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Resumen

Invariantes diferenciales en presencia de una conexión lineal

por Raúl MARTÍNEZ BOHÓRQUEZ

En este trabajo se estudian los invariantes diferenciales asociados a varias estruc-
turas geométricas, las cuales comparten un nexo común: la presencia de una conex-
ión lineal. Se presenta un marco para el estudio de los invariantes diferenciales:
las estructuras de espacio anillado, fibrado natural y haz natural. Se obtienen de-
scripciones de estos espacios de invariantes en términos de ciertas representaciones
lineales de grupos clásicos. Además, se muestran ejemplos de aplicaciones de es-
tas descripciones, como teoremas de unicidad de los operadores torsión y curvatura
asociados a una conexión lineal y el cálculo de las identidades dimensionales de la
curvatura en la geometría Fedosov.
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Abstract

Differential invariants in presence of a linear connection

by Raúl MARTÍNEZ BOHÓRQUEZ

In this work we study differential invariants associated to various geometric struc-
tures, which share a common link: the presence of a linear connection. A framework
for the study of differential invariants is presented: the structures of ringed space,
natural bundle and natural sheaf. We obtain descriptions for these spaces of in-
variants in terms of certain linear representations of classical groups. Moreover, we
show examples of applications of these descriptions, such as theorems of unique-
ness of the torsion and curvature operators associated to a linear connection and the
computation of dimensional curvature identities in Fedosov geometry.
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Introduction

The purpose of this work is to present a method of computing differential invariants
associated to some geometric structures which involve linear connections. Differen-
tial invariants are geometric objects which are built in a ‘natural’ way, independent
on the system of coordinates of choice.

These invariants are more precisely understood as follows: let X be a smooth man-
ifold of dimension n, G a sheaf of any geometric structure over X and T a sheaf of
tensors over X. Then, we define differential invariants (which we will usually call
natural tensors) as natural morphisms of sheaves G → T . This means that, for any
open subset U ⊆ X, we get a morphism G(U)→ T (U) commuting with restrictions
to open subsets of U and the action of local diffeomorphisms τ : U → V.

Natural operations have long been a fundamental concept in the field of differen-
tial geometry and its applications, an example being its relevance in general rela-
tivity ([29]). The most significant classical results were by Gilkey, particularly on
the characterization of the Pontryagin forms on Riemannian manifolds ([12]) and on
the uniqueness of the Chern–Gauss–Bonnet formula ([14]), both during the mid-70s.
Later on, characterizations of notorious differential operations were obtained, such
as the exterior differential ([38]), the Lie bracket ([26]) or the improvement of the de-
scription characteristic classes in Riemannian geometry by Atiyah-Bott-Patodi ([2]),
utilised later in the proof of the index theorem for elliptic operators. Notorious appli-
cations have also been recently developed in various fields, such as contact geometry
([3]), homotopy theory ([10, 37]), Riemannian and Kähler geometry ([15, 16, 31, 44]),
general relativity ([34]), or quantum field theory ([23, 24]) .

In 1993, Kolář-Michor-Slovák published what has become the standard reference in
this subject ([25]), a monograph that summarises and enhances the main results and
techniques known to that point. However, this book can be complex and difficult to
follow at times to the non-specialist, due to its level of generality and its functorial
language, which is why there appeared important references rewriting its leading
results ([10, 24, 37]).

Let us briefly describe the contents of this memoir.

We devote Chapter 1 to introduce what we call Main Theorems, which describe
differential invariants in terms of certain linear representations of classical groups.
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We begin by recalling the definition of natural bundles proposed by J. Sancho Guimerá,
which is equivalent to the usual definition (see [25] for a monograph on the usual
definition and [33] for a proof of the equivalence with our definition) and, in our
opinion, is easier to understand and to work with.

Of even greater importance for us will be the sheaves of smooth sections associated
to a natural bundle, as we define differential invariants at sheaf level. In fact, in this
work we propose a generalization of such sheaves, called natural sheaves, which
provide a more suitable framework for this work, as it covers geometries given by
sheaves which are not the sheaf of smooth sections of any natural bundle, such as the
sheaf of Fedosov structures. Being able to cover such geometries vindicates moving
the main focus from bundles to sheaves.

Our next step is to define natural morphisms between natural sheaves, and in partic-
ular natural tensors, which will be our main interest. We culminate the first Chapter
with the statements of the aforementioned Main Theorems, along with a brief his-
torical exposition of which related results appeared before, which appeared later as
improvements of what was done, and which are novel to this work.

In Chapter 2, the more technical concepts that appear in this theory are laid out. We
start by defining the category of ringed spaces: a generalization of smooth manifolds
with nice categorical properties. In particular, they admit inverse limits (which will
allow us to consider ‘infinite dimensional’ spaces) and quotients by a group action.
This will later be the structure endowed to the space of ∞-jets of a fibre bundle, a
space that can be informally thought of as the set of Taylor expansions of smooth
sections of the fibre bundle at any point.

The concepts defined up until now are intertwined, as the renowned Peetre-Slovák
Theorem states:

Peetre-Slovák Theorem ([25], Sect. 19.7). Let X be a smooth manifold. Let E → X and
E′ → X be natural bundles over X, and let E and E ′ be their respective sheaves of smooth
sections over X.

The choice of a point x0 ∈ X allows the definition of a bijection:

{
Natural morphisms of sheaves

φ : E −→ E ′

} {
Diffx0-equivariant smooth maps

J∞
x0

E −→ E′x0

}
,

where Diffx0 stands for the group of germs of diffeomorphisms τ between open sets of X such
that τ(x0) = x0.

We conclude Chapter 2 proving that differential invariants can be computed locally
and that we may fix a section whenever diffeomorphisms act transitively (Proposi-
tion 2.19 and 2.21). These facts will become of particular interest for Fedosov struc-
tures, as well as geometries involving an orientation. In that regard, two modified
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versions of the Peetre-Slovak Theorem are stated at the end of the section, involving
symplectic forms and orientations, respectively.

Chapter 3 is the centrepiece of this memoir, and contains the full proof of our Main
Theorems. The sections of Chapter 3 each go over the proof of the Main Theorems
of the various geometries considered in this thesis, which correspond to the classical
groups:

1. Linear connections (the general linear group Gl).

2. Linear connections and orientations (the special linear group Sl).

3. Riemannian metrics (the orthogonal group O).

4. Riemannian metrics and orientations (the special orthogonal group SO).

5. Fedosov structures (the symplectic group Sp).

All of the proofs are similar in their structure. They start by considering what is usu-
ally referenced in the literature as ‘normal extensions’ or ‘normal tensors’ (the term
of our preference, as it stresses their tensorial character) of the relevant geometric ob-
ject. These tensors are naturally constructed from the geometric object, utilizing the
normal coordinates associated to a linear connection (hence the name), and recover
much of their information.

In fact, for each geometric structure we prove a corresponding Reduction Theorem,
which expresses the space of ∞-jets of the geometry, obtained by applying the Peetre-
Slovak Theorem, in terms of a product of the spaces of normal tensors.

These theorems already would, by themselves, describe the natural tensors asso-
ciated to the geometry as smooth maps coming from a product of vector spaces,
equivariant by the action of a classical group. To improve the results further, the
Homogeneous Function Theorem (Appendix A) assures the dependence on a finite
amount of variables.

In the cases where the Homogeneous Function Theorem cannot be applied directly,
an homogeneity condition can be added. Such a condition has physical meaning: it
corresponds to the notion of unit of measure, and thus makes it a reasonable con-
dition to consider. In fact, it has been frequently used in the literature, some exam-
ples being the characterization of the Levi-Civita connection by Epstein ([5]) and the
characterization of the Pontryagin forms by Gilkey ([13]).

The process described above to compute the differential invariants associated to a
geometrical structure does not work as smoothly in Fedosov geometry, as some deep
technical problems arise. These problems will be introduced in Chapter 1, tackled in
Chapter 3 and expanded upon in Chapter 6.

Moving on to Chapter 4, applications of the various Main Theorems are given.
Firstly, uniqueness theorems for the torsion and curvature operators associated to
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linear connections are obtained as an application of the Main Theorems for linear
connections and for linear connections and orientations. In the same vein, we char-
acterise the Chern forms as the only natural differential forms associated to linear
connections.

Further on Chapter 4, we discuss various applications of the Main Theorem for Fe-
dosov structures, and compare what is obtained to the known results in Riemannian
geometry. In particular, we prove that in Fedosov geometry there are no objects
equivalent to the scalar curvature or the Laplacian of Riemannian geometry.

To finalise the applications of the Main Theorem for Fedosov structures, we compute
dimensional curvature identities in Fedosov geometry. Let us introduce this concept.

Our Main Theorems compute differential invariants which are local in nature, and
thus the choice of base manifold is irrelevant as long as the dimension is maintained.
In contrast, many differential invariants of great relevance can be defined in any
dimension, such as the curvature tensor. We call these invariants ‘universal’.

Now, we can consider whether there are universal invariants which become null in
certain dimensions – this is what we call dimensional curvature identities. The ‘cur-
vature’ part of the name comes from the fact that these invariants can be understood
as identities that the curvature operator satisfies in certain dimensions.

A study of these identities in Riemannian geometry firstly appeared in general rela-
tivity ([27]), and a modern exposition can be checked at ([15]) or ([30]). There exists
some results in other settings, such as Kähler geometry ([16]).

In our work, we add the Fedosov setting to the list above, obtaining that the most el-
ementary dimensional curvature identities are constructed with the symplectic form
and the Pontryagin forms of the symplectic connection.

We dedicate the last chapter to a brief dissertation on open problems in this theory.
In particular, we expose to greater detail the technical problems commented above
for Fedosov structures, which appear in the study of many other geometries defined
by natural PDEs on a smooth manifold, such as Einstein or Kähler geometries. The
discussion is centred around the generalization of the Peetre-Slovak Theorem to the
setting of natural sheaves.

To finish the memoir, we state and prove the Homogeneous Function Theorem men-
tioned above. We have also included a recollection of results in classical invariant
theory which are utilised in the applications. In particular, the First Fundamental
Theorem of the various classical groups are stated, which are of the utmost impor-
tance in the computation of the differential invariants, as they describe all maps
invariant by the group action. In the case of the symplectic group Sp, the Second
Fundamental Theorem is also stated, which exposes the linear relations between the
maps described in the First Fundamental Theorem. A brief introduction to Fedosov
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manifolds has been added for the sake of completion; the interested reader is en-
couraged to check the work of Gelfand-Retakh-Shubin ([11]).

The MATLAB code developed during this thesis and employed in some of the appli-
cations have been added at the end. The version of software utilised was MATLAB
R2021a (9.10.0.1602886).
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Chapter 1

Presentation of the Main Theorems

Let us begin this first Chapter by introducing the concepts required to state our Main
Theorems: natural bundles and sheaves, natural morphisms and natural tensors.

Let X be a smooth manifold of dimension n. Let Diff (X) denote the set of local
diffeomorphisms between open subsets of X.

Throughout this memoir, the term diffeomorphism will refer to a local diffeomorphism
between two open subsets of a smooth manifold, unless explicitly stated.

The following definition of natural bundles is due to J. B. Sancho Guimerá, and it is
equivalent1 to the usual one (which can be checked at [25]) :

Definition 1.1. Let π : E → X be a fibre bundle over X. A natural bundle over X is
a bundle E→ X together with a map

Diff (X) −→ Diff (E)

τ 7−→ τ∗ ,

called lifting of diffeomorphisms, satisfying the following properties:

• If τ : U → V is a diffeomorphism between open subsets of X, then τ∗ : EU →
EV is a diffeomorphism covering τ; meaning that it makes the following square
commutative

EU
τ∗
∼ //

π
��

EV

π
��

U τ
∼ // V ,

where EU := π−1(U) and EV := π−1(V).

• Functoriality: Id∗ = Id and (τ ◦ τ′)∗ = (τ)∗ ◦ (τ′)∗.

• Locality: for any diffeomorphism τ : U → V and any open subset U′ ⊂ U,
(τ|U′)∗ = (τ∗)|EU′

.

1The interested reader can check [33] for a proof of this equivalence of definitions.
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Chapter 1. Presentation of the Main Theorems

• Regularity2: for any smooth family of diffeomorphisms {τt : Ut → Vt}t∈T, the
family {τt∗ : EUt → EVt}t∈T is also smooth.

Examples:

1. Let Y be a smooth manifold. Then, the trivial bundle E = X × Y → X is a
natural bundle: the lifting of a diffeomorphism τ is τ∗ = (τ, Id).

2. The tangent bundle TX → X is a natural bundle, the lifting of a diffeomor-
phism τ being its tangent linear map τ∗. Similarly, the cotangent bundle T∗X →
X is a natural bundle, with the lifting being the inverse of the cotangent linear
map.

3. In the same vein, any tensor bundle and the orientation bundle are also natural
bundles.

4. The bundle of linear connections Conn → X is a natural bundle. The lifting is
the following:

Conn U −→ Conn V

∇ 7−→ (τ∗∇)DD′ := τ−1
∗ (∇τ∗Dτ∗D′) ,

where the τ∗ at the right hand side is the tangent linear map.

Definition 1.2. A natural sheaf E over X is a subsheaf of the sheaf of smooth sections
of a natural bundle E→ X over X such that, for any diffeomorphism τ : U → V, the
morphism

τ∗ : E(U) −→ E(V)

s 7−→ τ∗ ◦ s ◦ τ−1

is well defined3.

Examples:

1. Let E → X be a natural bundle. Then, the sheaf of smooth sections of E is a
natural sheaf, because the lift τ∗ covers the diffeomorphism τ. As such, the
following sheaves are natural sheaves:

• The sheaf T q
p of (p, q)-tensors over X.

• The sheaf C of linear connections over X.

• The sheaf Or of orientations over X.
2Epstein and Thurston prove in [6] that this property can be derived from the rest. However, we

have chosen to include it in this definition, as it will appear in the generalization of natural bundles
given in later chapters.

3Observe that we are committing an abuse of notation: we are denoting by τ∗ both the lifting of τ
to E and the ‘action’ of τ on E .
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Chapter 1. Presentation of the Main Theorems

• The sheafM(s+,s−) of pseudo-riemannian metrics of fixed signature (s+, s−)
over X.

2. Let U ⊆ X be an open subset and let E a natural sheaf over X. The restriction
of E to U, defined as the inverse image of E by the inclusion map U ↪→ X (or
directly on any open subset U′ ⊆ U as EU(U′) := E(U′)) is trivially a natural
sheaf over U.

3. The Fedosov sheaf, defined on any open subset U ⊆ X as

F (U) := {(ω,∇) ∈ (Ω× Csym)(U) : ∇ω = 0} ,

is a natural sheaf, where Ω denotes the sheaf of non-singular 2-forms on X and
Csym denotes the sheaf of symmetric linear connections on X. Observe that the
condition ∇ω = 0 is natural: if (ω,∇) ∈ F (U), then (τ∗∇)(τ∗ω) = 0, and so
τ∗ ◦ (∇, ω) ◦ τ−1 ∈ F (V) for any (ω,∇) ∈ F (U).

4. The sheaf of Einstein metrics, defined on any open subset U ⊆ X as

E(U) := {g ∈ O(U) : Ric(g) = kg} ,

is a natural sheaf, where O is the sheaf of pseudo-Riemannian metrics on X.
Again, the condition Ric(g) = kg is natural.

Definition 1.3. Let E and E ′ be natural sheaves over X. A morphism of sheaves φ :
E → E ′ is natural if it is regular4 and commutes with the action of diffeomorphisms
on sections; that is to say, if for any diffeomorphism τ : U → V, the following square
commutes:

E(U)
φ //

τ∗
��

E ′(U)

τ∗
��

E(V)
φ // E ′(V) .

(1.1)

Definition 1.4. Let E be a natural sheaf and let T be the sheaf of (p, q)-tensors on X.
A natural tensor (of type (p, q) associated to sections of E ) is a natural morphism of
sheaves E → T .

Examples:

• The torsion tensor of a linear connection can be understood as a natural (2, 1)-
tensor Tor : C → T 1

2 , whose value on a linear connection ∇ is the following
(2, 1)-tensor:

Tor∇(D1, D2, ω) := ω(∇D1 D2 −∇D2 D1 − [D1, D2]) .
4The regularity condition is technical in nature, and as such it will be properly defined in Chapter

2, Definition 2.13.
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Chapter 1. Presentation of the Main Theorems

• Similarly, the curvature tensor of a linear connection can be understood as a
natural (3, 1)-tensor R : C → T 1

3 , whose value on a linear connection ∇ is the
following (3, 1)-tensor:

R∇(D1, D2, D3, ω) := ω(∇D1∇D2 D3 −∇D2∇D1 D3 −∇[D1,D2]D3) .

Let us expose the statements of the Main Theorems, that is, the description of natural
tensors in terms of certain linear representations of classical groups. The first of such
descriptions in the literature appears in the context of Riemannian geometry, by P.
Gilkey ([13]), and it was later improved by Atiyah-Bott-Patodi ([2]), which utilised
the invariant theory of the orthogonal group in order to greatly simplify the proof.

Briefly after the work of Atiyah-Bott-Patodi, P. Stredder ([41]) included the use of
normal coordinates to simplify computations. Then, J. Slovak ([40]) introduced the
concept of natural bundles into the equation, pointing towards the translation of
these results to other geometrical structures. The exact enunciate that we are about
to present was given by J. Navarro-Garmendia ([33]), which clarified the results of J.
Slovak by employing the language of sheaves, ringed spaces and the aforementioned
equivalent definition of natural bundles:

Theorem 1.5. Let X be a smooth manifold of dimension n, and letM(s+,s−) denote the sheaf
of pseudo-riemannian metrics of fixed signature (s+, s−). Let Tp be the sheaf of p-covariant
tensors over X.

Fixing a point x0 ∈ X and a pseudo-riemannian metric gx0 of signature (s+, s−) at x0

produces a R-linear isomorphism

{
Natural tensors
M(s+,s−) −→ Tp

} {
O(s+, s−)-equivariant smooth maps

∏∞
i=2 Ni −→ Tp

}

where d2, . . . , dr run over the non-negative integer solutions of the equation

2d2 + . . . + rdr = p− δ ,

and where O(s+, s−) denotes the generalised orthogonal group.

Here, the spaces Nm (called spaces of normal tensors) denote vector spaces made of
tensors which recover the symmetries of the metric tensor in normal coordinates at
the point x0. They will be rigorously defined during Chapter 3.

In order to produce a more tangible description, a condition of homogeneity is con-
sidered:

Definition 1.6. Let δ ∈ R. We say that a natural tensor T :M→ T is homogeneous
of weight δ if, for all non-zero λ ∈ R, it holds that:

T(λ2g) = λδT(g) ,

4



Chapter 1. Presentation of the Main Theorems

and that a natural tensor T : M×Or → T is homogeneous of weight δ if, for all
non-zero λ ∈ R, it holds that:

T(λ2g, Ω) = λδT(g, Ω) .

Examples:

• The metric itself can be understood as a natural (2, 0)-tensor homogeneous of
weight 2.

• The Riemann-Christoffel curvature operator, defined as a natural (4, 0)-tensor
whose value on a pseudo-riemannian metric g defined on an open set U ⊂ X
is:

Rg(D1, D2, D3, D4) := g(∇D1∇D2 D3 −∇D2∇D1 D3 −∇[D1,D2]D3, D4) ,

where∇ denotes the Levi-Civita connection of g. It is an homogeneous tensor
of weight 2, whereas the usual (3, 1) curvature operator (defined again by the
Levi-Civita connection of g) is an homogeneous natural tensor of weight 0.

• The scalar curvature, defined as a natural (0, 0)-tensor (that is, a natural func-
tion) whose value on a pseudo-riemannian metric g defined on an open set
U ⊂ X is:

rg := 〈Rg, g⊗ g〉 ,

where 〈·, ·〉 denotes the inner product induced by g over
⊗4 T∗U. It is homo-

geneous of weight −2.

• In dimension 4, we may define a natural function associated to metrics and
orientations whose value on a pseudo-riemannian metric g and an orientation
Ω defined on an open set U ⊂ X is:

〈Rg, Ω〉 ,

where 〈·, ·〉 is defined as above. It is homogeneous of weight −6.

This condition allows the use of the Homogeneous Function Theorem (Appendix
A), reducing the infinite product of normal spaces to a finite one:

Theorem 1.7. Let X be a smooth manifold of dimension n, and letM(s+,s−) denote the sheaf
of pseudo-riemannian metrics of fixed signature (s+, s−). Let Tp be the sheaf of p-covariant
tensors over X. Let δ ∈ Z.

5



Chapter 1. Presentation of the Main Theorems

Fixing a point x0 ∈ X and a pseudo-riemannian metric gx0 of signature (s+, s−) at x0

produces a R-linear isomorphism





Natural tensors
M(s+,s−) −→ Tp

homogeneous of weight δ





⊕
d2,...,dr

HomO(s+,s−)(S
d2 N2 ⊗ . . .⊗ Sdr Nr, Tp,x0) ,

where d2, . . . , dr run over the non-negative integer solutions of the equation

2d2 + . . . + rdr = p− δ ,

and where O(s+, s−) denotes the generalised orthogonal group.

As commented before, the more general context provided by the theory of natural
bundles pointed towards the possibility of describing natural operations associated
to other geometrical structures. Specifically, the differential invariants associated to
a linear connection were described in first instance by J. Slovak ([40]), and rewritten
in a language much closer to ours by A. Gordillo-Merino and J. Navarro-Garmendia
([18]), although in the context of moduli spaces, and by D.A. Timashev ([44]), who
rewrote the characterization of the differential classes associated to a linear connec-
tion.

Nevertheless, the statement below was given for the first time in full form by Gordillo-
Merino, Martínez-Bohórquez and Navarro-Garmendia in [19], see Appendix D:

Theorem 1.8. Let X be a smooth manifold and let C denote the sheaves of linear connections
on X. Let T be the sheaf of (p, q)-tensors over X.

If we fix a point x0 ∈ X, there exists an R-linear isomorphism

{
Natural tensors
C −→ T

}
⊕
di

HomGl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tq
p,x0 X) ,

where d0, . . . , dk run over the non-negative integer solutions of the equation

d0 + . . . + (k + 1)dk = p− q

and Gl = Gl(n, R) denotes the general linear group of invertible nxn matrices with real
coefficients.

In contrast to the Riemannian case, a condition of homogeneity is not necessary here
due to the equivariance by homotheties, as we will prove in Chapter 4.

This description was utilised, in the same work ([19], see Appendix D), in order to
produce characterizations of the torsion and curvature operators associated to linear
connections:

6



Chapter 1. Presentation of the Main Theorems

Theorem 1.9. The only vector-valued 2-form naturally associated to linear connections sat-
isfying the first Bianchi identity is the torsion tensor.

Theorem 1.10. For any smooth n−manifold (with n ≥ 3), the constant multiples of the
curvature are the only endomorphism-valued natural 2-forms (associated to symmetric linear
connections) that satisfy both the first and second Bianchi identities.

These results will be proven in Chapter 5.

A similar description of the natural operations associated to linear connections and
orientations was given by Gordillo-Merino, Martínez-Bohórquez and Navarro-Garmendia
in [20] (Appendix E), rewriting results of Kolář-Michor-Slovák in [25] much in the
same spirit as before:

Theorem 1.11. Let X be a smooth manifold and let C and OrX denote the sheaves of linear
connections and orientations on X, respectively.

Let T be a natural sub-bundle of the bundle of (p, q)-tensors Tq
p and let T be its sheaf of

smooth sections.

If we fix a point x0 ∈ X and an orientation Ω at an open neighbourhood of x0, there exists
an R-linear isomorphism

{
Natural morphisms of sheaves

C ×OrX −→ T

}
⊕
di

HomSl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tx0) ,

where d0, . . . , dk run over the non-negative integer solutions of the equation

d0 + . . . + (k + 1)dk = p− q .

Similar characterizations of the torsion and curvature operators to the ones obtained
in [19] were given in [20], now considering them as natural operators associated to
linear connections and orientations.

Although minor at first sight, this work included the reduction of differential in-
variants associated to the sheaf C ×Or of linear connections and orientations by the
transitive action of diffeomorphisms in the sheaf Or of orientations. This tool would
later prove to be of great usefulness in other geometrical settings, such as Fedosov
structures, as we will now expose.

Even though the monograph by Kolář-Michor-Slovák ([25]) is very thorough in the
description of differential invariants associated to several geometries, which relate
to the classical groups exposed above (the orthogonal group O, the general linear
group Gl and the special linear group Sl), it lacks a description of differential invari-
ants associated to Fedosov structures, which correspond to the symplectic group Sp:
pairs (ω,∇) of a symplectic form ω and a symplectic connection∇ (i.e. a linear con-
nection compatible with ω, that is, that ∇ω = 0). It is the skew-symmetric version

7



Chapter 1. Presentation of the Main Theorems

of Riemannian geometry, and as we will see later it possesses a strong relation to the
symplectic group Sp.

The work of Gelfand-Retakh-Shubin ([11]) provided a description of the invariants
associated to Fedosov structures, but without the generality provided by the lan-
guages of natural bundles and sheaves. They essentially started at jet level, that is,
Taylor expansions of Fedosov structures at a point.

The main roadblock, which we will overcome in this memoir, is that the sheaf F of
Fedosov structures is not the sheaf of smooth sections of any natural bundle, due to
the compatibility condition ∇ω = 0. This essentially is a necessary condition in the
general results provided in [25].

Utilizing the transitive action of diffeomorphisms in symplectic forms (due to the
existence of Darboux coordinates), natural tensors associated to the sheaf F are re-
duced to natural tensors associated to the sheaf Cω of symplectic connections com-
patible with a fixed symplectic form ω, which is the sheaf of smooth sections of a
natural bundle (generalizing the notion of natural bundle to include the action by
just a pseudogroup of diffeomorphisms).

This development allows the use of the general machinery in order to proceed. How-
ever, additional problems appear: normal coordinates do not work as well if the
symplectic form is fixed. There exists some coordinates that are apparently better
suited to our problem, defined by B. Fedosov ([7, 8]), but we could not find natural
ideas behind their construction.

Our approach was to ‘take a step back’, unfixing the symplectic form. This route
posed the following technical question: what is the space of jets associated to Fe-
dosov structures? The usual definition of the jet space defines jets as equivalence
classes of smooth sections of fibre bundles (see [25], for example), and so the case
of the Fedosov sheaf is not covered, as it is not the sheaf of smooth sections of any
natural bundle.

In this memoir, we solve this problem by defining spaces of jets associated to ‘natural
sheaves’: we generalise the notion of sheaves of smooth sections of a natural bundle
to a setting where both the notions of naturalness and jet theory still make sense.

Some problems arise with this definition, which in the Fedosov case are solved by
Theorem 3.10. It is not clear to us how to generalise this solution to other natural
sheaves, as the proof of Theorem 3.10 requires very specific properties of symplectic
forms (namely, a formal version of the Poincaré Lemma). This topic will be discussed
further in Chapter 6.

With these considerations, we arrive to the description of natural operations associ-
ated to Fedosov structures ([21], see Appendix F):

8



Chapter 1. Presentation of the Main Theorems

Theorem 1.12. Let X be a smooth manifold of dimension 2n, and let F denote the sheaves
of Fedosov structures. Let T be the sheaf of smooth sections of a natural subbundle T → X
of the bundle p-covariant tensors on X.

Fixing a point x0 ∈ X and a non-singular 2-form ηx0 at x0 produces a R-linear isomorphism

{
Natural morphisms of sheaves

F −→ T

} 



Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0



 .

where Sp(2n, R) := {dx0 τ : τ ∈ Aut(η)x0}.

As it happened in Riemannian geometry, a condition of homogeneity can be added
to assure the finiteness in the dependence of variables:

Theorem 1.13. Let X be a smooth manifold of dimension 2n, and let F denote the sheaf of
Fedosov structures. Let T be the sheaf of p-covariant tensors over X. Let δ ∈ Z.

Fixing a point x0 ∈ X and a non-singular 2-form η at x0 produces a R-linear isomorphism





Natural morphisms of sheaves
F −→ T

homogeneous of weight δ





⊕
d1,...,dr

HomSp(Sd1 N1 ⊗ . . .⊗ Sdr Nr, Tp,x0) ,

where d1, . . . , dr run over the non-negative integer solutions of the equation

2d1 + . . . + (r + 1)dr = p− δ ,

and where Sp = Sp(2n, R) denotes the symplectic group.

This result is later employed in Chapter 5 to characterise some scalar differential in-
variants, as a testament of the potency of the result above, as well as to produce the
description of the most relevant dimensional curvature identities in Fedosov geom-
etry, much in the spirit of the descriptions of such identities in Riemannian geome-
try given by Gilkey-Park-Sekigawa ([15]), which where later rewritten by Navarro-
Navarro ([30]), as well as in Kähler geometry by Gilkey-Park-Sekigawa ([16]).
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Chapter 2

The Peetre-Slovak Theorem

In this Chapter, we will begin by introducing the category of ringed spaces, followed
by the concept of G-natural bundles and G-natural sheaves that we have developed.
They generalise the concepts of natural bundles and sheaves of smooth sections of
natural bundles, respectively, covering geometrical structures such as the symplectic
connections compatible with a fixed symplectic form. Deeper results about them,
involving a transitive action of diffeomorphisms, are then stated.

2.1 The Category of Ringed Spaces

Definition 2.1. A ringed space is a pair (X,OX), where X is a topological space and
OX is a sub-algebra of the sheaf of real-valued continuous functions on X.

A morphism of ringed spaces1 ϕ : (X,OX)→ (Y,OY) is a continuous map ϕ : X → Y
such that composition with ϕ induces a morphism of sheaves ϕ∗ : OY → ϕ∗OX; that
is, such that for any open set V ⊂ Y and any function f ∈ OY(V), the composition
f ◦ ϕ lies in OX(ϕ−1V).

Ringed spaces are a generalization of smooth manifolds, as any smooth manifold X
can be understood as the ringed space (X, C∞

X ), where C∞
X is the sheaf of smooth real-

valued functions. If X and Y are smooth manifolds, a morphism of ringed spaces
X → Y becomes a smooth map.

As we are thinking of ringed spaces as a generalization of smooth manifolds, it will
be frequent to employ the same terminology: on any ringed space (X,OX), the sheaf
OX will be called the sheaf of smooth functions, and a morphism of ringed spaces
X → Y will be called a smooth map.

The category of ringed spaces has nicer (categorical) properties than the category of
smooth manifolds. Many operations one would like to make in smooth manifolds
do not exist in general smooth manifolds, such as the inverse limit of a sequence of
smooth manifolds and the quotient by the action of a group. In contrast, both of

1By similarity with the category of smooth manifolds, we will often call morphisms of ringed spaces
as smooth morphisms.
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these operations can be made in the context of ringed spaces, which we will require
throughout this work. Let us being with the inverse limit:

Definition 2.2. The inverse limit of a sequence of smooth manifolds and smooth
maps between them

. . .→ Xk+1
ϕk+1−−−→ Xk

ϕk−−→ Xk−1 → . . .

is the ringed space (X∞,O∞), which is defined as follows:

- The underlying topological space is the inverse limit of the topological spaces
Xk, i.e., the set

X∞ := lim
←

Xk

is endowed with the minimum topology for which the canonical projections
πk : X∞ → Xk are continuous.

- Its sheaf of smooth functions is the direct limit O∞ := lim
→

π∗kOXk .

This last condition means that, for any open set U ⊆ X∞, a continuous map f : U →
R lies inO∞(U) if and only if, for any point x ∈ U, there exist k ∈N, an open neigh-
borhood πk(x) ∈ Vk ⊆ Xk, and a smooth map fk : Vk → R such that the following
triangle commutes:

π−1
k (Vk)

f //

πk
##

R

Vk

fk

@@ .

Examples:

• Let E → X be a fibre bundle over a smooth manifold X. The bundle of ∞-jets
of sections of E → X is defined as the inverse limit of the sequence of k-jets
fiber bundles:

. . .→ JkE→ Jk−1E→ . . .→ E→ X .

• Let N0, N1, N2, . . . be a countable family of finite-dimensional R-vector spaces.

The vector space
∞
∏
i=0

Ni is defined as the inverse limit of the projections:

. . .→
k+1

∏
i=0

Ni −→
k

∏
i=0

Ni −→ . . .→ N1 × N0 → N0 .

12
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Universal property of the inverse limit: For any smooth manifold Y, the projections
πk : X∞ → Xk induce a bijection that is functorial on Y 2,

C∞(Y, X∞) == lim
←
C∞(Y, Xk)

ϕ 7−→ (πk ◦ ϕ)k ,

where C∞( _ , _ ) denotes the set of morphisms of ringed spaces.

Proof: Let ϕ ∈ C∞(Y, X∞). As the projections πk are smooth maps, the composition
πk ◦ ϕ is smooth. The sequence (πk ◦ ϕ)k is an element of the inverse limit: if we
denote by fij : Xj → Xi the transition morphisms of {Xk}k (for i ≤ j), then the
transition morphisms of the system {C(Y, Xk)} are fij◦, and fij ◦ πj ◦ ϕ = πi ◦ ϕ.

As for the other inclusion, let {ϕk}k ∈ lim
←
C∞(Y, Xk). Define the map ϕ(y) :=

(ϕk(y))k, continuous as the maps ϕk = πk ◦ ϕ are continuous. It is smooth, as locally
for any smooth function f : X∞ → R there exists k ∈ N and f : Xk → R such that
f = fk ◦ πk, and so

f ◦ ϕ = fk ◦ πk ◦ ϕ = fk ◦ ϕk ,

which is smooth because ϕk is smooth. �

Proposition 2.3. Let Z be a smooth manifold. A continuous map ϕ : X∞ → Z is smooth if
and only if it locally factors through a smooth map defined on some Xk.

Proof: Let ϕ : X∞ → Z be a smooth map; let x ∈ X∞ be a point and let (U, z1, . . . , zn)

be a coordinate chart around ϕ(x) in Z. Each of the functions z1 ◦ ϕ, . . . , zn ◦ ϕ ∈
O∞(ϕ−1U) locally factors through some Xj; as they are a finite number, there exists
k ∈N and an open neighborhood V of x such that all of them, when restricted to V,
factor through Xk. Hence, ϕ|V = (ϕk ◦ πk)|V , where ϕk = (z1 ◦ ϕ, . . . , zn ◦ ϕ).

The converse is obvious because the composition of morphisms of ringed spaces is
a morphism of ringed spaces. �

Let us now move onto quotients by the action of a group. Let G be a group acting
on a ringed space X . Let us denote by X/G the quotient topological space and by
π : X → X/G the quotient map.

Definition 2.4. The quotient ringed space (X/G,OX/G) is the ringed space whose
underlying topological space is the quotient topological space X/G and whose sheaf
of smooth functions is defined, on any open set U ⊆ X/G as:

OX/G(U) := { f ∈ C(U, R) : f ◦ π ∈ OX(π
−1(U))} = OX(π

−1(U))G ,

where OX(π
−1(U))G stands for the set of maps f ∈ O∞

X (π−1(U)) such that f (g ·
p) = f (p) for any g ∈ G and p ∈ π−1(U) .

2This means that the bijection defines a functor isomorphism C∞( _ , X∞) == lim← C∞( _ , Xk),
considered as functors from the category of smooth manifolds to the category of sets.
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Chapter 2. The Peetre-Slovak Theorem

It is then routine to check that the quotient map π : X → X/G is a morphism of
ringed spaces that satisfies the following property:

Universal property of the quotient: For any ringed space Y, the quotient map π : X →
X/G induces a bijection that is functorial on Y:

{
Morphisms of ringed spaces X → Y

constant along the orbits of G

} {
Morphisms of ringed spaces

X/G −→ Y

}
.

Corollary 2.5 (Orbit reduction). Let G be a group acting on a ringed space X, and let
f : X → Y be a surjective morphism of ringed spaces that, locally on Y, admits smooth
sections passing through any point of X.

If the orbits of G coincide with the fibers of f , then the corresponding map f̄ : X/G → Y is
an isomorphism of ringed spaces.

Proof: The hypothesis on the fibers assures that the induced morphism f̄ : X/G → Y
is bijective. The inverse map f̄−1 is also a morphism of ringed spaces because it
locally coincides with the projection into the quotient of any smooth section of f . �

Corollary 2.6. Let G be a group acting on two ringed spaces X and Y, and let H ⊆ G be a
subgroup that acts trivially on Y.

The universal property of the quotient applied to H restricts to a bijection:

{
G-equivariant morphisms

of ringed spaces X → Y

} {
G/H-equivariant morphisms
of ringed spaces X/H −→ Y

}
.

2.2 G-natural bundles and G-natural sheaves

In the last chapter, we recalled the notion of natural bundle and considered what
we have called natural sheaves: a generalization of sheaves of smooth sections of a
natural bundle that included geometries defined by natural equations, such as Fe-
dosov geometry. In the same vein, we now take it a step further by ‘weakening’ the
naturalness condition, allowing us to cover geometric structures that are preserved
by some pseudogroup of diffeomorphisms.

Following the notations of Chapter 1, let us begin the section by recalling the notion
of pseudogroup of diffeomorphisms ([43]):

Definition 2.7. A pseudogroup of diffeomorphisms on X is a subset G ⊆ Diff (X)

that satisfies the following:

1. The domains of the elements g ∈ G cover X.

2. Let g : U → V be an element of G, and let U′ ⊂ U. Then, g|U′ : U′ → g(U′) is
also in G.

14
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3. If g : U → V and f : V →W are both in G, then f ◦ g ∈ G.

4. If g : U → V is in G, then g−1 : V → U is also in G.

5. The property of being in G is local: for any open subsets {Ui}i∈I of X, if g :
⋃

i∈I Ui → V is a diffeomorphism such that g|Ui
∈ G for all i ∈ I, then g ∈ G.

6. For any x, y ∈ X there exists a diffeomorphism τ : U → V in G between open
neighbourhoods x ∈ U ⊆ X and y ∈ V ⊆ X such that τ(x) = y.

Although this last axiom is not usually included in the literature, we have chosen to
include it as part of the definition, as all pseudogroups considered during this work
verify such property and it is required in the proof of the Peetre-Slovak Theorem.

Examples:

1. Trivially, the set of all diffeomorphisms Diff (X) is a pseudogroup of diffeo-
morphisms.

2. Let (X, Ω) be an oriented manifold. Then,

Aut(Ω) = {τ : U → V : τ ∈ Diff (X), τ∗(Ω|V) = Ω|U}

is a pseudogroup of diffeomorphisms.

3. In a similar manner, let (X, ω) be a symplectic manifold. Then,

Aut(ω) = {τ : U → V : τ ∈ Diff (X), τ∗(ω|V) = ω|U}

is a pseudogroup of diffeomorphisms.

Definition 2.8. Let T be a smooth manifold and let Ut, Vt ⊆ X be open subsets of X
for all t ∈ T. A family of diffeomorphisms {τt : Ut → Vt}t∈T is said to be smooth if
the sets U :=

⊔
t∈T Ut and V :=

⊔
t∈T Vt are open subsets of T × X and the map

τ : U −→ V

(t, x) 7−→ τ(t, x) := τt(x)

is smooth.

Definition 2.9. Let π : E → X be a (fibre) bundle over X and G ⊆ Diff (X) be a
pseudogroup. A G-natural bundle over X is a bundle E→ X together with a map

G −→ Diff (E)

τ 7−→ τ∗ ,

called lifting of diffeomorphisms, satisfying the following properties:

15



Chapter 2. The Peetre-Slovak Theorem

• Lifting: if τ : U → V is a diffeomorphism in G, then τ∗ : EU → EV is a diffeo-
morphism covering τ; meaning that it makes the following square commuta-
tive

EU
τ∗
∼ //

π
��

EV

π
��

U τ
∼ // V ,

where EU := π−1(U) and EV := π−1(V).

