
Universidad de Extremadura

Departamento de Tecnoloǵıa de los

Computadores y de las Comunicaciones

Doctor of Philosophy Dissertation

Una Aproximación Genética a la

Transcripción Automática de Música
A Genetic Algorithm Approach to Automatic Music Transcription

by

Gustavo Miguel Jorge dos Reis

Spain 2012

Thesis for the Degree of Doctor of Philosophy

This Thesis was submitted to the University of Extremadura

in accordance with the criteria necessary for the award

of the Doctorate Degree with European Mention.

Organization:

Departamento de Tecnoloǵıa de los Computadores y de las Comunicaciones; Universidad

de Extremadura; Mérida; España

Title:

Una Aproximación Genética a la Transcripción Automática de Música

A Genetic Algorithm Approach to Automatic Music Transcription

Author:

Gustavo Miguel Jorge dos Reis

Supervisors:

Francisco Fernández de Vega (Universidad de Extremadura, España)

Ańıbal João de Sousa Ferreira (Universidade do Porto, Portugal)

© Gustavo Miguel Jorge dos Reis 2011

Dr. D. Francisco Fernández de Vega, profesor titular de la Universidad de Extremadura,

España

CERTIFICA:

que la presente memoria, titulada “Una Aproximación Genética a la Transcripción

Automática de Música” (“A Genetic Algorithm Approach to Automatic Music Transcrip-

tion”) ha sido realizada por D. Gustavo Miguel Jorge dos Reis bajo mi dirección en el

Departamento de Tecnoloǵıa de los Computadores y de las Comunicaciones de la Univer-

sidad de Extremadura.

Y para que conste, y en cumplimiento de la legislación vigente, firmo la presente.

Dr. D. Francisco Fernández de Vega

Dr. D. Ańıbal João de Sousa Ferreira, profesor titular de la Universidade de Porto,

Portugal

CERTIFICA:

que la presente memoria, titulada “Una Aproximación Genética a la Transcripción

Automática de Música” (“A Genetic Algorithm Approach to Automatic Music Transcrip-

tion”) ha sido realizada por D. Gustavo Miguel Jorge dos Reis bajo mi dirección en el

Departamento de Tecnoloǵıa de los Computadores y de las Comunicaciones de la Univer-

sidad de Extremadura.

Y para que conste, y en cumplimiento de la legislación vigente, firmo la presente.

Dr. D. Ańıbal João de Sousa Ferreira

To Helena

Contents

Acknowledgements ix

Resumen xi

Abstract xiii

List of Figures xv

List of Tables xxi

List of algorithms . xxiii

1 Introduction 1

1.1 Objectives and Scope of the Thesis . 4

1.2 Thesis Contributions . 4

1.3 Outline of the Thesis . 5

2 Sound, Signals and Fundamental Frequency Estimation 9

2.1 Audio: Sound Waves . 9

2.1.1 Analog Audio . 9

2.1.2 Digital Audio . 10

2.1.3 Signal Sampling . 11

2.2 Music . 12

2.3 Digital Signal Processing . 15

2.3.1 Fourier Analysis . 16

2.3.2 Power Spectral Density - PSD . 19

2.3.3 Spectral Leakage . 20

2.3.4 Windowing . 21

2.3.5 Relation between the signal’s properties 22

2.4 Fundamental Frequency and Pitch . 22

2.5 Single-F0 Estimation . 24

2.5.1 Spectral-location Approaches . 24

2.5.2 Spectral-interval Approaches . 27

2.5.3 Unitary model of pitch perception 29

iii

2.6 Multiple-F0 Estimation . 30

2.6.1 Problem Complexity . 31

2.7 Summary . 37

3 Related Work 39

3.1 Multiple-F0 estimation . 39

3.2 Iterative Estimation Approaches . 40

3.2.1 Direct Cancellation . 40

3.2.2 Cancellation by Spectral Models . 40

3.2.3 Matching Pursuit . 42

3.3 Joint Estimation . 42

3.3.1 Joint Cancellation . 42

3.3.2 Polyphonic Salience Function . 43

3.3.3 Spectral Matching by Non-parametric Models 44

3.3.4 Statistical Modeling using Parametric Models 50

3.3.5 Blackboard Systems . 53

3.4 Discussion . 54

3.4.1 Spectral Representation: Multi-resolution or Fixed-resolution? . . . 54

3.4.2 Computational Efficiency or Greater Accuracy: Iterative or Joint

Estimation? . 55

3.4.3 Which Joint Estimation Method? 55

4 Genetic Algorithms 57

4.1 Algorithm . 57

4.2 Problem . 57

4.2.1 Decision problems . 58

4.2.2 Search problems . 58

4.2.3 Counting problems . 59

4.2.4 Optimization problem . 59

4.3 Polynomial Time as a Reference . 59

4.3.1 P and NP classes . 60

4.4 Bio-inspired Algorithms . 62

4.4.1 Evolutionary Computation . 62

4.5 Genetic Algorithms . 66

4.5.1 Biological Background . 66

4.5.2 Terminology . 68

4.5.3 Definition . 68

4.6 Summary . 71

5 Automatic Transcription of Music and Multi-Pitch Estimation - A

Deeper Analysis 73

5.1 Automatic Transcription of Music as Optimization or Search Space Problem 73

5.1.1 Search Space Size . 74

5.1.2 Computational Complexity: NP-Complete or NP-Hard? 74

5.2 Addressing Combinatorial Optimization Problems with Genetic Algorithms 75

5.3 Addressing Automatic Transcription of Music and Multi-Pitch Estimation

with Genetic Algorithms . 76

5.3.1 Genotype . 76

5.3.2 Fitness Evaluation . 76

5.3.3 Selection . 77

5.3.4 Recombination . 77

5.3.5 Mutation . 78

5.3.6 Creation of the Initial Population 78

5.3.7 Survivor Selection . 78

5.4 Summary . 79

6 Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models 81

6.1 First Genetic Algorithm approach to Polyphonic Pitch Detection 81

6.1.1 Genotype . 82

6.1.2 Fitness Function . 82

6.1.3 Selection . 83

6.1.4 Recombination . 83

6.1.5 Mutation . 83

6.1.6 Initialization . 84

6.1.7 Survivor Selection . 84

6.1.8 Experiments and Results . 84

6.1.9 Additional Constraints . 85

6.2 Moving from Polyphonic Pitch Detection to Automatic Transcription of

Music . 85

6.2.1 Genotype . 86

6.2.2 Fitness Function . 86

6.2.3 Selection . 87

6.2.4 Recombination . 87

6.2.5 Mutation . 87

6.2.6 Initialization . 88

6.2.7 Survivor Selection . 88

6.2.8 Experiments and Results . 88

6.2.9 Additional Constraints . 88

6.3 Automatic Music Transcription using Synthesized Instruments 89

6.3.1 Genotype . 89

6.3.2 Fitness Function . 90

6.3.3 Selection . 90

6.3.4 Recombination . 90

6.3.5 Mutation . 91

6.3.6 Initialization . 91

6.3.7 Survivor Selection . 91

6.3.8 Experiments and Results . 91

6.3.9 Additional Constraints . 92

6.4 Summary . 92

7 Moving to Real Audio Recordings 95

7.1 First Proposal on Real Audio Recordings 95

7.1.1 Genotype . 95

7.1.2 Fitness Function . 96

7.1.3 Selection . 100

7.1.4 Recombination . 100

7.1.5 Mutation . 100

7.1.6 Initialization . 101

7.1.7 Survivor Selection . 101

7.1.8 Initial Experiments and Tuning . 101

7.1.9 Experiments and Results . 103

7.1.10 Additional Constraints . 105

7.2 Reducing the Harmonic Overfitting . 107

7.2.1 Evolving Timbre . 107

7.2.2 Genotype . 108

7.2.3 Fitness Function . 109

7.2.4 Recombination . 110

7.2.5 Mutation . 110

7.2.6 Experiments and Results . 110

7.2.7 Additional Constraints . 112

7.3 Automatic Music Transcription of Multi-Timbral Music 113

7.3.1 Genotype . 113

7.3.2 Fitness Function - Individual Evaluation 115

7.3.3 Recombination . 115

7.3.4 Mutation . 115

7.3.5 Instrument Identification . 116

7.3.6 Experiments and Results . 116

7.3.7 Additional Constraints . 120

7.4 Summary . 120

8 Gene Fragment Competition: Improving the Performance of the Al-

gorithm for Real Audio Transcription 121

8.1 Introduction . 121

8.2 Gene Fragment Competition . 122

8.2.1 Simple example . 125

8.3 Applying Gene Fragment Competition to Music Transcription 125

8.3.1 Experiments and Results . 127

8.4 Gene Fragment Competition: a Deeper Analysis 128

8.4.1 Comparing Gene Fragment Competition and Parisian Approach . . 129

8.4.2 Parisian Approach . 130

8.4.3 Royal Road Functions and the

Hitchhiking Phenomena . 132

8.4.4 Methodology . 134

8.4.5 Parisian approach . 135

8.4.6 Gene Fragment Competition . 136

8.4.7 Results and Analysis . 136

8.5 Summary . 139

9 Multiple-F0 Estimation on Piano Recordings using Spectral Envelope

Modeling and Dynamic Noise Level Estimation 141

9.1 System Overview . 142

9.2 Proposed Genetic Algorithm . 143

9.2.1 Fitness Evaluation . 146

9.2.2 Recombination . 147

9.2.3 Mutation . 148

9.2.4 Initialization . 149

9.2.5 Survivor Selection . 150

9.3 Hill-Climber . 150

9.4 Experiments and Results . 151

9.4.1 Implementation and Tuning . 151

9.4.2 Evaluation . 152

9.4.3 Comparison with other State-of-the-art algorithms 154

9.4.4 Contribution of each module to the overall results 159

9.4.5 Impact of the onset detector on the overall results 161

9.5 Summary . 163

10 Public Evaluations 165

10.1 MIREX . 165

10.1.1 MIR Tasks Hosted on MIREX . 166

10.2 Multiple Fundamental Estimation & Tracking 167

10.2.1 Data . 167

10.2.2 Evaluation . 167

10.3 Multiple F0 Estimation and Tracking: Note Tracking Piano Subtask Re-

sults 2007-2011 . 169

10.3.1 Chroma Evaluation . 172

10.4 Humies Awards . 173

10.4.1 Human-Competitiveness . 174

10.4.2 Submission . 174

10.5 Summary . 175

11 Conclusions and Future Work 177

11.1 Conclusions . 177

11.2 Future Work . 178

Bibliography 181

A Publications 201

B Rendering an Individual into an Audio Signal 205

C Proof of Octave Normalization 207

D Get Possible Notes 211

Acknowledgements

First of all, I would like to thank to my supervisors, Prof. Francisco Fernandéz de Vega

and Prof. Ańıbal Ferreira, for their support, attention, guidance, insight, constructive

comments, suggestions and encouragement through these years.

I would also like to thank to Nuno Fonseca for pushing me during my first steps on the

Signal Processing field and, specially, on the first implementation of the piano synthesizer

and collaborative research. I would also like to thank Nuno for introducing me to Ańıbal

Ferreira, who became my supervisor.

I am also deeply grateful to Patŕıcio Domingues, for reducing my work ours, so I could

focus on the writing of this dissertation.

A special thanks to Valentin Emiya for sharing his results, and to all the researchers

that shared their algorithms so that we could perform the reported comparisons.

To Daniel Lombraña Gonzeléz and Paco Chavez for their hard work on configuring

the blade machines so that we could perform all the tests.

To the Spanish Ministry of Science and Innovation for the support under project

ANYSELF (TIN2011-28627-C04), Gobierno de Extremadura, under projects GRU09105,

GR10029 and Municipality of Almendralejo.

I cannot end without thanking my daughters Maria and Sofia for their patience and

understanding. Lastly, and most importantly, I wish to deeply thank my wife Helena for

her constant encouragement, love and most of all, patience, throughout this journey. To

them I dedicate this dissertation.

ix

Resumen

La transcripción de música es un proceso que pretende extraer una notación musical

legible por las personas, tal como una partitura, a partir de una señal acústica. De

este modo, la transcripción automática de música es el proceso en el que un computador

extrae la notación deseada de la fuente audio. La transcipción automática de música

es un área de investigación que además de encuadrarse en ciencias de la computación,

toca varias disciplinas, incluyendo procesamiento digital de señales, aprendizaje máquina,

psicoacústica, percepción de tono, teoŕıa musical y también conocimiento musical y teoŕıa

cognitiva.

La transcripción automática de música es una tarea extremadamente dif́ıcil, que ha

sido ya abordada en varias tesis doctorales. A pesar del número de intentos de resolver

el problema, un sistema de propósito general para transcripción automática, práctico

y aplicable no ha sido desarrollado hasta la fecha. Más aún, los sistemas disponibles

en la actualidad no alcanzan el nivel de eficacia y flexibilidad desarrollado por músicos

profesionales.

Entendemos aqúı el problema de la transcripción automática de música como un prob-

lema de optimización combinatoria, cuyo objetivo es encontrar la combinación de notas

musicales que mejor representa la señal acústica observada. Nuestra propuesta hace uso de

codificación dispersa y algoritmos genéticos, que son una muy buena herramienta en para

problemas de búsqueda. Utilizando esta aproximación, nuestro método puede trabajar

con sonidos que incluyen varias componentes armónicas.

Esta tesis presenta las etapas de investigación que se han desarrollado con el fin de

aplicar los Algoritmos Genéticos al problema de la Transcripción Automática de Música.

Hemos utilizado varias aproximación basadas en los algoritmos genéticos para resolver

el problema de estimación múltiple de frecuencias (tonos), comenzando primero con un

modelo simplificado (sintetizado) de instrumentos musicales, para después pasar a trabajar

con grabaciones realizadas con instrumentos musicales reales. En cada experimento hemos

aplicado diferentes modelos y herramientas teóricas (espectros logaŕıtmicos y lineales,

filtros, cepstrum, cepstral h́ıbrido y análisis espectral, autocorrelación, etc.) para buscar

medidas de similaridad y de error (pasando por distancias Hamming y distancias de áreas

de intersección Itakura-Saito, correlación y otras variantes).

Hemos trabajado también en el problema de “Sobreentrenamiento armónico” que tiene

su origen en las diferencias de timbre, y hemos propuesto un modelo de envoltura espectral

xi

para resolverlo. Además hemos empleado esta aproximación en señales musicales que

utilizan diferentes instrumentos, para mostrar la capacidad para trabajar en problema

multi-timbre.

También presentamos un nuevo modelo para estimación múltiple de frecuencias fun-

damentales en grabaciones de piano. Proponemos un esquema basado en los algoritmos

genéticos para analizar los solapamientos de los armónicos durante la búsqueda de la com-

binación más correcta de frecuencias fundamentales. El proceso de búsqueda es ayudado

por un proceso de modelado adaptativo de la forma del espectro y de una estimación

dinámica del nivel de ruido en las muestras de piano, para que coincida con el piano

real presente en la señal de entrada, ayudando aśı al proceso de búsqueda. Hemos com-

parado nuestros resultados con los obtenidos por varios algoritmos del “estado del arte”

utilizando varias piezas musicales ejecutadas sobre diferentes pianos. El nuevo algoritmo

propuesto obtiene un meritorio primer y segundo lugar en las comparativas, dependiendo

de la medida de comparación utilizada. También se comparó la nueva propuesta con

una aproximación anterior basada en algoritmos genéticos y se observa las significativas

mejoras aportadas tanto en calidad como en tiempo de cómputo.

