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It is a famous result of Alexandroff and Urysohn [1] that every compact
metric space is a continuous image of Cantor set ∆. In this short note we
complement this result by showing that a certain “uniqueness” property holds.

Given topological spaces X and Y , let C(X, Y ) denote the collection of
all continuous mappings from X to Y . If Y is metrized by d, one can endow
C(X, Y ) with the uniform metric

dist(f, g) = sup
x∈X

d(f(x), g(x)).

It is clear that if ϕ is a homeomorphism of X, the map f 7→ ϕ ◦ f is an
isometry of C(X,Y ).

Our result is the following.

Theorem. Let K be a compact metric space and let f and g be two
continuous mappings from ∆ onto K. For every ε > 0 there exists a homeo-
morphism ϕ of ∆ such that dist(g, f ◦ ϕ) < ε.

Before going into the proof, let us fix some notations. We regard the points
of ∆ = {0, 1}N as functions x : N→ {0, 1} and we write ∆(n) for the set of all
two-valued functions y : {1, 2, . . . , n} → {0, 1}. Given y ∈ ∆(n), put

∆y = {x ∈ ∆ : x(k) = y(k), 1 ≤ k ≤ n}.
Obviously ∆y is homeomorphic to ∆. The n-th standard decomposition of ∆
is the partition of ∆ into the 2n clopen sets

∆ =
⊕

y∈∆(n)

∆y.
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Lemma. Let S be a finite set and let f and g be be two surjections ∆ → S
which are constant on the sets of some standard decomposition of ∆. Then
there is a homemorphism ϕ of ∆ such that g = f ◦ ϕ.

Proof. Since ∆ ≈ ∆ ⊕ ∆ we see that for every s ∈ S there is a homeo-
morphism ϕs : g−1(s) → f−1(s). In fact,

h−1(s) ≈ ∆⊕ kh. . .⊕∆ ≈ ∆ (h = f, g).

The required homeomorphism is then given by

ϕ =

(⊕

s∈S

ϕs

)
: ∆ =

⊕

s∈S

g−1(s) →
⊕

s∈S

f−1(s) = ∆.

Proof of the Theorem. Fix ε > 0 and take n such that if ∆ = ⊕y∆y is the
n-th standard decomposition, then the sets

h(∆y) (h = f, g)

have all diameter at most ε. Also, for y ∈ ∆(n), let y+ = min ∆y and define
h1 : ∆ → K taking h1(x) = h(y+) for x ∈ ∆y. Clearly, dist(h, h1) ≤ ε for
h = f, g and so the sets h1(∆) are ε-nets on K having at most 2n points.

Let K1 be the range of f1 and define g2 : ∆ → K1 taking g2(∆y) as
the point k ∈ K1 minimizing the distance to g1(∆y) = g(y+). Clearly,
dist(g2, g1) ≤ ε. Of course, g2 need not be onto K1, but its range, say S
is a 2ε-net in K and so there exists a projection of K1 onto its subset S such
that dist(π, IdS) ≤ 2ε. Taking f2 = π ◦ f1, we see that dist(f2, f1) ≤ 2ε.

Finally, we can apply the Lemma to the pair f2, g2 to get a homeomorphism
ϕ of ∆ such that g2 = f2 ◦ ϕ. Therefore

dist(g, f ◦ ϕ) ≤ dist(g, g2) + dist(g2, f ◦ ϕ)
≤ dist(g, g2) + dist(g2, f2 ◦ ϕ) + dist(f2 ◦ ϕ, f ◦ ϕ) ≤ 5ε,

which completes the proof.

Remarks. Every non-empty clopen subset of ∆ is homeomorphic to ∆
(this follows from Hausdorff characterization of ∆ as the only totally discon-
nected perfect compact metric space [3]). So, the Lemma holds without any
restriction on f and g.
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The only property of ∆ needed to get the conclusion of the Theorem is
that given ε > 0 there exists a decomposition ∆ = C1 ⊕ · · · ⊕ Cn into clopen
sets of diameter less that ε with each Ci homeomorphic to ∆.

(See [2] for unexplained terms.) The above Theorem makes transparent
that the set of continuous surjections ∆ → K that admit (or do not admit)
a regular averaging operator is uniformly dense in the set of all continuous
surjections ∆ → K whenever it is not empty; see [2, Theorem 3].
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