• Functoriality: Id∗ = Id and (τ ◦ τ′)∗ = (τ)∗ ◦ (τ′)∗ for any diffeomorphism τ

in G.

• Locality: for any diffeomorphism τ : U → V in G and any open subset U′ ⊂ U,
(τ|U′)∗ = (τ∗)|EU′

.

• Regularity: for any smooth family of diffeomorphisms {τt : Ut → Vt}t∈T such
that τt ∈ G for all t ∈ T, the family {τt∗ : EUt → EVt}t∈T is also smooth.

A morphism of G-natural bundles is a morphism of bundles ϕ : E → E′ between
G-natural bundles that commutes with the lifting of diffeomorphisms; that is, such
that for any diffeomorphism τ : U → V in G, the following square commutes3:

EU

τ∗
��

ϕ // E′U
τ∗
��

EV
ϕ // E′V .

A subbundle F → X of a G-natural bundle E → X is said to be a G-natural subbun-
dle of E if it is a G-natural bundle such that the inclusion i : F ↪→ E is a morphism of
G-natural bundles.

G-natural bundles generalise the notion of natural bundle given in Chapter 1: a
bundle E → X is natural if it is Diff (X)-natural, and a morphism of bundles ϕ :
E→ E′ is natural if it is Diff (X)-natural.

Remark 2.10. Observe that any G-natural bundle has diffeomorphic fibres: given
two points x, y ∈ X, let τ : U → V be a diffeomorphism in G between open neigh-
bourhoods U and V of the points x and y, respectively (such diffeomorphism exists,
due to axiom 6 of Definition ). Then, the diffeomorphism between the fibres at x and
y is given by the restriction to the fibre at x of τ∗.

Examples:

1. Any natural bundle is a Diff (X)-bundle, as mentioned above.

3Abusing notation, we will denote by τ∗ the lifting of τ to both E and E′. The context will clarify
which lifting we are referring to.
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2. Let G ⊆ G′ be two pseudogroups of diffeomorphisms on X. Then, any G′-
natural bundle is a G-natural bundle.

3. Let G be a pseudogroup of diffeomorphisms on X, and let E1 → X and E2 → X
be G-natural bundles over X. Then, the fibre product E1 ×X E2 → X is a G-
natural bundle, with the lifting τ∗ = (τ∗1 , τ∗2), where τ∗1 is the lifting of τ to E1

and τ∗2 is the lifting of τ to E2.

4. The k-jet prolongation of a G-natural bundle is a G-natural bundle: if we de-
note by τ∗ : EU → EV the lifting of a diffeomorphism τ : U → V in G to a
G-natural bundle E→ X, then the lifting of τ to JrE is

JrE : JrEU −→ JrEV

jr
x0

s 7−→ jr
τ(x0)

(τ∗ ◦ s ◦ τ−1).

5. Let (X, ω) be a symplectic manifold. The fibre bundle Conn ω → X of sym-
plectic connections compatible with ω (that is, symmetric linear connections
∇ such that∇ω = 0) is an Aut(ω)-natural bundle. The definition of the lifting
is the same as for the bundle of all linear connections.

Definition 2.11. Let G be a pseudogroup of diffeomorphisms. A G-natural sheaf E
over X is a subsheaf of the sheaf of smooth sections of a natural bundle E→ X over
X such that, for any diffeomorphism τ : U → V in G, the morphism

τ∗ : E(U) −→ E(V)

s 7−→ τ∗ ◦ s ◦ τ−1

is well defined4.

Examples:

1. Any natural sheaf, as defined in Chapter 1, is a Diff (X)-natural sheaf.

2. Let (X, ω) be a symplectic manifold. The sheaf Cω of symplectic connections
compatible with ω, defined on any open subset U ⊆ X as

Cω(U) := {∇ ∈ C(U) : ∇(ω|U) = 0} ,

is an Aut(ω)-natural sheaf.

Definition 2.12. Let E → X be a fibre bundle over X, let U ⊆ X be an open subset
and let T be a smooth manifold. A family of sections {st : U → E}t∈T is said to be

4Observe that we are committing an abuse of notation: we are denoting by τ∗ both the lifting of τ to
E and the ‘action’ of τ on E . However, the context will make clarify which morphism we are working
with.
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Chapter 2. The Peetre-Slovak Theorem

smooth if the map

s : T ×U −→ E

(t, x) 7−→ s(t, x) := st(x)

is smooth.

Definition 2.13. Let E and E ′ be (sub)sheaves of the sheaves of smooth sections of
the fibre bundles E→ X and E′ → X, and let T be a smooth manifold. A morphism
of sheaves φ : E → E ′ is said to be regular if, for any smooth family of sections
{st : U → E}t∈T such that U ' Rn and st ∈ E(U) for all t ∈ T, the family {φ(st) :
U → E′}t∈T is also smooth.

Definition 2.14. Let G ⊆ Diff (X) be a pseudogroup. Let E and E ′ be G-natural
sheaves over X. A morphism of sheaves φ : E → E ′ is G-natural if it is regular and
commutes with the action of G on sections; that is to say, if for any diffeomorphism
τ : U → V in G, the following square commutes:

E(U)
φ //

τ∗
��

E ′(U)

τ∗
��

E(V)
φ // E ′(V) .

(2.1)

where τ∗ : E(U)→ E(V) is defined as in Definition 2.11.

As before, we will say that a sheaf is natural if it is Diff (X)-natural and that a mor-
phism of sheaves over X is natural if it is Diff (X)-natural.

The following result is a particular case of the Peetre-Slovák Theorem, and is the
reason why we have added the condition of regularity to the definition of natural
morphism of sheaves:

Theorem 2.15 (Peetre-Slovák). Let X be a smooth manifold. Let E → X and E′ → X be
fibre bundles over X, and let E and E ′ be their respective sheaves of smooth sections over X.
Then, {

Regular morphisms of sheaves
φ : E −→ E ′

} {
Smooth maps
J∞E −→ E′

}
.

The full proof of this result can be checked at ([33]). Although the notion of regularity
defined in this work is not exactly the same, it is close enough so that the same proof
holds, as all statements are proven locally.

By adding a naturalness condition to this bijection, we can fix a point at the right
hand side of the bijection, obtaining the following result:
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Theorem 2.16 (Peetre-Slovák). Let X be a smooth manifold and G ⊆ Diff (X) a pseu-
dogroup. Let E → X and E′ → X be G-natural bundles over X, and let E and E ′ be their
respective sheaves of smooth sections over X.

The choice of a point x0 ∈ X allows the definition of a bijection:

{
G-natural morphisms of sheaves

φ : E −→ E ′

} {
Gx0-equivariant smooth maps

J∞
x0

E −→ E′x0

}
,

where Gx0 stands for the group of germs of diffeomorphisms τ in G such that τ(x0) = x0.

Proof: Let us first prove the bijection

{
G-natural morphisms of sheaves

φ : E −→ E ′

} {
G-natural smooth maps

J∞E −→ E′

}
,

where a smooth map P : J∞E −→ E′ is said to be G-natural if it commutes with the
lifting of diffeomorphisms in G5. Let τ : U → V be a diffeomorphism in G and,
abusing the notation, let τ∗ denote the lifting of τ to either E or E′, indistinctively.
Let φ : E → E ′ be a G-natural morphism of sheaves, and let Pφ : J∞E → E′ be the
associated smooth map: Pφ(j∞

x s) := φ(s)(x). Then,

Pφ(j∞
τ(x)τ∗ ◦ s ◦ τ−1) = φ(τ∗ ◦ s ◦ τ−1)(τ(x)) = τ∗ ◦ φ(s) ◦ τ−1(τ(x)) = τ∗(Pφ(j∞

x s)) .

Reciprocally, let P : J∞E → E′ be a G-natural smooth map, and let φP : E → E ′ be
the associated regular morphism of sheaves. Then,

φP(τ∗ ◦ s ◦ τ−1)(τ(x)) = P(j∞
τ(x)τ∗ ◦ s ◦ τ−1) = τ∗(P(j∞

x s)) = τ∗(φP(s)(x)) = τ∗ ◦φP(s) ◦ τ−1(τ(x)) .

Due to property 6 of Definition 2.7, the bijection

{
G-natural smooth maps

J∞E −→ E′

} {
Gx0-equivariant smooth maps

J∞
x0

E −→ E′x0

}
,

is proven by the standard arguments (see [20], Appendix E). �

This theorem is usually written in the base case G = Diff (X) (see [19] (Appendix
D), [20] (Appendix E)). However, this generalization will be of particular interest for
this work, as we obtain the following two statements:

Theorem 2.17. Let X be an orientable manifold and let Ω be an orientation on X. Let
E→ X and E′ → X be Aut(Ω)-natural bundles over X, and let E and E ′ be their respective
sheaves of smooth sections over X.

5Observe that we cannot say that it is a morphism of G-natural bundles because J∞E is not a bundle
(its dimension is not necessarily finite). Otherwise, both notions are the same.
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The choice of a point x0 ∈ X defines a bijection

{
Aut(Ω)-natural morphisms of sheaves

φ : E −→ E ′

} {
Aut(Ω)x0-equivariant smooth maps

J∞
x0

E −→ E′x0

}
,

where Aut(Ω) is the pseudogroup of diffeomorphisms τ : U → V such that τ∗(Ω|U) = Ω|V
and Aut(Ω)x0 denotes the group of germs of diffeomorphisms τ of X such that τ(x0) = x0

and τ∗Ω = Ω.

Theorem 2.18. Let X be a symplectic manifold and let ω be a symplectic form on X. Let
E→ X and E′ → X be Aut(ω)-natural bundles over X, and let E and E ′ be their respective
sheaves of smooth sections over X.

The choice of a point x0 ∈ X defines a bijection

{
Aut(ω)-natural morphisms of sheaves

φ : E −→ E ′

} {
Aut(ω)x0-equivariant smooth maps

J∞
x0

E −→ E′x0

}
,

where Aut(ω) is the pseudogroup of diffeomorphisms τ : U → V such that τ∗(ω|U) = ω|V
and Aut(ω)x0 denotes the group of germs of diffeomorphisms τ of X such that τ(x0) = x0

and τ∗ω = ω.

2.3 Reduction by a transitive action

Proposition 2.19. Let X be a smooth manifold of dimension n, and let E and E ′ be natural
sheaves over X. For any chart U ' Rn on X, the restriction to U produces a bijection:

{
Natural morphisms of sheaves

φ : E −→ E ′

} {
Natural morphisms of sheaves

φU : EU −→ E ′U

}
,

where EU and E ′U denote the restrictions of E and E ′ to the open subset U, respectively.

Proof: If φ is a natural morphism of sheaves φ : E → E ′, its restriction to U (that is,
φU(s) := φ(s)) is trivially a natural morphism of sheaves.

Reciprocally, for any natural morphism of sheaves f : EU → E ′U , let us construct the
corresponding natural morphism of sheaves φ f : E → E ′: for any V ⊆ X, s ∈ E(V)

and x ∈ V, we must define φ f (s)(x).

As φ f (s)(x) = φ f (s|W)(x) for any W ⊆ V containing x, we may suppose that V is
also a chart, thus obtaining a diffeomorphism τ : V → U, and so we may define:

φ f (s) = τ−1
∗ ( f (τ∗s))

at a neighbourhood of x.

Let us check that this morphism is well defined, natural, regular and the inverse of
the map φ→ φU :
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2.3. Reduction by a transitive action

• φ f is well defined: let x ∈ V ′ ⊆ X and let σ : V ′ → U be another diffeomor-
phism. Taking the intersection V ∩V ′ (non-empty, as x ∈ V ∩V ′), we may set
V ′ = V. As τ ◦ σ−1 : U → U is a diffeomorphism between open subsets of U
and f is natural, we obtain

σ−1
∗ ( f (σ∗s)) = τ−1

∗ τ∗σ−1
∗ ( f (σ∗s)) = τ−1

∗ ( f (τ∗σ−1
∗ σ∗s)) = τ−1

∗ ( f (τ∗s)) .

• φ f is natural: let V, W ⊆ X, s ∈ E(V) and let σ : V → W be a diffeomorphism.
Let τ : W → U be any diffeomorphism. Then,

φ f (σ∗s) = τ−1
∗ ( f (τ∗σ∗s)) = σ∗σ−1

∗ τ−1
∗ ( f (τ∗σ∗s)) = σ∗φ f (s) ,

as τ ◦ σ : V → U is a diffeomorphism and φ f does not depend on the choice of
the diffeomorphism.

• φ f is regular: let T be a smooth manifold, let E → X be a bundle such that E
is a subsheaf of the sheaf of smooth sections of E and let (st)t∈T be a smooth
family of sections on a chart V ⊆ X such that st ∈ E(V) for all t ∈ T. Let
τ : V → U be any diffeomorphism. Then, the map

φ f (s)(t, x) := φ f (st)(x) = τ−1
∗ ( f (τ∗st))(x)

is smooth.

• The map f → φ f is the inverse of the map φ→ φ|U :

φφU (s) = τ−1
∗ (φU(τ∗s)) = τ−1

∗ (φ(τ∗s)) = τ−1
∗ τ∗(φ(s)) = φ(s) ,

(φ f )U(s) = φ f (s) = Id−1
∗ ( f (Id∗s)) = f (s) .

�

Definition 2.20. Let G be a pseudogroup on X and let E be a natural sheaf over
X. We say that G acts transitively on E if for any s ∈ E(U), s′ ∈ E(V) such that
U, V ' Rn, there exists a diffeomorphism τ : U → V such that τ∗s = s′.

Example. The pseudogroup G = Diff (X) acts transitively on the sheaf S of sym-
plectic forms over X: given U, V ' Rn open subsets of X and symplectic forms ω1

and ω2 on U and V respectively, let us fix a symplectic form ω0 with constant coeffi-
cients on Rn and consider diffeomorphisms τ1 : U → Rn and τ2 : V → Rn such that
τ1,∗ω1 = ω0 and τ2,∗ω2 = ω0. Then, τ := τ−1

2 ◦ τ1 is a diffeomorphism that verifies
τ∗ω1 = τ−1

2,∗ τ1,∗ω1 = ω2.

Proposition 2.21. Let X be a smooth manifold of dimension n. Let E , E ′ and E ′′ be natural
sheaves over X such that E ′(X) 6= ∅ and Diff (X) acts transitively on E ′. Let G ⊂ E × E ′
be a natural sheaf over X.
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Chapter 2. The Peetre-Slovak Theorem

The choice of a global section s0 ∈ E ′(X) defines a bijection:

{
Natural morphisms of sheaves

G −→ E ′′

} {
Aut(s0)-natural morphisms of sheaves

Es0 −→ E ′′

}
,

where Es0 := π−1
2 (s0) is the sheaf defined as

Es0(U) = {s ∈ E(U) : (s, s0|U) ∈ G(U)}

and Aut(s0) is the pseudogroup of diffeomorphisms τ : U → V between open sets of X such
that τ∗(s0|U) = s0|V .

Proof: Given a natural morphism of sheaves φ : G → E ′′, the corresponding mor-
phism of sheaves φ̂ : Es0 → E ′′ is given, at any open subset U ⊆ Rn, by

φ̂U(s) := φU(s, s0|U) ,

which is trivially an Aut(s0)-natural morphism of sheaves.

Let us give the inverse map, that is, to define a natural morphism of sheaves ϕ̃ : G →
E ′′ from an Aut(s0)-natural morphism of sheaves ϕ : Es0 → E ′′. Let (s, s′) ∈ G(U)

and x ∈ U, and let us define the value of ϕ̃(s, s′)(x). By hypothesis, there exists an
open subset V ⊆ U and a diffeomorphism τ : V → V such that x ∈ V and τ∗(s′|V ) =
s0|V . As the value at x of ϕ̃(s, s′) does not depend on the chosen neighbourhood of x,
we may assume that V = U. Then, at U we can set

ϕ̃(s, s′) := τ−1
∗ (ϕ(τ∗s)) .

Let us prove that this morphism is well defined, natural, regular and the inverse of
the map φ→ φ̂:

• ϕ̃ is well defined: without loss of generality, let σ : U → U be another diffeo-
morphism such that σ∗(s′) = s0. As τ ◦ σ−1 : U → U is a diffeomorphism such
that (τ ◦ σ−1)∗s0 = s0 (at U) and ϕ is Aut(s0)-natural, we obtain

σ−1
∗ (ϕ(σ∗s)) = τ−1

∗ τ∗σ−1
∗ (ϕ(σ∗s)) = τ−1

∗ (ϕ(τ∗σ−1
∗ σ∗s)) = τ−1

∗ (ϕ(τ∗s)) .

• ϕ̃ is natural: let U, V ⊆ X, (s, s′) ∈ G(U) and let σ : U → V be a diffeomor-
phism. Let τ : V → U be a diffeomorphism such that τ∗(σ∗(s′)) = s0 at U.
Then,

ϕ̃(σ∗(s, s′)) = ϕ̃(σ∗s, σ∗s′) = τ−1
∗ (ϕ(τ∗σ∗s)) = σ∗σ−1

∗ τ−1
∗ (ϕ(τ∗σ∗s)) = σ∗ ϕ̃(s, s′) ,

as τ ◦ σ : U → U is a diffeomorphism such that (τ ◦ σ)∗(s′) = s0 at U and ϕ̃

does not depend on the choice of such diffeomorphism.
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2.3. Reduction by a transitive action

• ϕ̃ is regular: let T be a smooth manifold, let E → X be a bundle such that G is
a subsheaf of the sheaf of smooth sections of E and let (st, s′t)t∈T be a smooth
family of sections on a chart U ⊆ X such that (st, s′t) ∈ G(U) for all t ∈ T. Let
τt : U → U be a smooth family of diffeomorphisms such that τt,∗(s′t) = s0 .
Then, the map

ϕ̃(s, s′)(t, x) := ϕ̃(st, s′t)(x) = τ−1
t,∗ (ϕ(τt,∗st))(x)

is smooth.

• The map ϕ→ ϕ̃ is the inverse of the map φ→ φ̂: with the previous notation,

˜̂φ(s, s′) = τ−1
∗ (φ̂(τ∗s)) = τ−1

∗ (φ(τ∗s, s0)) = τ−1
∗ τ∗(φ(s, τ−1

∗ s0)) = φ(s, s′) ,

ˆ̃ϕ(s) = ϕ̃(s, s0) = Id−1
∗ (ϕ(Id∗s)) = ϕ(s) .

�

Proposition 2.22. Let E→ X be a natural bundle, and let E be the sheaf of smooth sections
associated to E.

The choices of a point x0 ∈ X and an orientation Ω at an open neighbourhood of x0 define a
bijection

{
Natural morphisms of sheaves

E ×Or −→ T

} {
Aut(Ω)x0-equivariant smooth maps

J∞
x0

E −→ Tx0

}
,

where Aut(Ω)x0 denotes the group of germs of diffeomorphisms τ of X such that τ(x0) = x0

and τ∗Ω = Ω.

Proof: Let us fix x0 ∈ X and an orientation Ω at an open subset x0 ∈ V ⊆ X.
Applying Proposition 2.19 to a chart U ⊆ V around x0 and considering that U ' Rn,
we get a bijection:

{
Natural morphisms of sheaves

E ×Or −→ T

} {
Natural morphisms of sheaves

EU ×OrU −→ TU

}
.

As (U, Ω|U) is an oriented manifold and diffeomorphisms act transitively on the
sheaf OrU , we can apply Proposition 2.21:

{
Natural morphisms of sheaves

EU ×OrU −→ TU

} 



Aut(Ω)-natural
morphisms of sheaves

EU −→ TU





.
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Finally, Theorem 2.17 applied to the oriented smooth manifold U gives:





Aut(Ω)-natural
morphisms of sheaves

EU −→ TU









Aut(Ω)x0-equivariant
smooth maps
J∞
x0

E −→ Tx0





.

�

Remark 2.23. Observe that one could have applied the Peetre-Slovak theorem to, for
example, differential invariants associated to linear connections and orientations, as
the sheaf C ×Or is indeed the sheaf of smooth sections of a natural fibre bundle (the
direct product of the bundle of linear connections and the bundle of orientations,
both of which are natural). The transitive action of diffeomorphisms would then
by considered in the space of jets at a point of this geometric structure (this line of
reasoning can be checked at [20], Appendix E).

However, the same argument cannot be replicated for the space of differential in-
variants associated to Fedosov structures, as that sheaf is not the sheaf of smooth
sections of any natural bundle, which is why we have chosen to make the reduction
by the transitive action of diffeomorphism at sheaf level.

Proposition 2.24. Let X be a smooth manifold of dimension 2n. Let F be the sheaf of
Fedosov structures over X. The choices of a point x0 ∈ X and a symplectic form ω at an
open neighbourhood of x0 define a bijection

{
Natural morphisms of sheaves

F −→ T

} {
Aut(ω)x0-equivariant smooth maps

J∞
x0

Conn ω −→ Tx0

}
,

where Aut(ω)x0 denotes the group of germs of diffeomorphisms τ of X such that τ(x0) = x0

and τ∗ω = ω.

Proof: The proof of this result is similar to that of Proposition 2.22: let us fix a point
x0 ∈ X, a chart U around x0 and apply Proposition 2.19, producing a bijection

{
Natural morphisms of sheaves

F −→ T

} {
Natural morphisms of sheaves

FU −→ TU

}
.

Now, fix a symplectic form ω on U and recall that F ⊂ C ×S , where C is the sheaf of
linear connections over X and S is the sheaf of symplectic forms over X. As Diff (X)

acts transitively on S (as seen in the example after Definition 2.20), Proposition 2.21
gives the following bijection:

{
Natural morphisms of sheaves

FU −→ TU

} 



Aut(ω)-natural
morphisms of sheaves

Cω −→ TU





,
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where Cω is the sheaf of symplectic connections compatible with ω over U.

All that is left is to invoke Theorem 2.18, finishing the proof:





Aut(ω)-natural
morphisms of sheaves

Cω −→ TU









Aut(ω)x0-equivariant
smooth maps

J∞
x0

Conn ω −→ Tx0





.

�
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Chapter 3

Jets of geometric structures
involving a linear connection

The Peetre-Slovak Theorem 2.16 stated in the previous Chapter enables a nice de-
scription of the spaces of natural tensors, which will be achieved by taking a closer
look at the structure of the spaces of jets at a fixed point.

As natural tensors do not depend on the choice of coordinates, we shall choose a
system of coordinates in which our geometrical objects become simpler. In the pres-
ence of a linear connection, such coordinates always exist: they are known as normal
coordinates, and they are the fundamental tool of our Reduction Theorems, which
describe the spaces of jets in terms of vector spaces (called spaces of normal tensors).

3.1 Normal extensions of linear connections

Let X be a smooth manifold of dimension n. Let ∇ be the germ of a linear con-
nection at a point x0 ∈ X, and let ∇̄ be the germ of the flat connection at x0 ∈ X
corresponding, via the exponential map, to the flat connection of Tx0 X.

Let T := ∇− ∇̄ be the difference tensor, that is, the following (2, 1)-tensor:

T(ω, D1, D2) := ω(D∇1 D2 − D∇̄1 D2) .

Definition 3.1. For any integer m ≥ 0, the m-th normal tensor of ∇ at x0 is ∇̄m
x0

T.

In a system of normal coordinates (x1, . . . , xn) for∇ at x0, the tensor ∇̄m
x0

T takes the
expression below:

∇̄m
x0

T = ∑
i,j,k,a1,...,am

Γk
ij,a1 ...am

·
(

∂

∂xk

)

x0

⊗ dx0 xi ⊗ dx0 xj ⊗ dx0 xa1 ⊗ . . .⊗ dx0 xam ,

or, in index notation,
(∇̄m

x0
T)k

ij,a1 ...am
:= Γk

ij,a1...am
,

27



Chapter 3. Jets of geometric structures involving a linear connection

where Γk
ij,a1...am

:=
∂mΓk

ij
∂xa1 ...∂xam

(x0) and Γk
ij are the germs at x0 of the Christoffel symbols

of ∇ in the coordinates (x1, . . . , xn).

Definition 3.2. Let m ≥ 0 be an integer. The space Nm of normal tensors of order
m at x0 is the vector subspace of (m + 2, 1)-tensors T at x0 satisfying the following
symmetries:

1. they are symmetric in the last m covariant indices:

Tl
ijk1 ...km

= Tl
ijkσ(1) ...kσ(m)

, ∀ σ ∈ Sm ; (3.1)

2. the symmetrization of the m + 2 covariant indices is zero:

∑
σ∈Sm+2

Tl
σ(i)σ(j)σ(k1)...σ(km)

= 0. (3.2)

Example. The m-th normal tensor ∇̄m
x0

T of a linear connection ∇ lies in Nm: it
trivially verifies Equation 3.1 and Equation 3.2 holds due to Gauss’s Lemma (see
[18], for reference).

These spaces are closely related to the space of jets of linear connections at a point.
In particular, for any m ≥ 0 we get a map (well defined, due to the example above):

φm : Jm
x0

Conn −→ N0 × N1 × . . .× Nm

jm
x0
∇ 7−→ (Tx0 , ∇̄1

x0
T, . . . , ∇̄m

x0
T) .

These maps are compatible, meaning that the diagram

Jm+1
x0

Conn
φm+1 //

��

N0 × . . .× Nm+1

��
Jm
x0

Conn
φm // N0 × . . .× Nm,

commutes for any m. This, in turn, defines a morphism of ringed spaces between the

corresponding inverse limits, using the universal property of the inverse limit
∞
∏
i=0

Ni

and applying Proposition 2.3 to smooth morphisms J∞
x0

Conn→ Nm:

φ∞ : J∞
x0

Conn −→
∞

∏
i=0

Ni

j∞
x0
∇ 7−−→ (∇̄1

x0
T, ∇̄2

x0
T, . . . ).

For any m ≥ 1, let us consider the Lie groups Diffm
x0

:= {jm
x0

τ : τ ∈ Diffx0} as well
as their subgroups NDiffm

x0
:= {jm

x0
τ ∈ Diffm

x0
: j1x0

τ = j1x0
Id}. They are related by the
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3.1. Normal extensions of linear connections

following short exact sequence of groups:

1 −→ NDiffm
x0
↪−→ Diffm

x0
−→ Gl −→ 1 , (3.3)

jm
x0

τ 7−→ dx0 τ (3.4)

where Gl := Diff1
x0
= {dx0 τ : τ ∈ Diffx0}.

Their inverse limits define groups

Diff∞
x0

:= lim
←

Diffm
x0

and NDiff∞
x0

:= lim
←

NDiffm
x0

,

with the corresponding short exact sequence of groups:

1 −→ NDiff∞
x0
−→ Diff∞

x0
−→ Gl −→ 1 . (3.5)

Reduction Theorem (for linear connections). The Diffm+2
x0
−equivariant smooth map

φm : Jm
x0

Conn −→ N0 × . . .× Nm

jm
x0
∇ 7−−→ (Tx0 , ∇̄1

x0
T, , . . . , ∇̄m

x0
T),

is surjective, its fibres are the orbits of NDiffm+2
x0

and it admits smooth sections passing
through any point of Jm

x0
Conn.

As a consequence, φm induces a Gl-equivariant isomorphism of ringed spaces:

(Jm
x0

Conn )/NDiffm+2
x0

== N0 × . . .× Nm .

Proof: The proof can be checked at [18]. However, we have chosen to reproduce it
here in greater detail, for the sake of completeness.

We begin by checking that the fibres of φm coincide with the orbits of NDiffm+2
x0

.
Let jm

x0
∇′ = jm+2

x0
τ · jm

x0
∇, for jm+2

x0
τ ∈ NDiffm+2

x0
and jm

x0
∇ ∈ Jm

x0
Conn. As φm is

Diffm+2
x0
−equivariant (thus also NDiffm+2

x0
−equivariant) and jm+2

x0
τ acts as the iden-

tity in N0 × . . .× Nm,

φm(jm
x0
∇′) = φm(jm+2

x0
τ · jm

x0
∇) = jm+2

x0
τ · φm(jm

x0
∇) = φm(jm

x0
∇) .

Let now jm
x0
∇, jm

x0
∇′ ∈ Jm

x0
Conn such that φm(jm

x0
∇) = φm(jm

x0
∇′) = (T0, . . . , Tm).

Let us fix a base of T∗x0
X. This base induces two systems of normal coordinates at

x0, denoted by x1, . . . , xn and x′1, . . . , x′n, via the exponential maps associated to any
representative of jm

x0
∇ and any representative of jm

x0
∇′, respectively. With both sys-

tems of coordinates, we can construct a diffeomorphism τ, defined by the equalities
τ · xi = (τ−1)∗xi = x′i for all i ∈ {1, . . . , n}. As dx0 xi = dx0 x′i for all i ∈ {1, . . . , n} by
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Chapter 3. Jets of geometric structures involving a linear connection

definition,
τ∗(dx0 x′i) = dx0(τ

∗x′i) = dx0 xi = dx0 x′i ,

and thus jm+2
x0

τ ∈ NDiffm+2
x0

.

Let us check that jm+2
x0

τ · jm
x0
∇ = jm

x0
∇′. In the coordinates induced by x1, . . . , xn on

Jm
x0

Conn, the element jm
x0
∇ is written as jm

x0
∇ = (Γk

ij, Γk
ij,a1

, . . . , Γk
ij,a1 ...am

), following
the notation of Definition 3.1. Similarly, in the coordinates induced by x′1, . . . , x′n
on Jm

x0
Conn, the element jm

x0
∇′ is written as jm

x0
∇′ = ((Γ′)k

ij, (Γ
′)k

ij,a1
, . . . , (Γ′)k

ij,a1 ...am
)

and the element jm+2
x0

τ · jm
x0
∇ = jm

x0
(τ · ∇) is written as jm

x0
(τ · ∇) = ((τ · Γ)k

ij, (τ ·
Γ)k

ij,a1
, . . . , (τ · Γ)k

ij,a1...am
), where τ · Γ are the Christoffel symbols of the connection

τ · ∇.

For all r ∈ {1, . . . , m}, using that jm+2
x0

τ ∈ NDiffm+2
x0

we obtain the following equali-
ties:

∑
i,j,k,a1,...,ar

(Γ′)k
ij,a1 ...ar

·
(

∂

∂x′k

)

x0

⊗ dx0 x′i ⊗ dx0 x′j ⊗ dx0 x′a1
⊗ . . .⊗ dx0 x′ar

= Tr

= τ · Tr = ∑
i,j,k,a1,...,ar

(τ · Γ)k
ij,a1...ar

·
(

∂

∂x′k

)

x0

⊗ dx0 x′i ⊗ dx0 x′j ⊗ dx0 x′a1
⊗ . . .⊗ dx0 x′ar

,

and so (τ · Γ)k
ij,a1 ...ar

= (Γ′)k
ij,a1...ar

for all r ∈ {1, . . . , m}. Therefore, the coordinates of
jm
x0
∇′ and jm+2

x0
τ · jm

x0
∇ coincide in the system induced by x′1, . . . , x′n on Jm

x0
Conn, and

thus are equal.

To finish the proof, let us fix any jm
x0
∇ ∈ Jm

x0
Conn and let us check that we can

construct a section of φm passing through jm
x0
∇. Let x1, . . . , xn be normal coordinates

at x0 for any representative of jm
x0
∇. As before, they induce coordinates in Jm

x0
Conn .

The section s is defined as follows: we assign to any (T0, . . . , Tm) ∈ N0 × . . .× Nm

the element of Jm
x0

Conn that is written, in the previously mentioned coordinates,
as (T0, . . . , Tm). This map is well defined thanks to the symmetries of the space
N0 × . . .× Nm, is clearly smooth and is a section of φm, as the coordinates x1, . . . , xn

are normal for any jet in the image of s, again due to the symmetries of N0× . . .×Nm.

�

As the following diagrams commute for all m,

Jm+1
x0

Conn/NDiffm+3
x0

φm+1

∼ //

��

N1 × . . .× Nm+1

��
Jm
x0

Conn/NDiffm+2
x0

φm

∼ // N1 × . . .× Nm,

we obtain the following result:
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Corollary 3.3. The Diff∞
x0
−equivariant morphism of ringed spaces

φ∞ : J∞
x0

Conn −→
∞

∏
i=0

Ni

j∞
x0
∇ 7−−→ (Tx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . )

induces a Gl-equivariant isomorphism of ringed spaces:

(J∞
x0

Conn )/NDiff∞
x0
==

∞

∏
i=0

Ni .

Remark 3.4. Even though the corolary above is everything that we will need during
this work, there exists a similar statement of the Reduction Theorem for ∞-jets of
linear connections, adding that φ∞ is surjective, its fibres are the orbits of NDiff∞

x0

and it admits smooth sections passing through any point of J∞
x0

Conn. Its proof is
routine and can be checked at [20], Appendix E.

Remark 3.5. The same theory can be developed for symmetric linear connections:
let Nsym

m be the subspace of Nm formed by those tensors T ∈ Nm such that

Tl
ijk1 ...km

= Tl
jik1...km

.

Then, it is clear that the m-th normal tensor of a symmetric linear connection belongs
in Nsym

m . Repeating the process above leads to a modified version of the Reduction
Theorem, obtaining a Gl-equivariant isomorphism of ringed spaces:

(J∞
x0

Conn sym)/NDiff∞
x0
==

∞

∏
i=1

Nsym
i ,

where Conn sym → X is the fibre bundle of symmetric linear connections on X and
Nsym

0 = 0 due to its symmetries, and so it has been omitted from the product on the
right-hand side of the equality above.

3.2 Normal extensions of metrics

Let X be a smooth manifold of dimension n. Let M(s+,s−) → X be the natural bundle
of pseudo-riemannian metrics of a fixed signature (s+, s−).

Let g be the germ of a pseudo-riemannian metric with fixed signature (s+, s−) at x0 ∈
X and let ∇ be the germ of its Levi-Civita connection (that is, the only symmetric
linear connection compatible with g) at x0. Let ∇̄ be the germ of the flat connection
at x0 corresponding, via the exponential map, to the flat connection of Tx0 X.

Definition 3.6. For any integer m ≥ 0, the m-th normal tensor of g at x0 is ∇̄m
x0

g.
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In a system of normal coordinates (x1, . . . , xn) for the Levi-Civita connection∇ at x0,
the tensor ∇̄m

x0
g is written as follows:

∇̄m
x0

g = ∑
i,j,k,a1,...,am

gij,a1...am · dx0 xi ⊗ dx0 xj ⊗ dx0 xa1 ⊗ . . .⊗ dx0 xam ,

where gij,a1 ...am := ∂mgij
∂xa1 ...∂xam

(x0).

Definition 3.7. Let m ≥ 1 be an integer. The space Nm of normal tensors of order m
at x0 is the vector subspace of m+ 2-covariant tensors T at x0 satisfying the following
symmetries:

1. they are symmetric in the first two and the last m covariant indices:

Tijk1...km = Tjik1 ...km , Tijk1...km = Tijkσ(1) ...kσ(m)
, ∀ σ ∈ Sm ; (3.6)

2. the cyclic sum of the last m + 1 covariant indices is zero:

Tijk1 ...km + Tikm jk1 ...km−1 + . . . + Tik1 ...km j = 0. (3.7)

For m = 0, the space N0 is defined as the set of pseudo-riemannian metrics of the
fixed signature (s+, s−) at x0 (which is not a vector subspace of S2Tx0 X, but rather
an open subset of it).

Observe that N1 = 0, due to its symmetries.

For any m ≥ 0, we get a map

φm : Jm
x0

M(s+,s−) −→ N0 × N2 × . . .× Nm

jm
x0
∇ 7−→ (∇̄1

x0
T, . . . , ∇̄m

x0
T)

that is well defined, as normal tensors ∇̄m
x0

g lie in Nm due to their expression in a
system of normal coordinates at x0. They are compatible: the diagram

Jm+1
x0

M(s+,s−)
φm+1 //

��

N1 × . . .× Nm+1

��
Jm
x0

M(s+,s−)
φm // N1 × . . .× Nm,

is commutative for any m, and so we obtain a map between the inverse limits:

φ∞ : J∞
x0

M(s+,s−) −→
∞

∏
i=1

Ni

j∞
x0
∇ 7−−→ (∇̄1

x0
T, ∇̄2

x0
T, . . . ).
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3.3. Jets of Fedosov structures

We state the corresponding Reduction Theorem for riemannian metrics, which holds
a strong resemblance to the Reduction Theorem for linear connections:

Reduction Theorem (for metrics). The Diffm+1
x0
−equivariant morphism of ringed spaces

φm : Jm
x0

M(s+,s−) −→ N0 × N2 × . . .× Nm

jm
x0

g 7−−→ (gx0 , ∇̄2
x0

g, , . . . , ∇̄m
x0

g),

is surjective, its fibres are the orbits of NDiffm+1
x0

and it admits smooth sections passing
through any point of Jm

x0
M(s+,s−).

As a consequence, φm induces a Gl-equivariant isomorphism of ringed spaces:

(Jm
x0

M(s+,s−))/NDiffm+1
x0

== N0 × N2 × . . .× Nm .

Proof: The proof of this result is similar to the Reduction Theorem for linear connec-
tions (see [33]). �

As these isomorphisms are compatible for all m, they define a Gl-equivariant iso-
morphism

(J∞
x0

M(s+,s−))/NDiff∞
x0
== N0 ×

∞

∏
i=2

Ni .

Remark 3.8. A similar (and simpler) argument to that of Proposition 2.21 gives that,
by fixing a pseudo-riemannian metric gx0 ∈ N0 at x0, the following bijection is pro-
duced:




Gl-equivariant smooth maps

N0 ×
∞
∏
i=2

Ni −→ Tx0









O(s+, s−)-equivariant smooth maps
∞
∏
i=2

Ni −→ Tx0



 .

3.3 Jets of Fedosov structures

Let us briefly review the reductions that have been performed on the set of differen-
tial invariants associated to Fedosov structures. As it has been explained, the sheaf
of Fedosov structures is not the sheaf of smooth sections of any fibre bundle, and so
our main weapon, the Peetre-Slovak Theorem 2.16 cannot be employed.

This problem can be circumvented by fixing a symplectic form, obtaining the sheaf
of symplectic connections compatible with the fixed symplectic form, which is the
sheaf of smooth sections of a fibre bundle, and so the Peetre-Slovak Theorem is ap-
plied, leaving us with the space of ∞-jets of symplectic connections compatible with
the fixed form. The details of this process will be given in Chapter 4.
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Chapter 3. Jets of geometric structures involving a linear connection

Unfortunately, this resulting space is not easily reduced. If proceeding as usual, one
would choose normal coordinates for a given symplectic connection. However, it
cannot be assured that these coordinates are also Darboux coordinates for the fixed
symplectic form, and so the compatibility condition of the symplectic connections
messes the definition of the spaces of normal tensors.

It turns out that the best approach is to unfix the symplectic form, so that a com-
patibility condition that does not depend on the symplectic form can be given. This
approach, however, raises its share of questions, namely: how should one define jets
of Fedosov structures, considering they do not form a fibre bundle? There would be
two possible definitions1

Jm
x0
F := {(jm

x0
ω, jm

x0
∇) : (ω,∇) ∈ Fx0} = {(jm+1

x0
ω, jm

x0
∇) : (ω,∇) ∈ Fx0} ,

Fedm
x0

:= {(jm+1
x0

ω, jm
x0
∇) ∈ Jm+1

x0
Λ2 × Jm

x0
Conn sym : jm

x0
(∇ω) = 0} ,

and their inverse limits
J∞
x0
F := lim

←
Jm
x0
F ,

Fed∞
x0

:= lim
←

Fedm
x0

,

where Fx0 denotes the germs of Fedosov structures at x0, Λ2 → X is the open set
of non-singular 2-forms over X and Conn sym is the bundle of symmetric linear con-
nections over X.

