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1. Introduction

Anyone interested in Banach spaces and in category theory knows that B, the category of Banach spaces 
and (linear, bounded) operators, is a nice additive (even quasi-abelian) category that fails to be abelian. 
The root of this misbehavior of B is that, while the categorical kernel of an operator f : X −→ Y is 
f−1(0) = {x ∈ X : f(x) = 0}, with the canonical inclusion into X, the cokernel of f is given by (the obvious 
operator from Y onto) Y/f(X), where f(X) = {f(x) : x ∈ X} and the bar denotes closure in Y .

The inexorable conclusion is that an operator f : X −→ Y can be monic and epic without being an 
isomorphism in B: just consider any injective operator with dense range but not surjective.

Cain’s mark is also responsible for the lack of projective and injective objects in B. This statement may be 
controversial because in Banach space theory we are all taught that �∞ is an “injective Banach space”, that �1
is a “projective Banach space” and that each finite-dimensional space, equivalently, the ground field, is both.

However the notions between quotes refer to the extension (respectively, lifting) of operators from closed
subspaces, equivalently, through isomorphic embeddings (respectively, quotient maps), while the correspond-
ing categorical notions are much stronger since the corresponding extension (respectively, lifting) must exist 
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through any injective operator (respectively, operator with dense range), and so the only injective or pro-
jective object in B is 0; see [24] and [5, Remark 2.1.5].

It is a commonplace, which we share, that homological techniques work fine in abelian categories and that 
they can only be adapted to other categories after much work and many sacrifices. (Admittedly, the situation 
is not that dramatic because we have exact categories: the traditional definition of “injective/projective” 
objects in Banach space theory corresponds to the so-called “quasi-injective/quasi-projective” objects in 
quasi-abelian categories and to “E -injective/E -projective” objects when E is the maximal exact structure 
in B, see [4,10,11]).

This leads naturally to consider abelianizations of B — abelian categories where B embeds as a full 
subcategory.

The first such embedding was proposed by Waelbroeck, by using a category of formal quotients, and then 
by Noël by means of a category of functors; see [29, Chapter 2] and the references therein, especially [28,
21]. These constructions were initially motivated by “practical” needs arising from holomorphic functional 
calculus and are more concerned with bornologies than with topologies.

Very recently Wegner [30] generalized and clarified Waelbroeck ideas, purging them of some errors and 
flaws; see also [2, 1.3.24], [5, Chapter IV,§ 2.6], [9, Part II, § 14]. In this note we combine Wegner’s approach 
and rather elementary functional analysis to explore some salient features of the Waelbroeck–Wegner cate-
gory W, mainly of a “homological” nature. The paper does not contain any profound results, but confirms 
that this category is surprisingly (?) well suited for the study of extensions of Banach spaces.

We want to emphasize that, although W has a long history and pops up in different settings (in [2], as 
the heart of the natural t-structure on the derived category of B, or in [25], where Schneiders proves that 
W and B are derived-equivalent), Wegner’s ideas are crucial for us because they make W accessible to 
explicit computations without the need to introduce a derived category first. We owe this observation (as 
well as the idea of including the current Section 4) to the referee of an earlier version of this paper.

Even more recent is Clausen–Scholze’s embedding via sheaves, see [26]. Curiously enough, Waelbroeck 
himself claims to have been inspired by Godement’s Topologie algébrique et théorie des faisceaux, while 
Noël’s construction in [21] follows the Eilenberg–Mac Lane program to the letter.

2. The Waelbroeck–Wegner category

In this section we introduce our working category just fixing B as the “seed category” in Wegner’s 
construction. The resulting category corresponds to the Waelbroeck category of quotient Banach spaces 
(after using the correct definition of pseudo-isomorphism, see [29, Definition 2.13.1] and compare with [28, 
Definition 3]) and will be denoted by W. We will be mostly concerned with those properties of W that 
depend on the specific features of B and refer to [30] for everything else.

Categories of monics. Let us begin with M, the category of monomorphisms in B. The objects of M are 
injective operators acting between Banach spaces. We represent a typical object of M by f : X ′ � X. A 
morphism from f : X ′ � X to g : Y ′ � Y is a commutative square

X ′

f

u′

Y ′

g

X
u

Y

(1)

in B. The operator u′ : X ′ −→ Y ′ is determined by u and so we speak of u as a morphism from f to g and 
write u : f −→ g.
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The category hM is the homotopical version of M: it has the same objects as M, with

HomhM(f, g) = HomM(f, g)
J(f, g) ,

where J(f, g) is the linear subspace of those morphisms u : f −→ g for which there exists an operator 
r : X −→ Y ′ making the following diagram commutative

X ′

f

u′

Y ′

g

X

r

u
Y

Note that u = gr =⇒ u′ = rf since g is monic. Clearly, hM is additive. The following diagram represents 
the kernel and cokernel of u : f −→ g in hM:

(u′)−1(0)

restriction

X ′

f

u′

Y ′

g

u(X) + Y ′

inclusion

u−1(0) X
u

Y Y

(2)

where u(X) + Y ′ carries the norm z �−→ inf{‖x‖X + ‖y′‖Y ′ : z = u(x) + y′} and (u′)−1(0) and u−1(0) the 
restrictions of the norms of X ′ and X, respectively [29, § 2.2.4]. In particular:

2.1. u is monic in hM if and only if u−1(0) ⊂ f(X ′). It is epic if and only if Y = u(X) + g(Y ′).

