# Diagonalization in Banach Algebras and Jordan-Banach Algebras 

Abdelaziz Maouche<br>Department of Mathematics and Statistics, College of Science, Sultan Qaboos University P.O. Box 36 Al Khod 123, Muscat, Sultanate of Oman<br>e-mail: maouche@squ.edu.om

(Presented by A. Rodríguez Palacios)

AMS Subject Class. (2000): 46H70, 17A15
Received September 10, 2003

## 1. Introduction

Let $A$ be a complex Banach or Jordan-Banach algebra. To study the properties of the spectrum function $x \mapsto \operatorname{Sp} x$ we use the so called Hausdorff distance on compact sets of the complex plane $\mathbb{C}$ defined by

$$
\Delta\left(\sigma_{1}, \sigma_{2}\right)=\max \left\{\sup _{\lambda \in \sigma_{2}}\left\{\operatorname{dist}\left(\lambda, \sigma_{1}\right)\right\}, \sup _{\lambda \in \sigma_{1}}\left\{\operatorname{dist}\left(\lambda, \sigma_{2}\right)\right\}\right\}
$$

where $\operatorname{dist}(\lambda, \sigma)=\inf \{|\lambda-\mu|: \mu \in \sigma\}$ is the distance of the point $\lambda$ to the compact set $\sigma$ (see [1, p. 48]). In this paper, we intend to prove that if the spectrum of an element $a \in A$ is finite and the function $x \mapsto \operatorname{Sp} x$ is lipschitzian at $a$, that is $\Delta(\operatorname{Sp}(a+x), \operatorname{Sp}(a)) \leq M\|x\|$, then $a$ is diagonalizable; in other words we can write $a$ as a linear combination of projections. B. Aupetit proved an analogous spectral characterization for idempotents in [3], that is, elements $e \in A$ such that $e^{2}=e$ (hence in particular $\operatorname{Sp} e=\{0,1\}$ ), this is in fact contained in the proof of [3, Theorem 1.1]. Recall that a Banach algebra $A$ is said to be semisimple if $\operatorname{Rad}(A)=\{0\}$, where $\operatorname{Rad}(A)$ is the Jacobson radical of $A$. In what follows $\rho(x)$ stands for the spectral radius of the element $x$, in our case we can write $\rho(x)=\max \{|\lambda|: \lambda \in \operatorname{Sp} x\}$. We gather now some well-known results on the spectrum $[1,3]$.

Proposition 1.1. Let $A$ be a semisimple Banach algebra and let $p$ be an idempotent element of $A$. Then $p A p$ is a closed semisimple subalgebra of $A$
with identity $p$ such that $\operatorname{Sp}_{p A p}(p x p) \subset \operatorname{Sp}_{A}(p x p)$ and $\rho_{p A p}(p x p)=\rho_{A}(p x p)$ for every $x \in A$. Moreover, if $a_{1}, \ldots, a_{n}$ are elements of $A$ such that $a_{i} a_{j}=0$ for $i \neq j$, then

$$
\operatorname{Sp}\left(a_{1}+\cdots+a_{n}\right) \cup\{0\}=\operatorname{Sp} a_{1} \cup \cdots \cup \operatorname{Sp} a_{n} \cup\{0\} .
$$

## 2. The Banach algebra case

To prove our result we need the following lemma which is taken from [3]. A proof is included since it is short and essential for our theorem.

Lemma 2.1. Let $q \in A$ be a quasinilpotent element. Suppose there exists two positive constants $r$ and $M$ such that $\rho(x) \leq M\|x-q\|$ for $\|x-q\|<r$, then $q \in \operatorname{Rad}(A)$.

Proof. Let $y \in A$ be arbitrary. For $|\lambda|>\frac{\|y\|}{r}$, we have $\rho\left(q+\frac{y}{\lambda}\right) \leq M \frac{\|y\|}{|\lambda|}$, so $\rho(y+\lambda q) \leq M\|y\|$. Hence the upper semicontinuous function $\lambda \mapsto \rho(y+\lambda q)$ is bounded on the complex plane $\mathbb{C}$. Being subharmonic [1, Theorem 3.4.7], it is constant by Liouville's theorem for subharmonic functions [1, Theorem A.1.1]. So $\rho(y+\lambda q)=\rho(y)$ for every $y \in A$. By the characterization of the radical [1, Theorem 5.3.1] we have $q \in \operatorname{Rad}(A)$.

Theorem 2.2. Let $A$ be a semisimple Banach algebra, and let $a \in A$ have finite spectrum, $\operatorname{Sp} a=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Suppose that the spectral mapping $x \mapsto \operatorname{Sp}_{A}(x)$ is lipschitzian at $a$. Then there exists $n$ nonzero orthogonal projectons $p_{1}, \ldots, p_{n}$ whose sum is 1 such that $a=\alpha_{1} p_{1}+\cdots+\alpha_{n} p_{n}$.