Esta tesis doctoral también presenta contribuciones útiles de modo genérico para la

Computación Evolutiva. En concreto, la técnica que denominamos “Competición de Frag-

mentos Genéticos (Gene Fragment Competition, GFC)” puede ser aplicada en problemas

descomponibles tanto en procesamiento de señales audio como imágenes. Se realizó un

estudio completo para mostrar la utilidad de la técnica en problemas descomponibles.

Haciendo uso del modelo modular y jerárcico de las funciones tipo “Royal Road” se han

hecho tests que muestran como la nueva técnica puede superar problemas de correlacion.

Mostramos emṕıricamente que GFC en general sobrepasan al algoritmo genético estandar,

al modelo coevolutivo y también al método de ascenso de colina. La aplicación de de-

scomposición de problemas en bloques es una técnica útil para evitar los problemas de

correlación mencionados. A pesar del hecho que la mutación aleatoria asociada a métodos

de ascenso de colina han probado en el pasado ser ideales para funciones tipo “Royal Road”

hemos mostrado que el nuevo método presentado puede explorar más eficientemente el

espacio de búsqueda en estas funciones.

Palabras clave: Transcripción Automática de Música, estimación múltiple de frecuencias

fundamentales, estimación muti-tono, análisis de señales acústicas, recuperación de in-

formación musical, perecpción de tono, algoŕıtmos genéticos, competición de fragmentos

genéticos.

Abstract

Music transcription is the process of extracting human readable notation, like a music

score, from an acoustical signal. This way, automatic transcription of music is the process

in which a computer program extracts notation from an audio signal. Automatic tran-

scription of music is a research area that, besides computer science, encompasses several

disciplines including digital signal processing, machine learning, psychoacoustics and pitch

perception, music theory and also music cognition.

Automatic transcription of music is an extremely difficult task, which has already

been addressed in several doctoral theses. Despite these number of attempts to solve

the problem, a practical and applicable, general-purpose transcription system still does

not exist at the present time. Furthermore, current available systems fall behind skilled

human musicians in both accuracy and flexibility.

We depict the problem of automatic music transcription as a combinatorial optimiza-

tion problem where the goal is to find the combination of musical notes that best represents

the observed signal. We extend the sparse coding with genetic algorithms, which are a

very good tool on search problems. By using sparse approximation, along with evolution-

ary algorithms, our method is able to cope with harmonic sounds with varying harmonic

components.

This dissertation presents the several steps of our research on addressing Genetic

Algorithms to the problem of Automatic Transcription of Music. We have employed

several genetic algorithm approaches to address the problem of multi-pitch estimation, first

starting with simple synthesized models of instruments, and then, moving to real audio

recordings, performing several experiments. These experiments included different domains

and tools (log spectra, linear spectra, filter banks, real cepstrum, hybrid cepstral and

spectral analysis, auto correlation and summary auto correlation functions, etc.) for audio

similarity measurement and several error measurements (from Hamming and Itakura-Saito

distances to area intersection, correlation and other variations). We faced the problem

of Harmonic Overfitting, which is related to timbre differences, and proposed a spectral

envelope modeling technique to address this issue. Furthermore, we have also employed

this approach on musical signals with different audio instruments to show the feasibility

of the approach on multi-timbral music.

We present a new method for multiple fundamental frequency (F0) estimation on pi-

ano recordings. We propose a framework based on a genetic algorithm in order to analyze

xiii

the overlapping overtones and search for the most likely F0 combination. The search pro-

cess is aided by adaptive spectral envelope modeling and dynamic noise level estimation:

while the noise is dynamically estimated, the spectral envelope of previously recorded

piano samples (internal database) is adapted to best match the piano played on the input

signals and aid the search process for the most likely combination of F0s. For compar-

ison, several state-of-the-art algorithms were tested on various musical pieces played by

different pianos and then compared using three different metrics. The proposed algorithm

ranked second place on both Onset Only and Onset-Offset metrics and ranked first place

on Hybrid Decay/Sustain Score metric, which has better correlation with the human hear-

ing perception. One final comparison is made with a previous genetic algorithm approach

to show how the proposed system brings significant improvements on both quality of the

results and computing time.

This dissertation also presents our contributions to the field of Evolutionary Compu-

tation, namely the Gene Fragment Competition approach, which can be used on most

decomposable problems in signal or image processing. An analysis of how decompos-

able approaches are suitable to decomposable problems is presented. We took advantage

of the modular and hierarchical structure of the Royal Road functions to use them as

test functions and show how single-population decomposable approaches, such as the

Gene Fragment Competition, can overcome the spurious correlation or hitchhiking. We

show empirically that both Parisian approach and Gene Fragment Competition show, in

general, better behavior than not only the standard genetic algorithm and the multiple-

population co-evolutionary approach but also the random mutation hill-climber. Hitch-

hiking is known to be, in general, one of the major bottlenecks of the genetic algorithms

performance. Therefore, avoiding hitchhiking has the potential to boost the performance

of the algorithm. Applying problem decomposition in building blocks is an advantageous

optimization technique, since this avoids the hitchhiking phenomena. Despite the fact that

the random mutation hill-climber algorithm has proved in the past to be the ideal for the

Royal Road functions, we have shown that single population decomposable approaches

can explore more efficiently the search space on Royal Road functions.

We show empirically that both Parisian approach and Gene Fragment Competition

show, in general, better behavior than not only the standard genetic algorithm and the

multiple-population co-evolutionary approach but also the random mutation hill-climber.

Keywords: Automatic music transcription, multiple fundamental frequency estimation,

multi-pitch estimation, acoustic signal analysis, music information retrieval, pitch percep-

tion, genetic algorithms, gene fragment competition.

List of Figures

1.1 Music score of the second movement of Piano Sonata No. 16 in C major, K.

545, by Wolfgang Amadeus Mozart. 2

1.2 Piano-roll of the second movement of Piano Sonata No. 16 in C major, K. 545,

by Wolfgang Amadeus Mozart. 2

2.1 The ADC collects periodic samples of the sound pressure. 10

2.2 Digitized sound wave. 10

2.3 Sampled signal. 11

2.4 A complex wave with lost frequencies due to a low sample rate. 11

2.5 A bit depth of 2 (which makes a sound just barely intelligible) does not provide

a very accurate representation of the original sound. 13

2.6 Periodic signal. 16

2.7 Waveform of a quasi-periodic signal, generated by a saxophone, with F0 =

237Hz (T0 = 4.2ms) . 16

2.8 Complex plane diagram. Magnitude and phase of the complex number z are

shown. 19

2.9 Power spectrum of a Steinberg piano (middle C note). 20

2.10 Pure sine wave in the time-domain. 20

2.11 Single spectral line in the frequency-domain. 20

2.12 Windowed section of the signal history. 21

2.13 Repeated window section of the signal history. 21

2.14 Spectral leakage on the frequency-domain. 21

2.15 Missing fundamental resulting at 200 Hz. 23

2.16 Three time-domain salience functions for a baritone sax signal of T0 = 2.3ms

(A) signal waveform; (B) autocorrelation function; (C) average magnitude dif-

ference function; (D) squared difference function; and (E) cepstrum. 27

2.17 From top to bottom: (a) waveform of a signal containing the harmonics from

15 to 19 of a sound with F0 = 220Hz; (b) the same signal, after half-wave

rectification; and (c) the signal after rectification and low pass filtering. The

response of the lowpass filter is shown as a dashed line in (b) (from Klapuri

(2004a), page 27). 30

xv

2.18 Comparison of the spectrogram of a monophonic signal with that of a poly-

phonic signal: (a) a trumpet note sample; (b) a piano and violin duo recording

(from Yeh (2008), page 15). 31

2.19 Three time-domain salience functions for a polyphonic signal containing four

harmonic sources. The correct periods are marked by vertical dashed lines

(from Yeh (2008), page 19). 32

2.20 Five frequency-domain salience functions for a polyphonic signal containing

four harmonic sources. The correct fundamental frequencies are marked by

vertical dashed lines (from Yeh (2008), page 19). 33

2.21 Interference tones of two sinusoidal signals of close frequencies f1 and f2. . . . 34

2.22 Example spectrum of two piano sounds with fundamental frequencies A3 (220.0

Hz) and E4 (329.6276 Hz). A beating component appears at frequency 110 Hz,

corresponding to a A2 ghost pitch. 35

2.23 The spectra of six musical instrument sounds: (a) trumpet A3 note; (b) piano

A1 note; (c) clarinet A3 note; (d) bassoon A3 note; (e) bowed cello A3 note;

and (f) pizzicato cello A3 note. (Yeh (2008), page 17). 36

2.24 Spectrum of a vibrating piano string (F = 156Hz). Ideal harmonic locations

are numbered and indicated with “+” marks above the spectrum. The inhar-

monicity phenomenon (i.e., non-ideal harmonicity) shifts the 24th harmonic

partial to the position of the 25th ideal harmonic (from Klapuri (2004a), page

22). 36

4.1 Most common execution times. 61

4.2 Classes of problems according to their computational complexity. 62

4.3 DNA chemical structure (from: http://en.wikipedia.org/wiki/DNA). 67

4.4 One point crossover, two point crossover and uniform crossover. 70

6.1 Garcia’s approach chromosome structure with L = 4 bits. 82

6.2 Genotype of Lu’s approach: notes are separated according to each instrumen-

t/track. Each note has frequency, start time and length. Start and length are

truncated to time slices. 86

6.3 Encoding for monophonic transcription. The individual is divided in time

frames, where each time frame has can be one of 128 possible MIDI pitches

plus the option of silence. 89

6.4 Encoding for polyphonic transcription. The individual is divided in time

frames, where each time frame has can be one of 128 possible MIDI pitches

plus the option of silence. 90

6.5 Transcription of 3 (A) and 5 (B) consecutive chords. The upper part of the

figure corresponds to the original piano-roll and the bottom part is the corre-

sponding generated transcription. 91

7.1 Proposed encoding of the individuals. The individual is encoded as a set note

events. Each event has a pitch, start time, duration and velocity. 96

7.2 Block diagram of the fitness evaluation process. 97

http://en.wikipedia.org/wiki/DNA

7.3 One point crossover performed on temporal dimension. 100

7.4 Block diagram of the creation of the starting population. 101

7.5 Original audio (top) and the piano-roll of the corresponding transcription (bot-

tom) . 102

7.6 Evolution of fitness (A), recall (B) and precision (C) values over 1000 genera-

tion, with different configurations. 105

7.7 Original audio and corresponding transcription. 106

7.8 Magnitude spectrum from piano played in the original audio (on the left) and

from the internal piano sampler, both on the Middle C note (C4). 106

7.9 Magnitude spectrum of two different pianos (Steinway and Bechstein) playing

the middle C (note C4) during one second. 108

7.10 Encoding of the individual with the Harmonic Structure. 109

7.11 Evolution of F-Measure (A) and Reacall and Precision (B) values along 1500

generations. 112

7.12 Encoding of the individuals with timbre information. 114

7.13 Internal structure of an individual. 115

7.14 Spectrum of the Alto Saxophone, Clarinet and Trombone respectively for the

note F4 ≃ 349.23Hz. 116

7.15 Spectrum of the internal synthesizer for alto saxophone (left) and of the original

alto saxophone for the note F4 ≃ 349.23Hz. 117

7.16 Spectrum of the internal synthesizer for clarinet (left) and of the original clar-

inet for the note F4 ≃ 349.23Hz. 117

7.17 Spectrum of the internal synthesizer for trombone (left) and of the original

trombone for the note F4 ≃ 349.23Hz. 117

7.18 Sample used as internal clarinet synthesizer for the F4 note. 118

8.1 Classic Genetic Algorithm approach (A) vs Traditional Memetic Algorithm

approach (B) vs Gene Fragment Competition (C). 123

8.2 Outline of the Gene Fragment Competition, compared with the classical GA.

During the recombination each parent is fragmented, the resulting fragments

are evaluated and the best fragments of each parent are selected and merged

to generate the offspring. 124

8.3 Individual’s encoding on the “Find the sequence problem”. 125

8.4 Fitness values of Individual1 and Individual2. The fitness value of each indi-

vidual is calculated by the sum of the absolute difference between the values

of their genes and the target individual’s genes. 125

8.5 Breeding of a new born individual. The best fragments of each father are

inherited to the new born individual. 126

8.6 Fitness values over 1000 generations using classic GA, using static fragment

size gene competition and dynamic fragment size gene competition (left) and

with different values of mutation probabilities in generic GA approach (right). 128

8.7 Average best fitness values over 1000 generations using classic GA, using static

fragment size gene competition and dynamic fragment size gene competition

for the Mozart’s Piano Sonata. 129

8.8 Outline of the Parisian approach, compared with the classical GA, done by

Dunn et al.[2]. Fitness evaluation takes into account the local and global

contribution of an individual. 131

8.9 Royal Road function R1. An optimal string is broken up into eight building

blocks. The function R1(x) (where x is a bit string) is computed by summing

the coefficients cs corresponding to each of the given schemas of which x is an in-

stance. For example, R1(11111111 . . . 0) = 8, andR1(1111111100 . . . 011111111) =

16. Here cs = order(s). 133

8.10 Royal Road function R2. Some intermediate schemata are added to the those

in R1. Namely, s9 . . . s14. R2 is computed in the same way as R1: by

summing the coefficients cs corresponding to each of the given schemas of

which x is an instance. For example, R2(1111111100 . . . 011111111) = 16, but

R2(111111111111111100 . . . 0) = 32. R2(11111111 . . . 1) = 192. 134

9.1 Block diagram of the transcription algorithm. 143

9.2 (A): Genotype of an individual and corresponding phenotype. (B): Spectral

envelope encoding. Each gene corresponds to a pair of values: the gain of the

respective harmonic (expressed in dB) and its inharmonicity deviation. (C):

The noise is encoded as an adaptive threshold below a maximum peak of the

current time frame. Each gene corresponds to the noise threshold (expressed

in dB) of the corresponding frequency bin. 144

9.3 The bottom left plot represents a major chord (C4 - 261.6256 Hz; E4 - 329.6276

Hz; and G4 - 391.9954 Hz) played by a Bosendorfer piano (original audio)

and its generated transcription (Bechstein). The spectrum of the generated

transcription consists of the sum of each estimated component (top 3 plots on

the left of the same figure). The top right plot represents the same spectrum

after applying the noise level estimation (light gray) and, finally, the bottom

right plot represents the latter spectrum with the evolved spectral envelope

modeling. 146

9.4 Recombination operators: one-point cut and slice crossover (A) and classic

one-point crossover (B). 147

9.5 (A) Multi-pitch estimation results for each polyphony on 2.700 random-pitched

chords; (B) Multi-pitch estimation results for each polyphony on 5.160 common

chords. 152

9.6 The distribution of estimated polyphony for the polyphony from 2 to 7 on

(A) random-pitched chords and from 2 to 5 on (B) common chords. The title

of each subfigure indicates the correct polyphony; the x-axis represents the

estimated polyphony; the y-axis represents the percentage of the estimated

polyphony among all instances. The peaking at the correct polyphony is ob-

served for polyphony below six, except for four. 153

9.7 (A) Onset-only F-measure, Precision, Recall and Mean Overlap Ratio, respec-

tively; (B) Friedman Mean Ranks with regard to F-measure on individual files. 155