Observe that both of these spaces live in Jm+1
x0

Λ2 × Jm
x0

Conn sym. In fact, it is easy to
see that J∞

x0
F ⊆ Fed∞

x0
: for any (jm+1

x0
ω, jm

x0
∇) ∈ Jm

x0
F , there exists (ω,∇) ∈ F (U) for

some open neighbourhood U of x0 verifying the compatibility condition ∇ω = 0.
Then, taking jets it must hold that jm

x0
(∇ω) = 0, and thus (jm+1

x0
ω, jm

x0
∇) ∈ Fedm

x0
.

It turns out that, in fact, both definitions coincide due to a formal version of the
Poincaré Lemma:

Lemma 3.9. Let ω be a 2-form on R2n such that jm
0 (dω) = 0, where m is either a positive

integer or ∞. Then, there exists a 1-form θ such that jm
0 (dθ) = jm

0 ω.

Proof: During one of the proofs of the Poincaré Lemma (see [39]), it is shown that
there exists an operator Θ : Ω2 → Ω1 such that Θ0 = 0 and Θ(dω) + d(Θω) =

ω, where Ωp denotes the set of p-forms on R2n. It is defined as follows: if ω =

1Observe that we are committing an abuse of notation with the first definition, as the notation Jm
x0

usually indicates jets of fibre bundles. However, such a definition could be extended with ease to the
setting of natural sheaves, as what is used to define a jet are the smooth sections of the fibre bundle
and not the elements of the fibre bundle itself. Thus, given a natural bundle E → X and its sheaf of
smooth sections E , then

Jm
x0
E := {jmx0

s : s ∈ Ex0} = Jm
x0

E .
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3.4. Normal extensions of symplectic connections

∑i<j ωijdxi ∧ dxj, then Θω is defined, on any point x = (x1, . . . , x2n) ∈ R2n as

(Θω)x = ∑
i<j

[(
xi

∫ 1

0
tωij(tx)dxt

)
dxxj −

(
xj

∫ 1

0
tωij(tx)dt

)
dxxi

]
.

By computing the partial derivatives of any order of Θω and valuing at x = 0, it is
easily checked that if jm

0 ω = 0 then jm
0 Θω = 0. Therefore, if ω is a 2-form verifying

jm
0 (dω) = 0, then

jm
0 ω = jm

0 (Θ(dω) + d(Θω)) = jm
0 (Θ(dω)) + jm

0 (d(Θω)) = jm
0 (d(Θω)) .

�

Theorem 3.10. J∞
x0
F = Fed∞

x0
.

Proof: Let us prove that Fed∞
x0
⊆ J∞

x0
F (recall that J∞

x0
F ⊆ Fed∞

x0
, due to the expla-

nation above). Let (j∞
x0

ω, j∞
x0
∇) ∈ Fed∞

x0
, and let us consider a chart (U; x1, . . . , x2n)

centred at x0, so that x0 = 0 in the coordinates x1, . . . , x2n. Let us consider any repre-
sentative ω of j∞

x0
ω which, without loss of generality, can be defined in all points of

U, reducing U if needed.

As ω verifies j∞
x0
(∇ω) = 0, it holds that j∞

x0
(dω) = 0, as ∇ is a symmetric linear con-

nection and thus h(∇ω) = dω, where h denotes the skew-symmetrization operator.
Therefore, the previous lemma can be applied to ω, and so there exists a 1-form θ in
U such that j∞

x0
(dθ) = j∞

x0
ω. The 2-form dθ is a closed form that extends jx0 ω to U.

As j∞
x0
∇ ∈ J∞

x0
Conn dθ , it is now apparent that j∞

x0
∇ is an ∞-jet of a fibre bundle (the

fibre bundle Conn dθ → U of symplectic connections compatible with dθ), and so it
can be extended to a symplectic connection in U (reducing U again, if needed), that
is, a symmetric linear connection ∇ in U such that ∇(dθ) = 0, and so (dθ,∇) ∈ Fx0

and (j∞
x0

ω, j∞
x0
∇) ∈ J∞

x0
F . �

Another point of view on what this result represents is that ‘formal Fedosov jets’
(that is, elements of Fed∞

x0
) can be ‘realised’ by germs of Fedosov structures, that is,

for any jet (j∞
x0

ω, j∞
x0
∇) ∈ Fed∞

x0
there exists (ω′,∇′) ∈ F (U), where U is an open

neighbourhood of x0, such that (j∞
x0

ω′, j∞
x0
∇′) = (j∞

x0
ω, j∞

x0
∇).

This property is verified automatically for jets of fibre bundles due to Borel’s Lemma,
and is unknown to us whether it holds for other kind of sheaves, such as natural
sheaves. This topic will be discussed further on Chapter 6.

3.4 Normal extensions of symplectic connections

Let x0 ∈ X, let (ω,∇) be the germ of a Fedosov structure at x0, and let ∇̄ be the germ
of the flat connection at x0 ∈ X corresponding, via the exponential map, to the flat
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Chapter 3. Jets of geometric structures involving a linear connection

connection of Tx0 X. Let T := C1
2(ω⊗T), where Cj

i denotes the tensor contraction of
the i-th covariant index with the j-th contravariant index.

Definition 3.11. For any integer m ≥ 0, the m-th normal tensor of ∇ at x0 is ∇̄m
x0

T.

In a system of normal coordinates (x1, . . . , xn) around the point x0 for∇, the tensor
∇̄m

x0
T is written as

∇̄m
x0

T = ∑
i,j,k,a1,...,am

Γijk,a1...am · dx0 xi ⊗ dx0 xj ⊗ dx0 xk ⊗ dx0 xa1 ⊗ . . .⊗ dx0 xam ,

where Γk
ijk,a1 ...am

:= ∂mΓijk
∂xa1 ...∂xam

(x0) and Γijk = ∑2n
l=1 ωilΓl

jk.

Remark 3.12. Notice that the collection of tensors (∇̄1
x0

T, . . . , ∇̄m
x0

T) and (∇̄1
x0
(∇−

∇̄), . . . , ∇̄m
x0
(∇− ∇̄)) mutually determine each other, as ω is non-singular. Follow-

ing the notations above, the tensor ∇̄m
x0
(∇− ∇̄) is written as usual:

∇̄m
x0

T = ∑
i,j,k,a1,...,am

Γk
ij,a1...am

·
(

∂

∂xk

)

x0

⊗ dx0 xi ⊗ dx0 xj ⊗ dx0 xa1 ⊗ . . .⊗ dx0 xam ,

where Γk
ij,a1 ...am

:=
∂mΓk

ij
∂xa1 ...∂xam

(x0).

Definition 3.13. The space Nm of normal tensors of order m at x0 ∈ X is the vector
subspace of (m + 3)-tensors whose elements T verify the following symmetries:

1. they are symmetric in the second and third indices, and in the last m:

Tikja1 ...am = Tijka1 ...am , Tijkaσ(1) ...aσ(m)
= Tijka1...am , ∀σ ∈ Sm ;

2. the symmetrization of the last m + 2 covariant indices is zero:

∑
σ∈Sm+2

Tiσ(j)σ(k)σ(a1)...σ(am)=0 ;

3. the following tensor is symmetric in k and a1:

Tikja1...am − Tjkia1 ...am .

Due to its symmetries, it is immediate that N0 = 0.

Normal tensors belong in Nm, that is, ∇̄m
x0

T ∈ Nm , due to its expression in normal
coordinates ([11]). The tensor ∇̄m

x0
T depends only on the value of the m-jet jm

x0
∇, and

so we define the following maps, reminiscent of the one defined in Section 3.1:
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3.4. Normal extensions of symplectic connections

φm : Jm
x0
F −→ Λ0 ×

m

∏
i=1

Ni

(jr+1
x0

ω, jr
x0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . , ∇̄m

x0
T ) ,

where Λ0 denotes the open set of non-singular 2-forms at x0. The maps φm are Diffx0-
equivariant and also compatible, giving rise to a morphism of ringed spaces:

φ∞ : J∞
x0
F −→ Λ0 ×

∞

∏
i=1

Ni

(j∞
x0

ω, j∞
x0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . ) .

Reduction Theorem (for Fedosov structures). The Diffm+2
x0
−equivariant morphism of

ringed spaces

φm : Jm
x0
F −→ Λ0 ×

m

∏
i=1

Ni

(jm+1
x0

ω, jm
x0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . , ∇̄m

x0
T ) .

is surjective, its fibres are the orbits of NDiffm+2
x0

and it admits smooth sections passing
through any point of Jm

x0
F .

As a consequence, φm induces a Gl-equivariant isomorphism of ringed spaces:

(Jm
x0
F )/NDiffm+2

x0
== N1 × . . .× Nm .

Proof: Let us first prove that the fibres of φm are the orbits of NDiffm+2
x0

. Any two
points in the orbit of NDiffm+2

x0
belong in the same fibre of φm due to the same argu-

ments that were given in the Reduction Theorem for linear connections 3.1.

Let (jm+1
x0

ω, jm
x0
∇) , (jm+1

x0
ω′, jm

x0
∇′) ∈ Jm

x0
F be two points in the same fibre of φm,

that is, φm((jm+1
x0

ω, jm
x0
∇)) = φm((jm+1

x0
ω′, jm

x0
∇′)) = (T1, . . . , Tr). As it was done in

the Reduction Theorem for linear connections, we can construct a diffeomorphism τ

such that τ · xi = x′i and dx0 xi = dx0 x′i for all i ∈ {1, . . . , 2n}, where x1, . . . , x2n and
x′1, . . . , x′2n are systems of normal coordinates at x0 for jm

x0
∇ and jm

x0
∇′ respectively.

It is deduced that jm+2
x0

τ ∈ NDiffm+2
x0

.

Following the proof of the Reduction Theorem for linear connections, let us write2

jm
x0
∇ = ( 0 , Γk

ij,a1
, . . . , Γk

ij,a1 ...am
) and jm+1

x0
ω = (ωij, ωij,k, . . . , ωij,ka1...am) in the coor-

dinates induced by x1, . . . , x2n on Jm
x0
F . Similarly, in the coordinates induced by

2Recall that we are considering symmetric connections only.
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Chapter 3. Jets of geometric structures involving a linear connection

x′1, . . . , x′2n on Jm
x0
F , we write jm

x0
∇′ = ( 0 , (Γ′)k

ij,a1
, . . . , (Γ′)k

ij,a1...am
), jm+1

x0
ω′ =

(ω′ij, ω′ij,k, . . . , ω′ij,ka1 ...am
), jm

x0
(τ · ∇) = ( 0 , (τ · Γ)k

ij,a1
, . . . , (τ · Γ)k

ij,a1...am
) and

jm+1
x0

(τ ·ω) = ((τ ·ω)ij, (τ ·ω)ij,k, . . . , (τ ·ω)ij,ka1...am).

Observe that, due to the same arguments as before, it is proven that (τ · Γ)ijk =

Γ′ijk, . . . , (τ · Γ)ijk,a1 ...am = Γ′ijk,a1 ...am
. By Remark 3.12, it is now enough to check that

jm
x0
(τ ·ω) = jm

x0
(ω′):

∑
i<j

(τ ·ω)ijdx0 x′i ∧ dx0 x′j = (τ ·ω)x0 = ωx0 = ω′x0
= ∑

i<j
ωijdx0 x′i ∧ dx0 x′j ,

(τ ·ω)ij,k = (τ · Γ)ikj − (τ · Γ)jki = 0 = (Γ′)ikj − (Γ′)jki = ω′ij,k ,

...

(τ ·ω)ij,ka1...am = (τ ·Γ)ikj,a1 ...am − (τ ·Γ)jki,a1...am = (Γ′)ikj,a1...am − (Γ′)jki,a1...am = ω′ij,ka1 ...am
.

Lastly, let us prove the statement about the existence of smooth sections

s : Λ0 × N1 × . . .× Nm −→ Jm
x0
F .

Let us fix a system of coordinates x1, . . . , x2n at x0, and let
(Bij, Aijka1 , . . . , Aijka1...am) ∈ Λ0 × N1 × . . .× Nm.

The jet s((Bij, Aijka1 , . . . , Aijka1...am)) = (jm+1
x0

ω, jm
x0
∇) is defined, in the coordinates

induces by the fixed system in Jm
x0
F , as follows:

Γijk = 0, Γijk,a1 = Aijka1 , . . . , Γijk,a1...am = Aijka1...am ,

ωij = Bij, ωij,k = 0, ωij,ka1 = Aikja1 − Ajkia1 , . . . , ωij,ka1 ...am = Aikja1 ...am − Ajkia1 ...am ,

and so the jet jm
x0
∇ = ( 0 , Γk

ij,a1
, . . . , Γk

ij,a1 ...am
) is defined. The symmetries of the spaces

Ni assure that (jm+1
x0

ω, jm
x0
∇) ∈ Fedm

x0
= Jm

x0
F and that x1, . . . , x2n is a system of

normal coordinates at x0 for jm
x0
∇.

�

Corollary 3.14. The Diff∞
x0
−equivariant morphism of ringed spaces

φ∞ : J∞
x0
F −→ Λ0 ×

∞

∏
i=1

Ni

(j∞
x0

ω, j∞
x0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . ),

induces a Gl-equivariant isomorphism of ringed spaces:

(J∞
x0
F )/NDiff∞

x0
== Λ0 ×

∞

∏
i=1

Ni .
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3.4. Normal extensions of symplectic connections

Corollary 3.15. The choice of a non-singular 2-form ηx0 at x0 produces a bijection:





Gl-equivariant smooth maps

Λ0 ×
∞
∏
i=1

Ni −→ Tx0









Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0



 ,

where Sp(2n, R) := {dx0 τ : τ ∈ Aut(η)x0}.

Proof: The proof of this result is similar to Proposition 2.21. �
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Chapter 4

Differential invariants associated
to geometric structures in presence
of a linear connection

This chapter is dedicated to the exposition of the Main Theorems and their full
proofs, linking together the different results obtained up until now, thus playing
a central role in this memoir.

4.1 Linear connections

Main Theorem 4.1 ([19]). Let X be a smooth manifold and let C denote the sheaf of linear
connections on X.

Let T be a natural sub-bundle of the bundle of (p, q)-tensors Tq
p and let T be its sheaf of

smooth sections.

If we fix a point x0 ∈ X, there exists an R-linear isomorphism

{
Natural tensors
C −→ T

}
⊕
di

HomGl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tx0) ,

where d0, . . . , dk run over the non-negative integer solutions of the equation

d0 + . . . + (k + 1)dk = p− q .

Proof: Theorem 2.16 yields the isomorphism:

{
Natural morphisms of sheaves

C −→ T

} {
Diffx0-equivariant smooth maps

J∞
x0

Conn −→ Tx0

}
.

Observe that the action of Diffx0 over J∞
x0

Conn and Tx0 coincides with that of Diff∞
x0

,
so that, in the formula above, we may consider Diff∞

x0
-equivariant maps instead.

41
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In addition, notice that the following sequence of groups is exact:

1 −→ NDiff∞
x0
−→ Diff∞

x0
−→ Gl −→ 1 .

The subgroup NDiff∞
x0

acts by the identity over Tx0 so that Corollary 2.6, in conjunc-
tion with the exact sequence above, assures the existence of an isomorphism:

{
Diff∞

x0
-equivariant smooth maps

J∞
x0

Conn −→ Tx0

} {
Gl-equivariant smooth maps

J∞
x0

Conn /NDiff∞
x0
−→ Tx0

}
.

Now, the corolary of the Reduction Theorem 3.1 above allows us to replace this
quotient ringed space with an infinite product of vector spaces via the isomorphism:

{
Gl-equivariant smooth maps

J∞
x0

Conn /NDiff∞
x0
−→ Tx0

} 



Gl-equivariant smooth maps

t :
∞
∏
i=0

Ni −→ Tx0



 .

Finally, in the last step, we make use of the equivariance by homotheties hλ : Tx0 X →
Tx0 X of ratio λ > 0. As hλ−1 ∈ Gl, the equivariance of these maps t implies

t(. . . , λm+1Γm
x0

, . . .) = t(hλ−1(. . . , Γm
x0

, . . .)) = hλ−1 · t(. . . , Γm
x0

, . . .) = λr−st(. . . , Γm
x0

, . . .)

for all λ > 0, (. . . , Γm
x0

, . . .) ∈
∞
∏
i=0

Ni.

In view of this property of the smooth maps t, the Homogeneous Function Theorem
(to be precise, Formula (A.4)), stated in the previous section, allows us to conclude
with the isomorphism:





Gl-equivariant smooth maps

t :
∞
∏
i=0

Ni −→ Tx0





⊕
di

HomGl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tx0) ,

where d0, . . . , dk are non-negative integers running over the solutions of the equation

d0 + . . . + (k + 1)dk = p− q .

�

4.1.1 Linear connections and orientations

Let (X, Ω) be an oriented manifold of dimension n.

Recall the definitions given in Section 3.1 of the Lie groups Diffm
x0

and NDiffm
x0

, as well
as their inverse limits Diff∞

x0
and NDiff∞

x0
. Let us define the corresponding Lie groups

of this geometric structure: for any m ≥ 1, let Aut(Ω)m
x0

:= {jm
x0

τ : τ ∈ Aut(Ω)x0},
which is related to NDiffm

x0
by the following short exact sequence of groups (observe
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4.1. Linear connections

that NDiffm
x0
⊂ Aut(Ω)m

x0
for all m):

1 −→ NDiffm
x0
↪−→ Aut(Ω)m

x0
−→ Sl −→ 1 ,

jm
x0

τ 7−→ dx0 τ

where Sl := Aut(Ω)1
x0
= {dx0 τ : τ ∈ Aut(Ω)x0}.

As before, we consider the inverse limit Aut(Ω)∞
x0

:= lim
←

Aut(Ω)m
x0

and the corre-
sponding short exact sequence of groups:

1 −→ NDiff∞
x0
−→ Aut(Ω)∞

x0
−→ Sl −→ 1 . (4.1)

Main Theorem 4.2 ([20]). Let X be a smooth manifold and let C and OrX denote the sheaves
of linear connections and orientations on X, respectively.

Let T be a natural sub-bundle of the bundle of (p, q)-tensors Tq
p and let T be its sheaf of

smooth sections.

If we fix a point x0 ∈ X and an orientation Ω at an open neighbourhood of x0, there exists
an R-linear isomorphism

{
Natural morphisms of sheaves

C ×OrX −→ T

}
⊕
di

HomSl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tx0) ,

where d0, . . . , dk run over the non-negative integer solutions of the equation

d0 + . . . + (k + 1)dk = p− q .

Proof: The proof of this result is similar to that of Theorem 4.1. In this case, we firstly
use Theorem 2.22 to obtain the isomorphism:

{
Natural morphisms of sheaves

C ×OrX −→ T

} {
Aut(Ω)x0-equivariant smooth maps

J∞
x0

Conn −→ Tx0

}
.

As the action of Aut(Ω)x0 over J∞
x0

Conn and Tx0 coincides with that of Aut(Ω)∞
x0

, we
may replace these maps by Aut(Ω)∞

x0
-equivariant maps instead.

The exact sequence of groups 4.1, described above, allows the application of Corol-
lary 2.6 and the Reduction Theorem 3.1 (the isomorphism obtained there is Gl-
equivariant, hence Sl-equivariant), achieving the next two isomorphisms respec-
tively:

{
Aut(Ω)∞

x0
-equivariant smooth maps
J∞
x0

Conn −→ Tx0

} {
Sl-equivariant smooth maps

J∞
x0

Conn /NDiff∞
x0
−→ Tx0

}
.
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{
Sl-equivariant smooth maps

J∞
x0

Conn /NDiff∞
x0
−→ Tx0

} 



Sl-equivariant smooth maps

t :
∞
∏
i=0

Ni −→ Tx0



 .

As homotheties hλ : Tx0 X → Tx0 X of ratio λ > 0 also belong in Sl, the Homogeneous
Function Theorem finishes the proof with the isomorphism:





Sl-equivariant smooth maps

t :
∞
∏
i=0

Ni −→ Tx0





⊕
di

HomSl(Sd0 N0 ⊗ . . .⊗ Sdk Nk, Tx0) ,

where d0, . . . , dk are non-negative integers running over the solutions of the equation

d0 + . . . + (k + 1)dk = r− s .

�

4.2 Riemannian metrics

Let X be a smooth manifold of dimension n. Let M(s+,s−) → X be the natural bundle
of pseudo-riemannian metrics of a fixed signature (s+, s−), and let M(s+,s−) be its
sheaf of smooth sections.

Definition 4.3. Let δ ∈ R. We say that a natural tensor T : M(s+,s−) → T is homo-
geneous of weight δ if, for all non-zero λ ∈ R, it holds that:

T(λ2g) = λδT(g) .

For example, the metric tensor T(g) = g, is a homogeneous natural tensor of weight
2, the (3, 1) curvature tensor R is a homogeneous natural tensor of weight 0 and the
scalar curvature r is homogeneous of weight −2.

Notice that, if T 6= 0 and δ ∈ Z, the weight must be an even number: if T is an
homogeneous natural tensor of odd weight δ, then the homogeneity condition for
λ = −1 says:

T(g) = T((−1)2g) = (−1)δT(g) = −T(g) ,

obtaining that T = 0.

Main Theorem 4.4 ([33]). Let X be a smooth manifold of dimension n, and letM(s+,s−)

denote the sheaves of pseudo-riemannian metrics of fixed signature (s+, s−).

Let T → X be a natural subbundle of the bundle of p-covariant tensors Tp and let T be its
sheaf of smooth sections. Let δ ∈ Z.
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If we fix a point x0 ∈ X and a pseudo-riemannian metric gx0 of signature (s+, s−) at x0,
there exists a R-linear isomorphism





Natural morphisms of sheaves
M(s+,s−) −→ T

homogeneous of weight δ





⊕
d2,...,dr

HomO(s+,s−)(S
d2 N2 ⊗ . . .⊗ Sdr Nr, Tx0) ,

where d2, . . . , dr run over the non-negative integer solutions of the equation

2d2 + . . . + rdr = p− δ ,

and where O(s+, s−) := {dx0 τ : τ ∈ Diffx0 : τ∗,x0 gx0 = gx0}.

Proof: Although the proof of this result can also be read at ([33]), let us reproduce
the proof here, following the sketch of the proof of Theorem 4.1.

As pseudo-riemannian metrics of a fixed signature form a natural bundle, the Peetre-
Slovak Theorem 2.16 can be applied, obtaining a bijection





Natural morphisms of sheaves
M(s+,s−) −→ T

homogeneous of weight δ









Diffx0-equivariant smooth maps
J∞
x0

M(s+,s−) −→ Tx0

homogeneous of weight δ





by fixing a point x0 ∈ X.

As the action of Diffx0 and Diff∞
x0

coincide over J∞
x0

M(s+,s−) and Tx0 , we may consider
Diff∞

x0
-equivariant maps instead.

The short exact sequence 3.3 and Corolary 2.6 produces a bijection





Diff∞
x0

-equivariant smooth maps
J∞
x0

M(s+,s−) −→ Tx0

homogeneous of weight δ









Gl-equivariant smooth maps
J∞
x0

M(s+,s−)/NDiff∞
x0
−→ Tx0

homogeneous of weight δ





Now, the Reduction Theorem for metrics 3.2 and the remark after it gives:





Gl-equivariant smooth maps
J∞
x0

M(s+,s−)/NDiff∞
x0
−→ Tx0

homogeneous of weight δ









O(s+, s−)-equivariant smooth maps
∞
∏
i=2

Ni −→ Tx0

homogeneous of weight δ





.

Lastly, the homogeneity hypothesis lets us invoke the Homogeneous Function The-
orem (Appendix A), obtaining the last bijection:
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O(s+, s−)-equivariant smooth maps
∞
∏
i=2

Ni −→ Tx0

homogeneous of weight δ





∥∥∥
⊕

d2,...,dr

HomO(s+,s−)(S
d2 N2 ⊗ . . .⊗ Sdr Nr, Tx0) ,

where d2, . . . , dr run over the non-negative integer solutions of the equation

2d2 + . . . + rdr = p− δ .

�

Remark 4.5. Without the homogeneity condition, natural tensors associated to met-
rics may fail to be polynomial. The following example was given by D.B.A. Ep-
stein ([5]): consider the natural morphism of sheaves that assigns, to a metric g of
Riemannian-Christoffel curvature tensor R, the function

∞

∑
n=0

1
2n

1
1 + 〈∇nR,∇nR〉 ,

where ∇ denotes the Levi-Civita connection of g and 〈 · , · 〉 denotes the inner prod-
uct induced by g over the corresponding space of tensors. It is a natural function
associated to metrics, but its expression is not polynomial on the covariant deriva-
tives of R, hence neither on the normal tensors associated to g.

4.2.1 Riemannian metrics and orientations

Let M → X be the bundle of riemannian metrics over X, and letM be its sheaf of
smooth sections.

Definition 4.6. Let δ ∈ R. We say that a natural tensor T :M×Or→ T is homoge-
neous of weight δ if, for all non-zero λ ∈ R, it holds that:

T(λ2g, Ω) = λδT(g, Ω) .

Main Theorem 4.7. Let X be a smooth manifold of dimension n, letM denote the sheaves
of pseudo-riemannian metrics and let Or be the sheaf of orientations over X.

Let T → X be a natural subbundle of the bundle of p-covariant tensors Tp and let T be its
sheaf of smooth sections. Let δ ∈ Z.

If we fix a point x0 ∈ X, a pseudo-riemannian metric gx0 of signature (s+, s−) at x0 and an
orientation Ω at an open neighbourhood of x0, there exists a R-linear isomorphism
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Natural morphisms of sheaves
M×Or −→ T

homogeneous of weight δ





⊕
d2,...,dr

HomSO(s+,s−)(S
d2 N2 ⊗ . . .⊗ Sdr Nr, Tx0) ,

where d2, . . . , dr run over the non-negative integer solutions of the equation

2d2 + . . . + rdr = p− δ ,

and where SO(s+, s−) := {dx0 τ : τ ∈ Aut(Ω)x0 : τ∗,x0 gx0 = gx0}.

Proof: By Proposition 2.22, there exists a bijection





Natural morphisms of sheaves
M×Or −→ T

homogeneous of weight δ









Aut(Ω)x0-equivariant smooth maps
J∞
x0

M −→ Tx0

homogeneous of weight δ





,

The action of Aut(Ω)x0 on J∞
x0

M and Tx0 coincides with the action of Aut(Ω)∞
x0

, and
so we will consider Aut(Ω)∞

x0
-equivariant morphisms instead.

The short exact sequence 4.1 and Corolary 2.6 produces a bijection





Aut(Ω)∞
x0

-equivariant smooth maps
J∞
x0

M −→ Tx0

homogeneous of weight δ









Sl-equivariant smooth maps
J∞
x0

M/NDiff∞
x0
−→ Tx0

homogeneous of weight δ





Per the Reduction Theorem for metrics 3.2, we obtain





Sl-equivariant smooth maps
J∞
x0

M/NDiff∞
x0
−→ Tx0

homogeneous of weight δ









Sl-equivariant smooth maps

N0 ×
∞
∏
i=2

Ni −→ Tx0

homogeneous of weight δ





.

As the group Sl acts transitively on N0, there exists a bijection





Sl-equivariant smooth maps

N0 ×
∞
∏
i=2

Ni −→ Tx0

homogeneous of weight δ









SO(s+, s−)-equivariant smooth maps
∞
∏
i=2

Ni −→ Tx0

homogeneous of weight δ





.

Finally, the Homogeneous Function Theorem (Appendix A) gives the desired result.

�
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4.3 Fedosov structures

Unlike the case of metrics, let us present the Main Theorem for Fedosov structures
without and with homogeneity. The Main Theorem without homogeneity is of spe-
cial interest in this case, as it can be compared in a more direct way to results by
Gelfand-Retakh-Shubin [11]:

Main Theorem 4.8. Let X be a smooth manifold of dimension 2n, and let F denote the
sheaves of Fedosov structures. Let T be the sheaf of smooth sections of a natural subbundle
T → X of the bundle p-covariant tensors on X.

Fixing a point x0 ∈ X and a non-singular 2-form ηx0 at x0 produces a R-linear isomorphism

{
Natural morphisms of sheaves

F −→ T

} 



Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0



 .

where Sp(2n, R) := {dx0 τ : τ ∈ Aut(η)x0}.

Proof: Let us fix a point x0 ∈ X. Choose a chart U ' R2n around x0, so that
Proposition 2.19 produces a bijection:

{
Natural morphisms of sheaves

F −→ T

} {
Natural morphisms of sheaves

FR2n −→ TR2n

}
,

whereFR2n and TR2n denote the sheavesF and T restricted to U and passed through
the diffeomorphism U ' R2n.

Fixing the canonical symplectic form η on R2n lets us invoke Proposition 2.24, which
gives the bijection:

{
Natural morphisms of sheaves

FR2n −→ TR2n

} {
Aut(η)x0-equivariant smooth maps

J∞
x0

Connη −→ Tx0

}
.

Let us now unfix the symplectic form (recall from the example of Definition 2.20
that diffeomorphisms act transitively on symplectic forms due to the existence of
Darboux coordinates):

{
Aut(η)x0-equivariant smooth maps

J∞
x0

Connη −→ Tx0

} {
Diffx0-equivariant smooth maps

J∞
x0
F −→ Tx0

}
.

As the action of both Diffx0 and Diff∞
x0

coincide over J∞
x0
F and Tx0 , we may consider

Diff∞
x0

-equivariant maps instead in the set above.

For the next step, recall that the following sequence of groups is exact:

1 −→ NDiff∞
x0
−→ Diff∞

x0
−→ Gl −→ 1
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As the subgroup NDiff∞
x0

acts by the identity over Tx0 , Corollary 2.6 in conjunction
with the exact sequence above assures the existence of an isomorphism:

{
Diff∞

x0
-equivariant smooth maps

J∞
x0
F −→ Tx0

} {
Gl-equivariant smooth maps

J∞
x0
F/NDiff∞

x0
−→ Tx0

}
.

Now, the corolary of the Reduction Theorem for Fedosov structures 3.4 allows us to
replace this quotient ringed space via the bijection:

{
Gl-equivariant smooth maps

J∞
x0
F/NDiff∞

x0
−→ Tx0

} 



Gl-equivariant smooth maps

Λ0 ×
∞
∏
i=1

Ni −→ Tx0



 .

The choice of a non-singular 2-form ηx0 on x0 allows us to remove the space Λ0,
finishing the proof:





Gl-equivariant smooth maps

Λ0 ×
∞
∏
i=1

Ni −→ Tx0









Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0



 .

�

Definition 4.9. Let δ ∈ R. We say that a natural tensor T : F → T is homogeneous
of weight δ if, for all non-zero λ ∈ R, it holds that1:

T(λ2ω,∇) = λδT(ω,∇) .

For example, the symplectic form seen as a natural tensor, T(ω,∇) = ω, is a homo-
geneous natural tensor of weight 2. The (3, 1) curvature tensor R is also a homoge-
neous natural tensor, of weight 0.

As it happened with homogeneity in the case of pseudo-riemannian metrics, notice
that, if T 6= 0 and δ ∈ Z, the weight must be an even number: if T is an homogeneous
natural tensor of odd weight δ, then the homogeneity condition for λ = −1 says:

T(ω,∇) = T((−1)2ω,∇) = (−1)δT(ω,∇) = −T(ω,∇) ,

obtaining that T = 0.

Main Theorem 4.10. Let X be a smooth manifold of dimension 2n, and let F denote the
sheaves of Fedosov structures. Let T be the sheaf of smooth sections of a natural subbundle
T → X of the bundle p-covariant tensors on X. Let δ ∈ Z.

1Observe that if (ω,∇) is a Fedosov structure, then (λω,∇) is also a Fedosov structure for any
λ ∈ R \ {0}.
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Fixing a point x0 ∈ X and a non-singular 2-form ηx0 at x0 produces a R-linear isomorphism





Natural morphisms of sheaves
F −→ T

homogeneous of weight δ





⊕
d1,...,dr

HomSp(2n,R)(Sd1 N1 ⊗ . . .⊗ Sdr Nr, Tx0) ,

where d1, . . . , dr run over the non-negative integer solutions of the equation

2d1 + . . . + (r + 1)dr = p− δ ,

and Sp(2n, R) := {dx0 τ : τ ∈ Aut(η)x0}.

Proof: The proof of this result begins in the same way as the proof of Theorem 4.8.
Let us fix a point x0 ∈ X. Choose a chart U ' R2n around x0, so that Proposition
2.19 produces a bijection:





Natural morphisms of sheaves
F −→ T

homogeneous of weight δ









Natural morphisms of sheaves
FR2n −→ TR2n

homogeneous of weight δ





,

whereFR2n and TR2n denote the sheavesF and T restricted to U and passed through
the diffeomorphism U ' R2n.

Fixing the canonical symplectic form η on R2n lets us invoke Proposition 2.24, which
gives the bijection:





Natural morphisms of sheaves
FR2n −→ TR2n

homogeneous of weight δ









Aut(η)x0-equivariant smooth maps
J∞
x0

Connη −→ Tx0

homogeneous of weight δ





,

where an Aut(η)x0-equivariant smooth map T : J∞
x0

Connω → Tx0 being homoge-
neous of weight δ means that it verifies the following property:

T(hλ · (j∞
x0
∇)) = λp−δT(j∞

x0
∇) ,

for any homothety2 hλ of ratio λ 6= 0.

Let us now unfix the symplectic form (recall from the example of Definition 2.20
that diffeomorphisms act transitively on symplectic forms due to the existence of
Darboux coordinates):





Aut(η)x0-equivariant smooth maps
J∞
x0

Connη −→ Tx0

homogeneous of weight δ









Diffx0-equivariant smooth maps
J∞
x0
F −→ Tx0

homogeneous of weight δ





.

2We say that τ ∈ Diffx0 is a homothety of ratio λ 6= 0 if dx0 τ = λ · Id.
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As the action of both Diffx0 and Diff∞
x0

coincide over J∞
x0
F and Tx0 , we may consider

Diff∞
x0

-equivariant maps instead in the set above.

For the next step, recall that the following sequence of groups is exact:

1 −→ NDiff∞
x0
−→ Diff∞

x0
−→ Gl −→ 1

As the subgroup NDiff∞
x0

acts by the identity over Tx0 , Corollary 2.6 in conjunction
with the exact sequence above assures the existence of an isomorphism:





Diff∞
x0

-equivariant smooth maps
J∞
x0
F −→ Tx0

homogeneous of weight δ









Gl-equivariant smooth maps
J∞
x0
F/NDiff∞

x0
−→ Tx0

homogeneous of weight δ





.

Now, the corolary of the Reduction Theorem for Fedosov structures 3.4 allows us to
replace this quotient ringed space via the bijection:





Gl-equivariant smooth maps
J∞
x0
F/NDiff∞

x0
−→ Tx0

homogeneous of weight δ









Gl-equivariant smooth maps

Λ0 ×
∞
∏
i=1

Ni −→ Tx0

homogeneous of weight δ





.

The choice of a non-singular 2-form ηx0 on x0 allows us to remove the space Λ0, due
to the bijection:





Gl-equivariant smooth maps

Λ0 ×
∞
∏
i=1

Ni −→ Tx0

homogeneous of weight δ









Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0

homogeneous of weight δ





,

where, following the previous bijections, a Sp(2n, R)-equivariant smooth map T :
∞
∏
i=1

Ni −→ Tx0 is said to be homogeneous of weight δ if, for any λ 6= 0, it holds that

T(λ2T1, λ3T2, . . .) = λp−δT(T1, T2, . . .) .

Therefore, the homogeneity allows us to make the final reduction by applying the
Homogeneous Function Theorem (Appendix A), producing the isomorphism:





Sp(2n, R)-equivariant smooth maps
∞
∏
i=1

Ni −→ Tx0

homogeneous of weight δ





⊕
d1,...,dr

HomSp(2n,R)(Sd1 N1 ⊗ . . .⊗ Sdr Nr, Tx0) ,
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where d1, . . . , dr are non-negative integers running over the solutions of the equation

2d1 + . . . + (r + 1)dr = p− δ .

�

An immediate corolary of the Main Theorem 4.10 is that, if the left side of Equation
4.10 is negative, there are no natural tensors:

Corollary 4.11. There are no homogeneous natural p-tensors associated to Fedosov struc-
tures of weight δ > p.

Remark 4.12. By considering the polarity isomorphism of the symplectic form, or
through direct computation as it has been done above, it is easy to check that with
the notations and hypotheses of the Main Theorem there exists a bijection





Natural morphisms of sheaves
F −→ T q

p

homogeneous of weight δ





⊕
d1,...,dr

HomSp(2n,R)(Sd1 N1 ⊗ . . .⊗ Sdr Nr, Tq
p,x0) ,

where T q
p denotes the sheaf of smooth sections of a natural bundle of (p, q)-tensors

Tq
p → X and d1, . . . , dr run over the non-negative integer solutions of the equation

2d1 + . . . + (r + 1)dr = p− q− δ .

Remark 4.13. Observe that the process described in this work to compute natural
tensors associated to Fedosov structures also gives the description of differential
invariants associated to symplectic forms: if we denote by S the sheaf of symplectic
forms over a smooth manifold X, then choosing a point x0 ∈ X produces a bijection:

{
Natural morphisms of sheaves

S −→ T

}
Tx0 .

In other words, there are essentially no differential invariants associated to symplec-
tic forms, as expected.
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Applications

We dedicate this Chapter to the application of the Main Theorems proved in Chapter
4, obtaining various characterizations of the torsion and curvature operators, com-
puting scalar differential invariants associated to Fedosov structures and describing
dimensional identities of the curvature operator in Fedosov geometry.

5.1 Invariants of linear connections

Let X be a smooth manifold of dimension n ≥ 3. Whenever it is necessary, x0 will
also be considered as a fixed point in X .

Definition 5.1. Let Λp be the sheaf of differential p-forms over X. Let E → X be
a bundle of tensors and let E be its sheaf of smooth sections. An E-valued natural
p-form (associated to linear connections) is a natural morphism of sheaves

C −→ Λp ⊗ E .

The Main Theorem 4.1 assures that the space of E-valued natural forms associated
to linear connections is a finite-dimensional real vector space.

Examples. LetD be the sheaf of smooth sections of the tangent bundle TX → X. The
torsion tensor of a linear connection can be understood as a vector-valued natural
2-form; that is to say, as a natural morphism of sheaves

Tor : C −→ Λ2 ⊗D ,

whose value on a linear connection ∇ defined on an open set U ⊂ X is the follow-
ing vector-valued 2-form on U:

Tor∇(D1, D2) := ∇D1 D2 −∇D2 D1 − [D1, D2] .

In a similar manner, let End(D) be the sheaf of smooth sections of the fibre bundle
End(TX) → X. The curvature tensor of a linear connection can be thought of as
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an endomorphism-valued natural 2-form; that is to say, as a natural morphism of
sheaves

R : C −→ Λ2 ⊗ End(D) ,

whose value on a linear connection ∇ defined on an open set U ⊂ X is the follow-
ing endomorphism-valued 2-form R∇ on U:

R∇(D1, D2)D3 := ∇D1∇D2 D3 −∇D2∇D1 D3 −∇[D1,D2]D3 .