We embed B as a full subcategory of hM sending each Banach space X to the inclusion 0 � X (the 
action on operators is obvious). One has:

2.2. Any object f : X ′ � X in hM is the cokernel of a morphism between Banach spaces:

0 0 X ′

f

X ′ f
X X

2.3. f : X ′ � X is isomorphic to a Banach space Y (read 0 � Y ) in hM if and only if f(X ′) is a 
complemented (hence closed) subspace of X and X/f(X ′) is linearly homeomorphic to Y .

Exact sequences in a preabelian category. Exactness will play an increasingly important role as the article 
progresses, so let us record right now the pertinent definitions. A (finite or infinite) sequence of morphisms 

· · · Ai−1
ai−1

Ai

ai

Ai+1 · · · in an additive category A having kernels and cokernels is 
exact at Ai if aiai−1 = 0 and the natural arrow Ker cok ai−1 −→ Ker ai is an isomorphism:
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Ker(cok ai−1) Ker(ai)

· · · Ai−1

induced

ai−1
Ai

ai

Ai+1 · · ·

Cok(ai−1)

induced

The open mapping theorem guarantees that this definition is equivalent to the usual definition for Ba-
nach spaces: the kernel of ai agrees with the range of ai−1. A sequence is called exact if it is exact 
at every position — which is consistent with the notion of exactness in exact categories, if one consid-
ers A in its maximal exact structure, see [27, Theorem 3.3]. A short exact sequence is one of the form 

0 A
ı

B
π

C 0 . This means that ı is a kernel of π and π is a cokernel of ı; in partic-

ular ı is monic and π is epic. Sometimes we say that A ı
B

π
C is short exact and we say that it 

splits if π admits a right-inverse in A or, equivalently, ı admits a left-inverse in A. The diagram in 2.2 is a 
short exact sequence in hM.

The category of quotient Banach spaces after Wegner. A morphism u : f −→ g in hM is called a pulation if 
(1) is both a pushout and a pullback diagram. As a particularly motivating example, observe that bending 
a little a short exact sequence of Banach spaces

0 Y
ı

X
π

Z 0 (3)

we obtain the pulation

Y

ı

0

X
π

Z

(4)

which is an isomorphism in hM if and only if (3) splits, see 2.3.
Being a pulation is really a property of the class of u in hM [30, Lemma 6]. Pulations form a localizing 

class (multiplicative system) in hM and thus it makes sense to consider the localization of hM with respect 
to pulations. The resulting category is the Waelbroeck–Wegner category W. The objects of W are those 
of hM and there exists a functor Q : hM −→ W which is the identity on objects and takes each pulation 
into an isomorphism. Every morphism φ : f −→ g in W can be represented as φ = Q(u)Q(s)−1, where 
u : h −→ g is a morphism of hM and s : h −→ f is a pulation:

h
s u

f g

This is called a “left roof”. Every morphism can be represented also by a “right roof”:

k

f

v

g

t
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See Miličić’s notes [19, Chapter 1] for details, including when two of those roofs induce the same morphism 
in W and [30, Theorem 10] for a proof that W is abelian. (Waelbroeck’s proof can be seen in [29, § 2.3].) 
It is obvious that W contains B as a full subcategory.

The following remark implies that the functor Q : hM −→W is injective on morphisms. The proof uses 
quite specific properties of pulations.

2.4. If u is a morphism in hM then u = 0 in hM if and only if Q(u) = 0 in W.

Proof. One direction is trivial. For the “if” part, if Q(u) = 0 in W there exists a pulation s such that su = 0
in hM, see [19, 2.1.4. Lemma]. This is depicted in the solid part of the diagram

X ′

f

Y ′

g

Z ′

h

X

r′
r

u
Y

s
Z

Since the right square is a pullback diagram the universal property of the pullback applied to the operators 
r : X −→ Z ′, u : X −→ Y yields r′ : X −→ Y ′ such that u = gr′ and shows that the morphism represented 
by the left square is 0 in hM. �

An immediate consequence is:

2.5. If u is a morphism of hM then kerQ(u) = Q(keru) and cokQ(u) = Q(cok u).

Thus, applying Q to Diagram (2) one obtains explicit descriptions of the kernel and cokernel of Q(u) in 
W. In particular:

2.6. u is monic (respectively, epic) in hM if and only if Q(u) is monic (respectively, epic) in W.

A useful criterion to detect if a commutative square formed by arbitrary operators is a pulation (in the 
sense that is simultaneously a pushout and a pullback) is:

2.7. A commutative square formed by arbitrary operators in B

A

γ

α
B

β

C
δ

D

is a pulation if and only if the sequence 0 A
(α,−γ)

B ⊕ C
β⊕δ

D 0 is exact.

As one may guess, (α, −γ)(a) = (α(a), −γ(a)) and (β ⊕ δ)(b, c) = β(b) + δ(c). This can be proved as [4, 
Proposition 2.12], taking advantage of the simplifications provided by the peculiarities of B.

We can also characterize those pulations that already define isomorphisms in hM:

2.8. A pulation is an isomorphism in hM if and only if the associated sequence splits.



6 F. Cabello Sánchez, J. Navarro Garmendia / Journal of Pure and Applied Algebra 227 (2023) 107153
Proof. Let s be a pulation from ı : X ′ � X to j : Y ′ � Y , where ı, j are assumed to be plain inclusions, 
so that s′ = s|X′ . The associated sequence is

0 X ′ (ı,−s)
X ⊕ Y ′ s⊕j

Y 0 (5)

We first remark that, being a pulation, s is an isomorphism in hM if and only if it admits a left-inverse 
in hM: indeed, if χ : j −→ ı satisfies χs = Iı in hM, then the identity sχ = Ij (in hM) follows from 2.4, 
taking into account that Q(χ)Q(s) = Iı (in W) and that Q(s)Q(χ) = Ij (since Q(s) is an isomorphism 
in W).