9.8 (A) Onset-Offset F-measure, Precision, Recall and Mean Overlap Ratio, re-

spectively; (B) Friedman Mean Ranks with regard to F-measure on individual

files. 157

9.9 Final Score, Decay Score and Sustain Score, respectively. 159

9.10 (A) Contribution of each module to the global results of the proposed sys-

tem - Onset-offset; (B) Friedman Mean Ranks with regard to F-measure on

individual files. 161

9.11 F-measure, Precision, Recall and Mean Overlap Ratio, using onset detection

and ground-truth information. 162

10.1 Mirex piano results. 170

10.2 MIREX piano by teams. 171

10.3 MIREX piano by teams - chroma evaluation. 173

List of Tables

2.1 Numeric values of the pitches. C0 is the pitch 12 and B8 is the pitch 119. . . . 14

2.2 Corresponding frequency of each MIDI pitch, from C0 to B8. C0 has the

frequency 16 Hz (more precisely 16.3515978313 Hz) and B8 has 7,902 kHz

(more precisely 7902.1328200980 Hz). 14

4.1 Genetic Algorithm terminology . 68

7.1 Algorithm parameters. 104

7.2 Results of the proposed approach. 111

7.3 Initial results of the proposed approach for the whole mixture and for each

instrument inside the whole mixture. 118

7.4 Results of the proposed approach for the whole mixture and for each instrument

inside the whole mixture. 119

7.5 Comparison of the algorithms. 119

8.1 Algorithms parameters. 127

8.2 Average best fitness values over 1000 generations using classic GA, using static

GFC and dynamic GFC. 128

8.3 Optimal population sizes for Standard Genetic Algorithm, Parisian approach

and Gene Fragment Competition. The tested population values were: 64,

128, 256 and 512. For Parisian and GFC the best performance over all the

numbers of fragments (from 2 up to the block size) was considered. L stands

for the Royal Road function’s string length. The number of evaluations for the

Parisian approach with 32 components (Parisian32) was too big. 137

8.4 Average number of evaluations and standard deviations (×102) to find the

optimal string in both R1 and R2 functions. The results of a previous study

in the literature about multi-population co-evolutionary approaches[7] are also

included (CCEA), as well as the Random Mutation Hill Climber (RHMC).

Both Parisian and GFCmethods significantly overcome both CCEAs and RHMC.138

9.1 Genetic Algorithm parameters . 151

9.2 Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-

only metric . 156

xxi

9.3 Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-

Offset metric . 158

9.4 Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Hy-

brid Decay/Sustain metric . 160

9.5 Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-

offset metric . 162

List of Algorithms

4.1 Algorithm ((µ+ λ)EA) . 65

4.2 Algorithm ((1 + 1)EA) . 66

4.3 Genetic Algorithm . 69

9.1 Mutation . 148

9.2 Hill-Climber . 150

D.1 Get Possible Notes algorithm. 212

xxiii

Chapter 1

Introduction

The question:

How can we automatically transcribe the musical score of an acoustic song or

audio signal?

is known as the automatic music transcription problem.

Music transcription is the process of extracting human readable notation (e.g. a music

score) from an acoustical signal. This way, automatic transcription of music is the process

in which a computer program extracts musical notation from an audio signal when it is

represented using a non-semantic format such as PCM. Automatic transcription of music

is a research area that, besides computer science, transverses several disciplines including

digital signal processing, machine learning, psychoacoustics and pitch perception, music

theory and also music cognition. Also, it is a music information retrieval (MIR) task.

Other MIR tasks include:

• Audio Genre Classification;

• Audio Music Mood Classification;

• Audio Classical Composer Identification;

• Audio Cover Song Identification;

• Audio Tag Classification;

• Audio Music Similarity and Retrieval;

• Symbolic Melodic Similarity;

• Audio Onset Detection;

• Audio Key Detection;

• Real-time Audio to Score Alignment (a.k.a Score Following);

1

1. Introduction

legato

Andante

dolce

Figure 1.1: Music score of the second movement of Piano Sonata No. 16 in C major, K.
545, by Wolfgang Amadeus Mozart.

Figure 1.2: Piano-roll of the second movement of Piano Sonata No. 16 in C major, K.
545, by Wolfgang Amadeus Mozart.

• Query by Singing/Humming;

• Audio Melody Extraction;

• Multiple F0 Estimation & Tracking;

• Audio Chord Estimation;

• Query by Tapping;

• Audio Beat Tracking;

• Structural Segmentation;

• Audio Tempo Estimation.

The main goal of music transcription systems is helping a musician to write down the

music notation of a performance from an audio recording. This is a time consuming task

when done by hand and very hard problem as well, that only the most skilled musicians

can address. Automatic transcription systems can also be used as input in other MIR

systems like, for instance, plagiarism detection, artist identification, genre classification

and also music composition assistance.

As previously mentioned, the goal of automatic music transcription systems is to

extract human readable representation, like music notation, from an acoustic signal. In

this context, a score is a guide to perform a piece of music, and it can be represented in

several and different ways. The most used representation is the modern notation used in

Western tonal music: the score (see Figure 1.1).

2

To extract a score from an acoustic signal, several problems must be also addressed.

Besides the estimation of the pitches of each source, it is also necessary to infer onset1

times and durations of the notes, the tempo. Depending on the process, the meter and

the tonality of a musical piece might also need to be inferred. In general, the transcription

process is separated into two main steps: the extraction of a piano roll representation

(see Figure 1.2) from an acoustic signal, and the subsequent conversion of the inferred

piano roll to the score.

In general, automatic music transcription is only addressed as the stage of audio to

piano roll conversion, whereas the further conversion of the piano roll to the score is con-

sidered to be a separate problem (Cemgil et al., 2006b). Moreover, a music transcription

system cannot obtain the exact score that the musician reads while performing. This

happens because music is a way to express feelings and emotions: a particular score can

be performed by the same musician in several different ways, according to his mood. This

way, musical sheets are nothing but guidelines for the performers to play a musical piece,

rather than simple mechanical translations of notes read on a score. Furthermore, the

process involved in audio to piano roll representation, besides pitch estimation, also re-

quires the temporal segmentation of musical notes, which is a challenging task on its own.

On the other hand, piano roll to score conversion involves more high-level tasks like, for

instance, tempo estimation, rhythm quantization, key detection or pitch spelling. This

step is more related to the generation of human readable notation. This is why, in gen-

eral, music transcription methods generate only the piano roll as output. The generated

piano roll can later be used as input for symbolic music algorithms that will generate the

corresponding musical notation.

If we discard all the high-level features, like the metrical structure or tempo informa-

tion, the conversion from an acoustic signal into a piano roll representation only depends

on the waveform. This way, a piano roll can be seen as a note oriented representation

which shows the musical notes that are playing at each time. The conversion from an

acoustic signal into a piano roll representation is done by a multiple-fundamental fre-

quency (F0) estimation method, which is the core of a music transcription system: it

estimates the number of sources sounding at each time and their corresponding pitches.

The conversion of a piano roll into a music sheet, besides multiple-F0 estimation, must

also address several harmonic and rhythmic features and other tasks, such as: tonality,

source separation and timbre classification, metrical structure and tempo. Tonality is

the tonic character of a piece of music determined by the “center” key, on which specific

hierarchical pitch relationships are based. Source separation and timbre classification

allow the segmentation of the music according to each different instrument identified in

the music signal, allowing the generation of the respective scores (one score per different

instrument). Metrical structure is the pattern of the beats in a music piece and includes

several rhythmic aspects like: meter and tempo. It also specifies the time signature, i.e.

how many beats are in each measure and what note value constitutes one beat. This way,

bars can be added to the score. Tempo is a measure to describe how fast or slow a musical

piece is.

1Onset refers to the time where the musical note starts.

3

1. Introduction

In comparison to the conversion of a piano roll into a music sheet, converting a perfor-

mance played by a musician into a score is even harder to address. When the performer

plays, there are slight temporal deviations (fractions of a second) between the notes on the

original score and the notes in the resulting acoustic signal. This stresses the need of note

onsets and durations to be adjusted (quantized) to obtain a readable score, which means

that performance will most certainly not match exactly the original timing information

existing on the score. This way, piano roll is considered as the note oriented representation

of the acoustic signal.

1.1 Objectives and Scope of the Thesis

The goal of this dissertation relies on the conversion of musical performances into their

note oriented representation i.e. piano roll by means of multiple-F0 estimation. Multiple-

F0 estimation is an extremely difficult task, which has already been addressed in several

doctoral theses, such as: Moorer (1975); Maher (1989); Marolt (2002); Hainsworth (2003);

Bello (2003); Cemgil (2004); Vincent (2004); Klapuri (2004a); Zhou (2006); Yeh (2008);

Ryynänen (2008); Emiya (2008) and Pertusa (2010). Despite these number of attempts

to solve the problem, a practical and applicable, general-purpose transcription system

does not exist at the present time. Moreover, current available systems fall behind skilled

human musicians in both accuracy and flexibility.

Music transcription is a very difficult problem, not only from the computational point

of view, but also in a musical perspective since it can only be addressed by the most

skilled musicians. Usually, only pitched musical instruments are considered. Recognizing

drum instruments or the sounds of the singer is not discussed in this dissertation.

1.2 Thesis Contributions

The main contributions contained within this dissertation are summarized below:

• A new method of automatic transcription of polyphonic piano music using Genetic

Algorithms, Adaptive Spectral Envelope Modeling and Dynamic Noise Level Esti-

mation (presented in Chapter 9).

• New developments on using evolutionary algorithms, namely Genetic Algorithms,

for automatic music transcription (presented in Chapters 6 and 7).

• A new evolutionary approach, the Gene Fragment Competition, which improves the

performance of evolutionary algorithms in sound processing applications (presented

in Chapter 8).

• Some developments on the performance optimization as a result of applying de-

composable approaches, namely the Gene Fragment Competition, to decomposable

problems by exploiting their modular and hierarchical structure (presented in Sec-

tion 8.4).

4

1.3. Outline of the Thesis

1.3 Outline of the Thesis

This dissertation is organized as follows.

Chapter 2

This chapter starts presenting a brief explanation of several background topics, from waves

and signal sampling to more advanced digital signal processing. Throughout this chapter,

relevant terminology is defined. Finally, a theoretical background addressing the frequency

estimation of acoustic signals is presented.

Chapter 3

In this chapter a literature review of previous studies on multiple-F0 estimation is pre-

sented. These methods are categorized according to their complexity and also according

to their scope. The reviewed studies are also discussed.

Chapter 4

This chapter presents the concept of Algorithm and its main purpose: problem solving.

Several types of problems are presented (decision, search, optimization and counting) and

it is discussed how can all the problems be viewed as decision problems. Then, according

to their computational complexity, four classes of decision problems are presented: P, NP,

NP-Complete and NP-Hard problems. Bio-inspired Algorithms are introduced as a mean

of addressing NP-Complete and NP-Hard problems and, finally, Genetic Algorithms are

presented. Both biological background behind a Genetic Algorithm and its terminology

are explained.

Chapter 5

In this chapter, the problems of Automatic Transcription of Music and Multi-Pitch Esti-

mation are presented from the search space or optimization points of view. Both problems

are presented as an optimization problem, and an idea about the size of the search space is

given. The computational complexity of the problem is studied and the NP-Completeness

of the problem is discussed. Then, it is discussed how to address combinatorial optimiza-

tion problems with Genetic Algorithms and, finally, a discussion is presented on how to

address the problem of Automatic Transcription of Music with Genetic Algorithms.

Chapter 6

This chapter describes the first genetic algorithmic approaches to the problem, namely

addressing synthesized audio signals and simple mathematical models. It is also discussed

how each approach found in the literature addresses each of these topics: genotype, fit-

ness evaluation, selection, recombination, mutation, creation of the initial population and

survivor selection. The problems of each method are also discussed.

5

1. Introduction

Chapter 7

In this chapter we describe our first Genetic Algorithm approaches to the problem of

Automatic Transcription of Music on real audio recordings. Considering that polyphonic

real audio recordings have different spectral envelopes for different sources and inharmonic

partials, spectral envelope modeling is also introduced.

Chapter 8

This chapter presents our contributions to the field of Evolutionary Computation, namely

the Gene Fragment Competition, which can be used on evolutionary algorithm for signal

and image processing. Our proposed approach sits as a trade-off between classical Ge-

netic Algorithms and traditional Memetic Algorithms, performing a quasi-global/quasi-

local search by means of gene fragment evaluation and selection. The applicability of this

hybrid Genetic Algorithm to the signal processing problem of Polyphonic Music Tran-

scription is shown. The results obtained show the feasibility of the approach. We also

present an analysis of how decomposable approaches are suitable to decomposable prob-

lems. Moreover, we have taken advantage of the modular and hierarchical structure of the

Royal Road functions in order to use them as test functions and see how single-population

decomposable approaches can overcome the spurious correlation or hitchhiking.

Chapter 9

This chapter presents our main contribution: a new method for multiple fundamental fre-

quency (F0) estimation on piano recordings. We propose a framework based on a genetic

algorithm in order to analyze the overlapping overtones and search for the most likely F0

combination. The search process is aided by adaptive spectral envelope modeling and dy-

namic noise level estimation. For comparison, several state-of-the-art algorithms were run

across various musical pieces played by different pianos and then compared using three

different metrics. The proposed algorithm ranked first place on Hybrid Decay/Sustain

Score metric, which has better correlation with the human hearing perception and ranked

second place on both Onset-only and Onset-Offset metrics. A previous genetic algorithm

approach is also included in the comparison to show how the proposed system brings

significant improvements on both quality of the results and computing time.

Chapter 10

In this chapter, we present the results of our methods on the Music Information Retrieval

eXchange (MIREX). The method presented in Chapter 9 was also submitted to the Humies

competition and was selected by the SIGEVO executive board as one of the 10 humies

finalists competing for a $5.000 dolar prize.

Chapter 11

Finally, this chapter presents our main conclusions. Possible lines of research about the

evolution of the harmonic model and about the Gene Fragment Competition are also

6

1.3. Outline of the Thesis

presented as future work.

7

Chapter 2

Sound, Signals and Fundamental

Frequency Estimation

This chapter presents a brief explanation of several background topics, from sound waves

and signal sampling to more advanced digital signal processing (DSP). This chapter is

aimed at readers that are not so familiarized with digital signals and systems. Through-

out this chapter, relevant terminology is defined and theoretical background towards the

frequency estimation of acoustic signals is presented.