Given a E-valued natural p-form ω, we may consider its exterior differential
dω : C → Λp+1 ⊗ E as a natural (p + 1)-form defined, on each section ∇ of C, with
respect to the linear connection on E induced by ∇.

Moreover, as the exterior differential commutes with diffeomorphisms, it induces
R-linear maps

[
E-valued natural

p-forms

]
d−−−−→

[
E-valued natural
(p + 1)-forms

]
.

Definition 5.2. A closed E-valued natural p-form (associated to linear connections)
is an element in the kernel of the map above.

5.1.1 Closed vector-valued natural forms

In view of the decomposition of Lemma B.2, the torsion tensor also produces this
vector-valued 2-form, naturally associated to linear connections:

H := c1
1(Tor) ∧ I .

Lemma 5.3. Tor and H are a basis of the R-vector space of vector-valued natural 2-forms.

Proof: In virtue of the Main Theorem 4.1, the vector space under consideration comes
from integer solutions {d0, . . . , dk} to the equation

d0 + 2d1 + . . . + (k + 1)dk = 2− 1 = 1 .

As there is only one solution, d0 = 1, d1 = . . . = dk = 0, we are led to describe all
possible Gl-equivariant linear endomorphisms

N0 = Λ2T∗x0
X⊗ Tx0 X −→ Λ2T∗x0

X⊗ Tx0 X .

A simple computation using the the First Fundamental Theorem of the general linear
group Gl B.1 allows to prove that this vector space has two generators.
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Then, the task is reduced to check that Tor and H are R-linearly independent nat-
ural tensors.

To this end, it is enough to find, for any n ≥ 3, a linear connection ∇ on a smooth
manifold of dimension n for which the tensors Tor∇ and H∇ are not R-proportional.

For example, let ∇ be the linear connection on Rn whose only non-zero Christoffel
symbols in cartesian coordinates are Γ1

12 = 1
2 x1 + x3 and Γ1

21 = − 1
2 x1 − x2. Direct

computation shows that

Tor∇ = (x1 + x2 + x3)dx1 ∧ dx2 ⊗ ∂x1 ,

whereas

H∇ = − (x1 + x2 + x3)dx1 ∧ dx2 ⊗ ∂x1 +
n

∑
i≥3

(x1 + x2 + x3)dx2 ∧ dxi ⊗ ∂xi ,

and so the proof is finished. �

Proposition 5.4. There are no non-zero closed vector-valued natural 2-forms.

In other words, the exterior differential is an injective R-linear map:

[
Vector-valued natural

2-forms

]
d−−−−→

[
Vector-valued natural

3-forms

]
.

Proof: In view of Lemma 5.3, it is enough to prove that dH and dTor are R-linearly
independent vector-valued natural 3-forms.

If we choose the same connection ∇ on Rn (n ≥ 3) considered in the proof of Lemma
5.3, then we obtain:

d∇H = dx1∧dx2∧dx3⊗ (−∂x1 + ∂x3)+
n

∑
i>3

(dx1 ∧ dx2 ∧ dxi ⊗ ∂xi − dx2 ∧ dx3 ∧ dxi ⊗ ∂xi) ,

and
d∇Tor = R∇ ∧ I = dx1 ∧ dx2 ∧ dx3 ⊗ ∂x1 .

Since d∇Tor and d∇H are not R−proportional, this example suffices to end the
proof. �

Definition 5.5. A vector-valued 2-form α naturally associated to linear connections
is said to satisfy the first Bianchi identity if the following equality of vector-valued
natural 3-forms holds:

dα = R ∧ I .
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Examples. The torsion tensor Tor of a linear connection ∇ verifies the first Bianchi
identity:

dTor = R ∧ I .

By Proposition 5.4 there exists, at most, one vector-valued 2-form that verifies the
first Bianchi identity. Therefore:

Theorem 5.6. The only vector-valued 2-form naturally associated to linear connections sat-
isfying the first Bianchi identity is the torsion tensor.

5.1.2 Closed endomorphism-valued natural forms

For the remainder of this section, let us consider symmetric linear connections.

Definition 5.7. An endomorphism-valued 2-form α naturally associated to symmet-
ric linear connections is said to satisfy the first Bianchi identity if, for any symmetric
linear connection ∇ and any vector fields D1, D2, D3:

α∇(D1, D2)D3 + α∇(D2, D3)D1 + α∇(D3, D1)D2 = 0 .

Examples. The curvature tensor R∇ of a symmetric linear connection ∇ satisfies
this identity.

Also, if Rics and Rich stand for the symmetric and skew-symmetric part of the Ricci
tensor, respectively, then the following (3, 1)-tensors also satisfy the first Bianchi
identity:

C1(D1, D2, D3, ω) := Rics(D1, D3)ω(D2)− Rics(D2, D3)ω(D1) ,

and

C2(D1, D2, D3, ω) := Rich(D1, D3)ω(D2)− Rich(D2, D3)ω(D1) + 2Rich(D1, D2)ω(D3) .

Lemma 5.8. C1, C2 and R are a basis of the R-vector space of endomorphism-valued natural
2-forms (associated to symmetric linear connections) that satisfy the first Bianchi identity.

Proof: The Main Theorem 4.1 reduces the problem to that of describing the following
vector space1: ⊕

di

HomGl

(
Sd1 Nsym

1 ⊗ · · · ⊗ Sdr Nsym
r , R

)
,

where the summation is over all sequences {d1, . . . , dr} of non-negative integers sat-
isfying:

2d1 + . . . + (r + 1) dr = 3− 1 = 2 . (5.1)

1Please recall Remark 3.5, since we are now considering symmetric linear connections.
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There is only one solution, d1 = 1, d2 = . . . = dr = 0, and therefore our task consists
in computing the vector space of Gl-equivariant linear maps

Nsym
1 −→ R .

It is not difficult to check that the formula Tl
ijk = Γl

jki−Γl
ikj establishes a Gl-equivariant

linear isomorphism Nsym
1 ' R. Thus, the problem is then to compute the equivari-

ant endomorphisms of the Gl-moduleR.

As this module decomposes into three non-isomorphic irreducible components (Lemma
B.3), the vector space of equivariant endomorphisms has dimension 3. Moreover,
due to the explicit description of these components, it follows that the elements that
produce C1, C2 and R are a basis of this vector space.

Again, it is enough to find, for any n ≥ 3, a symmetric linear connection ∇ on a
smooth manifold of dimension n for which the tensors (C1)∇, (C2)∇ and R∇ are
linearly independent.

For example, let ∇ be the linear connection on Rn (n ≥ 3) whose only non-zero
Christoffel symbols in cartesian coordinates are Γ1

11 = x2x3 and Γ2
23 = Γ2

32 = x1.

By using the notation Tij := dxi ⊗ ∂xj , straightforward computations give these lin-
early independent tensors:

R∇ = dx1 ∧ dx2 ⊗ (−x3T11 + T32) +

+ dx1 ∧ dx3 ⊗ (−x2T11 + T22) +

+ dx2 ∧ dx3 ⊗
(
−x2

1T32
)

,

(C1)∇ = dx1 ∧ dx2 ⊗
(

1
2

x3T11 −
1
2

x3T22 −
1
2
(x2 + 1)T32

)
+

+ dx1 ∧ dx3 ⊗
(

1
2
(x2 + 1)T11 −

1
2

x3T23 + x2
1T31 −

1
2
(x2 + 1)T33

)
+

+ dx2 ∧ dx3 ⊗
(

1
2
(x2 + 1)T12 −

1
2

x3T13 + x2
1T32

)
,

(C2)∇ = dx1 ∧ dx2 ⊗
(

3
2

x3T11 +
3
2

x3T22 +
1
2
(x2 − 1)T32 + x3T33

)
+

+ dx1 ∧ dx3 ⊗
(

3
2
(x2 − 1)T11 + (x2 − 1)T22 +

1
2

x3T23 +
3
2
(x2 − 1)T33

)
+

+ dx2 ∧ dx3 ⊗
(

1
2
(x2 − 1)T12 −

1
2

x3T13

)
.

�

Definition 5.9. An endomorphism-valued natural 2-form α is said to satisfy the sec-
ond Bianchi identity if it is a closed endomorphism-valued natural 2-form, in the
sense of Definition 5.2.
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Theorem 5.10. For any smooth n−manifold (with n ≥ 3), the constant multiples of the
curvature are the only endomorphism-valued natural 2-forms (associated to symmetric linear
connections) that satisfy both the first and second Bianchi identities.

Proof: Since dR = 0, and because of Lemma 5.8, it suffices to prove that dC1 and
dC2 are R-linearly independent natural tensors.

As we did before, it is enough to find a symmetric linear connection ∇ on a smooth
manifold of dimension n ≥ 3 whose tensors d∇C1 and d∇C2 are not R-proportional.

For example, choosing the same connection ∇ on Rn considered in the proof of
Lemma 5.8, we obtain the following non-proportional tensors, which finishes the
proof:

d∇C1 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
x2x3(x2 + 1)T12 +

1
2

x2x2
3T13 +

1
2
(x1x3 − 1)T22+

+2x1T32 −
1
2
(x1x3 − 1)T33

)
,

d∇C2 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
x2x3(x2 − 1)T12 +

1
2

x2x2
3T13 −

1
2
(x1x3 − 1)T22+

+
1
2
(x1x3 − 1)T33

)
.

�

5.1.3 Ordinary natural forms

For completeness, let us reproduce the characterization of ordinary differential forms
associated to symmetric linear connections, due to Kolář-Michor-Slovák ([25]), albeit
with a slightly modified proof, adapted to our theory.

For the following definition, recall that the curvature tensor R associated to a linear
connection ∇ is an endomorphism-valued natural 2-form:

Definition 5.11. A Chern2 2q-form cq over X is a natural q-form (associated to sym-
metric linear connections) generated by exterior products of (real-valued) natural
forms

tr (R ∧ . . . ∧ R) ,

where the exterior product of endomorphism-valued 2-forms ∧ is defined by the
composition of endomorphisms.

In index notation, a Chern form can be expressed as the alternation of the indices j
and k of the expression

Riq
i1 j1k1

Ri1
i2 j2k2

. . . R
iq−1

iq jqkq
.

2These forms are closely related to the usual Chern forms, defined in the context of cohomology
theory.
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Theorem 5.12. The Chern forms cq are the only (real-valued) natural differential forms
associated to symmetric linear connections.

In particular, there are no non-zero natural forms with odd degrees associated to symmetric
linear connections, and hence all natural forms associated to symmetric linear connections
are closed.

Proof: For any p ∈ N, let us compute all non-zero natural p-forms associated to
symmetric linear connections. The Main Theorem 4.1 leads us to describe the space
of Gl-equivariant linear maps

Sd1 Nsym
1 ⊗ . . .⊗ Sdr Nsym

r −→ Λp(T∗x0
X) ,

where d1, . . . , dr are non-negative integers running over the solutions of the equation

2d1 + . . . + (r + 1)dr = p

Due to Proposition B.1, it is equivalent to describe the space of Gl-invariant linear
maps

Sd1 Nsym
1 ⊗ . . .⊗ Sdr Nsym

r ⊗Λp(Tx0 X) −→ R .

The First Fundamental Theorem of Gl B.1 explicitly states the generators of such a
space: the total contractions φσ.

Observe that any Tl
ijk ∈ Nsym

1 possesses a symmetric pair of covariant indices (the
pair (i, j)), and for m > 1 any Tl

ijk1...km
∈ Nsym

m possesses at least two pairs of sym-
metric covariant indices (the pairs (i, j) and (k1, k2)).

However, contracting such a symmetric pair with contravariant indices of any ea1...ap ∈
Λp(Tx0 X) is null. Therefore, we must ‘break’ all symmetric pairs by contracting one
index in each symmetric pair with a contravariant index that does not belong to
ea1 ...ap .

The remaining contravariant indices are the indices l of elements in the spaces of
normal tensors. As the elements of Nsym

m have two symmetric pair of indices for all
m > 1, it must hold that d2 = . . . = dr = 0, in order to have enough contravariant
indices to break the symmetric pairs, and thus 2d1 = p.

Summarizing the situation, the generators of the space of natural p-forms associated
to symmetric linear connections are zero if p is odd, whereas if p = 2q the generators
can be expressed as total contractions φσ applied to elements

Tl1
i1 j1k1

. . . Tlq
iq jqkq

ea1...a2q ∈ SqNsym
1 ⊗Λ2q(Tx0 X) .

The contraction of the contravariant indices l with a covariant index in each sym-
metric pair (i, j) (which is necessary, as explained above) leaves 2q covariant indices,
which must be contracted with the indices of the element in Λ2q(Tx0 X).
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Finally, considering the Gl-equivariant linear isomorphism Nsym
1 ' R stated in the

proof of Lemma 5.8 and invoking Proposition B.1 again, we obtain that the genera-
tors of the space of natural 2q-forms are the Chern forms cq. �

5.2 Invariants of linear connections and orientations

The definitions introduced in the last section are easily generalised to other settings;
namely to differential invariants associated to linear connections and orientations.
For example, let X be a smooth manifold of dimension n ≥ 3, let Λp be the sheaf
of differential p-forms over X and let E → X be a bundle of tensors and let E be its
sheaf of smooth sections. Then, we say that an E-valued natural p-form (associated
to linear connections and orientations) is a natural morphism of sheaves

C ×OrX −→ Λp ⊗ E .

As it happened with the case of differential invariants associated to linear connec-
tions, the space of E-valued natural p-forms is a finite-dimensional real vector space,
now due to the Main Theorem 4.2.

Therefore, we can study whether we can obtain similar theorems to Theorem 5.4 and
Theorem 5.10 in this setting. The answer is affirmative, and we will prove them by
repeating the same steps:

Lemma 5.13. If dim X ≥ 3, then Tor and H are a basis of the R-vector space of vector-
valued natural 2-forms (associated to linear connections and orientations).

Proof: Looking at the Main Theorem 4.2, we first compute the non-negative integer
solutions of

d0 + 2d1 + . . . + (k + 1)dk = 2− 1 = 1 .

There is only one solution, namely d0 = 1, di = 0, for i > 0, so the Main Theorem
4.2 assures that, after choosing a point x0 ∈ X and an orientation Ω at x0, the vector
space under consideration is isomorphic to the space of Sl-equivariant linear maps:

N0 = Λ2T∗x0
X⊗ Tx0 X −→ Λ2T∗x0

X⊗ Tx0 X .

Thus, the problem is reduced to a question of invariants for the special linear group,
and we can invoke the First Fundamental Theorem of Sl B.1 and Proposition B.1 to
obtain generators for this vector space.

According to those results, if dim X > 3, then the space of Sl-equivariant linear
maps that we are considering coincides with the space of Gl-equivariant linear maps,
which, in turn, are proved in 5.3 to be spanned by H and Tor.
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If dim X = 3, there could exist another generator: the map ϕ : Λ2T∗x0
X ⊗ Tx0 X −→

Λ2T∗x0
X ⊗ Tx0 X, which, in the coordinates x1, x2, x3 around p for which Ω = dx1 ∧

dx2 ∧ dx3, reads:

(dxi ∧ dxj)⊗ ∂xk 7−→ Ω(∂xk , , ) · e(dxi, dxj, ) ,

where e is the dual 3-vector of Ω.

If Γk
ij denote the Christoffel symbols, then a trivial computation allows us to express

ϕ = dx1 ∧ dx2 ⊗
(

Γ3
23 · ∂x1 + Γ3

31 · ∂x2 + Γ3
12 · ∂x3

)

+ dx2 ∧ dx3 ⊗
(

Γ1
23 · ∂x1 + Γ1

31 · ∂x2 + Γ1
12 · ∂x3

)

+ dx3 ∧ dx1 ⊗
(

Γ2
23 · ∂x1 + Γ2

31 · ∂x2 + Γ2
12 · ∂x3

)
,

as well as the linear relation ϕ = Tor + H. �

Proposition 5.14. If dim X ≥ 3, then the exterior differential is an injective R-linear map:




Vector-valued natural
2-forms

associated to linear
connections and orientations




d−−−−→




Vector-valued natural
3-forms

associated to linear
connections and orientations




.

Proof: It is a consequence of both Lemma 5.13 and the fact that dH and dTor are
R-linearly independent by Theorem 5.4. �

Once again, as an immediate corollary of Proposition 5.14 we obtain:

Theorem 5.15. The torsion tensor is the only vector-valued natural 2-form (associated to
linear connections and orientations) ω that satisfies the first Bianchi identity, i. e., such that
d ω = R ∧ I.

Lemma 5.16. If dim X > 3, then the tensors C1, C2, and R are a basis of the R-vector space
of endomorphism-valued natural 2-forms (associated to symmetric linear connections and
orientations) that satisfy the first Bianchi identity.

If dim X = 3, then that vector space has dimension four.

Proof: Let R be the vector space of endomorphism-valued 2-forms at a point that
satisfies the first Bianchi identity. The Main Theorem 4.2 describes the space of the
natural 2-forms under consideration as the vector space:

⊕

di

HomSl(Tx0 X)(S
d1 Nsym

1 ⊗ . . .⊗ Sdk Nsym
k ,R) ,
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where d1, . . . , dk are non-negative integers verifying the equation:

2d1 + . . . + (k + 1)dk = 3− 1 = 2 .

The only solution to this equation is d1 = 1, d2 = . . . = dk, so that the vector space
to analyse is the space of Sl-equivariant linear maps:

Nsym
1 −→ R . (5.2)

First of all, recall that Lemma 5.8 assures that the maps induced by the tensors R, C1,
and C2 are a basis of the space of Gl-equivariant linear maps Nsym

1 −→ R.

A systematic application of the First Fundamental Theorem of Sl B.1 now allows us
to find generators for the space of Sl-equivariant maps.

If dim X > 5, then the vector space of Sl-equivariant maps coincides with the space
of Gl-equivariant maps and, hence, is generated by these three elements.

In case dim X = 4, there is another possible generator: the map Nsym
1 → R defined

as
dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ Ω(∂xl , , , ) · e(dxi, dxj, dxk, ) .

However, as any tensor in Nsym
1 is symmetric in the first two indices, it readily fol-

lows that this map is identically zero.

If dim X = 3, let us first describe the Sl-equivariant endomorphisms T1
3 → T1

3 that
are not Gl-equivariant. Let x1, x2 and x3 be coordinates centered at p such that
Ω = dx1 ∧ dx2 ∧ dx3, and let e be its dual 3-vector. Applying the First Fundamental
Theorem of Sl B.1 gives a system of 16 such generators, which can all be expressed
as the composition of a permutation of the factors of T1

3 and one of these four maps:

(a) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ e(dxi, dxj, dxk) ·Ω⊗ ∂xl ,

(b) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ e(dxi, dxj, dxk) ·Ω(∂xl , , )⊗ I ,

(c) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ δl
σ(i) ·Ω⊗ e(dxσ(j), dxσ(k), ) , σ ∈ S3 ,

(d) dxi⊗dxj⊗dxk⊗ ∂xl 7−→ Ω(∂xl , , )⊗dxσ(i)⊗ e(dxσ(j), dxσ(k), ), σ ∈ S3

.

By Proposition B.1, all Sl-equivariant maps from Nsym
1 to R are restrictions of these

maps. As the first two covariant indices of Nsym
1 are symmetric, the following maps

are identically zero: (a), (b), and “raising” indices i and j at (c) and (d) with the
3-vector e.

That leaves eight non-zero generators. However, this symmetry also makes raising
the pairs of indices i, k or j, k indistinguishable, hence reducing the system to just
four generators.
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The last step is to check whether there exits maps linearly generated by them which
take values atR. Out of these four generators, the following two are skew-symmetric
in the first two covariant indices:

ϕ1
(
dxi ⊗ dxj ⊗ dxk ⊗ ∂xl

)
= Ω(∂xl , , )⊗ dxj ⊗ e(dxi, dxk, )

ϕ2
(
dxi ⊗ dxj ⊗ dxk ⊗ ∂xl

)
= δl

j ·Ω⊗ e(dxi, dxk, ) ,

and the skew-symmetrization of the remaining two is a linear combination of these.

Although neither of these tensors satisfy the first Bianchi identity, the linear combi-
nation ϕ := 3ϕ1 − ϕ2 does, giving rise to a Sl-equivariant map ϕ : Nsym

1 → R.

Finally, all that is left to prove is that ϕ is R-linearly independent of R, C1, and C2.
In order to do that, it is enough to find a symmetric linear connection and an orien-
tation on a 3-manifold X such that the aforementioned tensors on X are R-linearly
independent.

The following example works: Let ∇ be the linear connection on R3 whose only
non-zero Christoffel symbols in cartesian coordinates are

Γ1
11 = x2x3 , Γ2

23 = Γ2
32 = x1x2 .

Assume that Ω = dx1 ∧ dx2 ∧ dx3, and denote Tij := dxi ⊗ ∂xj .

Direct computation gives the following linearly independent tensors, thus finishing
the proof:

R = dx1 ∧ dx2 ⊗ (−x3T11 + x2T32) + dx1 ∧ dx3 ⊗ (−x2T11 + x2T22)

+ dx2 ∧ dx3 ⊗
(

x1T22 − x2
1x2

2T32
)

,

C1 = dx1 ∧ dx2 ⊗
(

1
2

x3T11 −
1
2

x3T22 −
1
2

x1T31 − x2T32

)
+

+ dx1 ∧ dx3 ⊗
(

x2T11 −
1
2

x1T21 −
1
2

x3T23 + x2
1x2

2T31 − x2T33

)
+

+ dx2 ∧ dx3 ⊗
(

x2T12 −
1
2

x3T13 −
1
2

x1T22 + x2
1x2

2T32 +
1
2

x1T33

)
,

C2 = dx1 ∧ dx2 ⊗
(

3
2

x3T11 +
3
2

x3T22 +
1
2

x1T31 + x3T33

)
+

+ dx1 ∧ dx3 ⊗
(
−1

2
x1T21

1
2

x3T23

)
+

+ dx2 ∧ dx3 ⊗
(
−x1T11 −

1
2

x3T13 −
3
2

x1T22 −
3
2

x1T33

)
,
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ϕ = dx1 ∧ dx2 ⊗ (x1T31 − x3T33) +

+ dx1 ∧ dx3 ⊗ (2x1T21 − 3x2T22 + x3T23 + 3x2T33) +

+ dx2 ∧ dx3 ⊗ (x1T11 − 3x2T12 + 2x3T13) .

�

Theorem 5.17. For any smooth n-manifold (with n ≥ 3), the constant multiples of the
curvature are the only endomorphism-valued natural 2-forms (associated to symmetric linear
connections and orientations) that satisfy both the first and second Bianchi identities.

Proof: The curvature tensor R is always a closed natural 2-form, so, by the previous
Lemma, it is enough to analyse the R-linear span of the differentials of C1, C2, and,
in dimension 3, of ϕ.

If dim X > 3, then dC1 and dC2 are linearly independent by Theorem 5.10, and the
statement follows.

If dim X = 3, a direct computation, using the same example as in the previous
Lemma, proves that dC1, dC2, and dϕ are R-linearly independent tensors:

d∇C1 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
T11 − x2

2x3T12 +
1
2

x2x2
3T13 +

1
2
(x1x2x3 − 2)T22+

−5
2

x2
1x2T31 + 2x1x2

2T32 −
1
2
(x1x2x3 − 3)T33

)
,

d∇C2 = dx1 ∧ dx2 ∧ dx3⊗
(

1
2

T11 +
1
2

x2x2
3T13 −

1
2

x1x2x3T22+

−1
2

x2
1x2T31 +

1
2
(x1x2x3 − 1)T33

)
,

d∇ϕ = dx1 ∧ dx2 ∧ dx3⊗
(

T11 + 3x2
2x3T12 − 2x2x2

3T13 − (x1x2x3 − 3)T22+

+ 2x2
1x2T31 − 6x1x2

2T32 + (x1x2x3 − 4)T33

)
.

�

5.3 Invariants of Fedosov structures

Although the expressions of differential invariants associated to pseudo-riemannian
metrics (see Theorem 4.4) and those associated to Fedosov structures are similar,
some differential invariants associated to Riemannian metrics do not have a match
in the Fedosov setting. As examples, we will prove that there are no equivalent
notion to the scalar curvature and the Laplacian of Riemannian geometry in Fedosov
geometry.
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5.3.1 Scalar differential invariants on Fedosov manifolds

Let X be a smooth manifold of dimension 2n.

The following lemma is due to Gelfand-Retakh-Shubin ([11]):

Lemma 5.18. There exists an Sp-equivariant linear isomorphism

N1 −→ R
Tijkl 7−→ Rijkl = Tijlk − Tijkl ,

where N1 is the space of normal tensors of order 1 andR ⊂ S2T∗x0
X⊗Λ2T∗x0

X is the vector
subspace of tensors R that satisfy the Bianchi identity:

Rijkl + Rikl j + Ril jk = 0 .

Proposition 5.19. There are no non-zero homogeneous natural functions associated to Fe-
dosov structures of weight δ = −2.

If dim X ≥ 4, then the space of homogeneous natural functions of weight δ = −4 is a real
vector space of dimension 3, generated by the natural functions:

• f1 = Rijkl Rijkl ,

• f2 = R k
ijk Rijl

l ,

• f3 = Γ ijk
ijk .

Proof: Let us fix x0 ∈ X and a non-singular 2-form ω at x0. Let us invoke the Main
Theorem 4.10 for p = 0 and δ = −2. The only non-negative integer solution of the
equation

2d1 + . . . + (r + 1)dr = p− δ = 2

is d1 = 1.

Therefore, the problem is reduced to computing Sp(2n, R)-equivariant maps
N1 → R. As the elements in N1 are 4-covariant tensors symmetric in the second
and third indices, by the First Fundamental theorem of Sp it is sufficient to check
that the map

Tijka −→ ωijωkaTijka

is zero:
ωijωkaTijka =

1
2

ωijωka(Tijka − Tjika) = 0 ,

as the elements in N1 verify that

Tijka − Tjika = Tijak − Tjiak .
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Repeating the arguments for w = −4, we obtain two solutions to the equation above:
d1 = 2 and d3 = 1.

Let us begin with solution d1 = 2: we need to compute total index contractions of
the expression TijklTabcd. By Lemma 5.18 stated above, it is equivalent to compute
the total index contractions of the expression Rijkl Rabcd. As the contraction of the
symmetric pair is zero, the possibilities are:

• f1 = Rijkl Rijkl .

• f2 = R k
ijk Rijl

l .

• Rijkl Rikjl , which by the Bianchi identity is equal to f1/2.

For d3 = 1, the last three indices of any tensor in N3 are symmetric , so there is only
one option: f3 = T ijk

ijk .

As for the linear independence of the three functions, by naturalness it is enough
to check if they are independent at any given Fedosov manifold. For example, con-
sider the Fedosov manifold (R4, η,∇), where η = dx1 ∧ dx2 + dx3 ∧ dx4 and ∇ is
the linear connection with the following Christoffel symbols (with the contravariant
index lowered):

• Γijk = 1, for any {i, j, k} permutation of {1, 1, 2}.

• Γijk = x1x3x4, for any {i, j, k} permutation of {2, 3, 4}.

• Γijk = 0, for any other combination.

Computing the natural functions in this manifold gives:

• f1 = −4x2
3x2

4(−4x2
1 + 4x1 + 1).

• f2 = 2x2
3x2

4(4x2
1 − 1).

• f3 = 6,

which are clearly R-linearly independent. �

5.3.2 Differential operators in Fedosov geometry

More differences between Riemannian geometry and Fedosov geometry can be found
in the context of differential operators. Let Difk

R(C∞
X , C∞

X ) be the sheaf of R-linear dif-
ferential operators of order less or equal than k, which is a natural sheaf.

Definition 5.20. Let G be a natural sheaf. A differential operator of order less or
equal than k associated to sections of G is a natural morphism of sheaves G →
Difk

R(C∞
X , C∞

X ).

Recall that the symbol of a differential operator is a natural morphism of sheaves

σ : Difk
R(C∞

X , C∞
X ) −→ SkTX ,
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and that a differential operator P : G → Difk
R(C∞

X , C∞
X ) is of order k if and only if its

symbol is non-zero.

Example. The Laplacian ∆ : M → Diff2
R(C∞

X , C∞
X ) is a differential operator of order

2 associated to metrics, defined as ∆(g)( f ) := trg∇2 f . It is homogeneous of weight
−2.

It turns out that an operator equivalent to the Laplacian does not exist in Fedosov
geometry:

Theorem 5.21. There are no non-zero homogeneous differential operators of order 2 and
weight −2 associated to Fedosov structures.

Proof: The composition of a differential operator and the symbol results in a natural
tensor

F −→ S2TX ,

and thus it is enough to check that there is no non-zero natural tensor with the form
above to prove the statement.

Let us suppose that such a morphism exists. By the Main Theorem 4.10, it corre-
sponds to a Sp-equivariant linear map

T : Sd1 N1 ⊗ . . .⊗ Sdr Nr −→ S2Tx0 X ,

where d1, . . . , dr are non-negative integers running over the solutions of the equation

2d1 + . . . + (r + 1)dr = −2− (−2) = 0 .

The only solution to the equation is d1 = . . . = dr = 0. Thus, we are looking for
Sp-equivariant morphisms

R −→ S2Tx0 X ,

or, equivalently,
S2T∗x0

X −→ R .

However, due to the First Fundamental Theorem of Sp, both symmetric indices must
be contracted with the fixed symplectic form, which is null, leading to a contradic-
tion. �

5.3.3 Dimensional curvature identities

As natural tensors can be computed locally (demonstrated in Chapter 3), the choice
of the base smooth manifold X is inconsequential, with a small caveat: the dimen-
sion of the manifold does matter.

However, our Main Theorems prove that natural tensors can be described as equiv-
ariant maps by the action of classical groups (adding an homogeneity condition, if
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necessary). Taking a closer look at the First Fundamental Theorems of the classical
groups, one sees that the description of the generators of these equivariant maps
does not depend on the dimension of the vector space. We will elaborate more on
this later.

Moreover, one can define ‘dimensional reduction’ maps3

. . .
rn+1−−→ Tp,δ[n + 1] rn−→ Tp,δ[n]

rn−1−−→ Tp,δ[n− 1]
rn−2−−→ . . . ,

where Tp,δ[n] denotes the space of homogeneous natural p-covariant tensors of weight
δ in dimension n:

Tp[n] :=





Natural morphisms of sheaves
G → T p

homogeneous of weight δ





,

where G is either the sheaf of metricsM or the sheaf of Fedosov structures F .

These maps are surjective, due to the First Fundamental Theorems, stated in Section
B.1. However, they might not be injective: there exists natural tensors in higher
dimension which, when reduced to a lower dimension, become zero. Such natural
tensors are called ‘dimensional identities’, and the Second Fundamental Theorems
will allow us to describe them.

We will start with a brief review of dimensional identities in the context of Rieman-
nian geometry, and then we will compute dimensional identities in Fedosov geom-
etry, following the sketch of the known Riemannian theory.

Review of dimensional curvature identities on Riemannian geometry

Let (X, g) be a Riemannian manifold of dimension n.

Let us fix an amount of indices p ∈N and a weight δ ∈N, and denote

Tp,δ[n] :=





Natural morphisms of sheaves
M→ T p

homogeneous of weight δ





,

whereM is the sheaf of riemannian metrics of fixed signature over X and T p is the
sheaf of p-covariant tensors over X.

Let us consider the (n + 1) Riemannian manifold (X ×R, g + dxn+1 ⊗ dxn+1), and
let i denote the embedding i : X ↪→ X×R, x → (x, 0).

3An explicit description of these maps will be given later.
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Definition 5.22. With the notations described above, the dimensional reduction of
natural tensors associated to metrics to dimension n is defined as the map

rn : Tp,δ[n + 1] −→ Tp,δ[n]

T 7−→ rn(T)(g) := i∗(T(g + dxn+1 ⊗ dxn+1)) .

The dimension reduction maps rn are always surjective, and they are isomorphisms
for n sufficiently large ([30]).

Definition 5.23. The inverse limit Tp,δ = lim
←

Tp,δ[n] of the sequence of maps
rn : Tp,δ[n + 1] → Tp,δ[n] for n ∈ N is called the space of universal tensors ho-
mogeneous of weight δ.

Definition 5.24. A universal tensor T ∈ Tp,δ is said to be a dimensional curvature
identity in dimension n if it is an element of the space Kp,δ[n] := Ker(Tp,δ → Tp,δ[n]).

As said above, for any amount of indices p and any weight δ there exists a sequence

. . .
rn+1−−→ Tp,δ[n + 1] rn−→ Tp,δ[n]

rn−1−−→ Tp,δ[n− 1]
rn−2−−→ . . . ,

where the morphisms rn are isomorphisms for n >> 0, and thus Kp,δ[n] = 0 for
n >> 0. The following theorems compute the first non-trivial kernels that appear in
the sequence above by reducing the dimension n, maintaining p and δ fixed (their
proof can be found in [15]):

Theorem 5.25 (Scalar identities). The space K0,−2[1] of scalar (i.e. p = 0) dimensional
curvature identities of weight δ = −2 in dimension 1 is generated by the scalar curvature.

In general, for any even weight δ = −(n + 1), the space K0,−(n+1)[n] of scalar dimensional
curvature identities of weight−(n + 1) in dimension n is generated by the Pfaffian function
of order n + 1.

Theorem 5.26. Let p = 2. The space K2,0[2] of dimensional curvature identities with 2
indices of weight δ = 0 in dimension 2 is generated by the Einstein tensor:

Ric− r
2

g ,

where Ric denotes the Ricci curvature tensor and r denotes the scalar curvature.

In general, for any even weight δ = 2− n, the space K2,2−n[n] of scalar dimensional curva-
ture identities of weight 2− n in dimension n is generated by the Lovelock tensor of order
n
2 .

Example. For p = 2 and δ = 0, the entire sequence can be described, as all kernels
can be computed in a simple way: by the Main Theorem 4.4 and the First Fundamen-
tal Theorem of the orthogonal group B.1, it is easy to prove that T2,0[n] is spanned
by Ric and rg (see also ([33])). Then, Theorem 5.26 implies that dim T2,0[n] = 2 for

69



Chapter 5. Applications

all n > 2 and that dim T2,0[2] = 1, as in dimension 2 the generators are related by the
identity Ric− r

2 g.

Moreover, it holds that K2,0[1] is spanned by Ric, as the curvature tensor is zero in
dimension 1, and so dim T2,0[1] = 0.

Dimensional curvature identities on Fedosov geometry

Let (R2n, ω,∇) be a Fedosov manifold of dimension 2n 4. As it was done in Rie-
mannian geometry, let us fix an amount of indices p ∈ N and a weight δ ∈ N, and
denote

Tp,δ[2n] :=





Natural morphisms of sheaves
F → T p

homogeneous of weight δ





,

where F is the sheaf of Fedosov structures over R2n and T p is the sheaf of p-
covariant tensors over R2n.

Let Γk
ij denote the Christoffel symbols of∇. Let us consider the 2(n+ 1)-dimensional

Fedosov manifold (R2n ×R2, ω′,∇′), where ω′ = ω + dxn+1 ∧ dyn+1 and the con-
nection ∇′ is defined by the following Christoffel symbols:

(Γ′)k
ij = Γk

ij, 1 ≤ i, j, k ≤ 2n .

(Γ′)k
ij = 0, in any other case .

In other words, (R2n ×R2, ω′,∇′) is defined as the product (as Fedosov manifolds)
of (R2n, ω,∇) and (R2, η, ∇̄), where η is the canonical symplectic form of R2 and ∇̄
is the flat linear connection. Let i denote the embedding i : R2n ↪→ R2n ×R2, x 7→
(x, 0, 0).

Definition 5.27. With the notations described above, the dimensional reduction of
natural tensors associated to Fedosov structures to dimension 2n is defined as the
map

rn : Tp,δ[2(n + 1)] −→ Tp,δ[2n]

T 7−→ rn(T)(ω,∇) := i∗(T(ω′,∇′)) .

This map is well defined: it is easy to check that rn(T) is natural, and as λ2ω +

dxn+1 ∧ dyn+1 and λ2ω′ = λ2ω + λ2(dxn+1 ∧ dyn+1) coincide on i(X), we obtain

rn(T)(λ2ω,∇) =i∗(T(λ2ω + dxn+1 ∧ dyn+1,∇′)) =
i∗(T(λ2ω′,∇′)) =
i∗(λδT(ω′,∇′)) = λδrn(T)(ω,∇) ,

4Recall that natural tensors are computed locally, hence we can always assume that the base smooth
manifold is Rm for some m ∈N.
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so rn(T) is homogeneous of weight δ.

Proposition 5.28. The maps rn are surjective for all n ∈N.

Proof: By the Main Theorem 4.10, given any fixed non-singular 2-form ω at 0 ∈ R2n,
any T2n ∈ Tp,δ[2n] can be expressed as a Sp-equivariant linear map t2n : Sd1 N1 ⊗
. . . ⊗ Sdr Nr →

⊗p T∗0 R2n, where d1, . . . , dr are non-negative integers running over
the solutions of Equation 4.10.

Due to Proposition B.1 and using the polarity isomorphism of ω, t2n is the restriction
to Sd1 N1 ⊗ . . .⊗ Sdr Nr

⊗p T∗0 R2n of a Sp-equivariant map
⊗N T∗0 R2n → R, where

N = 4d1 + . . . + (3 + r)dr + p .

Applying the First Fundamental Theorem of Sp B.1 and restricting, t2n = ∑σ∈SN
λσωσ,

where σ ∈ SN and λσ ∈ R for all σ ∈ SN
5.

Then, denoting by N̄1, . . . , N̄r the spaces of normal tensors in R2(n+1) and defin-
ing the Sp-equivariant map t2(n+1) : Sd1 N̄1 ⊗ . . .⊗ Sdr N̄r

⊗p T∗0 R2(n+1) as t2(n+1) :=

∑σ∈SN
λσωσ, it is easy to compute that rn(T2(n+1)) = T2n, where T2(n+1) ∈ Tp,δ[2(n +

1)] is the natural tensor that corresponds to t2(n+1) by the Main Theorem 4.10 (fixing
the non-singular 2-form ω + d0xn+1 ∧ d0yn+1 at 0 ∈ R2(n+1)). �

Definition 5.29. The inverse limit Tp,δ = lim
←

Tp,δ[2n] of the sequence of maps rn :
Tp,δ[2(n + 1)] → Tp,δ[2n] for n ∈ N is called the space of universal tensors homoge-
neous of weight δ.

Examples. The symplectic form T(ω,∇) := ω, the (4, 0) curvature tensor Rijkl and
the natural functions obtained in Corollary 5.19 are universal tensors.

However, the tensor T(ω,∇) := (dim X)ω is not universal.

Definition 5.30. A universal tensor T homogeneous of weight δ is said to be a dimen-
sional curvature identity in dimension 2n if it is an element of the space Kp,δ[2n] :=
Ker(Tp,δ → Tp,δ[2n]) .

Let ω be a fixed non-singular 2-form at a point x0 ∈ X. As it was done in Riemannian
geometry, let us compute the first non-trivial kernels (thus also the first dimensional
identities) that appear by reducing the dimension in the sequence

. . .
rn+1−−→ Tp,δ[2(n + 1)] rn−→ Tp,δ[2n]

rn−1−−→ Tp,δ[2(n− 1)]
rn−2−−→ . . . ,

for some amount of indices p and weight δ fixed.