(⇐=) Assume that the quotient map of (5) admits a left-inverse which we write as (χ, η) : Y −→ X⊕Y ′, 
where χ : Y −→ X and η : Y −→ Y ′ are operators. We will show that χ induces a homomorphism ı −→ j

in hM such that χs is (equivalent to) the identity of ı. It is clear that χ : Y −→ X is bounded. To verify 
that χ : Y ′ −→ X ′ is (well-defined and) bounded, let P = IX⊕Y ′ − (χ, η)(s ⊕ j) be the induced projection 
on X ⊕ Y ′ (whose range is (ı, −s)(X ′)), that is,

P (x, y′) = (x, y′) − (χ(s(x) + y′), η(s(x) + y′) = (x− (χ(s(x) + y′), y′ − η(s(x) + y′).

In particular P (0, y′) = (−χ(y′), y′ − η(y′)), from where it follows that χ(y′) ∈ X ′ and that ‖χ : Y ′ −→
X ′‖ ≤ ‖(ı, −s)−1‖‖P‖.

We now prove that the concatenation

X ′

ı

Y ′

j

X ′

ı

X
s

Y
χ

X

is equivalent to the identity of ı, which amounts to showing that χs − IX is bounded from X to X ′ and is 
obvious after realizing that P (x, 0) = (x − χ(s(x)), η(s(x))).

( =⇒ ) The argument is clearly reversible: if χ : Y −→ X is a left-inverse of s in hM with witness 
operator r : X −→ X ′, then the map P : X⊕Y ′ −→ X ′ defined by P (x, y′) = r(x) +χ(j(y′)) is a projection 
along (ı, −s). �
2.9. Every morphism from f : L � �1(I) to any object g in W arises as Q(u), where u : f −→ g is a 
morphism of hM.

Proof. The preceding item and the lifting property of �1(I) imply that every pulation whose codomain is 
f : L � �1(I) is an isomorphism in hM. �
3. A bit of algebra and analysis in W

Distinguished objects. The following remark is [29, Lemma 2.1.22]:

3.1. Each object of W is isomorphic to one of the form L � �1(I) for some set I.

Proof. Given f : X ′ � X take a surjective operator π : �1(I) −→ X and form the pullback square (in B)

PB X ′

f

�1(I) X
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which is easily seen to be a pulation, hence an isomorphism in W. �
The following result characterizes the objects that are isomorphic to Banach spaces in W:

3.2 (Compare to 2.3). For a monomorphism f : X ′ � X between Banach spaces, the following are equivalent 
(and imply that f is isomorphic to X/f(X ′) in W):

(a) f(X ′) is closed in X.
(b) f is isomorphic to a Banach space in W.
(c) Every morphism K −→ f admits a left-inverse.

Proof. (a) =⇒ (b) is now obvious: 0 X ′ f
X X/f(X ′) 0 is an exact sequence, and 

its associated pulation

X ′

f

0

X X/f(X ′)

is an isomorphism in W. The implication (b) =⇒ (c) is clear since (c) is satisfied whenever f is a Banach 
space, by the Hahn-Banach theorem. (c) =⇒ (a) Assume f(X ′) is not closed in X and pick a point 
p ∈ f(X ′)\f(X ′). The linear map c ∈ K �−→ cp ∈ X defines a morphism K −→ f which does not have a 
left-inverse in W. �

The preceding result shows that the ground field (hence every nonzero Banach space) fails to be injective 
in W and also that every object of W finds its place in a short exact sequence (see the paragraph after 3.4)

X ′ X ′

f

0

f(X ′) inclusion
X

quotient
X/f(X ′)

(6)

in which the “quotient” is a Banach space and the “subspace” does not have morphisms to K, apart from 
zero. We shall prove later (3.6) that W does not have injectives. And projectives?

3.3. An object is projective in W if and only if it is isomorphic to �1(I) for some set I.

Proof. (⇐=) We must prove that every morphism whose domain is �1(I) can be lifted through any epimor-
phism of W. Since W is abelian it has pullbacks and they “preserve” epics. Therefore, it suffices to see that 
every epimorphism whose codomain is �1(I) admits a right-inverse.

Let φ : f −→ �1(I) be an epimorphism in W that we write as φ = Q(u)Q(s)−1, as a left roof, where 
u : g −→ �1(I) is a morphism in M and s : g −→ f is a pulation:

Y ′

gX ′

f

0

Y
s u

X �1(I)
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Since Q(s) is an isomorphism in W it is clear that Q(u) is epic and (by 2.6) u is epic in hM. This implies 
that u : Y −→ �1(I) is surjective and, by the lifting property of �1(I), there is v : �1(I) −→ Y such that uv
is the identity of �1(I). Applying Q to the composition

0 Y ′ X ′

�1(I)
v

Y
s

X

gives a right inverse of φ.
( =⇒ ) Each f : X ′ � X in W comes with the short exact sequence

0 0 X ′

X ′ f
X X

If this sequence splits then, looking at the left-square and taking into account that B is a full subcategory 
of W, we see that f is a topological embedding with complemented range and, by 3.2, f is isomorphic to 
the Banach space X/f(X ′) which in its turn is isomorphic to a complemented subspace of X. By 3.1 one 
can assume X = �1(I) and the result follows from Köthe’s remark that every complemented subspace of 
�1(I) is isomorphic to �1(J) for some J , see [14] — or [23] for a proof written in English. �
3.4. W has enough projectives.

Proof. This means that every object is the codomain of an epimorphism whose domain is projective, which 
is clear for objects of the form L � �1(I) since �1(I) is projective in W, hence for all objects, see 3.1. �

Now, a standard procedure gives rise to resolutions: we may take a surjective operator π1 : �1(I1) −→ L; 
then take a surjective operator π2 : �1(I2) −→ kerπ1, and so on.