2.1 Audio: Sound Waves

Everything what we call sound are vibrations in a medium, like air. The string of a guitar

or even our vocal chords move and create pressure oscillations in the air. One vibration or

cycle occurs when the air is compressed, rarefacted and returns to its original state. The

human ear can hear vibrations occurring between 20 and 20 000 times per second. The

physician Hertz gave his name to the measure of “number of cycles per second”. Thus we

can hear, from low to high, vibrations from 20 Hz to 20 kHz, approximately.

The graphic with the sound waves or the oscillogram, in many recording computer

programs, shows both compression and decompression of air as a function of time. In

the vertical axis, the variation of the sound pressure indicates the sound volume. The

horizontal axis shows the time evolution of the sound wave.

2.1.1 Analog Audio

Microphones have a membrane that moves according to the air vibrations and a circuit to

generate an electrical signal. The voltage of that electrical signal changes according to the

vibrations of the membrane. Therefore, all the sound vibrations that are sensed by the

microphone’s membrane are transformed into voltage oscillations, which are transmitted

to an amplifier. When the electric audio signal arrives into a speaker, the speaker acts on

the opposite way of the microphone: its cone vibrates, according to the electric variations,

9

2. Sound, Signals and Fundamental Frequency Estimation

Figure 2.1: The ADC collects periodic samples of the sound pressure.

Figure 2.2: Digitized sound wave.

making the air particles to move, creating again the mechanical sound. Between the

microphone’s membrane and the speaker’s cone we have the electrical audio signal or

analog sound. It is called analog because it is a continuous function of time and thus

denotes an analogy between the air vibrations and voltage oscillations.

2.1.2 Digital Audio

When an analog sound is sent to a computer sound card or to a digital audio mixer,

the electrical signal must be digitized, i.e. converted to numeric values. The input of

the device where the cable is connected to has an analog/digital converter (ADC) to

convert voltage values into numbers. The digital/analog converter (DAC) does exactly

the opposite: it recreates the analog sound after being processed by the computer making

it possible for a loudspeaker to reproduce the sound.

The ADC converter converts the sound vibrations into numbers by a process of sam-

pling (see Figure 2.1). This process happens thousands of times per second: the current

state of the oscillation is converted into a digital number. When that sequence of digital

10

2.1. Audio: Sound Waves

v

Analog signal

v

Sampled Signal

sampling intervals

Figure 2.3: Sampled signal.

Figure 2.4: A complex wave with lost frequencies due to a low sample rate.

numbers is represented graphically it has the wave shape similar to the original analog

sound. But, if we look closer, we will see that waves of the oscillation vary in a “stair”

shape (see Figure 2.2). In fact, the digital sound is not continuous in time or amplitude

(it is discrete). If we increase the number of samples per second (i.e. the sample rate) a

higher density of samples results making the digitized signal more similar to the original

sound.

2.1.3 Signal Sampling

Signal sampling is the acquisition of a continuous signal (for instance: an analog sound)

in discrete time intervals. The output of the sampler varies only in periodic intervals of

time, when it assumes the instant value of the input signal (see Figure 2.3). Any variation

that might occur between the sampling intervals is completely ignored (see Figure 2.4).

Sampling is the key concept for the real-time digital signal processing.

11

2. Sound, Signals and Fundamental Frequency Estimation

Sampling Theorem

The sampling theorem, also known as the Nyquist theorem, specifies the sampling rate at

which an analog signal should be sampled so that all relevant information in the signal is

preserved in the sampling process. This theorem states that: “If a low pass-band signal

has the highest frequency equal to Fmax, then for its exact reconstruction it must be

sampled at least at Fs sample rate, where Fs is equal to or greater than the double of

Fmax”. Equation 2.1 shows this theorem.

Fs ≥ 2Fmax (2.1)

Therefore, so that a sound preserves frequencies between 20 Hz and 20 kHz, the

sampling rate should be equal or greater than 40 kHz. This is why industry adopted

44.1 kHz (44100 samples per second) for the CD since it covers all the audible spectrum.

Nowadays, the technology operates with higher frequency rates to achieve the best

possible fidelity to real sound.

Sampling Depth

Each digital sample is a point with the wave or signal value on that instant. From time to

time (for instance, in a CD, at each 1
44100

of second or 0.000023 seconds) the analog/digital

converter expresses the wave amplitude with a numeric value. Consecutive values denote

the wave variations which typically are represented as vertical variations in a wave graph

where the abscissa axis denotes time. The number of possible values (or levels) indicating

the amplitude of each wave sample is expressed in ‘bits’ - sequences of 0’s and 1’s (binary

system).

A sound sample with 8 bits only has 256 possible levels, but the dynamics of the

human ear is much more sophisticated since, for example, it can distinguish between the

flapping wings of a fly to an airplane’s turbine, which is millions of times stronger. With

16 bits - the format used in audio CDs - we have 65,536 possible levels, which implies a

substantial gain in quality compared to the 8 bits resolution. The 24 bits used on the

DVD give 16,777,216 amplitude variations. Figure 2.5 shows the digitalization of a sound

wave with 2 bit depth.

2.2 Music

Music is the art of expressing feelings, values and ideas through a sequences of sounds and

silences. One sound is essentially characterized by four fundamental properties: dynamics,

duration, timbre and pitch.

Dynamics: volume or sound pressure refers to the perception of the amplitude of the

sound wave, it indicates how “loud” or how “soft” a sound is. It is often referred to

as note velocity due to the MIDI terminology Association (2008).

Duration: a sound produced by a musical instrument has a duration - we can hear it

during a certain period of time. In western music notation several symbols were

12

2.2. Music

00

01

10

11

Figure 2.5: A bit depth of 2 (which makes a sound just barely intelligible) does not provide
a very accurate representation of the original sound.

created to represent units or fractions of time - tempo. The tempo is related with

the beat time (number of beats per second - bpm) or the music’s rhythm.

Timbre: is mainly defined by the spectral envelope of a sound. In time-domain, it is

related to the waveform (e.g. square wave, sawtooth wave, etc.), which corresponds

to a specific spectral organization, i.e. a harmonic series in the frequency-domain.

It is by the timbre that human listeners recognize which instrument plays a specific

musical note.

Pitch: is the tonal height of a sound. It indicates how “high” or “low” a note sounds.

The physical correlate of pitch is the fundamental frequency - F0. Although the

F0 may be obtained throughout physical measurement, this can be different from

the perceived pitch due to the harmonics and overall loudness of the sound.

In general, pitched musical instruments are based on a harmonic oscillator, which in

turn is a system that, when displaced from its equilibrium position, applies a restoring

force proportional to the displacement. When a string, for instance, is plucked, it expe-

riences a restoring force proportional to the displacement from its equilibrium position,

causing the string to oscillate. Harmonic oscillators like strings or columns of air can oscil-

late at numerous frequencies. These resonant frequencies, by traveling in both directions

along the string or the columns of air, are self-filtered by reinforcing and also canceling

each other to form standing waves. This way, due to the typical spacing of the resonances,

the resulting frequencies are integer multiples (or harmonics) of the lowest (fundamental)

frequency. These multiples, along with the fundamental, constitute the harmonic series.

The fundamental frequency (F0) is the lowest frequency in a harmonic series and is

defined for periodic or nearly periodic sounds only. For these classes of sounds, F0 is

defined as the inverse of the period. In ambiguous situations, the period corresponding

to the perceived pitch is chosen (Klapuri, 2004b).

Each pitch value is associated to a musical note (C, D, E, etc.) or even a letter and

a number. For instance: an “A” has the F0 of 440 Hz if it is played somewhere in the

13

2. Sound, Signals and Fundamental Frequency Estimation

Table 2.1: Numeric values of the pitches. C0 is the pitch 12 and B8 is the pitch 119.

Note
Octave

0 1 2 3 4 5 6 7 8

C 12 24 36 48 60 72 84 96 108
C# 13 25 37 49 61 73 85 97 109
D 14 26 38 50 62 74 86 98 110
D# 15 27 39 51 63 75 87 99 111
E 16 28 40 52 64 76 88 100 112
F 17 29 41 53 65 77 89 101 113
F# 18 30 42 54 66 78 90 102 114
G 19 31 43 55 67 79 91 103 115
G# 20 32 44 56 68 80 92 104 116
A 21 33 45 57 69 81 93 105 117
A# 22 34 46 58 70 82 94 106 118
B 23 35 47 59 71 83 95 107 119

Table 2.2: Corresponding frequency of each MIDI pitch, from C0 to B8. C0 has the
frequency 16 Hz (more precisely 16.3515978313 Hz) and B8 has 7,902 kHz (more precisely
7902.1328200980 Hz).

Note
Octave

0 1 2 3 4 5 6 7 8

C 16 33 65 131 262 523 1047 2093 4186
C# 17 35 69 139 278 554 1109 2218 4435
D 18 37 73 147 294 587 1175 2349 4699
D# 20 39 78 156 311 622 1245 2489 4978
E 21 41 82 165 330 659 1319 2637 5274
F 22 44 87 175 349 699 1397 2794 5588
F# 23 46 93 185 370 740 1475 2960 5920
G 25 49 98 196 392 784 1568 3136 6272
G# 26 52 104 208 415 831 1661 3322 6645
A 28 55 110 220 440 880 1760 3520 7040
A# 29 58 117 233 466 932 1865 3729 7459
B 31 62 124 247 494 988 1976 3951 7902

middle of a piano keyboard. This way, that note can also be represented by A440 or

A4. The A5 is also an A but it is an octave higher (the next A from the lower notes to

the higher notes) and its F0 is 880 Hz. The human perception of pitch is approximately

logarithmic regarding the F0: the distance perceived between the pitches A220 and A440

(220 Hz difference) is the same between the pitches A440 and A880 (440 Hz difference).

In order to avoid possible problems, the pitch is usually represented in a numeric scale

based on the F0’s logarithm. This way, we can adapt the MIDI standard Association

14

2.3. Digital Signal Processing

(2008) to map the F0 f to a simple integer value p (see Equation 2.2).

p = 69 + 12× log2

(
f

440Hz

)
(2.2)

This creates a linear pitch distribution, where the octaves have size of 12, and the

semitones the size of 1. For instance: the pitch A440 has the value 69.

Table 2.1 shows the numeric scales of the pitches and Table 2.2 shows the corresponding

frequencies.

2.3 Digital Signal Processing

Digital Signal Processing consists in the application of several computational methods on

digital signals, or digitized versions of natural signals (sound, image, electrocardiogram

potentials, seismic vibrations, etc.), to analyze, classify, recognize or even transform them.

Nowadays, every way of representation and communication of voice, sound and image

are digital and apply Digital Signal Processing techniques. For instance: the JPEG,

MPEG, MP3 and GSM are no more than techniques of Digital Signal Processing.

Digital Signal Processing can also create digital signals from mathematical models

and computational methods, like the image synthesis and the computer animation, speech

synthesis and music composition by computer, where the MIDI format (Association, 2008)

is very popular.

Basic Concepts

A signal is said to be periodic if it repeats itself at a regular time interval: its period. A

periodic signal is mathematically defined as a function x̃(t), where x̃ ∈ R, which follows

the Equation 2.3, where T is a real number and m ∈ Z.

x̃(t) = x̃(t+mT) (2.3)

The lowest positive value of T where the expression is true is called the period of the

fundamental component and is designated as T0. The fundamental frequency ω0 is defined,

according to the period of the fundamental by:

ω0 =
2π

T0

. (2.4)

Figure 2.6 shows a periodic signal x̃(t) = sin(πt), which has the fundamental frequency

ω0 = π, which corresponds to the period T0 = 2.

Given the fact that the F0 of a speech or music sound source varies with time, one

assumption is made: it is assumed that the signal is stationary in a very short time

duration. This way, the F0 of a non-stationary periodic signal can be determined through

the approximation x̃(t) ≈ x̃(t+ T0) for the concerned duration. If a signal can be approx-

imated by using this method, it is called a quasi-periodic signal. Figure 2.7 illustrates

15

2. Sound, Signals and Fundamental Frequency Estimation

2 4 6 8 t

Figure 2.6: Periodic signal.

0 2 4 6 8 10 12 14 16 18 20

�0.05

0

0.05

0.1

time (msec)

Figure 2.7: Waveform of a quasi-periodic signal, generated by a saxophone, with F0 =
237Hz (T0 = 4.2ms)

an example of a quasi-periodic signal, with distinctive periods. On the contrary, peri-

odic non-stationary signals have several and distinctive periods, which in turn may have

competitive fits to the signal, resulting in an ambiguity in the determination of the F0.

2.3.1 Fourier Analysis

Sinusoids are probably the most important of all periodic signals. In general, a sinusoid

is represented by a cosine function with a specific amplitude A, frequency w0 and initial

phase φ:

x̃(t) = A cos (w0t+ φ) . (2.5)

Jean-Baptiste Joseph Fourier (1768 - 1830) was the first to have the insight to see the

potential for representing a signal as a sum of harmonically related sinusoids, where each

component is called a harmonic and has a frequency that is a multiple of the fundamental

frequency. According to Joseph Fourier, any periodic signal can be represented by a

Fourier series. This was later demonstrated by P. L. Dirichlet (Oppenheim et al., 1997).

The study of signals and systems using the sinusoidal representation is known as

Fourier analysis, in honor to Joseph Fourier. Fourier analysis is a family of mathematical

techniques based on the sinusoidal signal decomposition (each function is treated as an

infinite sum of sines). Signals can be classified according to two criteria: discrete or

continuous and periodic or non-periodic. The four elements of the family of the Fourier

transforms came from these two criteria, being the most important for this thesis the

Fourier Series - FS (applies to periodic and continuous signals) - and the Discrete Fourier

Transform - DFT (applies to periodic signals with discrete time). The Discrete Fourier

Transform is the only class of these two representations that can be used in Digital Signal

Processing, since computers can only deal with discrete information and with finite size.

16

2.3. Digital Signal Processing

Fourier Series - FS

Any periodic signal represented by a real function x̃(t) can be constructed as a sum of a

number (possibly infinite) of harmonically related complex exponentials:

x̃(t) =
∞∑

k=−∞

ake
jkw0t, k ∈ Z (2.6)

where w0 = 2πF0 = 2π
To
. An important property of the Fourier series representation

is that the sinusoidal functions form an orthonormal basis for the space L2([−π, π]) of

square-integrable functions of [−π, π]. The Fourier series coefficients can thus be efficiently

computed as follows:

ak =
1

T0

∫

T0

x̃(t)e−jkw0tdt. (2.7)

Equation 2.6 is referred to as synthesis equation and Equation 2.7 as the analysis equation.