5Recall that if ω is a non-singular 2-form on a vector space V, then the Sp-equivariant linear maps
ωσ : V⊗ N. . . ⊗V → R are defined as

ωσ((e1, . . . , eN)) := ω(eσ(1), eσ(2)) . . . ω(eσ(N−1), eσ(N)) .
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The following results are corollaries of a more general statement, which will be
proven in the next section.

Theorem 5.31. For δ ≥ −2 it holds that T0,δ = 0, and so there are no scalar dimensional
identities of the curvature of weight δ ≥ −2 in any dimension.

There are no scalar dimension identities of the curvature of weight δ = −2k in dimension
2k− 2, for any k ∈ Z odd.

The space K0,−4[2] of scalar dimensional curvature identities for δ = −4 in dimension 2 is
generated by the natural function

R i2 j1k1
i1

R i1 j2k2
i2

(ω ∧ω)j1k1 j2k2 .

Theorem 5.32. For δ ≥ 0 it holds that T2,δ = 0, and so there are no dimensional identities
of the curvature with p = 2 indices of weight δ ≥ 0 in any dimension.

There are no dimension identities of the curvature with p = 2 indices of weight δ = −2k in
dimension 2k + 2, for any k ∈ Z even.

The space K2,−2[4] of scalar dimensional curvature identities for δ = −2 in dimension 4 is
generated by one natural 2-tensor, which can be expressed as

Tab = R i2 j1k1
i1

R i1 j2k2
i2

(ω ∧ω ∧ω)j1k1 j2k2ab .

Expanding the expression of the tensor T above produces:

Tab = 2K j
i K

i
jωab − Rl

ijkR ijk
l ωab + 4K j

i R
i
jab − 4Rj

iakRi k
jb ,

where Kij := Rk
ikj. The theorem above says that T is a non-zero natural tensor in

dimension 2n > 4, and that T = 0 as a natural tensor in dimension 2n ≤ 4.

Remark 5.33. Unlike in the Riemannian case, the first non-trivial kernel might not
have a nice description for certain amount of indices p and weight δ, specifically
whenever p−δ

2 is odd. The reason why this occurs will become apparent during the
next section and involves the nature of the Chern forms associated to a symplectic
connection.

Proof of the general statement

Let X = R2n. We will begin this section by observing that the notion of dimensional
identity we have defined is closely related to the Second Fundamental Theorem of
Sp: let T = {T2m}m∈N be a dimensional curvature identity in dimension 2n, for some
n ∈ N (and so T2n = 0). By the Main Theorem 4.10, given any fixed non-singular
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2-form ω, any T2m can be expressed as a Sp-equivariant linear map

t2m : Sd1 N1 ⊗ . . .⊗ Sdr Nr →
p⊗

T∗x0
X .

As T2n = 0, it must also hold that t2n = 0.

The key fact is that, due to Proposition B.1 and using the polarity isomorphism
of ω, t2n is the restriction to Sd1 N1 ⊗ . . . ⊗ Sdr Nr

⊗p T∗x0
X of a Sp-equivariant map

⊗N T∗x0
X → R, where

N = 4d1 + . . . + (3 + r)dr + p .

Applying the First Fundamental Theorem of Sp B.1, such a map is a linear combina-
tion

∑
σ∈SN

λσωσ

of maps ωσ (defined in the First Fundamental Theorem of Sp B.1), with σ ∈ SN , that
is null when restricted to Sd1 N1 ⊗ . . .⊗ Sdr Nr.

As the symmetries of the spaces of normal tensors Ni do not depend on the dimen-
sion of the base manifold, they cannot be the reason why t2n is null, as if that were
the case then t2m = 0 for all m ∈ N (as t2m = ∑σ∈SN

λσωσ for all m ∈ N, see the
proof of Proposition 5.28) and T = 0, leading to a contradiction.

Therefore, ∑σ∈SN
λσωσ = 0 before restricting to the spaces of normal tensors Ni.

Thus we can invoke the Second Fundamental Theorem of Sp B.1, which says that

∑σ∈SN
λσωσ (and so any t2m) can be expressed as in Equation B.1:

∑
σ∈S|I|

(sgn σ)ωσ ,

where I ⊆ {1, . . . , N} is a set such that |I| > 2n.

Let us compute the maximum amount of indices in Sd1 N1⊗ . . .⊗ Sdr Nr
⊗p T∗x0

X that
can belong in the set I. Let s ∈ {1, . . . , r}, let Tijka1...as ∈ Ns be a normal tensor and
suppose that there are three of the indices i, j, k, a1, . . . , as in I, i.e. they are being
alternated. As the indices j and k and the last s indices are symmetric, we may sup-
pose without loss of generality that i, j and a1 are the alternated indices. However,
the symmetry

Tijka1a2 ...as − Tjika1a2 ...as = Tija1ka2...as − Tjia1ka2 ...as

assures that this alternation is zero.

As only a maximum of two indices in each Ns factor can belong in I, the maximum
total amount of indices in Sd1 N1 ⊗ . . .⊗ Sdr Nr

⊗p T∗x0
X that can belong in I is

m = 2(d1 + . . . + dr) + p .
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Lemma 5.34. There are no dimensional identities of the curvature of p indices and weight δ

in dimension 2n ≥ 2p− δ.

Proof: The Second Fundamental Theorem of Sp B.1 assures that there are no dimen-
sional identities for 2n ≥ m. In our case,

m = 2(d1 + . . . + dr) + p = 2p− δ− (d2 + . . . + (r− 1)dr) ≥ 2p− δ ,

finishing the proof. �

Lemma 5.35. The dimensional identities of the curvature of p indices and weight δ in dimen-
sion 2n = 2p− δ− 2 are independent of derivatives of the curvature, that is, it corresponds
to an Sp-equivariant map Sd1 N1 →

⊗p T∗x0
X.

Proof: For a dimensional identity to exist, it must hold that m > 2n. As m is even, it
holds that m ≥ 2n + 2. Therefore,

2(d1 + . . . + dr) + p = m ≥ 2n + 2 = 2p− δ

= 2d1 + . . . + (r + 1)dr + p

= 2(d1 + . . . + dr) + p + (d2 + . . . + (r− 1)dr) ,

obtaining d2 = . . . = dr = 0. �

Observe that if we denote by k = d1 the amount of curvature operators involved in
the dimensional identity, then δ = p− 2k and so we may rewrite 2n = 2p− δ− 2 =

2k + p− 2.

Recall that a non-singular 2-form ω induces a product of q-forms for any q ∈ N,
which we will denote by 〈 · , · 〉, due to the polarity isomorphism: the indices of one
of the q-forms are raised with ω, obtaining a q-vector which is then contracted with
the remaining q-form.

Moreover, given a q-form and a q′-form with q′ < q, then we can define a (q− q′)-
form by raising the indices of the q′-form and contracting with the q-form.

Before we state the general description of the dimensional identities of the curvature
of a Fedosov structure, notice that Chern forms (Definition 5.11) can be defined for
symplectic connections.

However, in the same vein as in the case of Riemannian geometry and the Levi-
Civita connection of a metric ([25]), Chern forms cq with q odd become null:

Lemma 5.36. The Chern forms cq of a symplectic connection are null for all q odd.

Proof: Observe that it is enough to check that Raq
a1b1c1

Ra1
a2b2c2

. . . R
aq−1

aqbqcq
= 0, as all Chern

forms cq of degree 2q contain a factor R
aq′
a1b1c1

Ra1
a2b2c2

. . . R
aq′−1

aq′ bq′ cq′
, with q′ ≤ q odd.
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Due to the symmetries of the curvature tensor of a symplectic connection, it holds
that

Raq
a1b1c1

Ra1
a2b2c2

. . . R
aq−1

aqbqcq
= ωaqdq Rdqa1b1c1 ωa1d1 Rd1a2b2c2 . . . ωaq−1dq−1 Rdq−1aqbqcq

= (−1)qωdqaq Rdqa1b1c1 ωd1a1 Rd1a2b2c2 . . . ωdq−1aq−1 Rdq−1aqbqcq

= (−1)qωd1a1 Rdqa1b1c1 ωd2a2 Rd1a2b2c2 . . . ωdqaq Rdq−1aqbqcq

= (−1)qRd1
dqb1c1

Rd2
d1b2c2

. . . Rdq
dq−1bqcq

.

As q is odd, (−1)q = −1. Reordering the factors,

(−1)qRd1
dqb1c1

Rd2
d1b2c2

. . . Rdq
dq−1bqcq

= −Rdq
dq−1bqcq

R
dq−1

dq−2bq−1cq−1
. . . Rd1

dqb1c1
.

Recall that the indices b and c are being alternated, so that we can permute them in
the following way:

−Rdq
dq−1bqcq

R
dq−1

dq−2bq−1cq−1
. . . Rd1

dqb1c1
= −Rdq

dq−1b1c1
R

dq−1

dq−2b2c2
. . . Rd1

dqbqcq
.

Renaming the indices d as a (di → aq−i for all i ∈ {1, . . . , q− 1}, dq → aq), we are left
with the original Chern form with opposite sign, and thus is null. �

In concordance with the Riemannian case, the Chern forms of a symplectic connec-
tion will be called Pontryagin forms, and will be denoted by pq := c2q.

Theorem 5.37. Let x0 ∈ X and let ω be a non-singular 2-form at x0. The space Kp,δ[2p−
δ− 2] of dimensional identities of the curvature homogeneous of weight δ with p indices is
spanned by the p-forms 〈

ω ∧ k+ p
2. . . ∧ω , pk̄

〉
,

where k̄ = k
2 = p−δ

4 and pk̄ is a Pontryagin form.

In particular, there are no dimensional identities of the curvature in dimension 2p− δ− 2
when p−δ

2 is odd.

Proof: By the previous lemma and the observation above, any dimensional identity
T for 2n = 2k + p− 2 can be expressed as an Sp-invariant linear map of the form

T : SkN1 ⊗
p⊗

T∗x0
X −→ R

for a fixed x0 ∈ X and ω a non-singular 2-form at x0.

Applying Lemma 5.18, we can replace N1 by the vector space of curvature-like ten-
sorsR.

As explained before, out of the 4k + p indices only a maximum of two indices perR
factor and the p free indices can belong in I, summing up to m = 2k + p = 2p− δ.
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It is also the minimum, as m > 2n = 2p − δ − 2 due to the Second Fundamental
Theorem of Sp and m must be even due to the First Fundamental Theorem of Sp.

As the symmetric pair of any R factor cannot belong in I, by applying the Bianchi
identity and reordaining indices we may suppose, without loss of generality, that
the skew-symmetric pair of eachR factor belongs in I, along with the free p indices.
This fills the amount of indices needed in I.

The remaining indices (that is, the symmetric pairs of indices of theR factors) must
be contracted with indices of different symmetric pairs, since contracting a sym-
metric pair of indices with the symplectic form would be null. Hence we obtain a
Pontryagin form pk, which is non-zero only if k is even, due to the lemma above.

All that is left is to express this map as an Sp-equivariant map

T : SkR −→
p⊗

T∗x0
X ,

by invoking Proposition B.1 and applying the polarity isomorphism given by the
non-singular 2-form ω. This produces a p-form proportional to the one in the state-
ment. �

Remark 5.38. Recall the expanded expression of the tensor T of Theorem 5.32:

Tab = 2K j
i K

i
jωab − Rl

ijkR ijk
l ωab + 4K j

i R
i
jab − 4Rj

iakRi k
jb .

Utilizing the identity Rk m
imj, = Kk

i,j, it is easy to prove that div T = 06. This produces
a similarity with the Riemannian setting, as the divergence of the first dimensional
identities in Riemannian geometry is also null.

These arguments lead us to believe that the dimensional identities computed above
all have null divergence:

Conjecture. div
〈

ω ∧ k+ p
2. . . ∧ω , pk̄

〉
= 0 .

The condition of null divergence has great physical meaning, and it is usually im-
posed on field equations in general relativity (see [33]).

6The divergence of a p-covariant natural tensor T is defined as the (p− 1)-covariant natural tensor
div T = trω(∇T), where trω denotes the contraction of the first two covariant indices with ω.
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Discussion on open problems

Over the last year, there has been a recurring question on my head: can the Peetre-
Slovak theorem 2.16 be extended to the setting of natural sheaves? That is, whether
the following conjecture is true:

Conjecture. Let X be a smooth manifold. Let F be a natural sheaf over X, and let F ′ be the
sheaf of smooth sections of a natural bundle F′ → X.

The choice of a point x0 ∈ X allows the definition of a bijection:

{
Natural morphisms of sheaves

φ : F −→ F ′

} {
Diffx0-equivariant smooth maps

J∞
x0
F −→ F′x0

}
,

where J∞
x0
F denotes the ringed space of ∞-jets of sections of F and Diffx0 stands for the

group of germs of diffeomorphisms τ between open sets of X such that τ(x0) = x0.

This question, which can seem innocuous at first, proposes a fundamental change in
the philosophy of the theorem, as the focus has now been shifted from fibre bundles
to sheaves. Such a result would allow the study of differential invariant associated
to many relevant geometric structures, such as Kähler and Einstein geometries, and
more generally any geometry defined by natural PDEs. The case of Fedosov geom-
etry, studied during this memoir, would be another example.

There exists, however, two major roadblocks in this line of thought: one in the proof
of the conjecture itself, and one in the application of this result to the computations
of differential invariants. Both have been solved (near miraculously, one might add)
in the instance of Fedosov geometry, as the previous chapters show.

Let us give a brief overview of the proof of the Peetre-Slovak theorem: with the same
notations as in the statement of the theorem, given a smooth morphism P : J∞

x0
F →

F′x0
, a (regular) morphism of sheaves φP : F → F ′ is defined as φP(s)(x) := P(j∞

x s).
Conversely, given a regular morphism of sheaves φ, the corresponding smooth mor-
phism is defined as Pφ(j∞

x s) := φ(s)(x), where s is a representative of j∞
x s defined on

a neighbourhood of x.
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Thus, a big part of the proof is to check that Pφ does not depend on the choice of the
representative s. This is essentially done by ‘stitching’ together any two sections with
the same ∞-jet at the chosen point. Such procedure is done by applying Whitney’s
Extension Theorem ([46, 36]):

Whitney’s Extension Theorem). Let K ⊂ Rn be a compact set, and let {Tx}x∈K be a
family of Taylor expansions on K.

There exists f ∈ C∞(Rn) such that, for all x ∈ K, the Taylor expansion of f at x is Tx if and
only if the Taylor condition is verified1.

This result works in the setting of fibre bundles because any smooth function de-
fines a smooth section of a fibre bundle. However, the same does not hold as easily
when defining sections of natural sheaves: although any section of a natural sheaf
is a smooth section of a natural bundle, such section will need to verify a certain
(natural) condition. Extending the morphism of sheaves, a stronger version of Whit-
ney’s Extension Theorem or a different approach to the proof would be needed to
continue.

Let us give an example, to help visualise the problem: given two sections of the
Fedosov sheaf with the same jet at a point, Whitney’s Extension Theorem can pro-
duce a symmetric linear connection ∇ and a non-singular 2-form ω ‘stitching’ both
sections, but there is no guarantee that the condition ∇ω holds. As it was shown
during Chapter 2, the Fedosov case can be resolved by fixing a symplectic form and
reducing to a sheaf of symplectic connections, which form a fibre bundle, and so the
usual Peetre-Slovak Theorem can be applied.

Even though such a result would have intrinsic interest, as it was said before there
exists another obstacle in the computation of differential invariants associated to
geometries defined by natural PDEs, and that obstacle is proving that the natural
restrictions imposed by the geometry at the ∞-jet level can be specified by algebraic
relations of ∞-jets of natural bundles, so that the dependence of germs is fully sev-
ered.

Going back to the example differential invariants in Fedosov geometry, during Chap-
ter 3 we proved Theorem 3.10, which allowed us to define J∞

x0
F as the space of ∞-

jets of symmetric linear connections and non-singular 2-forms (j∞
x0
∇, j∞

x0
ω) such that

j∞
x0
(∇ω) = 0. This step is crucial to the latter identification of a quotient of J∞

x0
F

with an infinite product of real vector spaces: with the data given by the normal
vector spaces, jets of linear connections verifying compatibility conditions can be
easily defined by choosing coordinates, but nothing can be said at germ level. As
such, defining a Fedosov section that realises the ∞-jet defined by normal tensors is
a difficult task – one that is solved by Theorem 3.10.

1The Taylor condition refers to the necessary condition imposed by Taylor’s Theorem of approx-
imation of smooth functions by analytic functions. It is a technical condition that will not have any
relevance on the present discussion.
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Chapter 6. Discussion on open problems

In fact, Theorem 3.10 has proven to be one of the hardest hurdles I have faced in the
making of this memoir. I would like to take the opportunity to thank Prof. Juan B.
Sancho de Salas, from the University of Extremadura, for his magnificent inputs on
this matter. As shown, realizing ’formally closed’ jets of non-singular 2-forms with
symplectic forms on a neighbourhood is key in solving the Fedosov case – although
not due to what we were expecting. We had hoped that solving the problem for
symplectic forms (which constitute one of the simplest geometric structures defined
by a natural PDE) would illuminate the way in which the general case should be
solved.

However, the argument we found relies on the Poincaré Lemma, a very specific
property of closed forms, which unfortunately does not help in the resolution of the
general case. On the other hand, the equation ∇ω = 0 is similar enough to dω = 0
that the Fedosov case is solved as a corolary.

Summing up, the study of differential invariants associated to geometries defined
by natural PDEs with our approach faces two major obstacles. Their resolution
should streamline the computation of invariants for a wide variety of geometries,
as the steps that follow (simplifying the space of ∞-jets, for example) should often
be solved in a straightforward way. We hope to make advancements on both prob-
lems in future works.
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Appendix A

Polynomial character of
homogeneous tensors

Our process of reduction of the spaces of natural tensors result in smooth maps com-
ing from infinite products of normal tensor spaces. Whether these smooth maps de-
pend only on a finite amount of variables is a priori uncertain. To that end, we state
below the Homogeneous Function Theorem, which assures such finite dependence
whenever we have homogeneity (in fact, it gives more: homogeneous functions turn
out to be polynomial).

Homogeneous Function Theorem. Let {Ei}i∈N be finite-dimensional vector spaces.

Let f :
∞
∏
i=1

Ei → R be a smooth function such that there exist positive real numbers ai > 0

and w ∈ R satisfying:

f (λa1 e1, . . . , λai ei, . . .) = λw f (e1, . . . , ei, . . .) (A.1)

for any positive real number λ > 0 and any (e1, . . . , ei, . . .) ∈
∞
∏
i=1

Ei.

Then, f depends on a finite number of variables e1, . . . , ek, and it is a sum of monomials of
degree di in ei satisfying the relation

a1d1 + · · ·+ akdk = w . (A.2)

If there are no natural numbers d1, . . . , dr ∈N∪ {0} satisfying this equation, then f is the
zero map.

Remark A.1. Observe that, if w < 0, then necessarily f = 0: if not, let us fix e ∈
∞
∏
i=1

such that f (e) 6= 0 and let us take the limit from the right when λ→ 0 in A.1 for the
fixed e. Then, the left-hand side would be equal to f (0, 0, . . .), whereas the limit of
the right-hand side would be improper, leading to a contradiction.

Proof: Let us recall that we define
∞
∏
i=1

Ei as the inverse limit of the spaces
k

∏
i=1

Ei.

Therefore, as f is smooth, by definition there exists k ∈ N, a neighbourhood Uk ⊆
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k
∏
i=1

Ei of the origin (0, k. . ., 0) and a smooth map fk : Uk → R such that the following

diagram commutes:

π−1
k (Uk)

f //

πk
##

R

Uk

fk

?? .

As a1, . . . , ak are positive, there exists a neighbourhood 0 ∈ V ⊂ R such that, for
any (e1, . . . , ek) ∈ Uk and any λ ∈ V, the vector (λa1 e1, . . . , λak ek) lies in Uk. There-
fore, for any positive λ ∈ V and (e1, . . . , ek) ∈ Uk the function fk also satisfies the
homogeneity condition:

fk(λ
a1 e1, . . . , λak ek) = λw fk(e1, . . . , ek) . (A.3)

If we take partial derivatives on both sides of this equation, we obtain that the partial
derivatives of fk also verify the homogeneity condition:

∂ fk

∂xi
(λa1 e1, . . . , λak ek) = λw−ai

∂ fk

∂xi
(e1, . . . , ek) , i ∈ {1, . . . , k} .

Repeating this process enough times, we end up with a partial derivative of fk that
verifies the homogene ity condition with negative weight, and thus it is zero by
the remark above. This implies that fk is a polynomial, and so the homogeneity
condition (A.3) is satisfied for any positive λ ∈ V if and only if its monomials satisfy
(A.2).

Finally, given any e = (e1, . . . , en, . . .) ∈
∞
∏
i=1

Ei, we take λ ∈ R+ such that the vector

(λa1 e1, . . . , λak ek, . . .) lies in π−1
k (Uk). Then:

f (e) = λ−w f (λa1 e1, . . . , λan en, . . .) = λ−w fk(λ
a1 e1, . . . , λak ek) = fk(e1, . . . , ek)

and f only depends on the first k variables. �

A simple corolary of the Homogeneous Function Theorem is that, for any finite di-
mensional vector space W, there exists an R-linear isomorphism:

[
Smooth maps f :

∞
∏
i=1

Ei →W satisfying (A.1)
]

∥∥∥
⊕

d1,...,dk

HomR(Sd1 E1 ⊗ . . .⊗ Sdk Ek, W)

(A.4)

where d1, . . . , dk run over the non-negative integer solutions of (A.2).
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Appendix B

Invariant theory of classical groups

Let us go over some results of representation theory and invariant theory that are
used during this memoir.

Although we are considering both compact and non-compact real Lie groups, the
usual invariant theory of classical groups in the setting of algebraic geometry (see
[17] for a full exposition of the results that follow, in the context of algebraic geome-
try) is valid in our context, see ([22]).

Let us being by exposing the following proposition, which is frequently utilised in
the computations:

Proposition B.1 ([22]). Let E and F be (algebraic) linear representations of G, where G =

Gl(V), Sl(V) or Sp(2n, R).

• There exists a linear isomorphism HomG(E, F) = HomG(E⊗ F∗, R).

• If W ⊆ E is a sub-representation, then any equivariant linear map W → F is the
restriction of an equivariant linear map E→ F.

B.1 Fundamental Theorems

Let us state the First Fundamental Theorems for the classical groups, which describe
the generators of the maps that are invariant by the group action:

First Fundamental Theorem of Gl ([17]). Let V be an R-vector space of finite dimension
n, and let Gl(V) be the real Lie group of its R-linear automorphisms.

The vector space HomGl(V)

(
V∗⊗ p. . . ⊗V∗ ⊗V⊗ q. . . ⊗V , R

)
of invariant linear forms

on V∗ ⊗ . . .⊗V by the action of Gl(V) is zero if p 6= q, whereas, if p = q, it is spanned by
the following “total contractions":

φσ(ω1 ⊗ . . .⊗ ep) := ω1(eσ(1)) · . . . ·ωp(eσ(p)) , σ ∈ Sp .
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Appendix B. Invariant theory of classical groups

First Fundamental Theorem of Sl ([17]). Let V be an oriented R-vector space of finite
dimension n, and let Sl(V) be the real Lie group of its orientation-preserving R-linear auto-
morphisms.

Let Ω ∈ ΛnV∗ be a representative of the orientation, and let e be its dual n-vector; that is to
say, the only element in ΛnV such that Ω(e) = 1.

The real vector space HomSl(V)

(
V∗⊗ p. . . ⊗V∗ ⊗V⊗ q. . . ⊗V , R

)
of invariant linear forms

on V∗ ⊗ . . .⊗ V by the action of Sl(V) is zero if p 6= q + kn for any k ∈ Z, whereas if
p = q+ kn for some k ∈ Z it is generated by the composition of some copies of the operations

⊗Ω : V∗⊗ p. . . ⊗V∗ ⊗V⊗ q. . . ⊗V −→ V∗⊗ p+n. . . ⊗V∗ ⊗V⊗ q. . . ⊗V ,

⊗ e : V∗⊗ p. . . ⊗V∗ ⊗V⊗ q. . . ⊗V −→ V∗⊗ p. . . ⊗V∗ ⊗V⊗ q+n. . . ⊗V ,

and a total contraction φσ.

In particular, for p, q < n, the vector space of Sl(V)-invariant linear maps coincides with
the vector space of Gl(V)-invariant linear maps.

First Fundamental Theorem of O ([17]). Let V be a real vector space of finite dimension
n, let g be a non-degenerate symmetric bilinear form on V and let O(n, R) be the real Lie
group of R-linear automorphisms V → V that preserve g.

The real vector space HomO(n,R)

(
V⊗ p. . . ⊗V , R

)
of invariant linear forms on V⊗ . . .⊗

V is null if p is odd, whereas if p is even it is spanned by

gσ((e1, . . . , ep)) := g(eσ(1), eσ(2)) . . . g(eσ(p−1), eσ(p)) ,

where σ ∈ Sp.

First Fundamental Theorem of Sp ([17]). Let V be a real vector space of finite dimension
2n, let ω be a non-degenerate skew-symmetric bilinear form on V and let Sp(2n, R) be the
real Lie group of R-linear automorphisms V → V that preserve ω.

The real vector space HomSp(2n,R)

(
V⊗ p. . . ⊗V , R

)
of invariant linear forms on V ⊗

. . .⊗V is null if p is odd, whereas if p is even it is spanned by

ωσ((e1, . . . , ep)) := ω(eσ(1), eσ(2)) . . . ω(eσ(p−1), eσ(p)) ,

where σ ∈ Sp.

There may be linear relations between these generators, which are explicitly stated
by the Second Fundamental Theorems. Let us enunciate the Second Fundamental
Theorem of the symplectic group (although it is also proven in [17], the reader may
consult [28] for an exposition closer to ours):
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B.2. Irreducible Gl-components

Second Fundamental Theorem of Sp ([17, 28]). The only linear relations between the
generators of HomSp(2n,R)

(
V⊗ p. . . ⊗V , R

)
described above are the dimensional identi-

ties: if p > 2n, then for any I ⊆ {1, . . . , p} such that |I| > 2n one has:

∑
σ∈S|I|

(sgn σ) ωσ = 0 (B.1)

where σ ∈ S|I| is seen as an element of Sp by leaving the indices {1, . . . , p} \ I intact.

B.2 Irreducible Gl-components

Let Gl = Gl(Tx0 X) be the real Lie group of linear automorphisms of the tangent
space Tx0 X.

Observe the following Gl-equivariant linear maps:

c1
1 : Λ2T∗x0

X⊗ Tx0 X −→ T∗x0
X , ∧I : T∗x0

X −→ Λ2T∗x0
X⊗ Tx0 X ,

where c1
1 stands for the contraction of the first covariant and the first contravariant

indices, and I denotes the vector-valued 1-form defined by the identity endomor-
phism of Tx0 X.

Lemma B.2. The decomposition into irreducible Gl-submodules of Λ2T∗x0
X⊗ Tx0 X is

Λ2T∗x0
X⊗ Tx0 X ' Ker c1

1 ⊕ Im (∧I) .

Proof: An easy computation, using Theorem B.1, proves that the dimension of the
vector space of linear, Gl-equivariant endomorphisms of Λ2T∗x0

X⊗ Tx0 X is less than
or equal to two and, by Schur’s Lemma ([17]), so is the number of irreducible sub-
modules.

As c1
1 is surjective and ∧I is injective, Ker c1

1 and Im (∧I) have different dimension
(recall n ≥ 3), and thus they are non isomorphic. Therefore they are the only irre-
ducible submodules. �

On the other hand, letR ⊂ Λ2T∗x0
X⊗ T∗x0

X⊗ Tx0 X be the vector subspace of tensors
T satisfying

Tl
ijk + Tl

jki + Tl
kij = 0 .

The contraction c1
1 (usually called “Ricci contraction” in this context) composed with

the natural projections define Gl-equivariant maps:

R −→ S2T∗x0
X , R −→ Λ2T∗x0

X ,
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which have Gl-equivariant sections

S2T∗x0
X

I⊗1−−→ R , Λ2T∗x0
X I⊗2−−→ R

defined in this way ([42], Sect. 4):

(I ⊗1 S)(D1, D2, D3, ω) := S(D1, D3)ω(D2)− S(D2, D3)ω(D1) ,

(I ⊗2 H)(D1, D2, D3, ω) := H(D1, D3)ω(D2)− H(D2, D3)ω(D1) + 2H(D1, D2)ω(D3) .

Lemma B.3. [42, Thm. 4.1] The decomposition of R into irreducible Gl-submodules is as
follows:

R = Im (I⊗1) ⊕ Im (I⊗2) ⊕ Ker
(

c1
1

)
.
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Appendix C

Introduction to Fedosov manifolds

Let X be a smooth manifold of dimension n.

Definition C.1. A Fedosov structure on X is a pair (ω,∇), where ω is a non-singular
closed 2-form on X (called symplectic form) and∇ is a symmetric linear connection
on X that preserves ω (called symplectic connection), that is, such that the equation
∇ω = 0 is verified.

A smooth manifold equipped with a Fedosov structure will be called a Fedosov
manifold.

Remark C.2. Recall that, for a non-singular 2-form to exist, the dimension of the
manifold n must be even.

As it is done in Riemannian geometry, an operator analogous to the Riemann -
Christoffel curvature tensor can be defined in any Fedosov manifold. Let (X, ω,∇)
be a Fedosov manifold, and let R be the curvature (3, 1)-tensor, defined by the lin-
ear connection ∇ as per usual. Then, a (4, 0)-tensor can be created by lowering the
contravariant index with the symplectic form ω 1:

Rijkl := ωimRm
jkl

As in Riemannian geometry, it is skew-symmetric in the last two indices and verifies
the Bianchi identity in the last three:

Rijkl + Rikl j + Ril jk = 0 . (C.1)

However, the first two indices are now symmetric, in contrast with the Riemannian
case.

The first covariant derivative of the curvature Rijkl,m verifies the expected symme-
tries: the symmetries verified by the curvature tensor in the first four indices and the

1Recall that a fixed non-singular 2-form induces an isomorphism (known as the polarity or the
musical isomorphism) which allows the lowering and raising of tensor indices.
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second Bianchi identity:

Rijkl,m + Rijlm,k + Rijmk,l = 0 . (C.2)

In [11], another symmetry is considered as necessary, called the integrability condi-
tion:

Rimkj,l + Rijml,k + Ril jk,m + Riklm,j = 0 . (C.3)

Proposition C.3. The symmetry C.3 can be deduced by the rest of the symmetries of the
first covariant derivative of the curvature.

Proof: Let us apply C.2 to the last term in the left-hand side of C.3:

Rimkj,l + Rijml,k + Ril jk,m − Rikjl,m − Rikmj,l .

As Rikjl,m = −Rikl j,m, utilise C.1 to the third and fourth terms gives:

Rimkj,l + Rijml,k − Rijkl,m − Rikmj,l .

Reiterating the previous step, consider that Rijkl,m = −Rijlk,m and use C.2 in the
second and third terms:

Rimkj,l − Rijkm,l − Rikmj,l .

Now, a final application of C.1 finishes the proof:

Rimkj,l − Rijkm,l − Rikmj,l = Rimkj,l + Rijmk,l + Rikjm,l = 0 .

�
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On the uniqueness of the torsion
and curvature operators
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ON THE UNIQUENESS OF THE TORSION AND CURVATURE
OPERATORS

ADRIÁN GORDILLO-MERINO, RAÚL MARTÍNEZ-BOHÓRQUEZ, AND JOSÉ NAVARRO

Abstract. We use the theory of natural operations to characterise the torsion and cur-
vature operators as the only natural operators associated to linear connections that satisfy
the Bianchi identities.

1. Introduction

The theory of natural operations in differential geometry has a long history, and its

modern development culminated by the end of the last century with the monograph by

Kolář-Michor-Slovák ([9]), which has become the standard reference in the subject since

then.

Paradigmatic results in this theory produced explicit descriptions of all natural operations

of a certaind kind; that way, there appeared characterisations for many various differential

operations, such as those for the exterior differential ([14]), the Lie bracket ([10]) or the

celebrated uniqueness result of characteristic classes in Riemannian geometry ([4], [1]). Later

on, the powerful techniques set forth in [9] enhanced all those results to a more satisfactory

level of generality, that only requires mild local hypotheses.

In recent years, there is a renewed interest in the theory, as there have appeared different

applications ([2], [7], [8], [12]) and some other geometrical aspects of the theory have been

developed ([3], [13]). Nevertheless, lots of these references include rewritings of the foremost

results of the theory ([8], [3], [13]), since the functorial language and the generality of the

book by Kolář-Michor-Slovák make it difficult for the non-specialist to capture the precise

meaning of some results.

With the aim of providing statements accessible to a wider audience, in the first part

of this paper we briefly outline how to describe the space of natural tensors associated to

linear connections in terms of certain linear representations of the general linear group. Our

Theorem 2.3 essentially reformulates the main result of [15], although we use the language of

sheaves, ringed spaces and a more elementary—yet equivalent (cf. [11])—notion of natural

bundle.

Date: December 29, 2022.
2010 Mathematics Subject Classification. Primary: 53A55; Secondary: 58A32.
Key words and phrases. Natural tensors, torsion tensor, curvature operator.
The first and third authors have been partially supported by Junta de Extremadura and FEDER funds.

The second author has been supported by a grant of the Universidad de Extremadura.
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2 A. GORDILLO-MERINO, R. MARTÍNEZ-BOHÓRQUEZ, AND J. NAVARRO

The second part of this note makes use of this machinery to give a characterisation (for

dimension ≥ 3) of the torsion tensor of linear connections, as well as another of the curvature

tensor of symmetric linear connections, much in the spirit of the classical results mentioned

above.

To be more precise, we first prove that there are no non-zero closed vector-valued natural

2-forms associated to linear connections (Theorem 3.6), and it easily follows that the torsion

tensor is the only vector-valued natural 2-form which satisfies the first Bianchi identity

(Corollary 3.8). Then, we turn our attention to the space of endomorphism-valued natural

2-forms associated to symmetric linear connections, and describe the space of those satisfying

the first Bianchi identity (Lemma 3.11). Finally, we prove that the constant multiples of the

curvature tensor are the only endomorphism-valued natural 2-forms satisfying both the first

and second Bianchi identities (Theorem 3.13).

2. Local invariants of linear connections

Let X be a smooth manifold of constant dimension n (the particular choice of the

manifold plays no role in our discussion, so the reader may just think of Rn).

Let Conn → X and T qp → X denote the bundles of linear connections and (p, q)-tensors

on X, and let C and T qp denote their sheaves of smooth sections, respectively.

That is to say, both C and T qp are contravariant functors, defined over the category of

open sets of X and inclusions between them, that assign, to each open set U ⊆ X, the

spaces C(U) and T qp (U) of linear connections and (p, q)-tensors on U and, to each inclusion

between open sets V ↪→ U , the corresponding restriction maps.

The notion of local (tensor) invariant of linear connections is expressed as follows:

Definition 2.1. A natural (p, q)-tensor associated to linear connections is a regular mor-

phism of sheaves

T : C −→ T qp ,

satisfying this condition of naturalness:

T (τ ∗∇) = τ ∗T (∇) ,

for any diffeomorphism τ : U → V between open sets of X, and for any linear connection

∇ : U → Conn .

The notion of regular morphism of sheaves consists in a smoothness assumption; the

precise definition is as follows: if Λ is a smooth manifold, let us write XΛ := X × Λ, so

that any open set U ⊂ XΛ can be thought of as a family of open sets Uλ ⊂ X, where

Uλ = U ∩ (X × {λ}).
A family of linear connections {∇λ : Uλ → Conn }λ∈Λ is said smooth (with respect to the

parameters λ ∈ Λ) whenever the following two conditions are satisfied:

- U = qλ∈ΛUλ is an open set in XΛ .
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- The map ∇ : U → Conn , defined by ∇(λ, x) := ∇λ(x), is smooth.

A morphism of sheaves T : C → T qp is said to be regular if, for any smooth mani-

fold Λ and any smooth family of linear connections {∇λ : Uλ → Conn }λ∈Λ, the family

{T (∇λ) : Uλ → T qp }λ∈Λ is also smooth.

Observe that this definition of natural tensor is equivalent ([11]) to the more standard

one in terms of bundle functors ([9]).

2.1. Description of the space of natural tensors.

Definition 2.2. Let m ≥ 0 be a fixed integer and let x0 ∈ X . The space of normal tensors

of order m at x0 , which we will denote by Nm , is the vector space of (m + 2, 1)−tensors

T at x0 having the following symmetries:

- they are symmetric in the last m covariant indices:

(2.1) T lijk1...km = T lijkσ(1)...kσ(m)
, ∀ σ ∈ Sm ;

- the symmetrization over the m+ 2 covariant indices is zero:

(2.2)
∑

σ∈Sm+2

T lσ(i)σ(j)σ(k1)...σ(km) = 0 .

In the statement of next theorem, which we will prove later, HomGl(Tx0X) stands for

the vector space of Gl(Tx0X)-equivariant linear maps. One of the main highlights of the

theory of natural operations is that it unveils the relation between invariant operations on

smooth manifolds and the invariant theory of certain real Lie groups; a theory which is, in

most cases, algebraic (see [6]) and permits the understanding of these objects via classical

invariant theory.

Theorem 2.3. Fix a point x0 ∈ X. There exists an R-linear isomorphism:
[

Natural tensors T : C −→ T qp
associated to linear connections

]

∥∥∥
⊕
di

HomGl(Tx0X)

(
Sd0N0 ⊗ Sd1N1 ⊗ · · · ⊗ SdrNr , ⊗pT ∗x0X ⊗⊗qTx0X

)

where the summation is over all sequences {d0, d1, . . . , dr} of non-negative integers satisfying:

(2.3) d0 + 2d1 + . . .+ (r + 1) dr = p− q .

If this equation has no solutions, the above vector space reduces to zero.

For the computations that we will perform in this paper, we will only use a couple of

basic facts regarding the invariant theory of the general linear group, that we collect in the

result below ([6]).
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Theorem 2.4. Let V be an R-vector space of finite dimension n, and let Gl be the Lie

group of its R-linear automorphisms.

The following two facts hold:

(1) The vector space HomGl (V ∗⊗ p. . . ⊗V ∗ ⊗ V⊗ q. . . ⊗V , R) of invariant linear forms

on V ∗ ⊗ . . . ⊗ V is zero if p 6= q, whereas, if p = q, it is spanned by the following

“total contractions”:

φσ(ω1 ⊗ . . .⊗ ep) := ω1(eσ(1)) · . . . · ωp(eσ(p)) , σ ∈ Sp .
(2) If E and F are (algebraic) linear representations of Gl, and E ′ ⊂ E is a sub-

representation, then any equivariant linear map E ′ → F is the restriction of an

equivariant linear map E → F .

2.2. Proof of Theorem 2.3. This proof follows several steps that we proceed to explain.

2.2.1. A Peetre-like theorem. If E → X is a bundle over X , let us denote by JrE → X

the bundle of r-jets of sections of E → X.

Definition 2.5. The bundle of∞-jets is the inverse limit, in the category of ringed spaces1,

of the r-jet bundles:

J∞E := lim←− J
rE .

(That is to say, J∞E is endowed with the initial topology of the canonical projections

πr : J∞E → JrE, and its sheaf of “smooth” functions is OJ∞ = lim
→
π∗rC∞Jr).