3.5. Any object f : X ′ � X in W admits a projective resolution

. . . 0 0 0 0 X ′

f

. . . �1(I3)
π3

�1(I2)
π2

�1(I1)
π1

�1(I0)
π0

X

where the maps πi have closed range for i �= 1, the range of π1 equals L = π−1
0 (f(X ′)), and f is isomorphic 

to L � �1(I0) in W.

Credits. Most of the results presented so far are due to Waelbroeck and / or Noël (or their direct translations 
to Wegner’s language / the language of Banach spaces). In any case, there is the small problem (which we 
will skip) of clarifying the relationship between Noël’s category (which is commonly accepted as being 
equivalent to Waelbroeck’s category of bornological spaces) and “our” W.

Diagram (2) summarizes the information in [29, §2.2.4] and 2.1 corresponds to [29, Corollaries 2.2.17 and 
2.2.19]. 2.3 is mentioned in passing in [28], see the paragraph closing § 1. Assertion 2.8 generalizes as well 
as explains [29, Lemma 2.1.4]. 2.9 corresponds to the statement “Every morphism defined on a standard 
Q-space is strict” in [29, p. 84].
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Assertion 3.1 corresponds to [29, Lemma 2.1.22], while 3.4 is mentioned in the introduction to Chapter 
2 of [29]. Both 3.4 and the “if part” of 3.3 can be attributed to Noël: they correspond to Propositions 5.6 
and 5.2 in [22]. However Noël works in a larger category QESPC which must be very different from W. 
Indeed [22, Théorème 8.2] claims that QESPC has enough injectives, which is puzzling since W presents 
the opposite behavior:

3.6. W has no injective object apart from zero.

Proof. The proof of 3.2 shows that if the object f : X ′ � X is injective (and non-zero) in W, then f(X ′)
must be a proper dense subset of X. Otherwise K is a direct summand of f and we have seen that K fails to 
be injective. Assume that f has dense range and is not surjective and let us exhibit a monic whose domain 
is f that does not admit a left-inverse. Let us form the following pushout diagram in B:

X ′ f

f

X

F

X
G PO

The operator F is injective (hence an object of W; this is not automatic for pushout squares, see the 
example in [11, p. 338]). Indeed the pushout space can be constructed as PO = (X ⊕X)/(f,−f)(X ′) and 
then F (x) = (0, x) + (f,−f)(X ′) and G(x) = (x, 0) + (f,−f)(X ′) which cannot be zero unless x = 0. 
Therefore, the square above can be regarded as a monomorphism G : f −→ F in W. Assume that G
(that is, Q(G)) admits a left-inverse φ in W. Let us represent φ as a right roof: φ = Q(s)−1Q(v), where 
v is a morphism of hM and s is a pulation. One has If = Q(s)−1Q(v)Q(G), thus Q(s) = Q(v)Q(G) and 
consequently s = vG (in hM) which means that vG is a pulation. If g : Y ′ � Y is the common codomain 
of v and s, then the outer rectangle of the commutative diagram

X ′ f

f

X

F

v′

Y ′

g

X
G PO v

Y

is a pulation and in particular (see 2.7) the operator (f, −v′f) : X ′ −→ X ⊕ Y ′ must have closed range. 
Pick x ∈ X\f(X ′) and note that (x, −v′(x)) cannot be in the range of (f, −v′f). If (x′

n) is a sequence in 
X ′ such that f(x′

n) −→ x in X it is clear that (f, −v′f)(x′
n) converges to (x, −v′(x)) and we have reached 

a contradiction. �
Extensions. Let A be an additive category having kernels and cokernels and let A, B be objects of A. An 
n-extension of A by B is an exact sequence

0 B A1 A2 · · · An A 0 (A )

Within the class of n-extensions of A by B, one considers the least relation of equivalence that makes (A )
equivalent to

0 B B1 B2 · · · Bn A 0

if there is a commutative diagram
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0 B A1 A2 · · · An A 0

0 B B1 B2 · · · Bn A 0

Let ExtnA(A, B) denote the class of those equivalence classes. If A is either B or W then ExtnA(A, B) is a 
set that can be given a natural linear structure by using pullbacks and pushouts. See [10, Chapter 6] for 
a good exposition in the setting of exact categories — note that these include both W (which is abelian) 
and B (since it is quasi-abelian). The interested reader can find the translation of some classical results on 
Banach spaces to the language of ExtnB in [7].

We can describe n-extensions in W by using projectives in the standard way: pick objects a : A′ � A

and b : B′ � B and use 3.4 and the abelian character of W to get an exact sequence

0 k
κ

pn
πn

pn−1
πn−1 · · · p1

π1
a 0 (P)

with each pi projective in W (that is, isomorphic to 0 � �1(Ii) for some set Ii). If φ : k −→ b is a morphism 
in W then, taking pushouts successively, one obtains the commutative diagram

0 k
κ

φ

pn pn−1 · · · p1 a 0

0 b PO1 PO2 · · · POn a 0

(7)

in which the lower sequence is exact — and belongs to the class of zero if and only if φ “extends” to pn, 
with the meaning that there exists a morphism Φ : pn −→ b such that φ = Φκ, although this point is not 
completely trivial. Actually every n-extension

0 b
β

an
αn

an−1
αn−1 · · · a1

α1
a 0

arises in this way, up to equivalence, as can be seen looking carefully at the following diagram

kerπn−1 kerπ2 kerπ1

0 k
κ

pn · · · p2 p1 a 0

kerαn−1 kerα2 kerα1

0 b
β

an
αn · · · a2

α2
a1

α1
a 0

and using the universal property of the pushout. All of this is usually summed up by the familiar mantra 
“Yoneda Extn is naturally equivalent to Extn via projectives”, see [10, Chapter 6] or [12, Chapter IV].