By rearranging Equation 2.6, we have:

x̃(t) = a0 +
+∞∑

k=1

(
ake

jkw0t + a−ke
−jkw0t

)
= a0 +

+∞∑

k=1

(
ake

jkw0t + a∗ke
−jkw0t

)
(2.8)

implying that a∗k = a−k. By further expressing ak in polar form as ak = Ak

2
ejφk , we have

the following trigonometric equation:

x̃(t) = a0 +
+∞∑

k=1

Ak cos(kw0t+ φk). (2.9)

This last equation (Equation 2.9) is commonly used for the Fourier series representation of

periodic signals. Any sound that can be represented by this equation is called a harmonic

sound. Since the harmonics of a quasi-periodic signal do not have frequencies that are

exactly multiples of its F0, they are often referred to as partials. For practical use,

a finite number of harmonic components H is generally used for quasi-periodic signals

approximation:

x̃(t) ≈ a0 +
H∑

k=1

Ak cos(kw0t+ φk). (2.10)

Fourier Transform - FT

Waveforms are signal representations in the time-domain and, thus, can be used directly

for several tasks such as beat detection. Also, by applying correlation to the time-domain

signal, it is possible to search for repetitive patterns and, furthermore, detect periodicities

on monaural signals. However, the information in the time-domain is not practical for

some approaches that require a different kind of information.

By using the Fourier transform (FT), a waveform can be mapped (transformed) into

the frequency-domain. A time-domain graph shows how a signal changes with time,

17

2. Sound, Signals and Fundamental Frequency Estimation

whereas a frequency-domain graph shows how much of the signal lies within each given

frequency band over a range of frequencies. The FT decomposes a given signal function

into a sum of sinusoids with different frequencies, showing how much of the signal lies

within each frequency band. This way, FT is a widely used for frequency analysis. The

FT is defined for aperiodic continuous waveforms with infinite length as follows:

FTx̃(f) = X̃(f) =

∫ +∞

−∞
x̃(t)e−j2πftdt. (2.11)

Discrete Fourier Transform - DFT

When a periodic signal is discrete in time, like in digital signal processing, the FT cannot

be applied. Therefore, for analyzing a discrete signal the Discrete Fourier Transform is ap-

plied. Equation 2.12 shows the DFT calculation, where k is the spectral bin corresponding

to each frequency:

DFTx̃[k] = X̃[k] =
+∞∑

n=−∞

x̃[n]e−j2πkn. (2.12)

Computational problems require signals to have finite length, which stresses the need

of a DFT for finite signals. The DFT for finite signals is defined as follows:

DFTx̃[k] = X̃[k] =
N−1∑

n=0

x̃[n]e−j 2π
N

kn, k = 0, · · · , N − 1 (2.13)

where N is the length of the waveform (number of samples).

According to Nyquist-Shannon sampling theorem (Shannon, 1949), the number of

useful frequencies of the DFT is limited to the Nyquist frequency
(
Fs

2

)
. Given that the N

frequency bins are equally distributed, the frequency of each spectral bin k is: fk = kFs

N
.

This way, the frequency resolution of the DFT is ∆f = Fs

N
.

As an example, let us assume that a stationary quasi-periodic signal x̃[t] has 4096

samples and its sampling rate is 44100 Hz (CD quality). This means that by applying the

DFT, the signal x̃[t] is transformed into the signal X̃[k], where the frequency resolution of

each bin is ∆f = Fs

N
= 44100

4096
= 10.77Hz. This means that the frequency of each spectral

bin k is fk = k × 10.77Hz.

Fast Fourier Transform - FFT

The calculation of the DFT for N samples requires N2 complex multiplications and N2−
N complex additions, to obtain N samples in the frequency-domain. This number of

multiplications and additions leads to a prohibitive DFT calculation in real-time. However,

if the number of samples N is a structured number such as a power of two, then the DFT

can be efficiently computed using a fast Fourier transform (FFT) algorithm.

The Fast Fourier Transform is a fast algorithm to implement efficiently the DFT,

where a number of N samples of the input signal are transformed in N frequency points.

For N structured as a power of two, the required computational effort for this operation

18

2.3. Digital Signal Processing

Figure 2.8: Complex plane diagram. Magnitude and phase of the complex number z are
shown.

is proportional to N log2 N in terms of multiplications and additions. This allows DFT

computation in real-time.

2.3.2 Power Spectral Density - PSD

Although these Fourier transform equations (FT, DFT and FFT) were described in terms

of complex exponentials, these Fourier transforms can also be expressed as trigonometric

functions, as a consequence of the complex representation according to Euler’s formula.

Complex numbers are represented in the complex plane as z = a + jb (see Figure 2.8),

where a is the real part, and b is the imaginary part. j is the square root of -1: j =
√
−1.

The radial position or magnitude |z|, and the angular position or phase φ(z) can be

computed from the complex value: |z| =
√
a2 + b2 and φ(z) = arctan2

(
b
a

)
, that is:

φ(z) = arctan2

(
b

a

)
=





arctan
(
b
a

)
a > 0

arctan
(
b
a

)
+ π b ≥ 0, a < 0

arctan
(
b
a

)
− π b < 0, a < 0

+π
2

b > 0, a = 0

−π
2

b < 0, a = 0

undefined b = 0, a = 0

(2.14)

The power spectral density (PSD) describes how the energy of a signal is distributed

with frequency. PSD is the squared magnitude of the DFT of a signal x̃[n]. In general,

it is called simply the spectrum of the signal. The spectrum is usually represented as a

two-dimensional diagram showing the energy of a signal |X̃[k]|2 as a function of frequency

(see Figure 2.9). Although the spectrum in Figure 2.9 is represented using a linear scale

for both magnitude and frequency, the logarithmic scale is also commonly used to show

19

2. Sound, Signals and Fundamental Frequency Estimation

0 500 1000 1500 2000 2500 3000 3500 4000
�0.03

�0.02

�0.01

0

0.01

0.02

0.03

0.04
x[n]

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450
|X[k]|

2

DFT

Figure 2.9: Power spectrum of a Steinberg piano (middle C note).

Figure 2.10: Pure sine wave in the time-domain.

a
m
p
li
tu
d
e

frequency

Figure 2.11: Single spectral line in the frequency-domain.

each component. A logarithmic magnitude widely used to represent the magnitudes is

the deciBel (dB):

dB(|X̃[k]|) = 20 log10(|X̃[k]|) = 10 log10(|X̃[k]|2). (2.15)

Through this dissertation, PSD will be referred to as power spectrum, whereas

magnitude spectrum will be referred to the DFT magnitudes |X̃[k]|, also as a function

of frequency.

2.3.3 Spectral Leakage

The Fourier Transform assumes that the signal is periodic. Therefore, a continuous sine

wave (see Figure 2.10) is transformed into a single spectral line in the frequency-domain

(see Figure 2.11).

However, in the case of the Discrete Fourier Transform a finite section of the signal

history is transformed. If a pure sine wave does not repeat exactly within the time window,

20

2.3. Digital Signal Processing

Figure 2.12: Windowed section of the signal history.

Figure 2.13: Repeated window section of the signal history.

a
m
p
li
tu
d
e

frequency

Figure 2.14: Spectral leakage on the frequency-domain.

it is truncated (see Figure 2.12) and the windowed section of the signal history is assumed

to repeat (see Figure 2.13). This truncation will lead the spectrum to spread out of

a single frequency (see Figure 2.14). This phenomenon is known as leakage due to the

signal energy being leaked from a single frequency bin to adjacent frequency bins. Leakage

reduces the accuracy of the spectrum: the measured level of the peaks is less accurate

and also the effective frequency resolution of the analysis is strongly affected.

2.3.4 Windowing

In order to minimize the spectral leakage effect, caused by the direct truncation of a

signal into a single time window (rectangular windowing), the samples in the frame can

be multiplied by a smooth window shape, thus, smoothing the abrupt edges. This process

is called windowing. The most common windows are rectangular, triangular, Hanning,

Hamming, Blackman and Blackman-Harris. In general, windows have shapes that are

positive, bell shaped and symmetric functions. A study on the use of different window

functions, their trade-offs and comparison was presented by Harris (1978).

Windows are used to modify the frequency response of a DFT as a way to reduce the

spectral leakage. The output of a DFT applied to a windowed function is the product of

21

2. Sound, Signals and Fundamental Frequency Estimation

two sequences given by Equation 2.16, where an is the applied window.

Yk =
N−1∑

n=0

anx̃nW
nk
N , W = e−j2π. (2.16)

2.3.5 Relation between the signal’s properties

There are several relevant implications of relevant parameters such as the sample rate, the

number of samples, the window function and that affect the DFT analysis. For instance:

suppose that we have a music piece with a duration of 2 seconds, with a sampling rate of

44100 samples per second and the DFT window size is 4096 samples, this means that we

have:

• Time Record = 2× 44100 = 88200 samples

• ∆F = 44100
4096

= 10.7 , thus each bin will correspond to 10.7 Hz.

• ∆t = 4096
44100

= 0.09 , thus the window of the stationary signal corresponds to 0.09

seconds.

This means that our algorithm only distinguishes accurately frequencies in intervals

of about 11 Hz - ∆F -, therefore it can only distinguish the frequencies starting on pitch

54 (pitch F♯3) but it can validate pitches with duration of 0.09 seconds or greater. The

DFT size is strictly related with the type of information we want to focus on concerning

detail: frequency or time. If we want to increase the frequency resolution, the size of

the DFT should also be increased, thus making the ∆F (frequency intervals) value to

decrease. On the other hand, this will lead to a greater value of ∆t which may imply the

non-detection of short-duration frequencies. If we decrease the size of the DFT we will

achieve better time resolution but it will be very difficult to distinguish near frequency

values (the intervals - ∆F - are wider). This demands a trade-off between time resolution

and frequency resolution.

2.4 Fundamental Frequency and Pitch

Pitch is an auditory sensation in which a listener perceives the tonal height of a sound:

how “high” or “low” a note sounds. As already noted in Section 2.2, frequency is an

objective and scientific concept that can be physically measured, while pitch is subjective

and depends not only on frequency but also on spectral content and loudness. In spite of

the fact that sound wave oscillations can be measured to obtain a frequency, sound waves

themselves do not have pitch. It takes a human brain to map the internal quality of pitch.

In general, pitches are quantified as frequencies by comparing sounds with pure tones,

which are periodic, sinusoidal waveforms. On the other hand, pitch of complex tones

can be ambiguous: two or more different pitches can be perceived, depending upon the

observer. For instance, an audio signal consisting of two pure tones of 1000 Hz and 1200

Hz may sometimes be heard as up to three pitches: two spectral pitches as 1000 Hz and

22

2.4. Fundamental Frequency and Pitch

0 5 10 15 20 25
−1

−0.5

0

0.5

1

tim e (m sec)

P ure tone o f 1000 H z

0 5 10 15 20 25
−1

−0.5

0

0.5

1

tim e (m sec)

P ure tone o f 1200 H z

0 5 10 15 20 25
−2

−1

0

1

2

tim e (m sec)

C om plex tone : 1000 H z + 1200 H z pure tones

Figure 2.15: Missing fundamental resulting at 200 Hz.

1200 Hz, percept from the physical frequencies of the two pure tones, and an additional

pith derived from the combination tone at 200 Hz, corresponding to the repetition rate of

the waveform (see Figure: 2.15). The additional perceived pitch or missing fundamental

is often the greatest common divisor of the frequencies present in the signal.

The American National Standard Institute (ANSI) defines pitch as “that auditory

attribute of sound according to which sounds can be ordered on a scale extending from

low to high”. The French standards organization Association Française de Normalisation

(AFNOR) defines: “pitch is associated with frequency and is low or high according to

whether this frequency is smaller or greater”. However, both verbal definitions are quite

abstract. An operational definition is given in Hartmann (1997): “sound has certain

pitch if it can be reliably matched by adjusting the frequency of a sine wave of arbitrary

amplitude”.

According to Bregman (1990), theories of auditory pitch analysis tend to differ in

two dimensions: place coding and temporal coding. While place information is related

to the spectral pitch, temporal coding is related to periodicity pitch. Hartmann

(1996) states that the perception of pitch for complex tones resembles pattern matching:

a sound is recognized through its spectral pattern, i.e. the series of partials that compose

it. Furthermore, if some spectral components are too weak to be perceived, the human

auditory system tends to reconstruct those missing partials so that the pattern matching

task can be completed.

For most authors, the term F0 estimation is equivalent to pitch estimation. How-

ever, we consider F0 estimation as the extraction of exact frequency components that

model the signal, and the latter as the extraction of musical tones (or perceived pitches)

present in the signal. This way, throughout this dissertation, when referring to Automatic

Transcription of Music we mean multi-pitch estimation because the goal of this work is

to extract what is perceived as a musical pitch and not to extract the F0 as a parameter

23

2. Sound, Signals and Fundamental Frequency Estimation

of the signal model.

2.5 Single-F0 Estimation

Single-F0 applies to short-time signals that have one harmonic source (monophonic or

monaural signals). Without loss of generality, and as pointed by Yeh (2008) p. 9, the

observed signal can be expressed as a sum of a quasi-periodic part x̃[n] and the residual

z[n]:

x[n] = x̃[n] + z[n] ≈
H∑

k=1

Ak cos(kw0t+ φk) + z[n] (2.17)

where Equation 2.10 is used for approximation.

The single-F0 estimation problem lies on the extraction of the fundamental period

or the fundamental frequency of x̃. Note that the goal is not to minimize the residual

z[n], but to extract the quasi-periodic part x̃[n] with high periodicity/harmonicity. The

most common errors made, when addressing this problem, are subharmonic errors and

super-harmonic errors. In either case, the estimated F0s are harmonically related

to the correct F0: subharmonic errors correspond to those which are unit fractions of

the correct F0 and super-harmonic errors correspond to those which are multiples of the

correct F0.

In general, single-F0 estimation methods can be categorized according to their domain:

some are temporal domain methods, others are frequency-domain. Temporal domain

methods try to find the fundamental period, whereas frequency-domain methods rely on

the spectral analysis. The mathematical formulation for the problem depends on the way

the periodicity in x̃[n] is extracted. Most algorithms do not use an explicit source model

as expressed in the approximation of Equation 2.17, but rather attempt to extract directly

the periodicity in either the time-domain or the spectral domain (Yeh, 2008).

2.5.1 Spectral-location Approaches

By following the definition of periodic signals in Equation 2.3, time-domain methods try

to look for a repetitive patterns in x[n] through pattern matching between the signal itself

(x[n]) and a delayed version of x[n], i.e. x[t + τ]. The idea is to find the delay or lag

that gives the best correlation between the delayed signal and the signal itself. The lowest

lag that has the highest correlation corresponds to the period of the observed signal.

In general, pattern matching in the time-domain is carried out through multiplication

between patterns to measure their correlation.

Autocorrelation

The autocorrelation function (ACF) is a tool allowing to measure the similarity between

a signal and delayed versions of itself. Analytically, it corresponds, for a given delay (or

lag), to the cross-correlation of a signal with itself. This way, quasi-periodic signals will

24

2.5. Single-F0 Estimation

have high correlation measure (similarity) when the lag corresponds to the fundamental

period of the signal or to multiples of the fundamental period. Analytically, the ACF

is obtained as the sum of the product between a signal x[n] of finite duration L and its

delayed version x[n+ τ], as a function of the lag τ :

ACF[τ] =
1

L− τ

L−τ−1∑

n=0

x[n]x[n+ τ]. (2.18)

After performing the autocorrelation in the signal, the highest and non-zero-lag peak

is chosen as the estimated fundamental period. However, this method is very sensitive to

formants in speech signals and also to resonances in music signals. Hence, center clipping,

spectral flattening and nonlinear distortion and other special post-processing techniques

were proposed by several authors (Hess, 1983) in addition to autocorrelation.