In relation to this bundle of∞−jets, we will only use the following fundamental property:

if Y is a smooth manifold, a continuous map ϕ : J∞E → Y is said to be a morphism of

ringed spaces if, for any ∞-jet j∞x s ∈ J∞E there exist a natural number r and a smooth

map ϕr : JrE ⊇ U → Y , defined on an open neighbourhood U of jrxs, such that ϕ = ϕr ◦πr
in the neighbourhood π−1

r (U) of j∞x s.

Definition 2.6. Let E → X and F → X be two bundles. A differential operator

P̃ : E  F is a morphism of ringed spaces over X, P̃ : J∞E → F . A differential operator

P̃ is said to be of order ≤ r if there exists a morphism of bundles P̃r : JrE → F such that

P̃ = P̃r ◦ πr.

Let E and F be the sheaves of sections of two bundles E → X and F → X. A

differential operator P̃ : E  F can be understood as a morphism of sheaves:

P : E −→ F , P (s)(x) := P̃ (j∞x s) ,

1Let us succintly recall that a ringed space is nothing but a topological space X , endowed with a certain
subsheaf OX of the sheaf C(X) of continuous real-valued functions on X . For any open set U in X , the
functions belonging to OX(U) are pointed at to be the smooth functions on U in the ringed space X .
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and those morphisms of sheaves obtained with this procedure are precisely the regular mor-

phisms of sheaves, as the following nonlinear Peetre-like theorem assures:

Theorem 2.7 ([9], Sect. 19.7). The previous assignment P̃ → P establishes a bijection

[
Morphisms of ringed spaces

J∞E −→ F

]
= Homreg(E ,F) ,

where Homreg(E ,F) stands for the set of regular morphisms of sheaves.

2.2.2. Natural bundles. For any smooth manifold X, let us denote by Diff (X) the set of

diffeomorphisms τ : U → V between open sets in X.

If π : F → X is a bundle, then a lift to F of a diffeomorphism τ : U → V between open

sets in X is any diffeomorphism τ∗ : FU := π−1(U) → FV := π−1(V ) making the following

square commutative:

FU
τ∗ //

π
��

FV

π
��

U
τ // V.

A natural bundle over X is a pair formed by a bundle F → X, together with a lifting of

diffeomorphisms:

Diff (X) −→ Diff (F )
τ 7−→ τ∗ ,

satisfying certain functorial (Id∗ = Id and (τ ◦ τ ′)∗ = (τ)∗ ◦ (τ ′)∗) and locality conditions

(for any diffeomorphism τ : U → V between open sets in X, and for any open set U ′ ⊂ U ,

(τ|U ′)∗ = (τ∗)|FU′ ).

If F → X is a natural bundle, then so are the k-jet prolongations JkF → X, for any k;

hence, there is also a well-defined action of Diff (X) on the ringed space J∞F .

Moreover, as it is usual in the theory of natural constructions, the Diff (X)-equivariance

allows to reduce the question to a point. To this end, let us fix a point x0 ∈ X and consider

the group:

Diffx0 := {Germs of diffeomorphisms τ : U → V such that τ(x0) = x0} .

Summing up, Theorem 2.7 can be rephrased in the realm of natural bundles as follows:

Corollary 2.8. Let F → X, F̄ → X be natural bundles, let F , F̄ be their sheaves of smooth

sections and fix a point x0 ∈ X.
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The assignment of Theorem 2.7, together with restriction to the point x0, establishes

bijections: [
Regular and natural morphisms of sheaves

F −→ F̄

]

∥∥∥
[

Diff(X)-equivariant morphisms of ringed spaces
J∞F −→ F̄

]

∥∥∥
[

Diffx0-equivariant morphisms of ringed spaces
J∞x0F −→ F̄x0

]
.

2.2.3. Normal developments. In the particular case of linear connections, the structure of

J∞x0 Conn is closely related to the curvature tensor and its covariant derivatives at that point

(see [9]). Nevertheless, we will use normal developments of linear connections, since that

suffices for our purposes and simplifies calculations.

If ∇ is a germ of linear connection at x0 ∈ X, let ∇ be the germ of linear connection

around x0 that corresponds, via the exponential map, to the canonical flat connection of

Tx0X.

For each m ≥ 0, the m−th normal tensor of the connection ∇ at the point x0 is:

Γmx0 := ∇m

x0
T ,

where T is the difference tensor between ∇ and ∇:

T(D1, D2, ω) := ω
(
∇D1D2 −∇D1D2

)
.

If (x1, . . . , xn) is a normal chart for ∇ around x0, then:

Γmx0 =
∑

i,j,k,a1,...am

Γkij;a1...am(x0) dx0xi ⊗ dx0xj ⊗ dx0xa1 ⊗ . . .⊗ dx0xam ⊗
(

∂

∂xk

)

x0

,

where

Γkij;a1...am :=
∂Γkij

∂xa1 . . . ∂xam
.

It is easy to check that the tensor Γmx0 belongs to the space of normal tensors Nm defined

in page 3, for each m ≥ 0. The nature of the map assigning to each connection its sequence

of normal tensors is given by the following result ([5]):

Theorem 2.9. The following Diffx0-equivariant morphism of ringed spaces is surjective:

J∞x0 Conn
π−−→

∞∏

i=0

Ni , j∞x0∇ 7−−→ (Γ0
x0
,Γ1

x0
, . . .) ,

and its fibers are the orbits of the group

NDiffx0 := {τ ∈ Diffx0 : τ∗,x0 = Id ∈ Gl(Tx0X)} .
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Moreover, there exist smooth sections passing through any point of J∞x0 Conn and, thus, it

induces a Gl(Tx0X)-equivariant isomorphism of ringed spaces:

(J∞x0 Conn)/NDiffx0 ==
∞∏

i=0

Ni .

Remark 2.10. If ∇ is a symmetric linear connection, then it is evident that the m-th

normal tensor Γmx0 of ∇ at x0 belongs to the vector subspace N sym
m of Nm , formed by those

tensors T in Nm which verify the following additional symmetry:

T lijk1...km = T ljik1...km .

This new symmetry readily leads to Γ0
x0

= 0 . That is why, when working with symmetric

connections, the statement of Thm. 2.9 changes slightly, as the map assigning to each sym-

metric linear connection its sequence of normal tensors at x0 takes values in the product∏∞
i=1N

sym
i .

2.2.4. Algebraic character. In the last step of the proof, the algebraic character of the in-

variants under consideration will be a consequence of the following elementary fact, that is

a reformulation of the analogous fact for a finite collection of vector spaces ([9], Sect. 24.1):

Proposition 2.11. Let {Ei}i∈N0 be a sequence of real vector spaces of finite dimension. Let

f :
∏∞

i=0Ei → R be a morphism of ringed spaces such that there exist ai > 0 and ω ∈ R, so

that:

f(λa0e0, . . . , λ
amem, . . .) = λωf(e0, . . . , em, . . .)

for all λ > 0 and (e0, . . . , em, . . .) ∈
∏∞

i=0Ei.

Then, either f is the null map or f depends on a finite number of variables e0, . . . , ek,

and it can be written as a sum of monomials of degree di ∈ N0 at ei, verifying the formula

a0d0 + . . .+ akdk = ω .

2.2.5. End of the proof. We now dispose all the previous elements together in order to ac-

complish the proof.

Proof of Theorem 2.3: Corollary 2.8 produces the following isomorphism of vector spaces:

[
Natural tensors T : C −→ T qp

associated to linear connections

]

∥∥∥
[

Diffx0-equivariant morphisms of ringed spaces
tx0 : J∞x0 Conn −→ ⊗pTx0X ⊗⊗qT ∗x0X

]
.

As the subgroup NDiffx0 ⊂ Diffx0 acts by the identity on ⊗pTx0X ⊗⊗qT ∗x0X , any such

morphism tx0 factors through the quotient ringed space J∞x0 Conn /NDiffx0 , and therefore

the above vector space is isomorphic, in virtue of Theorem 2.9, to the following vector space:
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[
Gl(Tx0X)-equivariant morphisms of ringed spaces

tx0 :
∏∞

i=0Ni −→ ⊗pTx0X ⊗⊗qT ∗x0X

]
.

Now, the equivariance with respect to the homothety of ratio λ−1 implies that any such

a morphism tx0 satisfies the following homogeneity condition:

tx0(. . . , λ
m+1Γmx0 , . . .) = λp−q tx0(. . . ,Γ

m
x0
, . . .) ,

for any sequence (. . . ,Γmx0 , . . .) ∈
∏∞

i=0 Ni.

As this condition should be satisfied for all λ > 0 , we can invoke Proposition 2.11, and

conclude that the above vector space is isomorphic to
⊕

di

HomGl(Tx0X)

(
Sd0N0 ⊗ Sd1N1 ⊗ · · · ⊗ SdrNr , ⊗pT ∗x0X ⊗⊗qTx0X

)
,

where the summation is over all sequences {d0, d1, . . . , dr} of non-negative integers satisfying

equation (2.3) in the statement of Theorem 2.3.

�

3. Main results

In this section, we keep writing X to denote an n−dimensional smooth manifold, and

we now assume, for the rest of this note, n ≥ 3. Whenever it is necessary, x0 will also be

considered as a fixed point in X .

Let E → X be a bundle of tensors (in what follows, we will study the cases E = TX or

E = End(TX)) and let E be its sheaf of smooth sections.

According to Definition 2.1, an E-valued natural form (associated to linear connections)

is a regular and natural morphism of sheaves

C −→ Ωp ⊗ E ,

and Theorem 2.3 assures that the space of E-valued natural forms associated to linear

connections is a finite-dimensional real vector space.

Moreover, as the exterior differential commutes with diffeomorphisms, it induces R-linear

maps [
E-valued natural

p-forms

]
d−−−−→

[
E-valued natural

(p+ 1)-forms

]
,

where it should be understood that, if ω is an E-valued natural p-form, the differential

dω : C → Ωp+1 ⊗ E is defined, on each section ∇, with respect to the linear connection on E

induced by ∇.

Definition 3.1. A closed E-valued natural p-form (associated to linear connections) is

an element in the kernel of the map above.
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Example 3.2. The torsion tensor of a linear connection can be understood as a vector-

valued natural 2-form in the sense of Definition 2.1; that is to say, as a morphism of sheaves

(that can easily be checked to be regular and natural),

Tor : C −→ Ω2 ⊗D ,

whose value on a linear connection ∇ defined on an open set U ⊂ X is the following

vector-valued 2-form on U :

Tor∇(D1, D2) := ∇D1D2 −∇D2D1 − [D1, D2] .

In a similar manner, the curvature tensor of a linear connection can be thought of as an

endomorphism-valued natural 2-form according to Definition 2.1; that is to say, as a (regular

and natural) morphism of sheaves

R : C −→ Ω2 ⊗ End(D) ,

whose value on a linear connection ∇ defined on an open set U ⊂ X is the following

endomorphism-valued 2-form R∇ on U :

R∇(D1, D2)D3 := ∇D1∇D2D3 −∇D2∇D1D3 −∇[D1,D2]D3 .

3.1. Irreducible Gl-components. Let Gl = Gl(Tx0X) the real Lie group of linear auto-

morphisms of the tangent space Tx0X.

Observe the following Gl-equivariant linear maps:

c1
1 : Λ2T ∗x0X ⊗ Tx0X −→ T ∗x0X , ∧I : T ∗x0X −→ Λ2T ∗x0X ⊗ Tx0X ,

where c1
1 stands for the contraction of the first covariant and the first contravariant indices,

and I denotes the vector-valued 1-form defined by the identity endomorphism of Tx0X.

Lemma 3.3. The decomposition into irreducible Gl-submodules of Λ2T ∗x0X ⊗ Tx0X is

Λ2T ∗x0X ⊗ Tx0X ' Ker c1
1 ⊕ Im (∧I) .

Proof: An easy computation, using Theorem 2.4, proves that the dimension of the vector

space of linear, Gl-equivariant endomorphisms of Λ2T ∗x0X ⊗ Tx0X is less than or equal to

two, and, by Schur’s Lemma, so is the number of irreducible submodules.

As the submodules Ker c1
1 and Im (∧I) have different dimension (recall n ≥ 3), they are

non isomorphic, and hence they are the only irreducible submodules. �

On the other hand, let R ⊂ Λ2T ∗x0X ⊗ T ∗x0X ⊗ Tx0X be the vector subspace of tensors

T satisfying

T lijk + T ljki + T lkij = 0 .

The Ricci contraction c1
1 composed with the natural projections define Gl-equivariant

maps:

R −→ S2T ∗x0X , R −→ Λ2T ∗x0X ,
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which have Gl-equivariant sections

S2T ∗x0X
I⊗1−−−→ R , Λ2T ∗x0X

I⊗2−−−→ R
defined in this way ([16], Sect. 4):

(I ⊗1 S)(D1, D2, D3, ω) := S(D1, D3)ω(D2)− S(D2, D3)ω(D1) ,

(I ⊗2 H)(D1, D2, D3, ω) := H(D1, D3)ω(D2)−H(D2, D3)ω(D1) + 2H(D1, D2)ω(D3) .

Lemma 3.4. [16, Thm. 4.1] The decomposition of R into irreducible Gl-submodules is as

follows:

R = Im (I⊗1) ⊕ Im (I⊗2) ⊕ Ker
(
c1

1

)
.

3.2. Closed vector-valued natural forms. In view of the decomposition of Lemma 3.3,

the torsion tensor also produces this vector-valued 2-form, naturally associated to linear

connections:

H := c1
1(Tor) ∧ I .

Lemma 3.5. Tor and H are a basis of the R-vector space of vector-valued natural 2-forms.

Proof: In virtue of Theorem 2.3, the vector space under consideration is filtered with integer

solutions {d0, . . . , dk} to the equation

d0 + 2d1 + . . .+ (k + 1)dk = 2− 1 = 1 .

As there is only one solution, d0 = 1, d1 = . . . = dk = 0, we are led to describe all possible

Gl-equivariant linear maps

N0 = Λ2T ∗x0X ⊗ Tx0X −→ Λ2T ∗x0X ⊗ Tx0X .

As we have already mentioned, a simple computation using the invariant theory of the

general linear group allows to prove that this vector space has two generators.

Then, the task is reduced to check that Tor and H are R-linearly independent natural

tensors.

To this end, it is enough to find, for any n ≥ 3, a linear connection ∇ on a smooth

manifold of dimension n for which the tensors Tor∇ and H∇ are not R-proportional.

For example, let ∇ be the linear connection on Rn whose only non-zero Christoffel

symbols in cartesian coordinates are Γ1
12 = 1

2
x1+x3 and Γ1

21 = −1
2
x1−x2. Direct computation

shows that

Tor∇ = (x1 + x2 + x3) dx1 ∧ dx2 ⊗ ∂x1 ,
whereas

H∇ = − (x1 + x2 + x3) dx1 ∧ dx2 ⊗ ∂x1 +
n∑

i≥3

(x1 + x2 + x3) dx2 ∧ dxi ⊗ ∂xi ,

and so the proof is finished. �
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Theorem 3.6. There are no non-zero closed vector-valued natural 2-forms.

In other words, the exterior differential is an injective R-linear map:
[

Vector-valued natural
2-forms

]
d−−−−→

[
Vector-valued natural

3-forms

]
.

Proof: In view of Lemma 3.5, it is enough to prove that dH and dTor are R-linearly

independent vector-valued natural 3-forms.

If we choose the same connection ∇ on Rn (n ≥ 3) considered in the proof of Lemma

3.5, then we obtain:

d∇H = dx1∧dx2∧dx3⊗(−∂x1 + ∂x3)+
n∑

i>3

(dx1 ∧ dx2 ∧ dxi ⊗ ∂xi − dx2 ∧ dx3 ∧ dxi ⊗ ∂xi) ,

and

d∇Tor = R∇ ∧ I = dx1 ∧ dx2 ∧ dx3 ⊗ ∂x1 .
Since d∇Tor and d∇H are not R−proportional, this example suffices to end the proof.

�

Definition 3.7. A vector-valued 2-form α naturally associated to linear connections is

said to satisfy the first Bianchi identity if the following equality of vector-valued natural

3-forms holds:

dα = R ∧ I .

Corollary 3.8. The only vector-valued 2-form naturally associated to linear connections

satisfying the first Bianchi identity is the torsion tensor.

3.3. Closed endomorphism-valued natural forms.

Definition 3.9. An endomorphism-valued 2-form α naturally associated to symmetric lin-

ear connections is said to satisfy the first Bianchi identity if, for any symmetric linear

connection ∇ and any vector fields D1, D2, D3:

α∇(D1, D2)D3 + α∇(D2, D3)D1 + α∇(D3, D1)D2 = 0 .

Example 3.10. The curvature tensor R∇ of a symmetric linear connection ∇ satisfies this

identity.

Also, if Riccs and Ricch stand for the symmetric and skew-symmetric part of the Ricci

tensor, respectively, then the following (3, 1)-tensors also satisfy the first Bianchi identity:

C1(D1, D2, D3, ω) := Rics(D1, D3)ω(D2)−Rics(D2, D3)ω(D1) ,

and

C2(D1, D2, D3, ω) := Rich(D1, D3)ω(D2)−Rich(D2, D3)ω(D1) + 2Rich(D1, D2)ω(D3) .
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Lemma 3.11. C1, C2 and R are a basis of the R-vector space of endomorphism-valued

natural 2-forms (associated to symmetric linear connections) that satisfy the first Bianchi

identity.

Proof: Theorem 2.3 reduces the problem to that of describing the following vector space2:

⊕

di

HomGl

(
Sd1N sym

1 ⊗ · · · ⊗ SdrN sym
r , R

)
,

where the summation is over all sequences {d1, . . . , dr} of non-negative integers satisfying:

(3.1) 2d1 + . . .+ (r + 1) dr = 3− 1 = 2 .

There is only one solution, d1 = 1, d2 = . . . = dr = 0, and therefore our task consists in

computing the vector space of Gl-equivariant linear maps

N sym
1 −→ R .

It is not difficult to check that the formula T lijk = Γljki−Γlikj establishes a Gl-equivariant

linear isomorphism N sym
1 ' R. Thus, the problem is then to compute the equivariant endo-

morphisms of the Gl-module R.

As this module decomposes into three non-isomorphic irreducible components (Lemma

3.4), the vector space of equivariant endomorphisms has dimension 3. Moreover, due to the

explicit description of these components, it follows that the elements that produce C1, C2

and R are a basis of this vector space.

Again, it is enough to find, for any n ≥ 3, a symmetric linear connection ∇ on a smooth

manifold of dimension n for which the tensors (C1)∇, (C2)∇ and R∇ are linearly indepen-

dent.

For example, let ∇ be the linear connection on Rn (n ≥ 3) whose only non-zero Christoffel

symbols in cartesian coordinates are Γ1
11 = x2x3 and Γ2

23 = Γ2
32 = x1.

2Please recall Remark 2.10, since we are now considering symmetric linear connections.
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By using the notation Tij := dxi ⊗ ∂xj , straightforward computations give these linearly

independent tensors:

R∇ = dx1 ∧ dx2 ⊗ (−x3T11 + T32) +

+ dx1 ∧ dx3 ⊗ (−x2T11 + T22) +

+ dx2 ∧ dx3 ⊗
(
−x2

1T32

)
,

(C1)∇ = dx1 ∧ dx2 ⊗
(

1

2
x3T11 −

1

2
x3T22 −

1

2
(x2 + 1)T32

)
+

+ dx1 ∧ dx3 ⊗
(

1

2
(x2 + 1)T11 −

1

2
x3T23 + x2

1T31 −
1

2
(x2 + 1)T33

)
+

+ dx2 ∧ dx3 ⊗
(

1

2
(x2 + 1)T12 −

1

2
x3T13 + x2

1T32

)
,

(C2)∇ = dx1 ∧ dx2 ⊗
(

3

2
x3T11 +

3

2
x3T22 +

1

2
(x2 − 1)T32 + x3T33

)
+

+ dx1 ∧ dx3 ⊗
(

3

2
(x2 − 1)T11 + (x2 − 1)T22 +

1

2
x3T23 +

3

2
(x2 − 1)T33

)
+

+ dx2 ∧ dx3 ⊗
(

1

2
(x2 − 1)T12 −

1

2
x3T13

)
.

�

Definition 3.12. An endomorphism-valued natural 2-form α is said to satisfy the second

Bianchi identity if it is a closed endomorphism-valued natural 2-form, in the sense of

Definition 3.1.

Theorem 3.13. For any smooth n−manifold (with n ≥ 3), the constant multiples of the

curvature are the only endomorphism-valued natural 2-forms (associated to symmetric linear

connections) that satisfy both the first and second Bianchi identities.

Proof: Since dR = 0, and because of Lemma 3.11, it suffices to prove that dC1 and dC2

are R-linearly independent natural tensors.

As we did before, it is enough to find a symmetric linear connection ∇ on a smooth

manifold of dimension n ≥ 3 whose tensors d∇C1 and d∇C2 are not R-proportional.

For example, choosing the same connection ∇ on Rn considered in the proof of Lemma

3.11, we obtain the following non-proportional tensors, which finishes the proof:
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d∇C1 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
x2x3(x2 + 1)T12 +

1

2
x2x

2
3T13 +

1

2
(x1x3 − 1)T22+

+2x1T32 −
1

2
(x1x3 − 1)T33

)
,

d∇C2 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
x2x3(x2 − 1)T12 +

1

2
x2x

2
3T13 −

1

2
(x1x3 − 1)T22+

+
1

2
(x1x3 − 1)T33

)
.

�
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Abstract. We prove a theorem that describes all possible tensor-valued natural operations
in presence of a linear connection and an orientation in terms of certain linear representations
of the special linear group.

As an application of this result, we prove a characterisation of the torsion and curvature
operators as the only natural operators that satisfy the Bianchi identities.

Contents

1. The category of ringed spaces 2

1.1. Differential operators 5

2. Natural operations in presence of an orientation 6

2.1. Natural bundles 6

2.2. Natural operations in presence of an orientation 8

3. Invariants of linear connections and an orientation 9

4. An application 14

4.1. Invariant theory of the special linear group 14

4.2. Uniqueness of the torsion and curvature operators 15

References 21

Since the very early days of differential geometry, the idea of natural operation played a

mayor role in the development the theory. As an example, let us point out the applications of

this notion of naturalness in the inception of general relativity (cf. [14]). In the course of the

years, there also appeared some striking mathematical results, such as Gilkey’s characteri-

zation of Pontryagin forms on Riemannian manifolds ([1], [4]) or his proof of the uniqueness

of the Chern-Gauss-Bonnet formula ([5]). By the end of the last century, the modern de-

velopment of this theory was summarized in the monograph by Kolář-Michor-Slovák ([13]).
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That book contained all the main results and techniques that were known so far, and thus

became the standard reference in the subject since then.

On the other hand, the notion of covariance or naturalness is in some sense ubiquitous in

physics and mathematics. For that reason, it is not surprising the renewed interest in this

theory of natural operations that has raised in recent years, with the appearance of new

results and applications to contact geometry ([2]), homotopy theory ([3], [19]), Riemannian

and Kähler geometry ([6], [7], [15], [21]), general relativity ([17]) or quantum field theory

([11], [12]).

In this paper, we focus our attention on the vector space of tensor-valued natural op-

erations that can be performed in presence of a linear connection and an orientation. Our

main result, Theorem 3.3, establishes that such a vector space is isomorphic to the space

of invariant maps between certain linear representations of the special linear group. Thus,

the description of these spaces can, in certain cases, be completely achieved using classi-

cal invariant theory. As an example of this philosophy, in the final section we characterize

the torsion and the curvature as the only natural tensors satisfying the Bianchi identities

(Corollary 4.7 and Theorem 4.11).

These results generalize analogous statements recently proven in [10], where we studied

natural tensors associated to a linear connection. This was also the situation considered in

a landmark paper by Slovák ([20]), whose results were included —and expanded— in [13].

Nevertheless, the non-specialist may find difficult to understand the precise meaning of some

statements of this book, due to the functorial language and the generality of its setting.

For this reason, we outlined in [10] the foundations of an alternative approach, that we

hope will be accessible to a wider audience. The present paper lays out complete proofs of

the main results of this approach, whose novelties are a systematic use of the language of

sheaves, ringed spaces and a more elementary—yet equivalent (cf. [16])—notion of natural

bundle. In our opinion, the heart of the matter in this theory is the existence of an analogue

of a Galois theorem (cf. [16, Thm. 1.6]), that allows the use of group theory to infer theorems

in many areas of differential geometry, in many of which (such as Fedosov, contact or Finsler

geometry) this idea is still to be exploited.

1. The category of ringed spaces

In this section we firstly introduce the category of ringed spaces, that is a framework

adequate for our purposes: it will allow us to treat certain “infinite dimensional” spaces —

such as the ∞-jet space, or a countable product of vector spaces— and quotients of smooth

manifolds by the actions of groups on equal footing as usual smooth, finite dimensional

manifolds.
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Secondly, we state Theorem 1.9, that is an important characterization of differential

operators as those morphisms of sheaves that transform smooth families of sections into

smooth families of sections.

Definition 1.1. A ringed space is a pair (X,OX), where X is a topological space and OX
is a subalgebra of the sheaf of real-valued continuous functions on X.

A morphism of ringed spaces ϕ : (X,OX)→ (Y,OY ) is a continuous map ϕ : X → Y

such that composition with ϕ induces a morphism of sheaves ϕ∗ : OY → ϕ∗OX , that is, for

any open set V ⊂ Y and any function f ∈ OY (V ), the composition f ◦ ϕ lies in OX(ϕ−1V ).

Any smooth manifold X is a ringed space, where OX = C∞X is the sheaf of smooth real-

valued functions. If X and Y are smooth manifolds, a morphism of ringed spaces X → Y is

just a smooth map.

By analogy with this example, on any ringed space (X,OX) the sheaf OX will be called

the sheaf of smooth functions, and morphisms of ringed spaces X → Y will be often referred

to as smooth morphisms.

Limits of ringed spaces. This category possesses limits; nevertheless, in what follows it will

only appear this particular case:

Definition 1.2. The inverse limit of a sequence of smooth manifolds and smooth maps

between them

. . .→ Xk+1
ϕk+1−−−−→ Xk

ϕk−−→ Xk−1 → . . .

is the ringed space (X∞,O∞) defined as follows:

- the underlying topological space is the inverse limit of the topological spaces Xk; i.e.,

the set:

X∞ := lim
←
Xk

endowed with the minimum topology for which the canonical projections πk : X∞ →
Xk are continuous.

- its sheaf of smooth functions is the direct limit O∞ := lim
→
π∗kOXk .

That is to say, for any open set U ⊆ X∞, a continuous map f : U → R lies in O∞(U) if

and only if for any point x ∈ U , there exist k ∈ N, an open neighbourhood πk(x) ∈ Vk ⊆ Xk

and a smooth map fk : Vk → R such that the following triangle commutes:

π−1
k (Vk)

f //

πk
##

R

Vk

fk

@@ .

Later we will need the following two properties regarding the smooth structure of this

inverse limit:
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Universal property of the inverse limit: For any smooth manifold Y , the projections

πk : X∞ → Xk induce a bijection, that is functorial on Y ,

C∞(Y,X∞) = lim
←
C∞(Y,Xk) , ϕ 7→ (πk ◦ ϕ)

where C∞( , ) denotes the set of morphisms of ringed spaces.

Proof: The projections πk are smooth maps, so one inclusion is trivial. As for the other, let

ϕ : Y → X∞ be a continuous map such that πk ◦ ϕ is smooth, for any k ∈ N.

Let f ∈ O∞(U) be a smooth function and let y ∈ ϕ−1(U). On a neighbourhood V of

ϕ(y), there exists an smooth map fk : Xk → R such that f = fk ◦ πk, and therefore:

f ◦ ϕ = (fk ◦ πk) ◦ ϕ = fk ◦ (πk ◦ ϕ)

that is smooth because πk ◦ ϕ is a smooth map.

�

Proposition 1.3. Let Z be a smooth manifold. A continuous map ϕ : X∞ → Z is smooth if

and only if it locally factors through a smooth map defined on some Xk.

Proof: Let ϕ : X∞ → Z be a smooth map; let x ∈ X∞ be a point and let (U, z1, . . . , zn) be

a coordinate chart around ϕ(x) in Z. Each of the functions z1 ◦ ϕ, . . . , zn ◦ ϕ ∈ O∞(ϕ−1U)

locally factors through some Xj; as they are a finite number, there exists k ∈ N and an open

neighbourhood V of x such that all of them, when restricted to V , factor through Xk. Hence,

ϕ|V = (ϕk ◦ πk)|V , where ϕk = (z1 ◦ ϕ, . . . , zn ◦ ϕ).

The converse is obvious because the composition of morphisms of ringed spaces is a

morphism of ringed spaces.

�
As examples, the space J∞F of ∞-jets of sections of a fibre bundle F is defined as the

inverse limit of the sequence of k-jets fibre bundles:

. . .→ JkF → Jk−1F → . . .→ F → X .

Also, if N0, N1, N2, . . . is a countable family of finite dimensional R-vector spaces, the

vector space
∏∞

i=1 Ni is, by definition, the inverse limit of the projections:

. . .→
k+1∏

i=1

Ni −→
k∏

i=1

Ni −→ . . .→ N2 ×N1 → N1 .

Quotients by the action of groups. Let G be a group acting on a ringed space X . Let us

denote by X/G the quotient topological space and by π : X → X/G the quotient map.

Definition 1.4. The quotient ringed space (X/G,OX/G) is the ringed space whose un-

derlying topological space is the quotient topological space X/G , and whose sheaf of smooth

functions is defined, on any open set U ⊆ X/G as:

OX/G(U) := {f ∈ C(U,R) : f ◦ π ∈ OX(π−1(U))} = OX(π−1(U))G ,
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where OX(π−1(U))G stands for the set of maps f ∈ O∞X (π−1(U)) , such that f(g · p) = f(p) ,

for any g ∈ G and p ∈ π−1(U) .

It is then routine to check that the quotient map π : X → X/G is a morphism of ringed

spaces that satisfies the following property:

Universal property of the quotient: For any ringed space Y , the quotient map π : X →
X/G induces a functorial bijection:
{

Morphisms of ringed spaces X → Y

constant along the orbits of G

} {
Morphisms of ringed spaces

X/G −→ Y

}
.

Corollary 1.5 (Orbit reduction). Let G be a group acting on a ringed space X, and let

f : X → Y be a surjective morphism of ringed spaces that, locally on Y , admits smooth

sections passing through any point of X.

If the orbits of G coincide with the fibres of f , then the corresponding map f̄ : X/G→ Y

is an isomorphism of ringed spaces.

Proof: The hypothesis on the fibres assures that the induced morphism f̄ : X/G → Y is

bijective. The inverse map f̄−1 is also a morphism of ringed spaces because locally coincides

with the projection into the quotient of any smooth section of f . �

There is also the following corollary, whose proof is routine:

Corollary 1.6. Let G be a group acting on two ringed spaces X and Y , and let H ⊆ G be

a subgroup that acts trivially on Y .

Then, the universal property of the quotient restricts to a bijection:
{
G-equivariant morphisms

of ringed spaces X → Y

} {
G/H-equivariant morphisms

of ringed spaces X/H −→ Y

}
.

1.1. Differential operators. Let F → X and F ′ → X be fibre bundles over a smooth

manifold X .

Definition 1.7. A differential operator is a morphism of ringed spaces P : J∞F → F ′

such that the following triangle commutes:

J∞F
P //

j∞π ##

F ′

π′}}
X.

Let us denote by F and F ′ the sheaves of smooth sections of F and F ′, respectively.
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Definition 1.8. A family of sections {st : Ut → F}t∈T is smooth if T is a smooth

manifold and the following conditions are satisfied:

(1) U = qt∈TUt is an open set of X × T .

(2) The map s : U → F , defined as s(t, x) := st(x), is smooth.

A morphism of sheaves φ : F → F ′ is regular if, for any smooth family of sections

{st : Ut → F}t∈T , the family {φ(st) : Ut → F ′ }t∈T is also smooth.

Any differential operator P : J∞F → F ′ defines a morphism of sheaves

φP : F −→ F ′ , φP (s)(x) := P (j∞x s) ,

and the chain rule proves that it is a regular morphism of sheaves.

The following statement is a particular case of a deep result due to J. Slovák (see [13,

Sect. 19.7] , or [18] for a proof of the specific statement below):

Theorem 1.9 (Peetre-Slovák). If F → X and F ′ → X are fibre bundles over a smooth

manifold X, then the assignment P → φP explained above establishes a bijection:
{

Differential operators

J∞F −→ F ′

} {
Regular morphisms of sheaves

F −→ F ′

}
.

2. Natural operations in presence of an orientation

The purpose of this section is twofold: on the one hand, we present the notion of natural

operation (Definition 2.2); our definition strongly differs from the standard one (cf. [13]),

although it is equivalent to it ([16]). On the other hand, we prove a general result —Theorem

2.4— that relates these natural operations with certain smooth equivariant morphisms.

2.1. Natural bundles. Let Diff (X) denote the set of diffeomorphisms τ : U → V between

open sets of a smooth manifold X .

If π : F → X is a bundle over X , a lifting of diffeomorphisms is a map:

Diff (X) −→ Diff (F )

τ 7−→ τ∗

such that if τ : U → V is a diffeomorphism between open sets in X , then τ∗ : FU → FV is a

diffeomorphism covering τ ; that is to say, making the following square commutative

FU
τ∗
∼
//

π
��

FV

π
��

U
τ

∼
// V

,

where FU := π−1(U) and FV := π−1(V ).

Definition 2.1. A natural bundle over a smooth manifold X is a bundle F → X together

with a lifting of diffeomorphisms satisfying the following properties:
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(1) Functorial character: Id∗ = Id and (τ ◦ τ ′)∗ = (τ)∗ ◦ (τ ′)∗.

(2) Local character : for any diffeomorphism τ : U → V and any open subset U ′ ⊂ U ,

(τ|U ′)∗ = (τ∗)|FU′ .

(3) Regularity : if {τt : Ut → Vt}t∈T is a smooth family of diffeomorphisms between open

sets on X, then the family {(τt)∗ : FUt → FVt}t∈T is also smooth.

A subbundle E of a natural bundle F is said to be a natural if it is a natural bundle

and its lifting of diffeomorphisms is the restriction of the lifting of diffeomorphisms of F .

A morphism of natural bundles is a morphism of bundles ϕ : F → F ′ that commutes

with the lifting of diffeomorphisms; that is, such that for any diffeomorphism τ : U → V ,

the following square commutes

FU

τ∗
��

ϕ // F ′U

τ∗
��

FV
ϕ // F ′V .

The tangent and cotangent bundles, or, more generally, the bundles of (r, s)-tensors T sr
are examples of natural bundles. The subbundle of k-forms Ωk ⊂ T 0

k is a natural subbundle

of the bundle of k-covariant tensors T 0
k .

If F → X is a natural bundle, its k-jet prolongation JkF is also a natural bundle, for all

k ∈ N. Thus, if τ : U → V is a diffeomorphism, its liftings to these jet spaces JkF allow to

define a lifting to the ∞-jet space; in other words, a morphism of ringed spaces

τ∗ : J
∞FU −→ J∞FV

covering the diffeomorphism τ .

Let π : F → X and π′ : F ′ → X be natural bundles over X, and let F and F ′ be their

sheaves of smooth sections, respectively.

Definition 2.2. A differential operator P : J∞F −→ F ′ is natural if it is a morphism of

ringed spaces that commutes with the lifting of diffeomorphisms.

A morphism of sheaves φ : F → F ′ is natural if it is a regular morphism of sheaves

that commutes with the action of diffeomorphisms on sections; that is to say, if for any

diffeomorphism τ : U → V between open sets of X, the following square commutes:

F(U)
φ //

τ∗
��

F ′(U)

τ∗
��

F(V )
φ // F ′(V ) .

where τ∗ : F(U)→ F(V ) is defined as τ∗(s) := τ∗ ◦ s ◦ τ−1, for any s ∈ F(U).
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Theorem 2.3. The choice of a point p ∈ X allows to define a bijection

{
Natural morphisms of sheaves

φ : F −→ F ′

} {
Diffp-equivariant smooth maps

J∞p F −→ F ′p

}
,

where Diffp stands for the group of germs of diffeomorphisms τ between open sets of X such

that τ(p) = p.

Proof: In this context, where both F and F ′ are natural bundles, the bijection of Theorem

1.9 specializes to a bijection

{
Natural morphisms of sheaves

φ : F −→ F ′

} {
Natural differential operators

P : J∞F −→ F ′

}
.

Then, a standard argument—using that the pseudogroup Diff (X) acts transitively on

X—allows to prove that restriction to the fibre of the point p establishes a bijection:

{
Natural differential operators

P : J∞F −→ F ′

} {
Diffp-equivariant smooth maps

J∞p F −→ F ′p

}
.

To be precise, if fp : J∞p F → F ′p is a Diffp-equivariant map, the corresponding differential

operator P : J∞F → F ′ is defined, over the fibre of any other point q ∈ X, as the composition

τ−1
∗ ◦ fp ◦ τ∗, where τ : Uq → Vp is any diffeomorphism such that τ(q) = p. The choice of a

different τ ′ produces the same P , due to the Diffp-equivariance of fp, whereas the smoothness

of P is a consequence of the smoothness assumptions on the liftings on F and F ′. �

2.2. Natural operations in presence of an orientation. Let us now explain how to

generalize Theorem 2.3 to the case of natural operations that depend on an orientation.

First of all, observe that the orientation bundle OrX → X is a natural bundle: the lifting

of a diffeomorphism τ at a point p is the identity, in case that det τ∗,p is positive, and the

other map otherwise.

On the other hand, let us also observe that the direct product F ×F ′ of natural bundles

is also a natural bundle, with the obvious lifting of diffeomorphisms.

Theorem 2.4. Let F and F ′ be natural bundles over X, and let F and F ′ be their sheaves

of smooth sections, respectively.

The choice of a point p ∈ X and an orientation orp at p produces a bijection:

{
Natural morphisms of sheaves

F ×OrX −→ F ′

} {
SDiffp-equivariant smooth maps

J∞p F → F ′p

}
,
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where OrX denotes the sheaf of orientations on X, and SDiffp stands for the group of germs

at p of diffeomorphisms τ such that τ(p) = p and det τ∗.p > 0.

Proof: Due to Theorem 2.3, the choice of a point p allows to define a bijection:

{
Natural morphisms of sheaves

F ×OrX −→ F ′

} {
Diffp-equivariant smooth maps

J∞p F × J∞p OrX −→ F ′p

}
.

As the action of the group Diffp on the ringed space J∞p OrX is transitive, a general

statement about ringed spaces —Proposition 2.5 below— permits to conclude. �

Proposition 2.5. Let G be a group acting on three ringed spaces X, Y and Z.

If the action on Y is transitive, then the choice of a point δ ∈ Y allows to define a

bijection:
{
G-equivariant smooth maps

f : X × Y −→ Z

} {
Iδ-equivariant smooth maps

f̄ : X −→ Z

}
,

where Iδ ⊆ G denotes the isotropy group of δ.

Proof: For any smooth map f : X × Y −→ Z , the restriction to the subspace X × {δ}
defines a smooth Iδ-equivariant map f̄ : X × {δ} = X −→ Z.

Conversely, any smooth Iδ-equivariant map f̄ : X −→ Z , can be extended to a smooth

G-equivariant map as follows:

f : X × Y −→ Z , f(x, y) := g · (f̄(g−1 · y )) ,

where g ∈ G is any element such that x = g · δ .

Finally, it is not difficult to check that this extension is well-defined, as well as that both

assignments are mutually inverse. �

3. Invariants of linear connections and an orientation

This section is devoted to prove Theorem 3.3, which is a description of the space of nat-

ural tensors associated to a linear connection and an orientation.