The operators in any exact sequence of Banach spaces beginning and ending by zero have closed range 
and 4.1 implies that every n-extension of Banach spaces can be regarded also as an n-extension in W. Thus, 
given Banach spaces A, B and n ≥ 1, we have a mapping ExtnB(A, B) −→ ExtnW(A, B) which becomes (is) 
a natural transformation of functors in the appropriate setting. It is in fact a natural equivalence:

3.7. If A, B are Banach spaces then ExtnB(A, B) = ExtnW(A, B) for all n ≥ 1.
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Proof. We need to prove two things: that if A, B are Banach spaces every n-extension of A by B in W
is equivalent to one coming from B (which means that ExtnB(A, B) −→ ExtnW(A, B) is surjective) and 
that if two n-extensions of Banach spaces become equivalent in ExtnW(A, B) then they were equivalent in 
ExtnB(A, B) (which means that the map above is injective).

Both follow from the preceding observations. If a denotes the “image” of A in W (that is, a is 0 � A) 
then the presentation (P) can be taken in B (and is exact there). If b denotes 0 � B, then the whole 
Diagram (7) lives in B (since the arrows in (P) have closed ranges) and ExtnB(A, B) −→ ExtnW(a, b) is onto. 
Moreover, as B is a full subcategory of W, the morphism φ extends to pn in W if and only if it extends in 
B, which shows that ExtnB(A, B) −→ ExtnW(a, b) is injective. �
4. A characterization of W

This section explains the singular role that W plays among the abelianizations of B. The main result
4.2 is contained, albeit implicitly, in Bühler’s [5, Theorem 2.2.3 (ii)] — note that “our” preceding item is 
contained in the first part of the same theorem! The proofs (in the particular case of B) are much simpler, 
partly because of Wegner’s direct approach and partly because we can take advantage of the resolutions of
3.5. Before proceeding let us cheat a bit about how W is constructed from B.

You could have discovered W. As we have already mentioned, B is quasi-abelian, but not abelian, and so 
there are two types of monomorphisms in B: the “good” ones (monic arrows that are kernels in B), and the 
“bad” ones (the others).

This naturally leads to consider abelianizations that amend these bad monomorphisms and, at the same 
time, preserve the good. We can make precise these requirements, imposing that the abelianization functor 
a : B −→ A:

(�) Preserves monomorphisms: if f : X ′ −→ X is monic, then af : aX ′ −→ aX has to be monic, hence a 
kernel, because A is abelian.

(
) Is exact: it preserves short exact sequences.

The condition of fixing the bad monics is already accomplished by hM: each monic arrow f : X ′ � X

between Banach spaces is now a kernel, see 2.2. However, hM spoils many exact sequences of Banach 
spaces: if

0 Y
ı

X
π

Z 0 (8)

is an exact sequence in B, then

0 0 0

Y
ı

X
π

Z

(9)

is short exact in hM if and only if the square on the right is the cokernel of the square on the left. But the 
cokernel of the square on the left in hM is ı : Y � X itself and therefore (9) is exact in hM if and only if 
the arrow defined by the square

Y

ı

0

X
π

Z

(10)
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(which is always monic and epic, see 2.1) is an isomorphism in hM, something which is not true unless (8)
splits (so 2.8 says).

To solve this issue, we can force these maps to be isomorphisms, localizing the category. But the smallest 
multiplicative system on hM containing the squares of the type (10) is precisely the class of all pulations 
and so we arrive at W.

The universal property of W. Let w : B −→W be the abelianization functor. En route to our characteriza-
tion of W, let us now check that w satisfies conditions (�) and (
) above:

4.1. The embedding of B into W is an exact functor that preserves monics.

Proof. The part concerning monics is clear since both B −→hM and the localization functor Q : hM −→W
preserve monics. The part concerning exactness is implicit in the preceding discussion: if (8) is a short exact 
sequence in B, then (9) is short exact in W because

0 0 Y

ı

Y
ı

X X

is and (10) is an isomorphism in W. �
4.2. Let A be an abelian category and let a : B −→A be an exact functor that preserves monics. Then there 
exists a unique, up to natural equivalence, exact functor ā : W −→A such that a = ā ◦ w, as illustrated in 
the diagram

B

w

a A

W
ā

Proof. We have already seen (2.2) that any object f : X ′ � X in W can be regarded as the cokernel of 
wf . Therefore, if such an exact functor ā exists, then

ā (f : X ′ � X) � ā (Cok(wf)) � Cok(āwf) = Cok(af) .

Therefore, we define a functor ā : M −→ A mapping each object f : X ′ � X to a fixed cokernel Zaf of 
af in A (which is assumed to be aX if f is 0 � X), and each morphism u in M

X ′

f

u′

Y ′

g

X
u

Y

(11)

to the morphism āu in A given by the dotted arrow in the commutative diagram
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aX ′

af

aY ′

ag

aX
au

aY

Zaf
āu

Zag

(12)

This functor ā factors through hM because any morphism u : f −→ g in J(f, g) is transformed into the 
null map: if we have a commutative diagram of operators in B

X ′

f

u′

Y ′

g

X

r

u
Y

the corresponding map āu, fitting in the commutative diagram below, must be the zero map in A since z
is epic:

aX ′

af

aY ′

ag

aX

z

ar

au
aY

Zaf
āu

Zag

Also, ā factors through the localization Q : hM −→W, because it transforms pulations into isomorphisms. 
To see this, assume that (11) is a pulation u : f −→ g in hM. Looking at this through a in A we obtain 
another commutative diagram

aX ′

af

au′

aY ′

ag

aX
au

aY

In view of 2.7, the sequence 0 aX ′ (au′,−af)
aY ′ ⊕ aX

ag⊕au
aY 0 is exact in A. 