Magnitude difference

The Average Magnitude Difference Function (Ross et al., 1974) compares the dis-

similarity of x[n] and x[n+ τ] by evaluating the distance between the two patterns:

AMDF[τ] =
1

L− τ

L−τ−1∑

n=0

|x[n]− x[n+ τ]|. (2.19)

For quasi-periodic signals, AMDF results in dips, showing low dissimilarity between the

signal and its delayed version, when the lag equals to the fundamental period or multiples

of the fundamental period. After computing the magnitude difference, the deepest non-

zero-lag dip is selected as the estimated fundamental period. Besides AMDF, dissimilarity

can also be measured by using the squared distance:

SDF[τ] =
1

L− τ

L−τ−1∑

n=0

(x[n]− x[n+ τ])2. (2.20)

The Squared Difference Function (SDF) can be generalized into any power of the

distance measure. It has been investigated that a power larger than one is appropriate for

weekly stationary signals and, according to Nguyen and Imai (1977), power of two seems

to be fair. This function was used by De Cheveigné and Kawahara (2002) on the YIN

algorithm: SDF is normalized by its average over shorter values of τ , removing dips at τ

near zero and, thus, avoiding super-harmonic errors. This process is called the cumula-

tive mean normalized difference function. A study, showing how YIN outperforms

several traditional methods on speech signals was also presented by De Cheveigné and

Kawahara (2001).

Although both AMDF and SDF are used to measure dissimilarity between patterns,

both are also related to the autocorrelation function, which computes similarity. Moreover,

despite the fact that these methods are applied to the time-domain (signal waveform)

they are phase-insensitive since partials are being subtracted regardless of their phases.

However, as demonstrated by Hess (1983), those methods are prone to errors caused by

intensity variations, noise and also low-frequency spurious signals.

25

2. Sound, Signals and Fundamental Frequency Estimation

Cepstrum

Cepstrum is the result of taking the Fourier transform (FT) of the logarithm of the esti-

mated spectrum of the observed signal. There is a complex cepstrum, a real cepstrum, a

power cepstrum, and phase cepstrum. The name “cepstrum” was derived by reversing the

first four letters of “spectrum”. Operations on cepstra are labeled quefrency analysis,

liftering, or cepstral analysis (Oppenheim and Schafer, 2004).

When a signal exhibits a periodicity which is denoted by sinusoidal peaks in its spec-

trum, it makes sense to apply again the Fourier analysis on the observed spectrum for

analyzing the underlying periodicity. The real cepstrum of a signal is given by the inverse

Fourier transform of the logarithm of its power spectrum:

c(τ) = IDFT{log (|DFT (x[n])|)}. (2.21)

Cepstrum was initially proposed by Schroeder 1962 for F0 estimation based on the first

cepstral analysis paper on seismic echoes resulting from earthquakes and bomb explosions.

A short-time cepstrum analysis was proposed later for application to pitch determination

of human speech by Noll (1967). Although quefrency is a measure of time, the signal

is not in the time-domain. For instance, if a signal has a sampling rate of 44100 Hz, and

if there is a large peak whose quefrency is 200 samples, this peak indicates a presence

of a frequency component in the signal that is 44100
200

= 220, 5 Hz. This way, while lower-

quefrency components in the cepstrum essentially provide spectral envelope information,

components that appear as cepstral peaks correspond to estimated fundamental periods.

Both ACF based and cepstrum-based single-F0 estimation methods are implicit re-

alizations of a model which emphasizes frequency partials at harmonic locations of the

magnitude spectrum (Klapuri, 2004a). This can be seen by writing the ACF in terms of

the Fourier spectrum X[k] of a real-valued input signal as:

r(τ) =
1

K

K−1∑

k=0

[
cos

(
2πτk

K

)
|X[k]|2

]
(2.22)

where K is the length of the transform frame. The above formula is equivalent to:

r(τ) = IDFT{|DFT [x[n]] |2}. (2.23)

The definition of the cepstrum c(τ) of x[n] (Equation 2.21) is very analogous to r(τ)

(Equation 2.23) and is obtained by replacing the second power with a logarithm func-

tion. This way, the difference between the ACF and cepstrum-based F0 estimators is

quantitative: raising the magnitude spectrum to the second power emphasizes spectral

peaks in relation to noise but, on the other hand, further aggravates spectral peculiari-

ties of the target sound. On the other hand, applying the logarithm function causes the

opposite for both. This way, ACF-based F0 estimators have been reported to cope with

noise but are prone to errors due to formant structures in speech: especially the first

and the strongest formant may mislead the algorithm (Rabiner et al., 1976; Talkin, 1995).

Cepstrum-based F0 estimators perform relatively poorly in noise, but perform well for

26

2.5. Single-F0 Estimation

0 2 4 6 8 10 12

−0.5

0

0.5

time (msec)

Waveform (A)

0 2 4 6 8 10 12
−0.05

0

0.05

0.1

ACF (B)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

AMDF (C)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

SDF (D)

0 2 4 6 8 10 12

0

1

2

Cepstrum (E)

lag (msec)

Figure 2.16: Three time-domain salience functions for a baritone sax signal of T0 =
2.3ms (A) signal waveform; (B) autocorrelation function; (C) average magnitude difference
function; (D) squared difference function; and (E) cepstrum.

exotic sounds (Rabiner et al., 1976). As a trade-off, Tolonen et al. suggest using a “gen-

eralized autocorrelation function” replacing second power by real-valued exponent (0.67

in their case) (Tolonen and Karjalainen, 2000).

Figure 2.16 shows four time-domain functions (Autocorrelation, AMDF, SDF and

cepstrum) for a piano signal with F0 = 440 Hz (T0 = 2.3ms). The period of the signal is

represented by a vertical dashed line in each plot. Although there is some diversity on the

methods to measure the similarity between a short-time signal and its delayed versions

(ACF, SDF, AMDF, etc.), the main problem lies in the ambiguity on the selection of the

best period. This happens because all multiples of the period, i.e. subharmonics, are

competitive candidates for being selected as the estimated period.

2.5.2 Spectral-interval Approaches

Periodic but non-sinusoidal signals have periodic magnitude spectra and the corresponding

period is the F0. Spectral domain approaches, in general, estimate the F0 by employing

either one of these methods: measuring the regular spacing of dominant peaks; or formu-

lation of the salience of the F0 as a function of hypothetical partials. This way, F0 can

27

2. Sound, Signals and Fundamental Frequency Estimation

also be defined as the greatest common divisor of the frequencies of all harmonics.

Frequency-domain methods to F0 estimation extract periodicity from the frequency-

domain, i.e. the spectral representation of the observed signal, based on the Fourier Trans-

form. Although the cepstrum also extracts periodicity of the frequency representation of

the observed signal, the cepstrum does not belong to the spectral-interval approaches be-

cause, by applying the inverse Fourier transform, the observed signal is converted from

the frequency representation back to the time-domain. Moreover, cepstrum finds the

fundamental period T0, such as the autocorrelation based methods.

Spectral autocorrelation

Spectral-location F0 estimators are very sensitive to harmonic deviations from their ideal

positions: inharmonicity. Nevertheless, ACF function can also be used, in a similar way

to the search for repetitive patterns in the time-domain, on the spectral domain (Lahat

et al., 1987). The periodicity search is thus attained by pattern matching between the

spectrum X[k] and its shifted versions X[k +m]. The ACF over the positive frequencies

of a K-length magnitude spectrum is calculated as:

ACFS(m) =
2

K − 2m

K
2
−m−1∑

k=0

|X [k] ||X [k +m] |. (2.24)

F0 corresponds to the local maximum of the ACFS(m) function for m > 0. In fact, when

the shift m equals to period of the spectrum or multiples of its period, the product results

in high spectral autocorrelation coefficients, the maximum occurring when the shift equals

to m = F0
(

K
FS

)
. On the other hand, when the shift m is not equal to the period of the

spectrum, the corresponding autocorrelation coefficient is attenuated since the partials

are not aligned.

Spectral compression

Schroeder proposed the Schroeder histogram, which counts the contribution of each

spectral peak over frequency-warped spectra, in order to infer the F0 from the higher

harmonics observed as spectral peaks. Frequency-warped spectra correspond to spectra

compressed by different integer factors on the frequency axis. This histogram is computed

by counting the effective contribution of each spectral peak to the related F0s that are

also common divisors of its frequency. This method is not robust against noise and

spurious peaks in the spectrum. Schroeder (1968) further proposed to weight the spectral

components according to their magnitudes: harmonic product spectrum uses the log

power spectrum and harmonic sum spectrum uses the linear spectrum. By summing

compressed spectra, the energy of higher partials becomes concentrated on distinct peaks.

The maximum peak determines the related F0.

28

2.5. Single-F0 Estimation

Pattern matching

Pattern matching, also referred to as harmonic matching, approaches compare the

observed spectrum against a given harmonic spectral pattern. The spectral pattern used

for matching can either be a specific spectral model or a harmonic comb, i.e. a series

of equally spaced spectral pulses, defined by an F0 hypothesis, without specifying the

magnitudes of the harmonics. In general, for polyphonic signals, specific spectral models

are used, whereas harmonic comb is generally used on single-F0 estimation. The similarity

measure for an F0 hypothesis can be evaluated by the correlation between the harmonic

comb and the observed spectrum, such as in the works of Martin (1982); Brown (1992),

or by the minimization of the distance between the frequencies of the harmonics and

the frequencies of the matched peaks, as in Goldstein (1973); Duifhuis et al. (1982). To

improve the robustness of harmonic matching, several factors have also been studied, such

as: the number of harmonics Goldstein (1973), the quality of the peaks (Sluyter et al.,

1982), the tolerance interval (Sreenivas and Rao, 1981), the presence of harmonics (Doval

and Rodet, 1991), etc.

Spectral peak inter-spacing

According to Harris and Weiss (1963), when partials are well separated in the spectrum

the F0 can be estimated by measuring the regular spacing between each pair of partials:

each F0 hypothesis corresponds to a group of spectral peaks that have frequency spacing

close to the F0 hypothesis; the hypothesis corresponding to the best support group is

chosen. In general, the measure of support is related to energy and harmonicity.

2.5.3 Unitary model of pitch perception

Some single-F0 estimation methods use perceptual models of the human hearing system.

Meddis and Hewitt (1991a,b) introduced the unitary model of the hearing system, which

is able to estimate the fundamental frequency of a signal by measuring the periodicity

of the time-domain envelope. This model represents a trade-off between time periodicity

(time-domain) and spectral interval (spectral domain) methods: analysis methods based

on time periodicity are prone to errors in F0 halving, whereas frequency-domain methods

are prone to errors in F0 doubling. This happens because the waveform of stationary sig-

nals is also periodic at twice the fundamental period (half of the F0), while the spectrum is

periodic at double the F0 rate. This way, the unitary model is a good compromise between

both methods. The unitary model is also widely accepted as a psychoacoustically valid

mid-level representation (Klapuri and Astola, 2002). The first step of the unitary model

consists in applying a cochlear frequency analysis using an auditory filter bank. Then, a

simulation of the hair cells, which convert cochlear movements into neural impulses, is

performed through half-wave rectification (HWR), compression and low-pass filtering of

the signals at each frequency channel. Figure 2.17 (Klapuri (2004a), page 27) illustrates

this step. The half-wave rectifier function is given by:

29

2. Sound, Signals and Fundamental Frequency Estimation

0 1000 2000 3000 4000 5000
0

0.5

1

0 2 4 6 8 10
−10

0

10

0 1000 2000 3000 4000 5000
0

0.5

1

0 2 4 6 8 10
0

5

10

0 1000 2000 3000 4000 5000
0

0.5

1

0 2 4 6 8 10

1

2

3

Figure 11. Reading top-down: (a) a signal containing the harmonics 15–19 of a sound with

frequency (Hz)time (ms)

R
ec

ti
fy

time (ms)

time (ms)

frequency (Hz)

frequency (Hz)
m

a
g
n
it

u
d
e

m
a
g
n
it

u
d
e

m
a
g
n
it

u
d
e

a
m

p
li

tu
d
e

a
m

p
li

tu
d
e

a
m

p
li

tu
d
eL
o
w

p
a
ss

(a)

(b)

(c)

Figure 2.17: From top to bottom: (a) waveform of a signal containing the harmonics from
15 to 19 of a sound with F0 = 220Hz; (b) the same signal, after half-wave rectification;
and (c) the signal after rectification and low pass filtering. The response of the lowpass
filter is shown as a dashed line in (b) (from Klapuri (2004a), page 27).

HWR(x) =
x+ |x|

2
=

{
x if x ≥ 0

0 if x < 0
. (2.25)

The periodicity at each channel is then estimated through the ACF function, generating

a correlogram which is a three-dimensional representation of time, frequency and ACF

lag. Finally, the summary autocorrelation function (SACF) is computed by summing

the ACF across channels. The highest value given by the SACF function is considered

the perceived pitch. For a broader review about pitch perception models see de Cheveigné

(2005).

2.6 Multiple-F0 Estimation

In general, multi-pitch estimation algorithms assume that there can exist more than one

harmonic source in the same short-time signal. As mentioned by Yeh et al. (2010), that

signal can also be expressed as a sum of harmonic sources plus a residual1:

y[n] =
M∑

m=1

ym[n] + z[n], M > 0 with ym[n] ≈ ym[n+Nm] (2.26)

1The residual - z[n] - comes from components that are not explained by the sinusoids, for instance,
the background noise, spurious components or non-harmonic partials.

30

2.6. Multiple-F0 Estimation

time (sec)
(a)

fr
e
q
 (

H
z
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

time (sec)
(b)

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

Figure 2.18: Comparison of the spectrogram of a monophonic signal with that of a poly-
phonic signal: (a) a trumpet note sample; (b) a piano and violin duo recording (from Yeh
(2008), page 15).

where n is the discrete time index, M is the number of harmonic sources, ym[n] is the

quasi-periodic part of the mth source, Nm represents the period of the mth source and

z[n] is the residual. Using the Fourier Series, this model can be represented as follows:

y[n] =
M∑

m=1

{
∞∑

k=1

Am,k cos(kωmn+ φm,k)

}
+ z[n]

≈
M∑

m=1

Hm∑

k=1

Am,k cos(kωmn+ φm,k) + z[n]. (2.27)

The approximation on the last step of this equation is for practical use: a finite and small

number of sinusoids H is commonly used to approximate a quasi-periodic signal.

2.6.1 Problem Complexity

Polyphonic signals are much more complex than monophonic signals. As an example,

Figure 2.18 shows the complexity difference between the spectrogram of a monophonic

signal (a) and a polyphonic signal (b). The difficulty of the problem of extracting multiple

F0s from a music signal relies in the handling of overlapping partials, beating, transients,

reverberation and also on the modeling of musical instruments sounds with diverse spectral

characteristics. Moreover, the number of M sources must be also inferred, whereas in

single-F0 estimation the only decision is to determine whether there is sound (and the

corresponding pitch) or if there is silence. The noise model is also more complex than

in monophonic signals and, in real polyphonic music, there can also be unpitched sounds

(e.g. drums).

