On Continuous Surjections from Cantor Set

Félix Cabello Sánchez

Departamento de Matemáticas, Universidad de Extremadura, Avda. Elvas, 06071-Badajoz, Spain e-mail: fcabello@unex.es

(Presented by J.M.F. Castillo)

AMS Subject Class. (2000): 54C55

Received January 21, 2004

It is a famous result of Alexandroff and Urysohn [1] that every compact metric space is a continuous image of Cantor set Δ . In this short note we complement this result by showing that a certain "uniqueness" property holds.

Given topological spaces X and Y, let C(X, Y) denote the collection of all continuous mappings from X to Y. If Y is metrized by d, one can endow C(X, Y) with the uniform metric

$$\operatorname{dist}(f,g) = \sup_{x \in X} d(f(x),g(x)).$$

It is clear that if φ is a homeomorphism of X, the map $f \mapsto \varphi \circ f$ is an isometry of C(X, Y).

Our result is the following.

THEOREM. Let K be a compact metric space and let f and g be two continuous mappings from Δ onto K. For every $\varepsilon > 0$ there exists a homeomorphism φ of Δ such that dist $(g, f \circ \varphi) < \varepsilon$.

Before going into the proof, let us fix some notations. We regard the points of $\Delta = \{0, 1\}^{\mathbb{N}}$ as functions $x : \mathbb{N} \to \{0, 1\}$ and we write $\Delta^{(n)}$ for the set of all two-valued functions $y : \{1, 2, \ldots, n\} \to \{0, 1\}$. Given $y \in \Delta^{(n)}$, put

$$\Delta_y = \{ x \in \Delta : x(k) = y(k), \ 1 \le k \le n \}.$$

Obviously Δ_y is homeomorphic to Δ . The *n*-th standard decomposition of Δ is the partition of Δ into the 2^n clopen sets

$$\Delta = \bigoplus_{y \in \Delta^{(n)}} \Delta_y.$$

Supported in part by DGICYT project BMF 2001–083.

F. CABELLO SÁNCHEZ

LEMMA. Let S be a finite set and let f and g be be two surjections $\Delta \to S$ which are constant on the sets of some standard decomposition of Δ . Then there is a homemorphism φ of Δ such that $g = f \circ \varphi$.

Proof. Since $\Delta \approx \Delta \oplus \Delta$ we see that for every $s \in S$ there is a homeomorphism $\varphi_s : g^{-1}(s) \to f^{-1}(s)$. In fact,

$$h^{-1}(s) \approx \Delta \oplus \stackrel{k_h}{\dots} \oplus \Delta \approx \Delta \qquad (h = f, g).$$

The required homeomorphism is then given by

$$\varphi = \left(\bigoplus_{s \in S} \varphi_s\right) : \Delta = \bigoplus_{s \in S} g^{-1}(s) \to \bigoplus_{s \in S} f^{-1}(s) = \Delta.$$

Proof of the Theorem. Fix $\varepsilon > 0$ and take n such that if $\Delta = \bigoplus_y \Delta_y$ is the n-th standard decomposition, then the sets

$$h(\Delta_y) \qquad (h = f, g)$$

have all diameter at most ε . Also, for $y \in \Delta^{(n)}$, let $y^+ = \min \Delta_y$ and define $h_1 : \Delta \to K$ taking $h_1(x) = h(y^+)$ for $x \in \Delta_y$. Clearly, dist $(h, h_1) \leq \varepsilon$ for h = f, g and so the sets $h_1(\Delta)$ are ε -nets on K having at most 2^n points.

Let K_1 be the range of f_1 and define $g_2 : \Delta \to K_1$ taking $g_2(\Delta_y)$ as the point $k \in K_1$ minimizing the distance to $g_1(\Delta_y) = g(y^+)$. Clearly, $\operatorname{dist}(g_2, g_1) \leq \varepsilon$. Of course, g_2 need not be onto K_1 , but its range, say Sis a 2ε -net in K and so there exists a projection of K_1 onto its subset S such that $\operatorname{dist}(\pi, \operatorname{Id}_S) \leq 2\varepsilon$. Taking $f_2 = \pi \circ f_1$, we see that $\operatorname{dist}(f_2, f_1) \leq 2\varepsilon$.

Finally, we can apply the Lemma to the pair f_2, g_2 to get a homeomorphism φ of Δ such that $g_2 = f_2 \circ \varphi$. Therefore

$$dist(g, f \circ \varphi) \leq dist(g, g_2) + dist(g_2, f \circ \varphi)$$

$$\leq dist(g, g_2) + dist(g_2, f_2 \circ \varphi) + dist(f_2 \circ \varphi, f \circ \varphi) \leq 5\varepsilon,$$

which completes the proof. \blacksquare

Remarks. Every non-empty clopen subset of Δ is homeomorphic to Δ (this follows from Hausdorff characterization of Δ as the only totally disconnected perfect compact metric space [3]). So, the Lemma holds without any restriction on f and g.

The only property of Δ needed to get the conclusion of the Theorem is that given $\varepsilon > 0$ there exists a decomposition $\Delta = C_1 \oplus \cdots \oplus C_n$ into clopen sets of diameter less that ε with each C_i homeomorphic to Δ .

(See [2] for unexplained terms.) The above Theorem makes transparent that the set of continuous surjections $\Delta \to K$ that admit (or do not admit) a regular averaging operator is uniformly dense in the set of all continuous surjections $\Delta \to K$ whenever it is not empty; see [2, Theorem 3].

References

- ALEXANDROFF, P., URYSOHN, P., Mémoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wetensch. Afd. Naturk. Sect. I, 14 (1929), 1–96.
- [2] ARGYROS, S.A., ARVANITAKIS, A.D., A characterization of regular averaging operators and its consequences, *Studia Math.* **151** (3) (2002), 207–226.
- [3] HAUSDORFF, F., "Grundzüge der Mengenlehre", Leipzig, 1914.