Proof. Let $a \in A$ be with $\operatorname{Sp} a=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. By Holomorphic Functional calculus (see [5, Proposition 7.9]), there exist $n$ nonzero orthogonal projections $p_{1}, \ldots, p_{n}$ such that $1=p_{1}+\cdots+p_{n}, p_{i} p_{j}=0$ for $i \neq j, a p_{i}=p_{i} a$ and $\operatorname{Sp}_{A}\left(a_{i}\right)=\left\{\alpha_{i}\right\}$, for $1 \leq i \leq n$. Set $a_{i}=p_{i} a$. Then $a_{i} \in p_{i} A p_{i}$ with $\operatorname{Sp}_{p_{i} A p_{i}}\left(a_{i}\right)=\left\{\alpha_{i}\right\}$ by Proposition 1.1. Let us now see that the spectral mapping $x \mapsto \operatorname{Sp}_{p_{i} A p_{i}}(x)$ is lipschitzian at $a_{i}-\alpha_{i} p_{i}$ for each $1 \leq i \leq n$. Indeed, take $i=1$ and let $x_{1} \in p_{1} A p_{1}$, we have

$$
\begin{aligned}
a-\alpha_{1} 1+x_{1} & =\sum_{i=1}^{n} a_{i}-\alpha_{1}\left(\sum_{i=1}^{n} p_{i}\right)+x_{1} \\
& =\left(a_{1}-\alpha_{1} p_{1}+x_{1}\right)+\sum_{j=2}^{n}\left(a_{j}-\alpha_{1} p_{j}\right) .
\end{aligned}
$$

By the preceding and orthogonality we have

$$
\operatorname{Sp}_{A}\left(a-\alpha_{1} 1+x_{1}\right) \cup\{0\}=\operatorname{Sp}_{A}\left(a_{1}-\alpha_{1} p_{1}+x_{1}\right) \cup\left\{0, \alpha_{2}-\alpha_{1}, \ldots, \alpha_{n}-\alpha_{1}\right\}
$$

and

$$
\begin{aligned}
\rho_{p_{1} A p_{1}}\left(a_{1}-\alpha_{1} p_{1}+x_{1}\right) & =\rho_{A}\left(a_{1}-\alpha_{1} p_{1}+x_{1}\right) \\
& =\Delta\left(\operatorname{Sp}_{A}\left(a_{1}-\alpha_{1} p_{1}+x_{1}\right), \operatorname{Sp}_{A}\left(a_{1}-\alpha_{1} p_{1}\right)\right) \\
& =\Delta\left(\operatorname{Sp}_{A}\left(a-\alpha_{1} p_{1}+x_{1}\right), \operatorname{Sp}_{A}\left(a-\alpha_{1} p_{1}\right)\right) \\
& =\Delta\left(\operatorname{Sp}_{A}\left(a+x_{1}\right), \operatorname{Sp}_{A}(a)\right) \\
& \leq M\left\|x_{1}\right\| .
\end{aligned}
$$

Therefore, $x \mapsto \operatorname{Sp}_{p_{1} A p_{1}}(x)$ is lipschitzian at $a_{1}-\alpha_{1} p_{1}$, with $\operatorname{Sp}_{p_{1} A p_{1}}\left(a_{1}\right.$ $\left.-\alpha_{1} p_{1}\right)=0$. Hence $a_{1}-\alpha_{1} p_{1}=0$ by Lemma 2.1, which completes the proof.

## 3. The Jordan-Banach case

We recall that a complex Jordan algebra $A$ is non-associative and the product satisfies the identities $a b=b a$ and $(a b) a^{2}=a\left(b a^{2}\right)$, for all $a, b$ in A. A unital Jordan-Banach algebra is a Jordan algebra with a complete submultiplicative norm. An element $a \in A$ is said to be invertible if there exists $b \in A$ such that $a b=1$ and $a^{2} b=a$. The spectrum of $x \in A$ is by definition the set of $\lambda \in \mathbb{C}$ for which $\lambda-x$ is not invertible in $A$.

Since we consider only complex semisimple Jordan-Banach algebras, the analogue of Proposition 1.1 is valid in the Jordan case if we replace the subalgebra $p A p$ by $U_{p} A$ and use Propositions 4, 5, 6 and 7 of [4].

Using the characterization of the Jacobson radical for Jordan algebras obtained in [2], Lemma 2.1 is also true for Jordan-Banach algebras.

With all these results and those in [6] we can establish exactly as in the associative case the following analogue of Theorem 2.2.

Theorem 3.1. Let $A$ be a semisimple complex Jordan-Banach algebra, and let $a \in A$ have finite spectrum, $\operatorname{Sp} a=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Suppose that the spectral mapping $x \mapsto \operatorname{Sp}_{A}(x)$ is lipschitzian at $a$. Then there exists $n$ nonzero orthogonal projectons $p_{1}, \ldots, p_{n}$ whose sum is 1 such that $a=\alpha_{1} p_{1}+$ $\cdots+\alpha_{n} p_{n}$.

Proof. Almost the same as the proof of Theorem 2.2 except that the unital algebra $p A p$ is replaced by the algebra $U_{p} A$. Note also that the spectral map-
ping theorem used here is applied to the full closed subalgebra of $A$ generated by $a$ which is unital and associative (cf. [6, Theorem 2.7]).

## Acknowledgements

The autor wishes to express his gratitude to the referee for his valuable comments and suggestions.

## References

[1] Aupetit, B., "A Primer on Spectral Theory", Springer-Verlag, New York, 1991.
[2] Aupetit, B., Spectral characterization of the radical in Banach and JordanBanach algebras, Math. Proc. Camb. Phil. Soc. 114 (1993), 31-35.
[3] Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. 62 (2) (2000), 917-924.
[4] Aupetit, B., Baribeau, L., Sur le socle dans les algèbres de Jordan-Banach, Can. J. Math. 41 (1989), 1090-1100.
[5] Bonsall, F.F., Duncan, J., "Complete Normed Algebras", Springer-Verlag, New York, 1973.
[6] Martinez, J., Holomorphic functional calculus in Jordan-Banach algebras, Ann. Sci. Univ. Clermont Ferrand II, Math. 27 (1991), 125-134.