31

2. Sound, Signals and Fundamental Frequency Estimation

0 2 4 6 8 10 12 14 16 18 20
time (msec)

(a)

(b)

(c)

0 2 4 6 8 10 12 14 16 18 20
lag (msec)

(d)

waveform

ACF

AMDF

SDF

Figure 2.19: Three time-domain salience functions for a polyphonic signal containing four
harmonic sources. The correct periods are marked by vertical dashed lines (from Yeh
(2008), page 19).

In general, it is admitted that most single-F0 methods are not suitable for multiple-F0

estimation. Figures 2.19 (time-domain methods) and 2.20 (frequency-domain methods)

depict the study performed by Yeh (2008), page 19, which shows the performance of

different single-F0 estimation methods on the analysis of polyphonic signals.

Overlapping partials

For polyphonic signals, different sources with fundamental frequencies Fa and Fb are

harmonically related when:

Fa =
m

n
Fb, n,m ∈ N. (2.28)

When this happens, every nth partial of the source a overlaps every mth partial of source

b (Klapuri, 1998). This way, and for equal temperament, the fundamental frequencies

of most musical notes are harmonically related, resulting in a high probability of partial

collision in polyphonic music signals. Also, if the fundamental frequencies of two musical

notes form integer ratios (e.g. octave relation) all partials of the higher note might overlap

with those of the lower note.

In musical signals, different sources often interfere with one another in such a way that

their partials overlap in both time and frequency. This way, frequencies, amplitudes and

phases of the overlapping partials of harmonic sources are disturbed: when two sounds

are superposed, the corresponding wave functions are summed but, on the other hand,

when there is harmonic overlap, two simple harmonic motions with the same frequency,

but different amplitude and phases are added. This produces another simple harmonic

motion with the same frequency but different amplitude and phase: when two harmonics

are overlapped, two sinusoids of the same frequency are summed in the waveform, resulting

32

2.6. Multiple-F0 Estimation

(a)

(b)

(c)

(d)

(e)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
freq (Hz)

(f)

DFT spectrum

cepstrum

spectral ACF

harmonic sum spectrum

harmonic matching

peak inter−spacing

Figure 2.20: Five frequency-domain salience functions for a polyphonic signal containing
four harmonic sources. The correct fundamental frequencies are marked by vertical dashed
lines (from Yeh (2008), page 19).

in a signal with the same frequency and whose magnitude depends on their phase difference.

This makes it difficult to locate overlapping partials.

Parsons (1976) tried to detect overlapping components by means of harmonic selec-

tion, relying on three tests: spectral peak symmetry, distance and well-behaved phase.

Parsons’s method relies on the sinusoidality of stationary sinusoids and is not appropriate

for modulated sinusoids. Also, the maximum number of concurrent sources is limited to

two, which is quite restrictive. Even when the number of concurrent sources is known, the

decomposition of the overlapping partials into their original sources still remains a chal-

lenge, as highlighted by several authors: Viste and Evangelista (2002); Virtanen (2003a);

Every and Szymanski (2004); Yeh and Roebel (2009).

Beating

As previously discussed, quasi-periodic signals have distinctive periods, i.e. several periods

have competitive fitness to the signal, which might result in an ambiguity in the deter-

mination of the corresponding F0. Moreover, the same also happens with partials, which

results in different partials with slight frequency deviations, changing over time. This

way, if two overlapping partials with similar amplitude suddenly have a small frequency

difference, beats can be perceived (see Figure 2.21).

33

2. Sound, Signals and Fundamental Frequency Estimation

In phase Out of phase

s
1
(t) = cos(2 × π × f

1
 × t)

In phase Out of phase

s
2
(t) = cos(2 × π × f

2
 × t)

In phase Out of phase

s(t) = s
1
(t) + s

2
(t)

Figure 2.21: Interference tones of two sinusoidal signals of close frequencies f1 and f2.

According to Wood (2007), the physical explanation of dissonance is that we hear

unpleasant beats. As illustrated in Figure 2.21, beats are periodic variations of loudness,

and the frequency of the beats depend on the frequency difference of the two tones: s(t) =

s1(t) + s2(t) = cos (2πf1t) + cos (2πf2t), which is equal to:

s(t) = 2 cos

(
2π

∆f

2
t

)
cos

(
2π

f1 + f2

2
t

)
, (2.29)

being ∆f the difference between f1 and f2, i.e. f1− f2. This results in a single sinusoidal

wave, with frequency f1+f2
2

and with a periodic variation of loudness whose frequency

is ∆f . This effect generates spectral components that do not belong to any original

source, producing “ghost” fundamental frequencies and, also, changing the original partial

amplitudes across the spectrum (see Figure 2.22).

Physical properties of musical instruments

In general, music signals are mixtures of musical notes played by various and different in-

struments. The diversity of spectral characteristics of musical instrument sounds increase

34

2.6. Multiple-F0 Estimation

0 500 1000 1500 2000 2500 3000 3500
−60

−50

−40

−30

−20

−10

0

10

20

30

40

A3
E
4

Figure 2.22: Example spectrum of two piano sounds with fundamental frequencies A3
(220.0 Hz) and E4 (329.6276 Hz). A beating component appears at frequency 110 Hz,
corresponding to a A2 ghost pitch.

exponentially the complexity of the problem of multiple-F0 estimation.

1. Spectral envelopes: The spectral envelope of a harmonic signal shows the con-

tour or spectral shape of the prominent spectral peaks which are, in general, the

partials. Many musical instruments produce sounds with smooth spectral envelopes

but, on the other hand, differ immensely in their shapes (see Figure 2.23, Yeh

(2008)). Moreover, relatively weak F0s are often observed in the lower registers of

some instruments like pianos, bassoons, oboes and guitars, resulting in rough spec-

tral shapes. The spectrum of a clarinet sound, for instance, has attenuated even

harmonics, which turns the spectral envelope bumpy. The spectral shape of musical

instrument sounds also evolves with time in a way that partials decay at different

rates. According to previous studies on modeling the spectral envelopes of musical

instrument sounds, a universal model that generalizes different registers and musical

instruments still has to be developed (Jensen, 1999; Loureiro et al., 2004; Burred

et al., 2006).

2. Inharmonic partials: For an ideal harmonic sound, the frequencies of the har-

monics are integer multiples of the F0. However, on musical instruments the partial

frequencies are not exact integral ratios. For stretched strings, for example, the

frequencies of the partials obey the formula:

fh = hF
√
1 + β (h2 − 1), (2.30)

35

2. Sound, Signals and Fundamental Frequency Estimation

(a) trumpet (b) piano (c) clarinet

(d) bassoon (e) bowed cello (f) pizzicato cello

Figure 2.23: The spectra of six musical instrument sounds: (a) trumpet A3 note; (b)
piano A1 note; (c) clarinet A3 note; (d) bassoon A3 note; (e) bowed cello A3 note; and
(f) pizzicato cello A3 note. (Yeh (2008), page 17).

0 500 1000 1500 2000 2500 3000 3500 4000

−80

−60

−40

−20

0

20
1 5

10

15

20
25

Figure 7.

Frequency (Hz)

M
a
g
n
it

u
d
e

(d
B

)

Figure 2.24: Spectrum of a vibrating piano string (F = 156Hz). Ideal harmonic locations
are numbered and indicated with “+” marks above the spectrum. The inharmonicity
phenomenon (i.e., non-ideal harmonicity) shifts the 24th harmonic partial to the position
of the 25th ideal harmonic (from Klapuri (2004a), page 22).

where F is the fundamental frequency, h is the harmonic index (partial number),

and β is the inharmonicity factor (Fletcher and Rossing (1998), page 363). The

most commonly used inharmonicity factor for the middle pitch range of a piano

is B = 0.0004, which is also the necessary to shift the 17th partial to the ideal

frequency of the 18th partial. Figure 2.24 shows the spectrum of a vibrating piano

string with the ideal harmonic frequencies indicated above the spectrum.

3. Spurious components: For some instruments, there are some dominant compo-

nents excited along with the partials. According to Conklin Jr (1999), these phan-

tom partials are observed in string instruments and are related to the tension

variation on the plucked strings, appearing close to the frequencies of the normal

36

2.7. Summary

partials. Phantom partials are sometimes rather dominant compared to the partials.

Non-stationary events - transients

Although the term transient does not have a precise definition, it can be stated as an

event or zone of short duration where a fast variation of the sound signal occurs (Rodet and

Jaillet, 2001). On music signals, transients are identified as note onsets in the form of fast

attacks, or at note offsets with fast releases. Due to its highly non-stationary nature, F0

estimation within transients is very hard to tackle. In some cases, as it happens on bowed

and woodwind instruments, the attack transient also excites subharmonics (McIntyre

et al., 1983).

Transients are often impulsive and accompanied with high energy, resulting in many

spurious components that will most likely interfere with other sound sources. Recent

research tends to treat the transient as a specific signal component, where the transient

is detected by either a non-parametric approach (Rodet and Jaillet, 2001; Röbel, 2003;

Bello et al., 2005), or a parametric approach (Daudet, 2004; Molla and Torrésani, 2004).

Reverberation

Reverberation prolongs preceding sounds in a way that they overlap with the subsequent

sounds. This way, a recorded signal becomes a mixture of direct sounds, reflected sounds

and also reverberated sounds. Thus, even when a monodic instrument is being recorded

in a reverberant environment, the recorded signal can be polyphonic (Beauchamp et al.,

2012; Baskind and de Cheveigné, 2012; Yeh et al., 2006). Furthermore, the reverberated

parts are quite non-stationary, which adds even more complexity to the analysis of the

recorded signal.

2.7 Summary

This chapter presented a brief explanation of several background topics, from waves and

signal sampling to more advanced digital signal processing. Then, relevant terminology

was defined and, finally, a theoretical background addressing the frequency estimation of

acoustic signals was presented.

The next chapter will review how the presented concepts were extended by several

researchers to address the multi-pitch estimation and multiple-F0 estimation problems.

37

Chapter 3

Related Work

This chapter presents a literature review of previous studies of multiple-F0 estimation.

Several related studies (i.e. automatic music transcription, audio source separation) are

also included in the review because these processes also demand F0 extraction. The

reviewed studies are also discussed.

3.1 Multiple-F0 estimation

Multiple fundamental frequency (F0) estimation was initiated by Shields (1970) in his

work on separating co-channel speech signals. Afterwards, the research of multiple-F0

estimation was extended to polyphonic pitch estimation in the context of automatic music

transcription for polyphonic music signals by Moorer Moorer (1977) and Piszcalski &

Galler Piszczalski and Galler (1977). In general, multi-pitch estimation algorithms assume

that there can exist more than one harmonic source in the same short-time signal.

Although the methods for monophonic transcription or single-F0 estimation can be

categorized according to time or frequency, existing methods for multiple-F0 estimation,

as pointed out by Klapuri (2004a), are difficult to classify using a single taxonomy, as they

are complex and usually combine several processing principles. For instance, multiple-F0

estimation systems can be categorized according to their mid-level representation (time-

domain, STFT, wavelets, auditory filter banks, etc.), but also to their scope (some meth-

ods need a-priori information about the instrument to be transcribed, whereas others can

be used to analyze generic harmonic sounds), to their capability for modeling varying

timbres (for instance, statistical parametric methods can model varying time-frequency

envelopes like those of sax sounds, whereas non-parametric methods can only handle fixed

spectral patterns, like piano sounds), or by the way they can estimate the interactions

between sources (iterative and joint estimation methods).

In this dissertation, we follow the categorization proposed by Yeh (2008), page 23,

i.e. how different approaches estimate interactions between different sound sources: it-

erative estimation and joint estimation. The reason for this categorization relies on the

complexity of the problem. There is a compromise between the efficiency and robustness

39

3. Related Work

of each proposed algorithm. Theoretically, joint estimation approaches should handle the

source interaction better than iterative estimation approaches. However, joint estimation

approaches require greater computational cost. On the other hand, iterative estimation

approaches have the advantage of having higher computational efficiency but are less

optimal in the source interaction handling.

3.2 Iterative Estimation Approaches

Iterative estimation algorithms iterate F0 estimation of the predominant sources and the

respective cancellation or suppression until a termination criteria is achieved. In general,

these approaches assume that, during each iteration, there is at least one dominant source

with distinct harmonic energy such that the extraction of one single F0 is reliable even if

the remaining partials are fragmentary.

3.2.1 Direct Cancellation

Direct cancellation applies a single-F0 estimation algorithm to extract the predominant-F0

and then eliminates all harmonics of the extracted source from the input signal. Here, an

assumption is made: that a complete removal of the dominant source does not affect the

subsequent estimations. The term “direct” cancellation means that the partials related

to the estimated F0 are completely removed before the next single-F0 estimation. This

way, source interaction such as overlapping partials is not considered.

Parsons (1976) used the Schoroeder’s histogram to extract predominant-F0s in a two-

speaker separation problem: when the first F0 was estimated, the spectral peaks corre-

sponding to its harmonics were removed before the calculation of the next histogram. Lea

(1970) iteratively extracted the predominant peak in SACF as an F0 and canceled the

estimate in the ACF array. De Cheveigné (1993) proposed a time-domain cancellation

model where he performed a study on both iterative and joint cancellation. His iterative

cancellation approach estimates the predominant F0 by AMDF and cancels it by comb fil-

tering. Direct cancellation was also applied in the spectral domain. Ortiz-Berenguer et al.

(2005) used spectral patterns obtained from previously recorded piano sounds to perform

harmonic matching. Here, predominant-F0s were canceled iteratively using binary masks

around the matched harmonics in the observed spectrum.

3.2.2 Cancellation by Spectral Models

An iterative estimation algorithm based on harmonicity and spectral smoothness was

proposed by Klapuri (2003). In this approach, the observed signal is preprocessed by a

RASTA-like technique (Hermansky and Morgan, 1994) on a logarithmic frequency scale,

compressing the spectral magnitudes and removing the additive noise. The resulting

spectrum is analyzed into a 2/3 octave filter bank, constraining the minimum bandwidth

to 100Hz at the lowest bands. F0 weights are computed on each band according to the

normalized sum of their partial amplitudes and are further combined by summing the

40

3.2. Iterative Estimation Approaches

squared band-wise weights, taking inharmonicity into account. The spectral components

of the fundamental frequencies that have the highest global weights are smoothed using

the algorithm described in Klapuri (2001) before their subtraction from the mixture to

avoid its corruption after several iterations of direct cancellation. Therefore, overlapping

partials still remain in the residual after subtraction. The method, called the bandwise

smooth model, uses the moving average over the amplitudes of the harmonic partials

within one octave band to smooth out the envelope of an extracted source. After the

smoothing process, the weights of each candidate are calculated again and the highest

recalculated global weight determines the resulting F0. This process terminates when the

maximum weight related to the signal-to-noise ratio (SNR) is below a fixed threshold.