By Bühler’s [4, Proposition 2.12, (ii) =⇒ (iv)] the preceding square can be completed to a commutative 
diagram

aX ′

af

au′

aY ′

ag

aX
au

aY

C C
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with short exact vertical sequences. A quick glance at (12) reveals that ā u is an isomorphism in A.
On the other hand, it is clear that any exact functor W −→ A whose “restriction” to B agrees with a is 

naturally equivalent to ā.
It only remains to see that ā : W −→ A is exact. To this end we need to compute the (left) derived 

functors of ā, and prove that L0ā is naturally equivalent to ā itself (which is not automatic since we do not 
know a priori that ā is right-exact) and that L1ā = 0, see [8, Chapter V, §5]. As a consequence, it will follow 
that ā is exact: indeed, if 0 −→ f −→ g −→ h −→ 0 is exact in W there is a commutative diagram in A

0 ā(f) ā(g) ā(h) 0

L1ā(f) L0ā(f) L0ā(g) L0ā(h) 0

in which the second row is exact (since L•ā are derived functors) and the vertical arrows are the isomor-
phisms given by the natural equivalence between ā and L0ā.

Recall that the homology of the complex

· · · Cn+1
cn+1

Cn

cn
Cn−1 · · · (C )

in an abelian category (at the n-th spot) is defined as Hn(C ) = Cok
(
Im cn+1 −→ Ker cn

)
, where the image 

of an arrow c : C −→ D in the abelian category is Im(c) = Ker(cok c). Note the factorization

C

epic

c
D

Im(c)
monic

The value of the n-th derived functor Lnā on any object f : X ′ � X of W is obtained picking any projective 
resolution of f :

· · · p2
π2

p1
π1

p0
π0

f 0

and taking the homology of the complex · · · āp2 āp1 āp0 0 at the n-th spot. Of 
course this can be done using whatever resolutions we like best, so we can use those of 3.5 to conclude that 
the derived functors of ā at f are given by the homology of the complex

· · · a �1(I2)
aπ2

a �1(I1)
aπ1

a �1(I0) 0

Hence,

L0ā(f) = Cok
(
Im(aπ1) −→ a �1(I0)

)
� Cok

(
af : aX ′ −→ aX

)
= ā(f)

on objects and the fact that L0ā is naturally equivalent to ā follows from the Comparison Theorem [31, 
2.2.6, p. 35], while Lnā(f) = 0 for n ≥ 1 because the sequence

· · · �1(I2) �1(I1) �1(I0)

was exact in B. �
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The proof shows that for any abelian category A, composition with w is part of an equivalence between 
the category of exact functors W −→A and the category of exact functors B −→A that preserve monics. 
This immediately implies that the pair (W, w) is unique, up to unique equivalence, among all pairs (A, a) 
of an abelian category and an abelianization satisfying the universal property in 4.2.

Condensed stuff. An immediate consequence of 4.2 is that the natural embedding of B into Clausen–Scholze 
category CS induces an exact functor W −→ CS. Without entering into details, the relevant feature is that 
the image of a Banach space X in CS is the sheaf of continuous functions 

(
C(K, X))K , where K runs over 

all zero-dimensional compacta whose topological weight is bounded by an appropriately huge cardinal, and 
the action on operators is given by composition. As one may guess, the abelianization B −→ CS preserves 
monics and is exact since, whenever 0 Y

ı
X

π
Z 0 is an exact sequence of Banach 

spaces, the induced sequence

0 C(K,Y )
ı∗

C(K,X)
π∗

C(K,Z) 0

is again exact. The only doubtful point is whether π∗ is surjective and this follows from the existence of a 
continuous section of π — the celebrated Bartle–Graves selection theorem, see [3, Proposition 2.19 (ii)] for a 
simplified proof. To tell the truth the full force of Bartle–Graves is not necessary here due to the hypothesis 
imposed on K, see Corollaries 1 and 2 in [18]. All this raises the following question:

4.3. Question Is W a full subcategory of CS?

5. Ramblings

A remarkable functor. Let sB be the category of semi-Banach spaces and bounded operators (see [5, p. xi]
or [6, Note 1.8.1]). There is a functor S : W −→ sB sending f : X ′ � X to the space X/f(X ′) seminormed 
by

|x + f(X ′)|X/f(X′) = inf
x′∈X′

‖x + f(x′)‖.

S is the topologized version of the functor R appearing in [30, Section 4] and is described in more abstract 
terms in [5, Lemma on p. xi]. To see the action of S on morphisms take g : Y ′ � Y and u : f −→ g in M
and define S(u) : X/f(X ′) −→ Y/g(Y ′) by x + f(X ′) �−→ u(x) + g(Y ′). It is really easy to see that S(u) is 
bounded by ‖u‖ and depends only on the class of u in hM. To ensure that S acts from W to sB one only 
has to see that S carries pulations into isomorphisms, taking then avantage of the universal property of the 
localization [19, Theorems 1.1.1 and 2.1.2]. But a pulation square in B is also a pushout in V, the category 
of vector spaces and linear maps, and so in sB (which is not true, as a rule, for mere pushout squares):

5.1. Let

X ′ v

f

Y ′

g

X
u

Y

be a pulation square in B, in which no operator is assumed to be injective. If Z is a seminormed space and 
v′ : Y ′ −→ Z, f ′ : X −→ Z are operators such that vv′ = f ′f then there is a unique operator h : Y −→ Z

such that f ′ = hu, v′ = gh.
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(Assemble your own proof: the key point is that the set {(v(x′), f(x′) : x′ ∈ X ′} is closed in Y ′ ×X. See 
why?) Hence a pulation square induces two isomorphisms of seminormed spaces: namely u : X/f(X ′) −→
Y/g(Y ′) and g : Y ′/v(X ′) −→ Y/u(X).