Let ∇ be the germ of a linear connection at a point p ∈ X, and let ∇̄ be the germ of

the flat connection at p ∈ X corresponding, via the exponential map, to the flat connection

of TpX.

Let T := ∇− ∇̄ be the (2, 1)-tensor:

T(ω,D1, D2) := ω(D∇1 D2 −D∇̄1 D2) .
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Definition 3.1. For any integer m ≥ 0, the m-th normal tensor of ∇ at p is ∇̄m
p T.

In a system of normal coordinates (x1, . . . , xn) for ∇ at p:

∇̄m
p T =

∑

i,j,k,a1,...,am

∂mΓkij
∂xa1 . . . ∂xam

(p)

(
∂

∂xk

)

p

⊗ dpxi ⊗ dpxj ⊗ dpxa1 ⊗ . . .⊗ dpxam .

Definition 3.2. The space Nm of normal tensors of order m at p is the vector subspace

of (m+ 2, 1)-tensors T at p satisfying the following symmetries:

(1) they are symmetric in the last m covariant indices:

(3.1) T lijk1...km = T lijkσ(1)...kσ(m)
, ∀ σ ∈ Sm ;

(2) the symmetrization of the m+ 2 covariant indices is zero:

(3.2)
∑

σ∈Sm+2

T lσ(i)σ(j)σ(k1)...σ(km) = 0.

Normal tensors ∇̄m
p T lie in Nm ([8, Prop. 3.4]). Thus, it makes sense to consider the

following maps, for any m ≥ 0:

φm : Jmp Conn −→ N0 × . . .×Nm

jmp ∇ 7−→ (Tp, . . . , ∇̄m
p T) ,

where Conn→ X denotes the bundle of linear connections on X (not necessarily symmetric).

These maps φm are compatible, in the sense that the following diagrams commute:

Jm+1
p Conn

φm+1 //

��

N0 × . . .×Nm+1

��
Jmp Conn

φm // N0 × . . .×Nm,

and hence they define a morphism of ringed spaces between the corresponding inverse limits:

φ∞ : J∞p Conn −→
∞∏

i=0

Ni

j∞p ∇ 7−−→ (Tp, ∇̄1
pT, . . . ).

For any m ≥ 1, let us consider the Lie groups Diffmp := {jmp τ : τ ∈ Diffp} as well as their

subgroups NDiffmp := {jmp τ ∈ Diffmp : j1
pτ = j1

pId}.
Their inverse limits define groups

Diff∞p := lim
←

Diffmp and NDiff∞p := lim
←

NDiffmp ,
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that can be related via a short exact sequence of groups:

(3.3) 1 −→ NDiff∞p −→ Diff∞p −→ Gl −→ 1 ,

where Gl := Diff1
p = {dpτ : τ ∈ Diffp}.

Reduction Theorem. The Diff∞p −equivariant morphism of ringed spaces

φ∞ : J∞p Conn −→
∞∏

i=0

Ni

j∞p ∇ 7−−→ (Tp, ∇̄1
pT, . . . ),

is surjective, its fibres are the orbits of NDiff∞p and it admits smooth sections passing through

any point of J∞p Conn.

As a consequence, φ∞ induces a Gl-equivariant isomorphism of ringed spaces:

(J∞p Conn )/NDiff∞p ==
∞∏

i=0

Ni .

Proof: By [8, Theorem 3.6], the Diffm+2
p -equivariant maps

φm : Jmp Conn −→ N0 × . . .×Nm

jmp ∇ 7−→ (∇̄0
pT, . . . , ∇̄m

p T)

are surjective, regular projections whose fibres are the orbits of NDiffm+2
p , for any m ≥ 0.

Let us explain how these facts imply the statement above that deals with formal develop-

ments of connections. Firstly, as φm is Diffm+2
p -equivariant and surjective for all m, it follows

that φ∞ is Diff∞p -equivariant and surjective.

Next, let us check that the fibres of φ∞ are the orbits of NDiff∞p . On the one hand, if

j∞p ∇ = τ∞ ·j∞p ∇′ for some τ∞ ∈ NDiff∞p , the condition of φ∞ being Diff∞p -equivariant implies

φ∞(j∞p ∇) = φ∞(τ∞ · j∞p ∇′) = τ∞ · φ∞(j∞p ∇′) = φ∞(j∞p ∇′) .
Conversely, if φ∞(j∞p ∇) = φ∞(j∞p ∇′), then φm(jmp ∇) = φm(jmp ∇′) for all m. Therefore,

there exists τm ∈ NDiffm+2
p such that jmp ∇′ = τm · jmp ∇. The sequence (τm)m∈N defines an

element τ∞ ∈ NDiff∞p that verifies

j∞p ∇ = τ∞ · j∞p ∇′ ,
so that both formal developments are in the same orbit of NDiff∞p .

As for the existence of smooth sections, let us choose a local coordinate system centred

at p. For any given formal development j∞p ∇, the proof of [8, Theorem 3.6] shows how these

coordinates define a global section σm of φm that passes through jmp ∇. These sections are

easily checked to be compatible with the projections Jm+1
p Conn → Jmp Conn and

∏m+1
i=0 Ni →∏m

i=0Ni for all m, so that they in turn define a morphism of ringed spaces that is a section

of φ∞ and passes through j∞p ∇.

Finally, the last assertion of the statement is a consequence of Corollary 1.5. �
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Theorem 3.3. Let X be a smooth manifold and let C and OrX denote the sheaves of con-

nections and orientations on X, respectively.

Let F be a natural subbundle of the bundle of (r, s)-tensors T sr and let F be its sheaf of

smooth sections.

If we fix a point p ∈ X and an orientation orp at p, there exists an R-linear isomorphism

{
Natural morphisms of sheaves

C ×OrX −→ T

}
⊕
di

HomSl(S
d0N0 ⊗ . . .⊗ SdkNk, Tp) ,

where d0, . . . , dk run over the non-negative integer solutions of the equation

d0 + . . .+ (k + 1)dk = r − s ,

and where Gl := {dpτ : τ ∈ Diffp} and Sl := {dpτ : τ ∈ SDiffp}.

Proof: Theorem 2.4 yields the isomorphism:

{
Natural morphisms of sheaves

C ×OrX −→ T

} {
SDiffp-equivariant smooth maps

J∞p Conn −→ Tp

}
.

Observe that the action of SDiffp over J∞p Conn and Fp coincides with that of SDiff∞p , so

that, in the formula above, we may consider SDiff∞p -equivariant maps instead.

Also, notice that the following sequence of groups is exact:

1 −→ NDiff∞p −→ SDiff∞p −→ Sl −→ 1

The subgroup NDiff∞p acts by the identity over Tp, so that Corollary 1.6, in conjunction

with the exact sequence above, assures the existence of an isomorphism:

{
SDiff∞p -equivariant smooth maps

J∞p Conn −→ Tp

} {
Sl-equivariant smooth maps

J∞p Conn /NDiff∞p −→ Tp

}
.

Now, the Reduction Theorem above allows us to replace this quotient ringed space by an

infinite product of vector spaces, via the isomorphism:

{
Sl-equivariant smooth maps

J∞p Conn /NDiff∞p −→ Tp

} 



Sl-equivariant smooth maps

t :
∞∏

i=0

Ni −→ Tp





.



INVARIANT OPERATIONS OF A LINEAR CONNECTION AND AN ORIENTATION 13

Finally, in the last step we make use of the equivariance by homotheties hλ : TpX → TpX

of ratio λ > 0. As hλ−1 ∈ Sl, the equivariance of these maps t implies

t(. . . , λm+1Γmp , . . .) = t(hλ−1(. . . ,Γmp , . . .)) = hλ−1 · t(. . . ,Γmp , . . .) = λr−st(. . . ,Γmp , . . .)

for all λ > 0, (. . . ,Γmp , . . .) ∈
∏∞

i=0Ni.

In view of this property of the smooth maps t, the Homogeneous Function Theorem stated

below (to be precise, formula (3.7)) allows to conclude the isomorphism:





Sl-equivariant smooth maps

t :
∞∏

i=0

Ni −→ Tp





⊕
di

HomSl(S
d0N0 ⊗ . . .⊗ SdkNk, Tp) ,

where d0, . . . , dk are non-negative integers running over the solutions of the equation

d0 + . . .+ (k + 1)dk = r − s .
�

Homogeneous Function Theorem. Let {Ei}i∈N be finite dimensional vector spaces.

Let f :
∏∞

i=1Ei → R be a smooth function such that there exist positive real numbers

ai > 0, and w ∈ R satisfying:

(3.4) f(λa1e1, . . . , λ
aiei, . . .) = λw f(e1, . . . , ei, . . .)

for any positive real number λ > 0 and any (e1, . . . , ei, . . .) ∈
∏∞

i=1 Ei.

Then, f depends on a finite number of variables e1, . . . , ek and it is a sum of monomials

of degree di in ei satisfying the relation

(3.5) a1d1 + · · ·+ akdk = w .

If there are no natural numbers d1, . . . , dr ∈ N ∪ {0} satisfying this equation, then f is

the zero map.

Proof: Firstly, if f is not the zero map, then observe w ≥ 0 because, otherwise, (3.4) is

contradictory when λ→ 0.

As f is smooth, there exists a neighbourhood U = {|e1| < ε1, . . . , |ek| < εk} ⊂
∏∞

i=1Ei of

the origin and a smooth map f : πk(U)→ R such that f|U = (f ◦ πk)|U .

As the a1, . . . , ak are positive, there exist a neighbourhood of zero, V 0 ⊂ R, and a neigh-

bourhood of the origin V ⊂ πk(U), such that for any (e1, . . . , ek) ∈ V , and any λ ∈ V 0

positive, the vector (λa1e1, . . . , λ
akek) lies in V .

On that neighbourhood V , the function f satisfies the homogeneity condition:

(3.6) f(λa1e1, . . . , λ
akek) = λw f(e1, . . . , ek)

for any positive real number λ ∈ V 0.
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Differentiating this equation, we obtain analogous conditions for the partial derivatives

of f ; v.gr.:

∂f

∂x1

(λa1e1, . . . , λ
akek) = λw−a1

∂f

∂x1

(e1, . . . , ek) .

If the order of derivation is big enough, the corresponding partial derivative is homoge-

neous of negative weight, and hence zero. This implies that f is a polynomial; the homo-

geneity condition (3.6) is then satisfied for any positive λ ∈ V 0 if and only if its monomials

satisfy (3.5).

Finally, given any e = (e1, . . . , en, . . .) ∈
∏∞

i=1Ei, take λ ∈ R+ such that the vector

(λa1e1, . . . , λ
akek, . . .) lies in U . Then:

f(e) = λ−wf(λa1e1, . . . , λ
anen, . . .) = λ−wf(λa1e1, . . . , λ

akek) = f(e1, . . . , ek)

and f only depends on the first k variables.

�

This statement readily generalizes to say that, for any finite dimensional vector space W ,

there exists an R-linear isomorphism:

(3.7)

[
Smooth maps f :

∞∏
i=1

Ei → W satisfying (3.4)

]

∥∥∥
⊕

d1,...,dk

HomR(Sd1E1 ⊗ . . .⊗ SdkEk, W )

where d1, . . . , dk run over the non-negative integer solutions of (3.5).

4. An application

Finally, as an application of Theorem 3.3, we compute in this section some spaces of

vector-valued and endomorphism-valued natural forms associated to linear connections and

orientations, thus obtaining characterizations of the torsion and curvature operators (Corol-

lary 4.7 and Theorem 4.11).

4.1. Invariant theory of the special linear group. Let V be an oriented R-vector

space of finite dimension n, and let Sl(V ) be the real Lie group of its orientation-preserving

R-linear automorphisms.

Our aim is to describe the vector space of Sl(V )-invariant linear maps

V ∗⊗ p. . . ⊗V ∗ ⊗ V⊗ p. . . ⊗V −→ R .

For any permutation σ ∈ Sp, there exists the so called total contraction maps, which are

defined as follows

Cσ(ω1 ⊗ . . .⊗ ωp ⊗ e1 ⊗ . . .⊗ ep) := ω1(eσ(1)) . . . ωp(eσ(p)) .
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Moreover, let Ω ∈ ΛnV ∗ be a representative of the orientation, and let e be the dual

n-vector; that is to say, the only element in ΛnV such that Ω(e) = 1. For any permutation

σ ∈ Sp+kn, the following linear maps are also Sl(V )-invariant:

(ω1, . . . , ωp, e1, . . . , ep) 7−→ Cσ(Ω⊗ k. . . ⊗Ω⊗ ω1 ⊗ . . .⊗ ωp ⊗ e⊗ k. . . ⊗e⊗ e1 ⊗ . . .⊗ ep) .
Classical invariant theory proves that these maps suffice to generate the vector space

under consideration:

Theorem 4.1. The real vector space HomSl(V ) (V ∗⊗ p. . . ⊗V ∗ ⊗ V⊗ p. . . ⊗V , R) of invariant

linear forms on V ∗ ⊗ . . .⊗ V is spanned by

(ω1, . . . , ωp, e1, . . . , ep) 7−→ Cσ(Ω⊗ k. . . ⊗Ω⊗ ω1 ⊗ . . .⊗ ωp ⊗ e⊗ k. . . ⊗e⊗ e1 ⊗ . . .⊗ ep) ,
where k is a non-negative integer such that 0 ≤ k ≤ p/n.

In particular, for p < n, the vector space of Sl(V )-invariant linear maps coincides with

the vector space of Gl(V )-invariant linear maps.

In the applications, we will also require the following facts:

Proposition 4.2. Let E and F be (algebraic) linear representations of Sl(V ).

• There exists a linear isomorphism HomSl(V )(E,F ) = HomSl(V )(E ⊗ F ∗,R).

• If W ⊆ E is a sub-representation, then any equivariant linear map W → F is the

restriction of an equivariant linear map E → F .

4.2. Uniqueness of the torsion and curvature operators.

Definition 4.3. Let E → X be a natural vector bundle. An E-valued natural k-form

(associated to linear connections and orientations) is a regular and natural morphism of

sheaves

ω : C ×OrX −→ Ωk ⊗ E ,
where Ωk denotes the sheaf of differential k-forms on X and E stands for the sheaf of smooth

sections of E.

Theorem 3.3 implies, in particular, that the space of E-valued natural forms associated

to linear connections and orientations is a finite-dimensional real vector space. Moreover, as

the exterior differential commutes with diffeomorphisms, it induces R-linear maps[
E-valued natural

k-forms

]
d−−−−→

[
E-valued natural

(k + 1)-forms

]
,

where it should be understood that, if ω is an E-valued natural k-form, the differential

dω : C × OrX → Ωk+1 ⊗ E is defined, on each section (∇, or), with respect to the linear

connection on E induced by ∇.

Definition 4.4. A closed E-valued natural k-form (associated to linear connections and

orientations) is an element in the kernel of the map above.
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Vector-valued natural forms. The torsion tensor of a linear connection can be understood as

a vector-valued natural 2-form; that is to say, as a regular and natural morphism of sheaves

Tor : C ×OrX −→ Ω2 ⊗D ,

where D stands for the sheaf of vector fields on X.

To be precise, the value of that tensor on a linear connection ∇ and an orientation or on

an open set U ⊆ X is

Tor∇(D1, D2) := ∇D1D2 −∇D2D1 − [D1, D2] ,

so that, in particular, it is independent of the orientation.

On the other hand, if I : D → D denotes the identity map, and c1
1 stands for the trace

of the first covariant and contravariant indices, the tensor H := c1
1(Tor) ∧ I defines another

vector-valued natural 2-form:

H : C ×OrX −→ Ω2 ⊗D .

Lemma 4.5. If dimX ≥ 3, then Tor and H are a basis of the R-vector space of vector-

valued natural 2-forms.

Proof: Looking at Theorem 3.3, we first compute the non-negative integers solutions of

d0 + 2d1 + . . .+ (k + 1)dk = 2− 1 = 1 .

There is only one solution, namely d0 = 1, di = 0, for i > 0, so Theorem 3.3 assures

that the vector space under consideration is isomorphic to the space of Sl-equivariant linear

maps:

N0 = Λ2T ∗pX ⊗ TpX −→ Λ2T ∗pX ⊗ TpX .

Thus, the problem is reduced to a question of invariants for the special linear group, and

we can invoke Theorem 4.1 and Proposition 4.2 to obtain generators for this vector space.

According to those results, if dimX > 3 then the space of Sl-equivariant linear maps that

we are considering coincides with the space of Gl-equivariant linear maps, which in turn is

proved in [10, Lemma 3.5] to be spanned by H and Tor.

If dimX = 3, there may exist another generator; namely the map ϕ : Λ2T ∗pX ⊗ TpX −→
Λ2T ∗pX ⊗ TpX that in coordinates around p reads:

(dxi ∧ dxj)⊗ ∂xk 7−→ Ω(∂xk , , ) · e(dxi, dxj, ) ,

where Ω = dx1 ∧ dx2 ∧ dx3 and e is its dual 3-vector.
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If Γkij denote the Christoffel symbols, then a trivial computation allows to express

ϕ = dx1 ∧ dx2 ⊗
(

Γ3
23 · ∂x1 + Γ3

31 · ∂x2 + Γ3
12 · ∂x3

)

+ dx2 ∧ dx3 ⊗
(

Γ1
23 · ∂x1 + Γ1

31 · ∂x2 + Γ1
12 · ∂x3

)

+ dx3 ∧ dx1 ⊗
(

Γ2
23 · ∂x1 + Γ2

31 · ∂x2 + Γ2
12 · ∂x3

)
,

as well as the linear relation ϕ = Tor +H. �

Theorem 4.6. If dimX ≥ 3, then the exterior differential is an injective R-linear map
[

Vector-valued natural
2-forms

]
d−−−−→

[
Vector-valued natural

3-forms

]
.

Proof: It is a consequence of both Lemma 4.5 and the fact that dH and dTor are R-linearly

independent ([10, Theorem 3.6]). �

The so-called first Bianchi identity for the torsion tensor describes its differential in terms

of the curvature, R, and the identity map, I: it is the following equality of vector-valued

natural 3-forms

d Tor = R ∧ I .

Therefore, an immediate corollary of Theorem 4.6 is:

Corollary 4.7. The torsion tensor is characterized as the only vector-valued natural 2-form

ω that satisfies the first Bianchi identity; i. e., such that dω = R ∧ I.

Endomorphism-valued natural forms. In this section, we restrict our attention to symmetric

linear connections.

As in the case of the torsion tensor, the curvature tensor can also be thought of as an

endomorphism-valued natural 2-form; that is to say, as a (regular and natural) morphism of

sheaves

R : Cs ×OrX −→ Ω2 ⊗ End(D) ,

whose value on a symmetric linear connection ∇ and an orientation or defined on an open

set U ⊂ X is the following endomorphism-valued 2-form R∇ on U :

R∇(D1, D2)D3 := ∇D1∇D2D3 −∇D2∇D1D3 −∇[D1,D2]D3 .

Definition 4.8. An endomorphism-valued natural 2-form ω satisfies the first Bianchi

identity if, for any symmetric linear connection ∇, any orientation or and any vector fields

D1, D2, D3:

ω(∇,or)(D1, D2)D3 + ω(∇,or)(D2, D3)D1 + ω(∇,or)(D3, D1)D2 = 0 .
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The curvature tensor satisfies the first Bianchi identity. Moreover, if Rics and Rich denote

the symmetric and skew-symmetric parts of the Ricci tensor Ric, then the following tensors

also satisfy the first Bianchi identity:

C1(D1, D2, D3, ω) := Rics(D1, D3)ω(D2)−Rics(D2, D3)ω(D1)

C2(D1, D2, D3, ω) := Rich(D1, D3)ω(D2)−Rich(D2, D3)ω(D1) + 2Rich(D1, D2)ω(D3) .

Lemma 4.9. If dimX > 3, then the tensors C1, C2 and R are a basis of the R-vector space

of endomorphism-valued natural 2-forms that satisfy the first Bianchi identity.

If dimX = 3, then that vector space has dimension four.

Proof: Let R be the vector space of endomorphism-valued 2-forms at a point that satisfy the

first Bianchi identity. Theorem 3.3 describes the space of natural 2-forms under consideration

as the vector space ⊕

di

HomSl(TpX)(S
d1N s

1 ⊗ . . .⊗ SdkN s
k ,R) ,

where d1, . . . , dk are non-negative integers verifying the equation

2d1 + . . .+ (k + 1)dk = 3− 1 = 2 .

The only solution to this equation is d1 = 1, d2 = . . . = dk, so that the vector space to

analyse is the space of Sl-equivariant linear maps

(4.1) N s
1 −→ R .

First of all, recall that the maps induced by the tensors R, C1 and C2 are a basis of the

space of Gl-equivariant linear maps N s
1 −→ R, see [10, Lemma 3.11].

A systematic application of Theorem 4.1 now allows to find generators for the space of

Sl-equivariant maps.

If dimX > 5, then the vector space of Sl-equivariant maps coincides with the space of

Gl-equivariant maps, and hence is generated by these three elements.

In case dimX = 4, there is another possible generator: the map N s
1 → R defined as

dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ Ω(∂xl , , , ) · e(dxi, dxj, dxk, ) .

However, as any tensor in N s
1 is symmetric in the first two indices, it readily follows that

this map is identically zero.

If dimX = 3, let us first describe the Sl-equivariant endomorphisms T 1
3 → T 1

3 .

To this end, let x1, x2 and x3 be coordinates centred at p such that Ω = dx1 ∧ dx2 ∧ dx3

is positively oriented, and let e be its dual 3-vector.

Using Ω and e we can construct 16 generators, and they can all be expressed as a permu-

tation of the factors of T 1
3 followed by one of these 4 maps:

(a) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ e(dxi, dxj, dxk) · Ω⊗ ∂xl ,

(b) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ e(dxi, dxj, dxk) · Ω(∂xl , , )⊗ I ,
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(c) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ δlσ(i) · Ω⊗ e(dxσ(j), dxσ(k), ) , σ ∈ S3 ,

(d) dxi ⊗ dxj ⊗ dxk ⊗ ∂xl 7−→ Ω(∂xl , , )⊗ dxσ(i) ⊗ e(dxσ(j), dxσ(k), ), σ ∈ S3 .

As the first two covariant indices of N s
1 are symmetric, the following maps are identically

zero: (a), (b) and raising the first two indices at (c) and (d).

That leaves 8 non-zero generators. But this symmetry also makes raising indices 1, 3 and

2, 3 indistinguishable, hence reducing to just 4 generators.

The last step is to check which of these maps take values inR. Out of these four generators,

only the following two produce tensors that are skew-symmetric in the first two covariant

indices:

ϕ1 (dxi ⊗ dxj ⊗ dxk ⊗ ∂xl) = Ω(∂xl , , )⊗ dxj ⊗ e(dxi, dxk, )(4.2)

ϕ2 (dxi ⊗ dxj ⊗ dxk ⊗ ∂xl) = δlj · Ω⊗ e(dxi, dxk, ) ,(4.3)

and the skew-symmetrization of the remaining two is a linear combination of these.

None of these two tensors satisfy the first Bianchi identity, but the linear combination

ϕ := 3ϕ1 − ϕ2 does.

Finally, all that is left to prove is that ϕ is R-linearly independent of R,C1 and C2. In

order to do that, it is enough to find a symmetric linear connection and an orientation on a

3-manifold X such that the aforementioned tensors on X are R-linearly independent.

The following example works: let ∇ be the linear connection on R3 whose only non-zero

Christoffel symbols in cartesian coordinates are

Γ1
11 = x2x3 , Γ2

23 = Γ2
32 = x1x2 .

Assume dx1 ∧ dx2 ∧ dx3 is positively oriented, and denote Tij := dxi ⊗ ∂xj .
Direct computation gives the following linearly independent tensors, thus finishing the

proof:

R = dx1 ∧ dx2 ⊗ (−x3T11 + x2T32) + dx1 ∧ dx3 ⊗ (−x2T11 + x2T22)

+ dx2 ∧ dx3 ⊗
(
x1T22 − x2

1x
2
2T32

)
,

C1 = dx1 ∧ dx2 ⊗
(

1

2
x3T11 −

1

2
x3T22 −

1

2
x1T31 − x2T32

)
+

+ dx1 ∧ dx3 ⊗
(
x2T11 −

1

2
x1T21 −

1

2
x3T23 + x2

1x
2
2T31 − x2T33

)
+

+ dx2 ∧ dx3 ⊗
(
x2T12 −

1

2
x3T13 −

1

2
x1T22 + x2

1x
2
2T32 +

1

2
x1T33

)
,
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C2 = dx1 ∧ dx2 ⊗
(

3

2
x3T11 +

3

2
x3T22 +

1

2
x1T31 + x3T33

)
+

+ dx1 ∧ dx3 ⊗
(
−1

2
x1T21

1

2
x3T23

)
+

+ dx2 ∧ dx3 ⊗
(
−x1T11 −

1

2
x3T13 −

3

2
x1T22 −

3

2
x1T33

)
,

ϕ = dx1 ∧ dx2 ⊗ (x1T31 − x3T33) +

+ dx1 ∧ dx3 ⊗ (2x1T21 − 3x2T22 + x3T23 + 3x2T33) +

+ dx2 ∧ dx3 ⊗ (x1T11 − 3x2T12 + 2x3T13) .

�

Definition 4.10. An endomorphism-valued natural 2-form ω is said to satisfy the second

Bianchi identity if it is closed, in the sense of Definition 4.4.

Theorem 4.11. The constant multiples of the curvature are the only endomorphism-valued

natural 2-forms that satisfy both the first and second Bianchi identities.

Proof: The curvature tensor R is always a closed natural 2-form, so, by the previous Lemma,

it is enough to analyse the R-linear span of the differentials of C1, C2 and, in dimension 3,

also of ϕ.

If dimX > 3, then dC1 and dC2 are linearly independent, by [10, Thm. 3.13], and the

statement follows.

If dimX = 3, a direct computation, using the same example as in the previous Lemma,

proves that dC1, dC2 and dϕ are R-linearly independent tensors:

d∇C1 = dx1 ∧ dx2 ∧ dx3⊗
(
−1

2
T11 − x2

2x3T12 +
1

2
x2x

2
3T13 +

1

2
(x1x2x3 − 2)T22+

−5

2
x2

1x2T31 + 2x1x
2
2T32 −

1

2
(x1x2x3 − 3)T33

)
,

d∇C2 = dx1 ∧ dx2 ∧ dx3⊗
(

1

2
T11 +

1

2
x2x

2
3T13 −

1

2
x1x2x3T22+

−1

2
x2

1x2T31 +
1

2
(x1x2x3 − 1)T33

)
,

d∇ϕ = dx1 ∧ dx2 ∧ dx3⊗
(
T11 + 3x2

2x3T12 − 2x2x
2
3T13 − (x1x2x3 − 3)T22+

+ 2x2
1x2T31 − 6x1x

2
2T32 + (x1x2x3 − 4)T33

)
.

�
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ON INVARIANT OPERATIONS OF FEDOSOV STRUCTURES

ADRIÁN GORDILLO-MERINO, RAÚL MARTÍNEZ-BOHÓRQUEZ,
AND JOSÉ NAVARRO-GARMENDIA

Abstract. In this paper we study invariant local operations that can performed on a
Fedosov manifold, with a particular emphasis on tensor-valued operations (also known as
natural tensors). Our main result describes the spaces of homogeneous natural tensors as
certain finite dimensional linear representations of the symplectic group.

1. Introduction

The notion of invariant operation has been key to the development of differential geometry

and many of its applications. A paradigmatic example is its relevance in the early days

of the nascent theory of General Relativity ([23]). As time went by, the theory of these

invariant operations evolved and produced significant mathematical results, such as the

characterisation of the Pontryagin forms on Riemannian manifolds ([11, 2]) or the proof of

the uniqueness of the Chern–Gauss–Bonnet formula ([12]), both found by P. Gilkey during

the mid-70s.

In 1993, Kolář-Michor-Slovák ([21]) published the monograph which has become the

standard reference in this subject since then. It summarises and enhances the main results

and techniques that were known up to that point. However, this book is written with a

functorial language that, outside specialists on the field, has certainly not become standard;

this has probably motivated that, in recent years, there have appeared various references

that rewrite some of its most prominent results ([9, 20, 27]).

Among the invariant operations that can be performed on a manifold, tensor-valued op-

erations are particularly relevant. Also known as natural tensors, their description in the

easiest possible terms has always been a relevant question. In presence of a linear con-

nection, the main result of the theory describes these spaces of natural tensors as certain

finite-dimensional linear representations of a classical Lie group: the linear groups Gln or

Sln when considering natural tensors associated to linear connections ([17], [18], [28]), the

orthogonal groups O(s+, s−) or SO(s+, s−) when considering natural tensors associated to
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pseudo-Riemannian metrics ([25], [31]), or the unitary groups Un or SUn for the correspond-

ing case of Kähler metrics ([14], [31]). This description permits classical invariant theory to

come into play and, in certain cases, to achieve this way an exhaustive computation of the

spaces of natural tensors under consideration (see, for example, [2], [13], [17] or [25]).

Nevertheless, in this picture above, the symplectic group was missing; in other words,

there was no theorem describing natural tensors associated to the so called Fedosov struc-

tures. Fedosov manifolds constitute the skew-symmetric version of Riemannian manifolds:

they are defined as a triple (X,ω,∇), where X is a smooth manifold of even dimension, ω is

a symplectic form and ∇ is a symplectic connection, that is, a symmetric linear connection

such that ∇ω = 0. They are named after B. Fedosov, who first constructed a canonical

deformation quantization on these manifolds ([6], [7]).

The remedy to this situation started in 1998, when Gelfand-Retakh-Shubin ([10]) proved

that any finite order, natural tensor associated to a Fedosov structure is indeed a function

of the curvature and its successive derivatives. This nice result, however, still had strong

limitations: it did not allow the use of the invariant theory of the symplectic group yet, and

it imposed a strong finiteness hypothesis on the order of the local invariants.

In this paper, we overcome this inconvenience and prove a statement (Theorem 2.6)

that describes natural tensors associated to Fedosov structures in terms of certain finite-

dimensional linear representations of the symplectic group Sp(2n,R). Our theorem is com-

pletely analogous to the aforementioned results for linear connections or Riemannian metrics;

in particular, it imposes no restrictions on the order of the natural tensors and it allows the

use of classical invariant theory. We plan to exploit these features in the future, as it is plau-

sible that they will allow the computation of interesting dimensional curvature identities,

analogous to those in [13] or [14], as well as another approach to moduli spaces of jets of

Fedosov structures, different to that used in [4].

Finally, let us mention that the use of the language of sheaves and ringed spaces, much in

the spirit of our previous works [17] and [18], plays in this paper an essential role, especially

to get rid of the finite order conditions of other developments.

2. Statement of the Main Theorem

Let X be a smooth manifold of dimension n. Let Diff (X) denote the set of local diffeo-

morphisms1 between open subsets of X.

1Throughout this text, the term diffeomorphism will refer to a local diffeomorphism between two open
subsets of a smooth manifold, unless explicitly otherwise stated.
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Definition 2.1. Let π : F → X be a (fibre) bundle over X. A natural bundle over X is a

bundle F → X together with a map

Diff (X) −→ Diff (F )

τ 7−→ τ∗ ,

called lifting of diffeomorphisms, satisfying the following properties 2:

• If τ : U → V is a diffeomorphism between open subsets of X, then τ∗ : FU → FV is

a diffeomorphism covering τ , i.e. it makes the following square commutative:

FU
τ∗
∼
//

π

��

FV

π

��
U

τ

∼
// V ,

where FU := π−1(U) and FV := π−1(V ).

• Functoriality: Id∗ = Id and (τ ◦ τ ′)∗ = (τ)∗ ◦ (τ ′)∗.
• Locality: for any diffeomorphism τ : U → V and any open subset U ′ ⊂ U , (τ|U ′)∗ =

(τ∗)|FU′ .

Definition 2.2. A natural sheaf F over X is a subsheaf of the sheaf of smooth sections of a

natural bundle F → X over X such that, for any diffeomorphism τ : U → V , the morphism

τ∗ : F(U) −→ F(V )

s 7−→ τ∗ ◦ s ◦ τ−1

is well defined3.

Examples:

(1) Let F → X be a natural bundle. It is easy to prove that the sheaf of smooth sections

of F is a natural sheaf, using that the lifting covers the lifted diffeomorphism. As

such, the sheaf T q
p of (p, q)-tensors over X is a natural sheaf.

(2) The Fedosov sheaf, defined on any open subset U ⊆ X as

F(U) := {(ω,∇) ∈ (Λ2 × Csym)(U) : ∇ω = 0} ,

is a natural sheaf, where Λ2 denotes the sheaf of non-singular 2-forms on X and Csym
denotes the sheaf of symmetric linear connections on X. Observe that the condition

∇ω = 0 is natural: if (ω,∇) ∈ F(U), then (τ∗∇)(τ∗ω) = 0.

2In the literature, a condition of regularity is added to the definition of natural bundle (the lifting of any
smooth family of diffeomorphisms is smooth too). However, this property can be derived from the other two
(see [5]).

3Observe that we are committing an abuse of notation: we are denoting by τ∗ both the lifting of τ to F
and the ‘action’ of τ on F . However, the context will help clarify which morphism we are working with.
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Definition 2.3. Let F and F ′ be natural sheaves overX. A morphism of sheaves ϕ : F → F ′
is natural if it is regular4 and commutes with the action of diffeomorphisms on sections; that

is to say, if for any diffeomorphism τ : U → V , the following square commutes:

(2.1) F(U)
ϕ //

τ∗
��

F ′(U)

τ∗
��

F(V )
ϕ // F ′(V ) ,

where τ∗ : F(U)→ F(V ) is defined as follows:

τ∗ : F(U) −→ F(V )

s 7−→ τ∗ ◦ s ◦ τ−1 .

Definition 2.4. A natural morphism of sheaves F → T between the Fedosov sheaf F and

a sheaf of tensors T over X is called a natural tensor (associated to Fedosov structures).

A condition of homogeneity is required to guarantee that the natural tensors depend on

a finite amount of variables only:

Definition 2.5. Let δ ∈ R. We say that a natural tensor T : F → T is homogeneous of

weight δ if, for all non-zero λ ∈ R, it holds that5:

T (λ2ω,∇) = λδT (ω,∇) .

Examples:

• The symplectic form can be understood as a natural (2, 0)-tensor associated to Fe-

dosov structures whose value on a Fedosov structure (ω,∇) is ω. It is homogeneous

of weight 2.

• The (4, 0) curvature operator, defined as a natural (4, 0)-tensor whose value on a

Fedosov structure (ω,∇) defined on an open set U ⊂ X is:

R(ω,∇)(D1, D2, D3, D4) := ω(D1,∇D3∇D4D2 −∇D4∇D3D2 −∇[D3,D4]D2) ,

which is an homogeneous tensor of weight 2.

The following result, whose proof will be detailed during Section 6, describes all natural

tensors associated to Fedosov structures:

Theorem 2.6. Let X be a smooth manifold of dimension 2n, and let F denote the sheaf of

Fedosov structures. Let T be the sheaf of p-covariant tensors over X. Let δ ∈ Z.
Fixing a point x0 ∈ X and a chart U ≃ R2n around x0 produces a R-linear isomorphism

4The regularity condition is technical in nature, and as such it will be properly defined in Section 3,
Definition 3.3.

5Observe that if (ω,∇) is a Fedosov structure, then (λω,∇) is also a Fedosov structure for any λ ∈ R\{0}.
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Natural morphisms of sheaves
F −→ T

homogeneous of weight δ





⊕
d1,...,dr

HomSp(S
d1N1 ⊗ . . .⊗ SdrNr, Tx0) ,

where Sp = Sp(2n,R) denotes the symplectic group, Tx0 denotes the vector space of p-

covariant tensors at x0 and d1, . . . , dr run over the non-negative integer solutions of the

equation

2d1 + . . .+ (r + 1)dr = p− δ .

The spaces Nm are called spaces of normal tensors of symplectic connections, and they are

vector spaces made of tensors which recover the symmetries of the functions Γijk := ωilΓ
l
jk

6,

where Γl
jk are the Christoffel symbols of a symplectic connection in normal coordinates at

the point x0. They will be rigorously defined during Section 5.

3. The Peetre-Slovák Theorem

Let us briefly introduce the category of ringed spaces: they generalise smooth manifolds in

a way that allows us to consider infinite dimensional spaces or quotients of smooth manifolds

by the actions of groups.

Definition 3.1. A ringed space is a pair (X,OX), where X is a topological space and OX

is a sub-algebra of the sheaf of real-valued continuous functions on X.

A morphism of ringed spaces7 φ : (X,OX) → (Y,OY ) is a continuous map φ : X → Y

such that composition with φ induces a morphism of sheaves φ∗ : OY → φ∗OX , that is, for

any open set V ⊂ Y and any function f ∈ OY (V ), the composition f ◦ φ lies in OX(φ
−1V ).

The two main properties of this category that we will make use of are the existence of

inverse limits and the existence of quotients by the action of a group. For example, if F → X

is a fibre bundle over a smooth manifold X, then the space J∞F of ∞-jets of sections of

F → X is defined as the inverse limit of the sequence of k-jets fibre bundles:

. . .→ JkF → Jk−1F → . . .→ F → X .

The spaces JkF are smooth manifolds, and thus they are ringed spaces, choosing as sheaf the

sheaf of real-valued smooth functions. Therefore, the space J∞F is canonically imbued with

a structure of ringed space. This fact will become of great relevance in the Peetre-Slovák

theorem, where natural tensors will be related to morphisms of ringed spaces coming from

an ∞-jet space.

Additionally, we will require the following corollary:

6During this work, we will follow Einstein summation convention, unless the summation is explicitly
stated.

7By similarity with the category of smooth manifolds, we will often call morphisms of ringed spaces as
smooth morphisms.
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Corollary 3.2. Let G be a group acting on two ringed spaces X and Y , and let H ⊆ G be

a subgroup that acts trivially on Y .

Then, the universal property of the quotient restricts to a bijection:
{

G-equivariant morphisms

of ringed spaces X → Y

} {
G/H-equivariant morphisms

of ringed spaces X/H −→ Y

}
.

Now, let us define a sort of “smoothness” condition for morphisms of sheaves:

Definition 3.3. Let F and F ′ be (sub)sheaves of the sheaves of smooth sections of the fibre

bundles F → X and F ′ → X, and let T be a smooth manifold. A morphism of sheaves

ϕ : F → F ′ is said to be regular if, for any smooth family of sections {st : U → F}t∈T such

that U ≃ Rn and st ∈ F(U) for all t ∈ T , the family {ϕ(st) : U → F ′}t∈T is also smooth.

The Peetre-Slovák Theorem ([21, 26]) assures that any natural morphism of sheaves is a

natural differential operator:

Theorem 3.4 (Peetre-Slovák). Let X be a smooth manifold. Let F ′ → X and F ′′ → X

be natural bundles over X, and let F ′ and F ′′ be their respective sheaves of smooth sections

over X.

The choice of a point p ∈ X allows to define this bijection:
{
Natural morphisms of sheaves

ϕ : F ′ −→ F ′′

} {
Diffx0-equivariant smooth maps

J∞p F ′ −→ F ′′p

}
,

where Diffx0 stands for the group of germs of diffeomorphisms τ between open sets of X such

that τ(p) = p.

4. Natural Operations on a Fedosov Structure

Let X be a smooth manifold of dimension 2n. Let FX and TX be the sheaves of Fedosov

structures and p-covariant tensors over X, respectively.

