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It is well known (see [6]) for a subset C of a bounded closed convex subset
H of a T2 locally convex topological vector space X that

(i) C is a face of H if it is closed convex and for every x, y ∈ H and every
α ∈ (0, 1) such that αx + (1− α) y ∈ C, then x, y ∈ C;

(ii) C is an exposed face of H if there exists f in X∗ such that C =
{x ∈ H : f (x) = sup (f (H))};

(iii) C is a strongly exposed face of H if there exists f in X∗ verifying that
C = {x ∈ H : f (x) = sup (f (H))} and for every open subset U of H
with C ⊆ U , there exists δ > 0 such that slc (H, f, δ) ⊆ U (where
slc (H, f, δ) = {h ∈ H : f (h) ≥ sup (f (H))− δ} is the slice of H de-
termined by f and δ).

If c is an element of H, then

(i) c is an extreme point of H if {c} is a face of H (see [1]);
(ii) c is an exposed point of H if {c} is an exposed face of H (see [6]);
(iii) c is a strongly exposed point of H if {c} is a strongly exposed face of H

(see [6]).

It is well known for a pointx of the unit sphere of a Banach spaceX that

(i) x is a rotund point of BX if every y in SX , such that ‖(x + y) /2‖ = 1,
verifies that x = y (see [8]);

(ii) x is a locally uniformly rotund point of BX if every sequence (yn)n∈N in
SX , such that (‖(x + yn) /2‖)n∈N converges to 1, verifies that (yn)n∈N
converges to x (see [4]).
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It is said that a Banach space is (locally uniformly) rotund if every point
of its unit sphere is a (locally uniformly) rotund point of its unit ball.

It is clear that every locally uniformly rotund point is a strongly exposed
point (for the vector topology given by the norm). Nevertheless, there exist
rotund points which are not strongly exposed points. A Banach space is said
to be strongly exposed if every point of its unit sphere is a strongly exposed
point of its unit ball.

It is well known (see [9, Chapter 5.3]) for a point x of the unit sphere of a
Banach space X that

(i) x is a smooth point of BX if every sequence (fn)n∈N in SX∗ , such that
(fn (x))n∈N converges to 1, verifies that (fn)n∈N is ω∗-convergent;

(ii) x is a strongly smooth point of BX if every sequence (fn)n∈N in SX∗ ,
such that (fn (x))n∈N converges to 1, verifies that (fn)n∈N is convergent.

It can be checked (see [7]) that

(i) x is a smooth point of BX if and only if the norm of X is Gâteaux
differentiable at x;

(ii) x is a strongly smooth point of BX if and only if the norm of X is Fréchet
differentiable at x.

It is said that a Banach space is (strongly) smooth if every point of its
unit sphere is a (strongly) smooth point of its unit ball.

It is well known for a Banach space X that

(i) X has the Efimov-Stechkin property if for every sequence (xn)n∈N in
SX and for every f in SX∗ such that (f (xn))n∈N converges to 1, then
(xn)n∈N has a convergent subsequence (see [9, pp. 478 – 479] and [10]);

(ii) X is almost-rotund if all closed convex subsets of SX are compact
(see [3]).

We are very interested in (strongly exposed) faces, which allows us to
characterize Efimov-Stechkin property and rotundity.

Theorem 1. Let X be a Banach space. The following assertions are equi-
valent:

(i) X has the Efimov-Stechkin property.

(ii) X is reflexive, almost-rotund and every exposed face of BX is a strongly
exposed face of BX .
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Theorem 2. Let X be a Banach space. The following assertions are equi-
valent:

(i) X is rotund.

(ii) If C is a closed convex subset of SX such that BX\C is convex, then C
is a face of BX .

On the other hand, smoothness techniques can be used to characterize
rotundity in a local way. Following this line, we extend a result of Bandy-
opadhyay and Lin (see [5]).

Theorem 3. Let X be a Banach space and let x ∈ SX . The following
assertions are equivalent:

(i) x is a rotund point of BX .

(ii) For every y ∈ SX\ {x},

lim
t→0+

(‖x + ty‖ − ‖x‖
t

)
< 1 .

Theorem 4. Let X be a Banach space and let x ∈ SX . If x is a strongly
exposed point of BX and a strongly smooth point of BX , then it is a locally
uniformly rotund point of BX .

Corollary 5. Let X be a Banach space. Then, X is locally uniformly
rotund if it is strongly exposed and its norm is Fréchet differentiable in SX .

Finally, exposed faces can be characterized using some renorming tech-
niques. In this way, we can prove the following theorems.

Theorem 6. Let X be a Banach space. Let C be a nonempty subset of
SX . The following statements are equivalent:

(i) C is an exposed face of BX .

(ii) There exists an equivalent norm ‖ ‖0 on X such that BX ⊆ BX0 ⊆√
2BX , SX0 ∩ SX = C ∪−C, and C is a maximal face of BX0 , where X0

denotes the space X with the norm ‖ ‖0.

Corollary 7. Let X be a Banach space and let x ∈ SX . The following
statements are equivalent:

(i) x is an exposed point of BX .
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(ii) There exists an equivalent norm ‖ ‖0 on X such that BX ⊆ BX0 ⊆√
2BX , SX0 ∩ SX = {x,−x}, and x is a rotund point of BX0 , where X0

denotes the space X with the norm ‖ ‖0.

Theorem 8. Let X be a Banach space and let x ∈ SX . The following
statements are equivalent:

(i) x is a strongly exposed point of BX .

(ii) There exists an equivalent norm ‖ ‖0 on X such that BX ⊆ BX0 ⊆√
2BX , SX0 ∩ SX = {x,−x}, and x is a locally uniformly rotund point

of BX0 , where X0 denotes the space X with the norm ‖ ‖0.

Part of these results will appear in [2].
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