Our attempts to gain a more complete understanding of W come up against the hard truth that we are 
basically unable to distinguish two objects of W if they have isomorphic images in sB, see 5.3 and 5.5 for 
the only exceptions at hand.

Note that S(f) =
(
X/f(X ′)

)
⊕

(
f(X ′)/f(X ′)

)
where the first summand is a Banach space and the 

second carries the trivial seminorm. Incidentally, the space f(X ′)/f(X ′) is the difficult part since it does 
not allow for much nuance:

5.2. Let f : X ′ � X be a monomorphism between Banach spaces. If f(X ′)/f(X ′) has a (finite or infinite) 
countable Hamel basis, then f has closed range, so f(X ′)/f(X ′) = 0, and f is isomorphic to a Banach 
space in W.

Proof. The proof uses a version the closed graph theorem due to De Wilde [32].
Let (hi)i∈I be a Hamel basis of f(X ′)/f(X ′) with I countable and, for each i, pick ei ∈ X such that 

hi = ei + f(X ′). Let K(I) be the (topological linear) space of all finitely supported sequences c : I −→ K

with the inductive topology (D is open in K(I) ⇐⇒ for every finite J ⊂ I the set D|J = {d ∈ KJ : d =
c|J for some c ∈ D} is open in KJ).

Consider the continuous bijection U : X ′ ⊕ K(I) −→ f(X ′) given by U(x′, c) = f(x′) +
∑

i∈I c(i)ei. We 
want to see that U−1 : f(X ′) −→ X ′ ⊕K(I) is continuous. However U−1 has the same graph as U , which is 
closed since U is continuous. The result we need is [20, Theorem 14.7.1]: an operator from a Fréchet space 
to a webbed space whose graph is closed is continuous.

Banach (actually Fréchet) spaces are webbed [20, Theorem 14.6.2] and the product of two (even countably 
many) webbed spaces is again webbed. The space K(I), being the strong dual of KI (product topology), is 
also webbed ([20, Theorem 14.6.4]; this is the point where we use that I is countable), and therefore U−1

is continuous, which is possible only if I is finite (otherwise K(I) cannot be given a complete metric since it 
is the union of countably many closed sets with empty interior, see [20, Section 11.8]) and f(X ′) is closed 
in X. �

The just proved result was suggested by [15, Lemma 4.5], which corresponds to the case where 
f(X ′)/f(X ′) is finite-dimensional.

We now tackle the problem of finding monomorphisms f : X ′ � X, g : Y ′ � Y with dense range and 
separable codomain that are not isomorphic in W. To gauge the depths of our ignorance, consider the 
inclusions ı : �p � �q for 1 ≤ p < q < ∞: on the one hand we do not know whether there exist (p, q) �= (r, s)
such that �p � �q and �r � �s are not isomorphic in W; on the other hand we have been unable to prove 
that any two of them are isomorphic!

It is relatively easy to see that some of these inclusions are not isomorphic in hM (take �1 � �2 and 
�2 � �3 if you want a really simple case) and that, in all cases, S(ı) carries the trivial seminorm and has a 
Hamel basis whose cardinality is the continuum. By the way, can f(X ′)/f(X ′) consistently have a Hamel 
basis whose cardinality is strictly smaller than the continuum?

Strictly singular objects. An operator between Banach spaces is said to be strictly singular if its restriction to 
each infinite-dimensional closed subspace of its domain fails to be an isomorphism (linear homeomorphism 
onto its range), see [16, Chapter 2, Section c] for the basics. The definition applies in particular to the 
objects of W. Assume f : X ′ � X is not strictly singular and take an infinite-dimensional closed subspace 
A ⊂ X ′ witnessing it. Then we can “cut-off” the part of f “sitting on A” since f(A) is closed in X and the 
right-square of the diagram
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A

restriction

inclusion
X ′ quotient

f

X ′/A

induced

f(A) inclusion
X

quotient
X/f(A)

is a pulation. This makes the hypotheses of the following statement less painful.

5.3. Let K be an infinite-dimensional Banach space. Assume f : K � �1(I) is strictly singular and that L
is a Banach space such that every endomorphism of K that factorizes through L is strictly singular. Then 
no monomorphism g : L � �1(J) can be isomorphic to f in W.

The result applies when K, L are different spaces in the family �p for 1 ≤ p ≤ ∞ or c0. Note that each 
of these spaces has plenty of strictly singular monomorphisms into �1 with dense range: think of diagonal 
operators implemented by sequences converging to zero (and belonging to the dual space, of course).

