhosseini, S. Esmaeeli, S.R. Mousavi, J. Eur. Ceram. Soc. 39 (7) (2019) 2215–2231.
- [25] M. Kašiarová, P. Tatarko, P. Burik, J. Dusza, P. Šajgalík, J. Eur. Ceram. Soc. 34 (14) (2014) 3301–3308.
- [26] G. Stachowiak, A.W. Batchelor, Engineering Tribology, 3rd Edition, Elsevier Butterworth-Heinemann, Oxford, UK, 2005.
- [27] O. Borrero-López, A. Pajares, P. Constantino, B.R. Lawn, Acta Biomater. 14 (2015) 146–153.
- [28] B.R. Lawn, O. Borrero-Lopez, H. Huang, Y. Zhang, J. Am. Ceram. Soc. 104 (1) (2021) 5–22.
- [29] G.M. Hamilton, L.E. Goodman, J. Appl. Mech. 33 (2) (1966) 371–376.
- [30] B.M. Moshtaghioun, D. Gómez-García, A. Domínguez-Rodríguez, R.I. Todd, J. Eur. Ceram. Soc. 36 (7) (2016) 1829–1834.
- [31] S.S. Rehman, W. Ji, S.A. Khan, Z. Fun, F. Zhang, Ceram. Int. 41 (1 Part B) (2015) 1903–1906.
- [32] L. Ma, K.Y. Xie, M.F. Toksoy, K. Kuwelkar, R.A. Haber, K.J. Hemker, Mater. Charact. 134 (2017) 274–278.
- [33] W.G. Fahrenholtz, E.W. Neuman, H.J. Brown-Shaklee, G.E. Hilmas, J. Am. Ceram. Soc. 93 (11) (2010) 3580–3583.
- [34] B.M. Moshtaghioun, A.L. Ortiz, D. Gómez-García, A. Domínguez-Rodríguez, J. Eur. Ceram. Soc. 33 (8) (2013) 1395–1401 34.
- [35] X. Zhang, Z. Zhang, W. Wang, J. Shan, H. Che, J. Mu, G. Wang, J. Am. Ceram. Soc. 100 (7) (2017) 3099–3107.
- [36] Q. Wen, Y. Tan, Z. Zhong, H. Zhang, X. Zhou, Mater. Sci. Eng. A 701 (2017) 338–343.
- [37] E.W. Neuman, H.J. Brown-Shaklee, G.E. Hilmas, W.G. Fahrenholtz, J. Am. Ceram. Soc. 101 (2) (2018) 497–501.
- [38] X. Zhang, Z. Zhang, W. Wang, X. Zhang, J. Mu, G. Wang, Z. Fu, J. Eur. Ceram. Soc. 37 (2) (2017) 865–869.
- [39] F. Rodríguez-Rojas, R. Moreno, F. Guiberteau, A.L. Ortiz, J. Eur. Ceram. Soc. 36 (8) (2016) 1915–1921.
- [40] A.L. Ortiz, V.M. Candelario, R. Moreno, F. Guiberteau, J. Eur. Ceram. Soc. 37 (15) (2017) 4577–4584.
- [41] C. Ojalvo, M. Ayllón, A.L. Ortiz, R. Moreno, J. Eur. Ceram. Soc. 41 (11) (2021) 5457–5465 41.
- [42] S. Eqtesadi, A. Motealleh, F.H. Perera, P. Miranda, A. Pajares, R. Wendelbo, F. Guiberteau, Scr. Mater. 145 (2018) 14–18.

 $^{^{6}}$ B₄C-Si composites have already been SPS-ed, but using much lower proportions of Si aids (*i.e.*, 4–10 wt.%, equivalent to ~4.3–10.7 vol.%) and much higher temperatures (*i.e.*, 1700 °C) [31,32]. They have a fracture toughness of ~2.4 MPa·m^{1/2} [32].