Proposition 4.1. The choice of a chart U ⊆ X gives a bijection:
{

Natural morphisms of sheaves

FX −→ TX

} {
Natural morphisms of sheaves

FR2n −→ TR2n

}
.

Proof: Let U ⊆ X be any chart, so that U ≃ R2n. We will prove that there exists a bijection:

{
Natural morphisms of sheaves

ϕ : FX −→ TX

} {
Natural morphisms of sheaves

ϕU : FU −→ TU

}
,

thus obtaining the desired result.
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For any natural morphism of sheaves f : FU → TU , let us construct the corresponding

natural morphism of sheaves ϕf : FX → TX : for any s ∈ FX(V ) and x ∈ V , we must define

ϕf (s)(x).

As ϕf (s)(x) = ϕf (s|W )(x) for any W ⊆ V containing x, we may suppose that V is also a

chart, thus obtaining a local isomorphism τ : V → U , and so we may define:

ϕf (s)(x) = τ−1∗ (f(τ∗s))(x)

It is trivial to check that this morphism is well defined, natural, regular and the inverse

of the map ϕ→ ϕ|U . □

Let (x1, y1, . . . , xn, yn) be global coordinates on R2n, and set η = dx1∧dy1+. . .+dxn∧dyn.
Let Conn η → R2n be the fibre bundle of symplectic connections for the symplectic form η,

which is an affine subbundle of Conn → R2n. Let Cη be the sheaf of smooth sections of

Connη .

Proposition 4.2. With the previous notations, there exists a bijection:
{

Natural morphisms of sheaves

FR2n −→ TR2n

} {
Aut(η)-natural morphisms of sheaves

Cη −→ TR2n

}
,

where a natural morphism of sheaves ϕ : Cη → T is said to be Aut(η)-natural if it is regular

and verifies the naturalness condition for any local diffeomorphism τ : U → V between open

sets of R2n such that τ · (η|U ) = η|V .

Proof: Given a natural morphism of sheaves ϕ : F → T , the corresponding morphism of

sheaves ϕ̂ : Cη → T is given, at any open subset U ⊆ R2n, by

ϕ̂U(∇) := ϕU(η,∇) ,

which is trivially an Aut(η)-natural morphism of sheaves.

Let us give the inverse map, that is, to define a natural morphism of sheaves φ̃ : F → T
from an Aut(η)-natural morphism of sheaves φ : Cη → TR2n . Let (ω,∇) ∈ FR2n(U) and

x ∈ U . There exists an open subset V ⊆ U and a diffeomorphism τ : V → V such that

x ∈ V and τ ·(η|V ) = ω|U . As the value at x of φ̃(ω,∇) does not depend on the neighbourhood

of x chosen, we may assume that V = U . Then:

φ̃(ω,∇)(x) := τ · φ(τ−1 · ∇)(x) .

□

Corollary 4.3. The choice of a point x0 ∈ R2n produces a bijection:
{

Aut(η)-natural morphisms of sheaves

Cη −→ TR2n

} {
Aut(η)x0-equivariant smooth maps

J∞x0
Connη −→ Tx0

}
,
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where Aut(η)x0 denotes the group of germs of diffeomorphisms τ between open sets of R2n

such that τ(p) = p and τ · η = η.

Proof: A simple variation of the Peetre-Slovák theorem 3.4, substituting naturalness by

Aut(η)-naturalness, allows us to conclude. □
However, even though fixing a symplectic form in a neighbourhood of a point allows us to

use the Peetre-Slovák Theorem – reducing the computations to the∞-jet space, the resulting

space is difficult to reduce. It is convenient to take a step back, unfixing the symplectic form,

in order to advance:

Proposition 4.4. There exists a bijection:



Aut(η)x0-equivariant smooth maps

J∞x0
Connη −→ Tx0









Diffx0-equivariant smooth maps

J∞x0
F −→ Tx0



 ,

where J∞x0
F := {(j∞x0

ω, j∞x0
∇) : (ω,∇) ∈ Fx0}.

Proof: The proof of this result is similar to that of Proposition 4.2. □
Later on, only the value of the symplectic form at x0 will be fixed, as the rest of the∞-jet

will be determined by the compatibility condition with the∞-jet of a symplectic connection.

Remark 4.5. Observe that J∞x0
F coincides with the set

{(j∞x0
ω, j∞x0

∇) ∈ J∞x0
Λ2 × J∞x0

Conn sym : j∞x0
(∇ω) = 0} .

The reasoning goes as follows: due to the formal version of the Poincaré Lemma, the ∞-jet

of a non-singular 2-form ω such that j∞x0
(∇ω) = 0 verifies that j∞x0

ω = j∞x0
(dθ), for some

1-form θ defined on a neighbourhood of x0. Therefore, j
∞
x0
ω can be extended to a symplectic

form at a neighbourhood of x0 (considering, for example, dθ). Then, a symplectic connection

extending j∞x0
∇ can be chosen, as symplectic connections compatible with a fixed symplectic

form constitute a fibre bundle.

5. Invariants of Symplectic Connections

Let x0 ∈ X, let (ω,∇) be the germ of a Fedosov structure at x0, and let ∇̄ be the germ of

the flat connection at x0 ∈ X corresponding, via the exponential map, to the flat connection

of Tx0X. Let T := C1
2(ω ⊗ T), where Cj

i denotes the tensor contraction of the i-th covariant

index with the j-th contravariant index.

Definition 5.1. For any integer m ≥ 0, the m-th normal tensor of ∇ at x0 is ∇̄m
x0
T.

In a system of normal coordinates (x1, . . . , xn) around the point x0 for ∇, the tensor

∇̄m
x0
T is written as

∇̄m
x0
T =

∑

i,j,k,a1,...,am

Γijk,a1...am · dx0xi ⊗ dx0xj ⊗ dx0xk ⊗ dx0xa1 ⊗ . . .⊗ dx0xam ,
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where Γk
ijk,a1...am

:=
∂mΓijk

∂xa1 ...∂xam
(x0) and Γijk =

∑2n
l=1 ωilΓ

l
jk.

Remark 5.2. Notice that the sequences ∇̄1
x0
T, . . . , ∇̄m

x0
T and ∇̄1

x0
(∇ − ∇̄), . . . ,

∇̄m
x0
(∇ − ∇̄) mutually determine each other, as ω is non-singular. Following the notations

above, the tensor ∇̄m
x0
(∇− ∇̄) is written as usual:

∇̄m
x0
T =

∑

i,j,k,a1,...,am

Γk
ij,a1...am

·
(

∂

∂xk

)

x0

⊗ dx0xi ⊗ dx0xj ⊗ dx0xa1 ⊗ . . .⊗ dx0xam ,

where Γk
ij,a1...am

:=
∂mΓk

ij

∂xa1 ...∂xam
(x0).

Definition 5.3. The space Nm of normal tensors of orderm at x0 ∈ X is the vector subspace

of (m+ 3)-tensors whose elements T verify the following symmetries:

(1) they are symmetric in the second and third indices, and in the last m:

Tikja1...am = Tijka1...am , Tijkaσ(1)...aσ(m)
= Tijka1...am , ∀σ ∈ Sm ;

(2) the symmetrization of the last m+ 2 covariant indices is zero:
∑

σ∈Sm+2

Tiσ(j)σ(k)σ(a1)...σ(am)=0 ;

(3) the following tensor is symmetric in k and a1:

Tikja1...am − Tjkia1...am .

Due to its symmetries, it is immediate that N0 = 0.

Normal tensors belong in Nm, that is, ∇̄m
x0
T ∈ Nm , due to its expression in normal

coordinates ([10]). As the tensor ∇̄m
x0
T depends only on the value of the m-jet jmx0

∇, the
following map is well-defined:

ϕm : Jm
x0
F −→ Λ0 ×

m∏

i=1

Ni

(jr+1
x0

ω, jrx0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . , ∇̄m

x0
T ) ,

where Λ0 denotes the open set of non-singular 2-forms at x0.

The maps ϕm are Diffx0-equivariant and compatible, meaning that they commute with

the restrictions Jm
x0
F → Jm−1

x0
F and Λ0 ×

m∏
i=1

Ni → Λ0 ×
m−1∏
i=1

Ni. Therefore there exists a

morphism of ringed spaces:

ϕ∞ : J∞x0
F −→ Λ0 ×

∞∏

i=1

Ni

(j∞x0
ω, j∞x0

∇) 7−−→ (ωx0 , ∇̄1
x0
T, ∇̄2

x0
T, . . . ) .
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Reduction Theorem. The Diffm+2
x0
−equivariant morphism of ringed spaces

ϕm : Jm
x0
F −→ Λ0 ×

m∏

i=1

Ni

(jm+1
x0

ω, jmx0
∇) 7−−→ (ωx0 , ∇̄1

x0
T, ∇̄2

x0
T, . . . , ∇̄m

x0
T ) .

is surjective, its fibres are the orbits of NDiffm+2
x0

and it admits smooth sections passing

through any point of Jm
x0
F .

As a consequence, ϕm induces a Gl-equivariant isomorphism of ringed spaces:

(Jm
x0
F )/NDiffm+2

x0
== N1 × . . .×Nm .

Proof: Let us first prove that the fibres of ϕm are the orbits of NDiffm+2
x0

. Let (jm+1
x0

ω, jmx0
∇) ,

(jm+1
x0

ω′, jmx0
∇′) be two points in the orbit of NDiffm+2

x0
, that is, (jm+1

x0
ω′, jmx0

∇′) = jm+2
x0

τ ·
(jm+1

x0
ω, jmx0

∇) for some jm+2
x0

τ ∈ NDiffm+2
x0

. As NDiffm+2
x0

acts by the identity on Λ0×
m∏
i=1

Ni,

ϕm(j
m+2
x0

τ · (jm+1
x0

ω, jmx0
∇) ) = jm+2

x0
τ · ϕm((j

m+1
x0

ω, jmx0
∇) ) = ϕm((j

m+1
x0

ω, jmx0
∇) ) .

Let now (jm+1
x0

ω, jmx0
∇) , (jm+1

x0
ω′, jmx0

∇′) ∈ Jm
x0
F be two points in the same fibre of ϕm,

that is, ϕm((j
m+1
x0

ω, jmx0
∇)) = ϕm((j

m+1
x0

ω′, jmx0
∇′)) = (T1, . . . , Tr). Let us fix a base of Tx0X,

let x1, . . . , x2n and x′1, . . . , x
′
2n be the systems of normal coordinates induced by the fixed base

for jmx0
∇ and jmx0

∇′, respectively, and let τ be the diffeomorphism that verifies τ · xi = x′i for

all i ∈ {1, . . . , 2n}. As dx0xi = dx0x
′
i for all i ∈ {1, . . . , 2n}, it holds that jm+2

x0
τ ∈ NDiffm+2

x0
.

Let us write

jmx0
∇ = ( 0 ,Γk

ij,a1
, . . . ,Γk

ij,a1...am
), jm+1

x0
ω = (ωij, ωij,k, . . . , ωij,ka1...am)

in the coordinates induced by x1, . . . , x2n on Jm
x0
F . Similarly, in the coordinates induced by

x′1, . . . , x
′
2n on Jm

x0
F , we write

jmx0
∇′ = ( 0 , (Γ′)kij,a1 , . . . , (Γ

′)kij,a1...am),

jm+1
x0

ω′ = (ω′ij, ω
′
ij,k, . . . , ω

′
ij,ka1...am

),

jmx0
(τ · ∇) = ( 0 , (τ · Γ)kij,a1 , . . . , (τ · Γ)kij,a1...am),

jm+1
x0

(τ · ω) = ((τ · ω)ij, (τ · ω)ij,k, . . . , (τ · ω)ij,ka1...am).
For all r ∈ {1, . . . ,m}, using that jm+2

x0
τ ∈ NDiffm+2

x0
we obtain the following equalities:

∑

i,j,k,a1,...,ar

(Γ′)ijk,a1...ardx0x
′
i ⊗ dx0x

′
j ⊗ dx0x

′
k ⊗ dx0x

′
a1
⊗ . . .⊗ dx0x

′
ar = Tr

= τ · Tr =
∑

i,j,k,a1,...,ar

(τ · Γ)ijk,a1...ardx0x
′
i ⊗ dx0x

′
j ⊗ dx0x

′
k ⊗ dx0x

′
a1
⊗ . . .⊗ dx0x

′
ar ,

and so (τ · Γ)ijk,a1...ar = (Γ′)ijk,a1...ar for all r ∈ {1, . . . ,m}.
Thus, by Remark 5.2, it is now enough to check that jmx0

(τ · ω) = jmx0
(ω′):
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∑

i<j

(τ · ω)ijdx0x
′
i ∧ dx0x

′
j = (τ · ω)x0 = ωx0 = ω′x0

=
∑

i<j

ωijdx0x
′
i ∧ dx0x

′
j ,

(τ · ω)ij,k = (τ · Γ)ikj − (τ · Γ)jki = 0 = (Γ′)ikj − (Γ′)jki = ω′ij,k ,

...

(τ · ω)ij,ka1...am = (τ · Γ)ikj,a1...am − (τ · Γ)jki,a1...am = (Γ′)ikj,a1...am − (Γ′)jki,a1...am = ω′ij,ka1...am .

Lastly, let us prove the statement about the existence of smooth sections

s : Λ0 ×N1 × . . .×Nm .

Let us fix a system of coordinates x1, . . . , x2n at x0, and let

(Bij, Aijka1 , . . . , Aijka1...am) ∈ Λ0 ×N1 × . . .×Nm.

The jet s((Bij, Aijka1 , . . . , Aijka1...am)) = (jm+1
x0

ω, jmx0
∇) is defined, in the coordinates in-

duced by the fixed system in Jm
x0
F , as follows:

Γijk = 0,Γijk,a1 = Aijka1 , . . . ,Γijk,a1...am = Aijka1...am ,

ωij = Bij, ωij,k = 0, ωij,ka1 = Aikja1 − Ajkia1 , . . . , ωij,ka1...am = Aikja1...am − Ajkia1...am ,

and so the jet jmx0
∇ = ( 0 ,Γk

ij,a1
, . . . ,Γk

ij,a1...am
) is defined. The symmetries of the spaces

Ni assure that (jm+1
x0

ω, jmx0
∇) ∈ Fedm

x0
= Jm

x0
F and that x1, . . . , x2n is a system of normal

coordinates at x0 for jmx0
∇.

□

Corollary 5.4. The Diff∞x0
−equivariant morphism of ringed spaces

ϕ∞ : J∞x0
F −→ Λ0 ×

∞∏

i=1

Ni

(j∞x0
ω, j∞x0

∇) 7−−→ (ωx0 , ∇̄1
x0
T, ∇̄2

x0
T, . . . ),

induces a Gl-equivariant isomorphism of ringed spaces:

(J∞x0
F)/NDiff∞x0

== Λ0 ×
∞∏

i=1

Ni .

Corollary 5.5. The choice of a non-singular 2-form ηx0 at x0 produces a bijection:




Gl-equivariant smooth maps

Λ0 ×
∞∏
i=1

Ni −→ Tx0









Sp(2n,R)-equivariant smooth maps
∞∏
i=1

Ni −→ Tx0



 ,

where Sp(2n,R) := {dx0τ : τ ∈ Aut(η)x0}.

Proof: The proof of this result is similar to Proposition 4.2.
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6. Proof of Theorem 2.6

Definition 6.1. Let δ ∈ R. We say that a natural tensor T : F → T is homogeneous of

weight δ if, for all non-zero λ ∈ R, it holds that8:

T (λ2ω,∇) = λδT (ω,∇) .

Observe that, if T ̸= 0 and δ ∈ Z, the weight must be an even number: if T is an

homogeneous natural tensor of odd weight δ, then the homogeneity condition for λ = −1
says:

T (ω,∇) = T ((−1)2ω,∇) = (−1)δT (ω,∇) = −T (ω,∇) ,
obtaining that T = 0.

Theorem 2.6. Let X be a smooth manifold of dimension 2n, and let F denote the sheaf of

Fedosov structures. Let T be the sheaf of p-covariant tensors over X. Let δ ∈ Z.
Fixing a point x0 ∈ X and a chart U ≃ R2n around x0 produces a R-linear isomorphism





Natural morphisms of sheaves
F −→ T

homogeneous of weight δ





⊕
d1,...,dr

HomSp(S
d1N1 ⊗ . . .⊗ SdrNr, Tx0) ,

where Sp = Sp(2n,R) denotes the symplectic group, Tx0 denotes the vector space of p-

covariant tensors at x0 and d1, . . . , dr run over the non-negative integer solutions of the

equation

(6.1) 2d1 + . . .+ (r + 1)dr = p− δ .

Proof: Let us fix a point x0 ∈ X. Choose a chart U ≃ R2n around x0, so that Proposition

4.1 produces a bijection:



Natural morphisms of sheaves
F −→ T

homogeneous of weight δ









Natural morphisms of sheaves
FR2n −→ TR2n

homogeneous of weight δ



 ,

where FR2n and TR2n denote the sheaves F and T restricted to U and passed through the

diffeomorphism U ≃ R2n.

Fixing the canonical symplectic form η on R2n lets us invoke Proposition 4.2 and Propo-

sition 4.3, which gives the bijection:



Natural morphisms of sheaves
FR2n −→ TR2n

homogeneous of weight δ









Aut(η)x0-equivariant smooth maps
J∞x0

Connη −→ Tx0

homogeneous of weight δ



 ,

where an Aut(η)x0-equivariant smooth map T : J∞x0
Connω → Tx0 being homogeneous of

weight δ means that it verifies the following property:

T (hλ · (j∞x0
∇)) = λp−δT (j∞x0

∇) ,
8Observe that if (ω,∇) is a Fedosov structure, then (λω,∇) is also a Fedosov structure for any λ ∈ R\{0}.
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for any homothety9 hλ of ratio λ ̸= 0.

Let us now unfix the symplectic form (recall that diffeomorphisms act transitively on

symplectic forms due to the existence of Darboux coordinates):





Aut(η)x0-equivariant smooth maps
J∞x0

Connη −→ Tx0

homogeneous of weight δ









Diffx0-equivariant smooth maps
J∞x0
F −→ Tx0

homogeneous of weight δ



 .

As the action of both Diffx0 and Diff∞x0
coincide over J∞x0

F and Tx0 , we may consider

Diff∞x0
-equivariant maps instead in the set above.

For the next step, recall that the following sequence of groups is exact:

1 −→ NDiff∞x0
−→ Diff∞x0

−→ Gl −→ 1

As the subgroup NDiff∞x0
acts by the identity over Tx0 , Corollary 3.2 in conjunction with

the exact sequence above assures the existence of an isomorphism:





Diff∞x0
-equivariant smooth maps

J∞x0
F −→ Tx0

homogeneous of weight δ









Gl-equivariant smooth maps
J∞x0
F/NDiff∞x0

−→ Tx0

homogeneous of weight δ



 .

Now, Corollary 5.4 allows us to replace this quotient ringed space via the bijection:





Gl-equivariant smooth maps
J∞x0
F/NDiff∞x0

−→ Tx0

homogeneous of weight δ









Gl-equivariant smooth maps

Λ0 ×
∞∏
i=1

Ni −→ Tx0

homogeneous of weight δ





.

Fixing the non-singular 2-form ηx0 at x0 allows us to remove the space Λ0, due to the

bijection:





Gl-equivariant smooth maps

Λ0 ×
∞∏
i=1

Ni −→ Tx0

homogeneous of weight δ









Sp(2n,R)-equivariant smooth maps
∞∏
i=1

Ni −→ Tx0

homogeneous of weight δ





,

where, following the previous bijections, a Sp(2n,R)-equivariant smooth map T :
∞∏
i=1

Ni →
Tx0 is said to be homogeneous of weight δ if, for any λ ̸= 0, it holds that

T (λ2T1, λ
3T2, . . .) = λp−δT (T1, T2, . . .) .

Therefore, the homogeneity allows us to make the final reduction by applying the Homo-

geneous Function Theorem below, producing the isomorphism:

9We say that τ ∈ Diffx0
is a homothety of ratio λ ̸= 0 if dx0

τ = λ · Id.
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Sp(2n,R)-equivariant smooth maps
∞∏
i=1

Ni −→ Tx0

homogeneous of weight δ





⊕
d1,...,dr

HomSp(2n,R)(S
d1N1 ⊗ . . .⊗ SdrNr, Tx0) ,

where d1, . . . , dr are non-negative integers running over the solutions of the equation

2d1 + . . .+ (r + 1)dr = p− δ .

□

Homogeneous Function Theorem. Let {Ei}i∈N be finite dimensional vector spaces.

Let f :
∏∞

i=1Ei → R be a smooth function such that there exist positive real numbers

ai > 0, and w ∈ R satisfying:

(6.2) f(λa1e1, . . . , λ
aiei, . . .) = λw f(e1, . . . , ei, . . .)

for any positive real number λ > 0 and any (e1, . . . , ei, . . .) ∈
∏∞

i=1Ei.

Then, f depends on a finite number of variables e1, . . . , er and it is a sum of monomials

of degree di in ei satisfying the relation

(6.3) a1d1 + · · ·+ ardr = w .

If there are no natural numbers d1, . . . , dr ∈ N ∪ {0} satisfying this equation, then f is

the zero map.

An immediate corolary of the Main theorem is that, if the left side of Equation 6.1 is

either null or negative, there are essentially no natural tensors:

Corollary 6.2. There are no non-constant homogeneous natural p-tensors associated to

Fedosov structures of weight δ ≥ p.

6.1. An application. Let V be a real vector space of finite dimension 2n, let ω be a non-

degenerate skew-symmetric bilinear form on V and let Sp(2n,R) be the real Lie group of

R-linear automorphisms that preserve ω.

The First Fundamental Theorem of the symplectic group ([15]) describes the vector space

of Sp(2n,R)-invariant linear maps V⊗ p. . . ⊗V −→ R :

First Fundamental Theorem of Sp. The real vector space HomSp(2n,R) (V⊗ p. . . ⊗V , R)
of invariant linear forms on V ⊗ . . .⊗V is null if p is odd, whereas if p is even it is spanned

by

ωσ((e1, . . . , ep)) := ω(eσ(1), eσ(2)) . . . ω(eσ(p−1), eσ(p)) ,

where σ ∈ Sp.
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The invariant theory of the symplectic group, along with our Main Theorem, allows us

to compute the space of natural functions for weights w = −2 and w = −4:

Corollary 6.3. There are no non-constant homogeneous natural functions associated to

Fedosov structures of weight w = −2, and for w = −4 there are three R-linearly independent

natural functions.

Proof: Let us fix x0 ∈ X and a non-singular 2-form ω at x0. Let us invoke the Main Theorem

2.6 for p = 0 and δ = −2. The only non-negative integer solution of the equation

2d1 + . . .+ (r + 1)dr = p− δ = 2

is d1 = 1.

Therefore, the problem is reduced to computing Sp(2n,R)-equivariant maps N1 → R. As
the elements in N1 are 4-covariant tensors symmetric in the second and third indices, by the

First Fundamental theorem of Sp it is sufficient to check that the map

Tijka −→ ωijωkaTijka

is zero:

ωijωkaTijka =
1

2
ωijωka(Tijka − Tjika) = 0 ,

as the elements in N1 verify that

Tijka − Tjika = Tijak − Tjiak .

Repeating the arguments for p = 0 and w = −4, we obtain two solutions to the equation

above: d1 = 2 and d3 = 1. Let us begin with solution d1 = 2: we need to compute total

index contractions of the expression TijklTabcd. Equivalently, we may replace this expression

by applying the Sp-equivariant linear isomorphism

N1 −→ R
Tijkl 7−→ Rijkl = Tijlk − Tijkl,

where R ⊂ S2T ∗x0
X ⊗ Λ2T ∗x0

X is the vector subspace of tensors R that satisfy the Bianchi

identity:

Rijkl +Riklj +Riljk = 0 .

Thus, let us compute the total index contractions of the expression RijklRabcd. As the

contraction of the symmetric pair is zero, the possibilities are:

• f1 = RijklR
ijkl.

• f2 = R k
ijk Rijl

l.

• RijklR
ikjl, which is equal to f1/2, by the Bianchi identity.

For d3 = 1, the last three indices of any tensor in N3 are symmetric, so there is only one

possibility: f3 = T ijk
ijk .
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As for the linear independence of the three functions, by naturalness it is enough to check

if they are independent at any given Fedosov manifold. For example, consider the Fedosov

manifold (R4, η,∇), where η = dx1 ∧ dx2 + dx3 ∧ dx4 and ∇ is the linear connection with

the following Christoffel symbols (with the contravariant index lowered):

• Γijk = 1, for any {i, j, k} permutation of {1, 1, 2}.
• Γijk = x1x3x4, for any {i, j, k} permutation of {2, 3, 4}.
• Γijk = 0, for any other combination.

Computing the natural functions in this manifold gives:

• f1 = −4x2
3x

2
4(−4x2

1 + 4x1 + 1).

• f2 = 2x2
3x

2
4(4x

2
1 − 1).

• f3 = 6,

which are clearly R-linearly independent. □

Acknowledgements. The authors would like to thank Professor Juan B. Sancho de Salas

for his generous advice.

References

[1] Albuquerque, R., Picken, R. On Invariants of Almost Symplectic Connections. Math

Phys Anal Geom 2015, 18, 8.

[2] Atiyah, M.; Bott, R.; Patodi, V.K. On the heat equation and the index theorem. Invent.

Math. 1973, 19, 279–330.

[3] Bernig, A. Natural operations on differential forms on contact manifolds. Differ. Geom.

Appl. 2017, 50 , 34–51.

[4] Dubrovskiy, S. Moduli Space of Fedosov Structures. Ann. Global Anal. Geom. 2003 27,

273-297.

[5] Epstein, D.B.A. y Thurston, W.P.: Transformation groups and natural bundles, Pro-

ceedings of the London Mathematical Society 1979, 38 (2): 219-236.

[6] Fedosov, B. A simple geometric construction of deformation quantization, J. Diff. Geom.

1994 40, 213–238.

[7] Fedosov, B. Deformation Quantization and Index Theory ; Wiley, 1995.

[8] Fox, J. F. Remarks on symplectic sectional curvature. Differential Geom. Appl. 2017,

50, 52–70.

[9] Freed, D.S.; Hopkins, M.J. Chern-Weil forms and abstract homotopy theory. Bull.

Amer. Math. Soc. 2013, 50 , 431–468.

[10] Gelfand, I., Retakh, V., Shubin, M., Fedosov Manifolds, Adv. Math. 136:1, 104–140

(1998).

[11] Gilkey, P.B. Curvature and the eigenvalues of the Dolbeault complex for Kaehler man-

ifolds. Adv. Math. 1973, 11 , 311–325.



INVARIANT OPERATIONS OF A FEDOSOV STRUCTURE 17

[12] Gilkey, P. Local invariants of an embedded Riemannian manifold. Ann. Math. 1975,

102 , 187–203.

[13] Gilkey, P.; Park, J.H.; Sekigawa, K. Universal curvature identities. Diff. Geom. App.

2011, 62 814–825.

[14] Gilkey, P.; Park, J.H.; Sekigawa, K. Universal curvature identities and Euler Lagrange

Formulas for Kaehler manifolds. J. Math. Soc. Japan 2016, 68 , 459–487.

[15] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups.

3rd corrected printing, Cambridge Univ. Press (2003)

[16] Gordillo, A.; Navarro, J. On moduli spaces for finite-order jets of linear connections.

Filomat 2017, 31 , 2035–2044.
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Appendix G

MATLAB code

LISTING G.1: Computation of the curvature operator associated to
linear connections

1 % Declaration of variables.

2 x=sym('x', [1 3]);

3 gamma=sym('gamma%d%d_', [3 3 3]);

4 R=sym('R%d%d%d_', [3 3 3 3]);

5
6 % Definition of the Christoffel symbols of the connection in the fixed

7 % coordinates.

8
9 for i=1:3

10 for j=1:3

11 for k=1:3

12 gamma(i,j,k)= 0;

13 end

14 end

15 end

16 gamma(1,1,1)=x(2)*x(3);

17 gamma(2,3,2)=x(1)*x(2);

18 gamma(3,2,2)=x(1)*x(2);

19
20 %Computation of the curvature tensor R

21
22 sum=0;

23 for i=1:3

24 for j=1:3

25 for k=1:3

26 for l=1:3

27 for m=1:3

28 sum=sum+gamma(j,k,m)*gamma(i,m,l) = gamma(i,k,m)*

gamma(j,m,l);
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29 end

30 R(i,j,k,l)= diff(gamma(j,k,l),x(i)) = diff(gamma(i,k,l),

x(j)) + sum;

31 sum=0;

32 end

33 end

34 end

35 end

36 R

37 simplify(diferencial(R,gamma,x))
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LISTING G.2: Computation of the tensors C1 and C2 (Lemma 5.16 )

1
2 %Computation of the tensors C_1 and C_2 in the uniqueness theorem of the

curvature

3 %operator associated to linear connections, and to linear connections

and orientations.

4
5 Ricc=sym('R%d%d', [3 3]);

6 C1=sym('C1%d%d%d_', [3 3 3 3]);

7 C2=sym('C2%d%d%d_', [3 3 3 3]);

8
9 sum=0;

10 for i=1:3

11 for j=1:3

12 for m=1:3

13 sum=sum+R(m,i,j,m);

14 end

15 Ricc(i,j)=sum;

16 sum=0;

17 end

18 end

19
20 for i=1:3

21 for j=1:3

22 for k=1:3

23 for l=1:3

24 C1(i,j,k,l)= (Ricc(i,k)+Ricc(k,i))/2 * eq(j,l) = (Ricc(j

,k)+Ricc(k,j))/2 * eq(i,l);

25 end

26 end

27 end

28 end

29
30 for i=1:3

31 for j=1:3

32 for k=1:3

33 for l=1:3

34 C2(i,j,k,l)=(Ricc(i,k)=Ricc(k,i))/2*eq(j,l)=(Ricc(j,k)=

Ricc(k,j))/2*eq(i,l) + (Ricc(i,j)=Ricc(j,i))*eq(k,l)

;

35 end

36 end
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37 end

38 end

39 C1

40 C2

41 simplify(expand(diferencial(C1,gamma,x)))

42 simplify(expand(diferencial(C2,gamma,x)))
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LISTING G.3: Computation of the tensor φ (Lemma 5.16 )

1
2 %Computation of the tensor phi in the uniqueness theorem of the

curvature

3 %operator associated to linear connections and orientations.

4
5 T=sym('T%d%d%d_', [3 3 3 3]);

6 Tb=sym('Tb%d%d%d_', [3 3 3 3]);

7 phi=sym('phi%d%d%d_', [3 3 3 3]);

8 delta=sym('delta%d%d', [3 3 3]);

9
10 ind=[1 2 3 1 2 3];

11 ind2=[1 2 3];

12 for i=1:3

13 for j=1:3

14 for k=1:3

15 delta(i,j,k)=0;

16 end

17 end

18 end

19 delta(1,2,3)=1;

20 delta(2,3,1)=1;

21 delta(3,1,2)=1;

22 delta(2,1,3)==1;

23 delta(3,2,1)==1;

24 delta(1,3,2)==1;

25
26 for i=1:3

27 for j=1:3

28 for k=1:3

29 for l=1:3

30 eqf=1;

31 if(i~=j)

32 eqf=find(ind2~=i & ind2~=j);

33 end

34 T(i,j,k,l)=delta(i,j,eqf)*(diff(gamma(ind(l+1),k,eqf),x(

ind(l+2))) = diff(gamma(ind(l+2),k,eqf),x(ind(l+1)))

);

35 if(i==j)

36 T(i,j,k,l)=0;

37 end

38 end
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39 end

40 end

41 end

42
43 sum=0;

44
45 for i=1:3

46 for j=1:3

47 for k=1:3

48 for l=1:3

49 for m=1:3

50 sum=sum+diff(gamma(ind(l+1),m,m),x(ind(l+2))) = diff(

gamma(ind(l+2),m,m),x(ind(l+1)));

51 end

52 Tb(i,j,k,l)=sum*delta(i,j,k);

53 sum=0;

54 end

55 end

56 end

57 end

58 T;

59 Tb;

60 3*T=Tb

61 simplify(expand(3*diferencial(T,gamma,x)=diferencial(Tb,gamma,x)))

62 simplify(expand(=3*diferencial(C1,gamma,x)=diferencial(C2,gamma,x)))
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LISTING G.4: Computation of the differential

1
2 %Function that computes the valued differential of an endomorphism=

valued

3 %form in dimension 3.

4
5 %T denotes the basis of endomorphisms in the considered coordinates.

6
7 function d = diferencial(R,gamma,x)

8 T=sym('T%d%d', [3 3]);

9 delta=sym('delta%d%d', [3 3 3]);

10 eqf=1;

11 ind2=[1 2 3];

12 d=0;

13 for i=1:3

14 for j=1:3

15 for k=1:3

16 delta(i,j,k)=0;

17 end

18 end

19 end

20 delta(1,2,3)=1;

21 delta(2,3,1)=1;

22 delta(3,1,2)=1;

23 delta(2,1,3)==1;

24 delta(3,2,1)==1;

25 delta(1,3,2)==1;

26
27 for i=1:3

28 for j=1:3

29 for k=1:3

30 for l=1:3

31 if(R(i,j,k,l)~=0)

32 eqf=find(ind2~=i & ind2~=j);

33 dcovT=0;

34 for m=1:3

35 dcovT=dcovT+gamma(eqf,l,m)*T(k,m)=gamma(eqf,m

,k)*T(m,l);

36 end

37 d=d+delta(i,j,eqf)/2*(diff(R(i,j,k,l),x(eqf))*T(k

,l)+R(i,j,k,l)*dcovT);

38 end
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39 end

40 end

41 end

42 end

43 end
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LISTING G.5: Computation of the curvature operator associated to
Fedosov structures (Proposition 5.19 )

1 clear all

2 tic

3 sym n;

4 n=4;

5 x=sym('x_%d', [1 n]);

6 w=sym('g%d%d', [n n]);

7 winv=sym('ginv%d%d', [n n]);

8 gamma=sym('gamma%d%d_', [n n n]);

9 tensoraux=sym('gamma%d%d_', [n n n]);

10 R=sym('R%d%d%d_', [n n n n]);

11
12 % Definition of the symplectic form

13 w(:,:)=0;

14
15
16 w(1,2)=1;

17 w(2,1)==w(1,2);

18 w(3,4)=1;

19 w(4,3)==w(3,4);

20
21 winv=inv(w);

22
23 % Definition of the symplectic connection

24
25 gamma(:,:,:)=0;

26 tensoraux(:,:,:)=0;

27
28 v=perms([2 3 4]).';

29 tensoraux(sub2ind(size(tensoraux),v(1,:),v(2,:),v(3,:)))=x(1)*x(3)*x(4);

30
31 v=perms([1 1 2]).';

32 tensoraux(sub2ind(size(tensoraux),v(1,:),v(2,:),v(3,:)))=1;

33
34
35 for i=1:n

36 gamma(i,:,:)==reshape(tensoraux(i,:,:), [n n])*winv;

37 end

38
39
40
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41 for k=1:n

42 nablaw(k,:,:)=diff(w,x(k))=reshape(gamma(k,:,:), [n n])*w + (reshape

(gamma(k,:,:), [n n])*w).';

43 end

44
45 if nonzeros(~isAlways(nablaw == 0,'Unknown','false'))

46 fprintf('Incompatible connection\n')

47 nablaw

48 return

49 end

50
51 %Computation of the curvature tensor

52
53 for i=1:n

54 dgamma(:,:,:,i)=diff(gamma,x(i));

55 end

56
57 for i=1:n

58 for l=1:n

59 R(l,i,:,:)= reshape(dgamma(i,:,l,:),[n n]).' = reshape(dgamma(i

,:,l,:),[n n]) = reshape(gamma(i,:,:),[n n])*reshape(gamma

(:,:,l),[n n]) + (reshape(gamma(i,:,:),[n n])*reshape(gamma

(:,:,l),[n n])).' ;

60 end

61 end

62
63 R=simplify(R);

64
65 Prueba_funciones

66
67
68 toc
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LISTING G.6: Computation of scalar invariants of Fedosov structures
(Proposition 5.19)

1 Rdddd=sym('R22%d%d%d%d', [n n n n]);

2 Ruddd=sym('R22%d%d%d%d', [n n n n]);

3 Ruudd=sym('R22%d%d%d%d', [n n n n]);

4 Ruudu=sym('R22%d%d%d%d', [n n n n]);

5 Ruuud=sym('R22%d%d%d%d', [n n n n]);

6 Ruuuu=sym('R22%d%d%d%d', [n n n n]);

7 Rduuu=sym('R22%d%d%d%d', [n n n n]);

8 Ru4=sym('R22%d%d%d%d', [n n n n]);

9 Ru3=sym('R22%d%d%d%d', [n n n n]);

10 Ricc=sym('Ricc%d%d', [n n]);

11 gammau=sym('R22%d%d%d', [n n n]);

12 gammauu=sym('R22%d%d%d', [n n n]);

13
14
15 % Computation of auxiliary tensors

16
17 for i=1:n

18 for j=1:n

19 Rdddd(:,:,i,j)=w*reshape(R(:,:,i,j), [n n]);

20 end

21 end

22
23
24
25 for i=1:n

26 for j=1:n

27 Ruudd(:,:,i,j)==reshape(R(:,:,i,j), [n n])*winv;

28 end

29 end

30
31 for i=1:n

32 for j=1:n

33 Ruudu(i,j,:,:)==reshape(Ruudd(i,j,:,:), [n n])*winv;

34 end

35 end

36
37 for i=1:n

38 for j=1:n

39 Ruuud(:,:,i,j)==Ruudu(:,:,j,i);

40 end
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41 end

42
43
44 for i=1:n

45 for j=1:n

46 Ruuuu(i,j,:,:)=winv*reshape(Ruudu(i,j,:,:), [n n]);

47 end

48 end

49
50 for i=1:n

51 for j=1:n

52 Rduuu(:,:,i,j)=w*reshape(Ruuuu(:,:,i,j), [n n]);

53 end

54 end

55
56
57 for i=1:n

58 for j=1:n

59 Ricc(i,j)=trace(reshape(R(:,i,:,j),[n n]));

60 end

61 end

62
63 Ricc02==winv*Ricc*winv;

64
65 for i=1:n

66 gammau(:,:,i)=winv*reshape(gamma(:,:,i), [n n]);

67 end

68
69 for i=1:n

70 gammauu(i,:,:)=winv*reshape(gammau(i,:,:), [n n]);

71 end

72
73
74 % Computation of the natural functions

75
76
77 for i=1:n

78 for j=1:n

79 dR(:,:,:,:,i,j)=diff(diff(Ruuud,x(i)),x(j));

80 end

81 end

82
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83 for i=1:n

84 for j=1:n

85 for k=1:n

86 dgamma(:,:,:,i,j,k)=diff(diff(diff(gammauu,x(i)),x(j)),x(k))

;

87 end

88 end

89 end

90
91 f1=simplify(sum(Rdddd(:).*Ruuuu(:)))

92
93 f2=simplify(trace(Ricc02*Ricc))

94
95 f3=0;

96 for i=1:n

97 for j=1:n

98 for k=1:n

99 f3=f3+dR(i,j,k,i,j,k);

100 end

101 end

102 end

103
104 f4=0;

105 for i=1:n

106 for j=1:n

107 for k=1:n

108 f4=f4+dgamma(i,j,k,i,j,k);

109 end

110 end

111 end

112
113 f3=simplify(f3)

114
115 f4=simplify(f4)
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