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This communication presented in the summer course “Espacios de Banach
y operadores” help in Laredo (Spain), august 2003, is an annoucement of some
results about MLUR renorming of Banach spaces. These results will appear
in [6].

Let us start by recalling some convexity properties of norms. Let (X, | ||)
be a Banach space. We say that X (or the norm of X) is:

(1) locally uniformly rotund (LUR for short) if, for every x and every se-
quence (z,), in X such that ||z, +z| — 2||z| and ||z,| — ||z||, we have
[€n =[] = 0;

(2) midpoint locally uniformly rotund (MLUR for short) if, for every x and
every sequence (), in X such that |z, +z| — ||z| and ||z, —z| — ||z]|,
we have ||z,|| — 0;

(3) strictly convex or rotund (R for short) if x = y whenever z and y are
points of X such that ||z|| = [Jy[| = ||Z52]], i.e., if the unit sphere of X
does not contain any nondegenerate segment.

It is clear that LUR = MLUR and that MLUR = R. The converse implic-
ations are not true in general, even under renormings: as dual of a separable
space, { has an equivalent (dual) rotund norm, but it does not admit MLUR
renorming [2]. In the paper [5], Haydon showed the first example of MLUR
space with no equivalent LUR norm.

Banach spaces with equivalent MLUR norms were characterized in [8], in
terms of countable decompositions of such spaces, involving the following
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DEFINITION 1. Let A be a subset of a Banach space (X, || ||). A point
x € A is said to be a e-strongly extreme point of A if there is § > 0 such that
|lu — v|| < e whenever u and v are points in A with ||z — 2| < 4.

It is easy to see that X is MLUR if and only if every point of the unit
sphere is a e-strongly extreme point of the unit ball, for every ¢ > 0. The
characterization of MLUR spaces mentioned above is given by the following

THEOREM 1. ([8], THEOREM 1) A Banach space X admits an equivalent
MLUR norm if, and only if, for every € > 0 we have a countable decomposition

o0
X =[] Xne
n=1

in such a way that every x € X,, . is a e-strongly extreme point of the convex
envelope co(Xy, ).

A similar result was proved for LUR renormability in [7] and [10], where
roughly speaking, e-strong extremality is replaced by e-dentability.

THEOREM 2. ([7], MAIN THEOREM) A Banach space X has an equival-
ent LUR norm if, and only if, for every ¢ > 0 we have a countable decompos-
ition

o0
X =[] X
n=1

in such a way that for every n € N and every x € X,, ¢ there is an open half
space H C X such that x € H and diam(H N X, () < €. Recall that an open
half space of X is a set of the form H = f~1(a,00), with f € X*\ {0} and
ae€R.

This result has motivated the following notion, introduced and extensively
studied by Moltd, Orihuela, Troyanski and Valdivia in their recent memoir
[8], where a non linear transfer method for LUR renormability is provided.

DEFINITION 2. Let X and Y be Banach spaces, and let A be a subset of
X. Amap ¥: A — Y issaid to be o-slicely continuous if for every € > 0 we

A=A

in such a way that for every x € A,  there exists an open half space H such
that x € H and diam W(H N A, ) < e.

may write
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We are going to combine the covering characterization of Theorem 1 and
some properties of o-slicely continuous maps to get some results about MLUR
renormability on Banach spaces. Our first theorem contains, as a particular
case, a version of the three space property for MLUR norms.

THEOREM 3. Let X be a Banach space. Suppose that there exist a closed
MLUR renormable subspace Y of X and a o-slicely continuous map ® : X —

X such that x — ®x € Y for all x € X. Then X admits an equivalent MLUR
norm.

The basic idea to prove this result is to get e-MLUR decompositions on
X from e-MLUR decompositions of Y via the operator Id — ®. The map
®: X — X given by ® = go @, where @ : X — X/Y is the quotient map
and X/Y is LUR renormable, and g : X/Y — X is a continuous selector, is
o-slicely continuous. If moreover Y has an MLUR renorming, we obtain the
following result Alexandrov [1] (see also [3, p. 181]).

COROLLARY 1. Let X be a Banach space. Suppose that there exists a
closed subspace Y of X with an equivalent MLUR norm and such that the
quotient X/Y is LUR renormable. Then X is MLUR renormable.

Let us recall that MLUR is not a three space property. In the paper [5]
Haydon provided an example of Banach space X with a closed subspace Y
sucht that Y and X/Y admit a LUR norm and a MLUR norm, respectively,
while X does not have any equivalent rotund norm.

As another application of our technique we get a partial generalization
of a result of Haydon ([5, Proposition 5.3]), which is the main tool for the
construction of MLUR norms in C(Y) spaces, T a tree.

THEOREM 4. Let K be a locally compact space. Suppose that there exist
a o-slicely continuous map V¥ : Co(K) — co(I") and a family { K, } et of closed
and open subsets of K with the following properties:
(1) for each v € I', Cy(K) is MLUR renormable ;
(2) for each x € Cy(K), = # 0, supp(z) C U{K~ : Yz(y) # 0}.
Then Cy(K) admits an equivalent MLUR norm.

The idea now to obtain the e-MLUR decompositions in Cy(K) is to use the
o-slicely continuity of U and condition (2) to get a first decomposition where
the functions = can be approximated by its restriction on some K, and to
transfer the MLUR decompositions of the spaces Co (K ).
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