Proof. Let φ : f −→ g be an isomorphism in W. By 2.9 there exist u, v in hM such that φ = Q(u), φ−1 =
Q(v) and 2.4 implies that vu = If in hM:

K

f

u′

L
v′

g

K

f

�1(I)
u

�1(J) v
�1(I)

Let r : �1(I) −→ K be an operator witnessing it, so that vu = I
1(I) + fr and thus v′u′ = IK + rf . Since f
is strictly singular so is rf and IK + rf = v′u′ cannot be strictly singular, against the hypothesis. �

During the proof we have obtained the following complement of 2.9:

5.4. The objects f : K � �1(I) and g : L � �1(J) are isomorphic in W if and only if they are isomorphic 
in hM.

A Lindenstrauss–Rosenthal theorem. The result alluded to in the heading states that if K, L are closed
subspaces of �1 whose corresponding quotients are isomorphic (and not isomorphic to �1), then there is 
an automorphism U of �1 such that L = U(K), see [16, Theorem 2.f.8]. In particular U restricts to an 
isomorphism between K and L. If we aim to obtain a version of this result in W we must realize that an 
essential ingredient of the proof of the Lindenstrauss–Rosenthal theorem is that each infinite-dimensional 
closed subspace of �1, in particular K and L, contains a subspace isomorphic to �1 and complemented in �1. 
Which does not make a lot of sense in W, does it? (If f : K � �1 has dense range, then HomW(f, b) = 0 for 
all Banach spaces b, in particular if b = �1.) We have the following version of the Lindenstrauss–Rosenthal 
theorem in W:

5.5. The objects f : K � �1(I) and g : L � �1(J) are isomorphic in W if and only if there is an automor-
phism U and an isomorphism U ′ (both relative to the category of Banach spaces) forming a commutative 
square
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K ⊕ �1(J) U ′

f×I

�1(I) ⊕ L

I×g

�1(I) ⊕ �1(J) U
�1(I) ⊕ �1(J)

We are aware that this looks a bit tautological. We challenge the reader to write down a complete proof.
In particular f and g cannot be isomorphic in W if K has the AP / BAP / DDP / RNP / Schur 

property / is weakly sequentially complete / is complemented in its bidual / has cotype q ∈ [2, ∞) / (fill in 
with any property of �1(I) that passes to complemented subspaces) / and L does not.

We are aware that the above welter of acronyms may be unintelligible for readers unfamiliar with (inter-
mediate) Banach space theory. Instead of trying to explain these definitions here, which would be useless, we 
refer the interested reader to Albiac–Kalton’s book where they can be studied with minimal prerequisites:

• AP stands for Grothendieck’s “approximation property” and BAP for the “bounded approximation 
property” see [1, Definitions 1.4–1.5].

• DPP is the Dunford–Pettis property [1, Definition 5.4.3], also isolated by Grothendieck.
• RNP is the Radon–Nikodým property, see [1, Definition 5.5.1].
• A Banach space has the Schur property if weakly convergent sequences converge in norm, see [1, Def-

inition 2.3.4]. The meaning of “weakly sequentially complete” and “complemented in its bidual” is 
self-explanatory, see [1, Definition 2.3.4 and p. 45] just in case.

• The notion of cotype is an invention of Hoffmann-Jørgensen, see [1, Definition 6.2.10 (b)].

Admittedly, 5.3 and 5.5 are quite unsatisfactory because they depend on the domains of f and g being 
very different. It would be delightful to have counterexamples with the same domain. The final section of 
the paper proposes a convenient setting to address this issue.

Enriched ExtnB. Quoting Mac Lane [17, Chapter XII, first paragraph of §9], “A standard method [to derive 
functors] is: Take a resolution, apply a covariant functor T , take the homology of the resulting complex. 
This gives a connected sequence of functors, called the derived functors of T .”

In the end, the functors ExtnB are the derived functors of Hom in the most orthodox sense of the word 
in W, that is, when Hom is treated as a functor from W to V, derived as such and one restricts the result 
to B, see [9, Part II, Section 21].

If a, b are Banach spaces, then so is HomB(a, b) and, therefore, the “object” ExtnB(a, b) appears as the 
cokernel space of κ∗ : HomB(pn, b) −→ HomB(k, b) either in V or in sB (see [6, Section 4.5]). One can 
consider an “enriched version” of ExtnB taking the cokernel morphism (which is an object of W). The 
resulting functor takes values in W and the traditional sB-valued version appears after composing with 
S. Related ideas, under a different perspective and in a different context, appear in the first section of the 
introductory chapter of [5], see especially the theorem on p. x and the corollary on p. xii.

Quotient Hilbert spaces. Let H be the category of Hilbert spaces and their operators: this is a full sub-
category of B from which it inherits most universal constructions (kernels and cokernels, pullbacks and 
pushouts), nice properties (the quasi-abelian character) and shortcomings (it fails to be abelian and does 
not have injective or projective objects, apart from zero).

Let MH be the category of monics in H and hMH the homotopic version. Both MH and hMH contain 
H as a full subcategory.

The main structural difference between hMH and its Banach relative hM stems from the fact that all 
short exact sequences of Hilbert spaces split. Since 2.8 holds in hMH we see that pulations are automatically 
isomorphisms in hMH and so hMH is abelian — no further localization is required!
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It follows that f : H ′ � H is isomorphic to a genuine Hilbert space if and only if f(H ′) is closed in H
if and only if f is projective in hMH. There are no injective objects in hMH, apart from zero (see 3.6, 
although in this case the proof is much easier).

Moreover, if f lives in hMH the short exact sequence (6) splits and so f can be written as the direct 
sum of a Hilbert space (the “quotient” part) and a monomorphism with dense range (the “subspace” part) 
to which 5.2 applies.

The content of this paper flows naturally into the following problems in classical operator theory:

5.6. Question Under which conditions are two injective endomorphisms of �1 (respectively, of �2) with dense 
range isomorphic in hM (respectively, in hMH)?

It is quite possible, however, that the study of the category of “quotient quasi-Banach spaces” (after 
Wegner) is much more thrilling. We refer the reader to [13] or [6, Chapters 3 and 4] to get an idea of the 
role that quasi-Banach spaces play in this whole issue.
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