A perceptually motivated multiple-F0 estimation method using an auditory filter bank

was later presented by Klapuri (2005). Here, the signal at each subband is compressed,

half-wave rectified and low-pass filtered. Then, similarly to the SACF, the results are

combined across channels, but in this method magnitude spectra are summed across

channels to obtain a summary spectrum. The predominant F0 is computed using an

approximated 1

h
smooth model1, to remove the source from the mixture while keeping

the energy of higher partials for the next iteration. Klapuri (2006) also proposed a spectral

model, where the spectral signal is flattened (whitened) to reduce timbral-dependant

information, as an attempt to generalize a variety of musical instrument sounds. Here,

the salience for each F0 candidate is computed as a 1
h
wighted sum of its partials. The same

weighting scheme is also performed by Klapuri (2008) using a computationally efficient

auditory model.

The system from Klapuri (2005) was later used as a front-end by Ryynänen and Klapuri

(2005) to incorporate the multiple-F0 estimation algorithm into a probabilistic framework,

as in Ryynnen and Klapuri (2004) for singing transcription. Here, the transcription system

applies three probabilistic models: a note event Hidden Markov Model (HMM), a

silence model and musicological model. The note HMM uses the output of the multiple-

F0 estimator (Klapuri, 2005) to calculate the likelihoods or different notes, the silence

model identifies time regions where no notes are sounding and the musicological model

controls transitions between the other two models (note HMMs and the silence model).

As in Ryynnen and Klapuri (2004), the acoustical and musicological models are combined

into a network whose optimal path is found using the token-passing algorithm from Young

et al. (1989).

Bach and Jordan (2005) addressed the problem of multiple pitch tracking using fac-

torial HMM and graphical models (Jordan, 2004). The spectral model is trained from

a speech database (Plante, 1995) as a spline smoothing model. The predominant-F0

is obtained by maximizing the likelihood. Predominant-F0 tracking and subtraction are

iterated until the designated number of F0s is achieved.

1Partial amplitudes are inversely proportional to the partial index.

41

3. Related Work

3.2.3 Matching Pursuit

Matching Pursuit (MP) is a numerical technique for decomposing a signal into linear

functions (or atoms) that are selected from a dictionary. Given a fixed dictionary, MP will

first find the atom that has the biggest inner product with the signal, and then subtract

the contribution of that atom from the signal. This process is repeated until the signal is

satisfactorily decomposed.

Mallat and Zhang (1993) proposed an MP algorithm to approximate a solution for

decomposing a signal into linear functions that are selected from the dictionary. On the

first iteration, the atom which best correlates with the analyzed signal is chosen. Then,

the contribution of this function is subtracted from the signal and the process is repeated

on the residual. This way, the algorithm minimizes the residual energy by choosing at each

iteration the most correlated atom with the residual. As a result, the signal is represented

as a weighted sum of atoms of the dictionary plus a residual.

Gribonval and Bacry (2003) extended MP into harmonic matching pursuit (HMP)

by employing a dictionary composed by harmonic atoms. This way, a Gabor atom2 is

identified as a partial and a spectral pattern (or harmonic atom) as a linear combination

of Gabor atoms. Cañadas-Quesada et al. (2008) extended HMP to avoid the corruption

of the residual when there is partial overlap by maximizing the smoothness of the spectral

envelope for each harmonic atom. The smoothing process is similar to the one in Klapuri

(2003). Reyes et al. (2009) performed a study on this method performance when dealing

with harmonic related simultaneous notes.

Leveau et al. (2008) proposed a modified MP algorithm that is applied to the whole

signal at once. This way, instead of the frame by frame analysis, harmonic molecules

are considered as a group of several atoms of the same instrument in consecutive time

windows.

3.3 Joint Estimation

While on iterative estimation approaches the predominant-F0 is estimated, followed by its

cancellation or suppression, joint estimation approaches evaluate possible combinations of

multiple-F0 hypothesis without any cancellation involved (except for joint cancellation).

Despite the fact that the input signal is not corrupted as in iterative estimation and the

resulting cancellation process, the handling of overlapping partials still remains a difficult

task.

3.3.1 Joint Cancellation

Joint cancellation, besides joint estimation, also performs the suppression or cancellation

of the estimated pitches. As in iterative estimation, the estimation and cancellation

happen in an iterative manner, until a termination criteria is met.

2Gabor atoms are time-frequency atomic signal decompositions proposed by Gabor (1946, 1947).
These are obtained by dilating, translating and modulating a mother generating function.

42

3.3. Joint Estimation

Double Diference Function

De Cheveigné (1993) proposed a method that uses the double difference function

(DDF) that jointly cancels multiple-F0 hypotheses. These hypotheses are canceled using

a cascade of filters, and the selected combination is the one that minimizes the residual. In

the experiments done by de Cheveigné (2005), different iterative cancellation methods are

compared with the joint approach, showing that joint cancellation performs better than

iterative cancellation because a single-F0 estimation failure will lead to successive errors

in an iterative manner. However, joint cancellation is computationally more demanding

than iterative cancellation.

Two-way Mismatch

Maher and Beauchamp (1993) proposed a two-way mismatch (TWM) method to es-

timate two F0s jointly. TWM searches for the pair of F0s that minimize the frequency

discrepancies between the predicted partials and the measured peaks on both ways: the

mismatch from “the predicted to the measured” and the mismatch from “the measured to

the predicted”. Each match is weighted by the amplitude of the corresponding measured

peak. The algorithm minimizes the residual by the best match.

3.3.2 Polyphonic Salience Function

Salience methods try to emphasize the underlying F0s by applying signal processing trans-

formations to the input signal to ease a later peak-picking or tracking.

Licklider (1951) proposed a pitch perception model consisting of an array of band-

pass filters for cochlear filtering, followed by autocorrelation. According to Lyon (1984),

this model leads to the channel-lag representation of ACF in the auditory models and

is often referred as correlogram (Slaney et al., 1990). Several salience functions follow

this model. Weintraub (1986) and, later, Wu et al. (2003) presented a similar method for

separating the speech signals of two simultaneous talkers by applying iterative dynamic

programming to the correlogram and a Markov model to determine the characteristics

of each speaker’s voice. Tolonen and Karjalainen (2000) performed a two-channel SACF

over the observed signal using an auditory filter bank. Here, the SACF is processed to

remove peaks corresponding to harmonics and subharmonics. The resulting function is

called enhanced summary autocorrelation function (ESACF).

Polyphonic salience functions can also be obtained by employing a combination of

single-F0 estimation functions. ACF, along with AMDF were combined by Min et al.

(1988) as the salience function and Peeters (2006) combined a temporal domain function

(real cepstrum) with a spectral domain function (ACFS - spectral autocorrelation). This

way, since temporal domain functions are prone to subharmonic errors and spectral domain

functions are prone to super-harmonic errors, by combining both, Peeters (2006) provided

a useful polyphonic salience function that reduces the octave ambiguities.

Zhou (2006) presented a method to extract the power spectrum above the noise floor,

called resonator time-frequency image (RTFI) (Zhou and Mattavelli, 2007), from

which relative energy spectrum and relative pitch energy spectrum are derived

43

3. Related Work

for the selection of F0 candidates. RTFI selects a first order complex resonator filter

bank to implement a frequency dependent time-frequency analysis, due to the flexibility

with regards to time and frequency resolution, and the simplicity and computational

efficiency of an implementation based on first-order filters. Then, the RTFI Average

Energy Spectrum is used as input and transformed into Relative Energy Spectrum and

the harmonic components are extracted. Afterwards, for a preliminary estimate of the

possible multiple pitches, the RTFI Energy Spectrum is converted into a Relative Pitch

Energy Spectrum. The information about harmonic components and pitch candidates is

then combined to cancel pitch candidates without enough confidence (Zhou (2006), page

114). Finally, a spectral smoothing principle is used to validate each remaining pitch

candidate.

3.3.3 Spectral Matching by Non-parametric Models

Non-parametric models or static models assume that the spectral pattern of a harmonic

structure is fixed. Hence, these methods can only handle fixed spectral patterns like, for

instance, piano sounds. On the other hand, these models do not cope well with instruments

that do not have a fixed spectral profile, like the saxophone. In general, the sound of real

saxophones contains varying dynamics and expressive alterations, like breathing noise,

causing several notes with same pitch to sound differently.

Sparseness

Sparse approximation or sparse decomposition accounts for most or all information of

a signal with a linear combination of a small number of elementary signals called atoms,

chosen from a dictionary. The technique of finding a representation with a small number

of significant coefficients is often referred to as sparse coding. Decoding merely requires

the summation of the relevant atoms, appropriately weighted.

Consider the observed signal x, where x = Dα. D is an m × p matrix (m ≪ p) and

x ∈ R
m, α ∈ R

p. D is the dictionary or the design matrix. The idea is to estimate

the signal α, subject to the constraint that it is sparse. Sparsity implies that only a

few components of x are non-zero and the rest are zero. This implies that x can be

decomposed as a linear combination of only a few m× 1 vectors in D, called atoms : the

basis of x. The sparse decomposition problem is represented as:

min
α∈Rp
||α||0 such that x = Dα, (3.1)

where ||α||0 = # {i : αi 6= 0, i = 1, · · · , p} is a pseudo-norm, l0, which counts the number

of non-zero components of α = [α1, · · · , αp]
T . This problem is NP-Hard with a reduction

to NP-complete subset selection problems in combinatorial optimization (NP-Hard, NP-

complete and combinatorial optimization problems will be discussed in the next chapter).

44

3.3. Joint Estimation

A convex relaxation of the problem can instead be obtained by taking the l1 norm instead

of the l0 norm, where

||α||1 =
p∑

i=1

|αi|. (3.2)

The l1 norm induces sparsity under certain conditions (Donoho, 2006).

Bello et al. (2002) proposed a time-domain approach for piano transcription using as

the dictionary a database of waveforms. This method uses linear algebra to decompose

the original signal into a sum of signals present in the database. One particular feature

of this approach is that the waveforms in the database can be known a priori, but they

can also be inferred from the observed signal. The adaptive dictionary is built using a

simplified version of the fundamental frequency estimator of the blackboard method

described in Bello and Sandler (2000). For each estimated pitch, its spectral information

is resynthesized using the inverse Fourier transform into an audio signal corresponding

to that pitch. Then the signals missing in the dictionary database are created from the

obtained signals using pitch-shifting by standard phase-vocoder techniques. Once the

database is complete, the time-domain method can estimate the pitches.

Groble (2008) presented a system where each pitch has a model associated with it.

The model for each pitch is processed a-priori by computing scaled averages of stored

audio samples, i.e. the model for each particular pitch is generated from a large number

of sample frames taken from an instrument playing that note. This training data contains

samples at multiple note attack levels and multiple distances between the note onset and

the frame start. The model for each pitch is processed by normalizing each individual

feature vector at that pitch to have a unit height, averaging the unit height vectors

together, and normalizing the resulting average vector to have unit length. The feature

vectors extracted from the audio frames of the observed signal are scored against these

pitch models to estimate which pitches are present in the frames.

Lee et al. (2010) assume that the Fourier coefficients of an input frame are a linear

combination of the Fourier coefficients of previously recorded waveforms of individual

piano notes (Bello et al., 2002) and defined a matrix of Fourier coefficients of segments

of those waveforms as the dictionary. The computational complexity of the problem is

reduced by l1 minimization.

Benetos and Dixon (2011b) proposed a model that extends the shift-invariant prob-

abilistic latent component (PLCA) method of Smaragdis et al. (2008). This model

is able to support the use of multiple pitch templates extracted from multiple sources.

Using a log-frequency representation and frequency shifting, detection of notes that are

non-ideally tuned, or that are produced by instruments that exhibit frequency modula-

tions is made possible. Sparsity is also enforced in the model, in order to further constrain

the transcription result and the instrument contribution in the production of pitches. Fi-

nally, a hidden Markov model-based note tracking method is employed in order to provide

a smooth piano-roll transcription.

45

3. Related Work

Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a technique for data analysis where a

non-negative matrix V is factorized into two non-negative matrices W and H: given an

n×m non-negative matrix V and a positive integer r < min (n,m), NMF tries to factorize

V into an n× r non-negative matrix W and an r ×m non-negative matrix H such that:

V ≈WH. (3.3)

This way, the observed power spectra V can be decomposed into spectral models (basis

functions in H) of each note with its intensity change along time (weightings in W) as

in Smaragdis and Brown (2003). The cost function is designed to favor the minimization

of the residual with specific constraints like sparseness (Cont, 2006a), harmonicity

(Raczyński et al., 2007), beta-divergence (Dessein et al., 2010a) and ERB-scale time-

frequency representation (Vincent et al., 2007). Although fast algorithms have been

proposed for multiple-F0 estimation (Sha and Saul, 2004; Cont, 2006a), the challenge

remains in the modelling of the time-varying spectra of sound sources (Virtanen, 2003b;

Abdallah and Plumbley, 2004). NMF methods have also been used for music transcription

by Plumbley et al. (2002), Virtanen (2007), Vincent et al. (2007), Bertin et al. (2007).

Independent Component Analysis

The independent component analysis (ICA) (Jutten and Herault, 1991; Comon, 1994)

finds the independent components (factors) of a signal by maximizing the statistical in-

dependence of the estimated components. The signal model is factorized as x = Wh,

being x and h n-dimensional real vectors, and W a non-singular matrix. Citing Virtanen

(2006), page 274: “ICA attempts to separate sources by identifying latent signals that are

maximally independent. In practice, this usually leads to the separation of meaningful

sound sources.”.

ICA is closely related to NMF and, as pointed by Schmidt and Larsen (2008), their

differences rely on the different constraints placed on the factorizing matrices. In ICA,

rows of W are maximally statistically independent, whereas in NMF all elements of W

and H are non-negative. Both ICA and NMF have been investigated by several authors

(Plumbley et al., 2002; Abdallah and Plumbley, 2003, 2004; Virtanen, 2007) for poly-

phonic transcription. According to Virtanen (2007), for spectrogram factorization, NMF

algorithms performed better separation results than ICA.

ICA has also been successfully used for drum transcription (FitzGerald, 2004; Virtanen,

2006), since most percussive sounds have a fixed spectral profile and, thus, can be modeled

using a single component.

Neural Networks

The method from Marolt (Marolt, 2004a,b) uses a connectionist approach for automatic

transcription of polyphonic piano music. The first stage of the partial tracking algo-

rithm transforms the acoustical waveform into time-frequency space using an auditory

46

3.3. Joint Estimation

model, which emulates the functionality of human ear. The auditory model consists

of two parts: an auditory Patterson-Holdsworth gammatone filterbank (Patterson and

Holdsworth, 1996) and the Meddis hair cell model (Meddis, 1986). The filterbank is first

used to split the signal into several frequency channels, modeling the movement of basilar

membrane in the inner ear and the output of each gammatone filter is processed by the

Meddis’ model of hair cell transduction. Then, the auditory model outputs a set of fre-

quency channels containing quasi-periodic firing activities of inner hair cells. Instead of

using a correlogram, a modified version of the Large and Kolen (1994) adaptive oscillators

is employed to detect periodicities in the output channels of the auditory model. If the

oscillators synchronize with their stimuli (outputs of the auditory model), then the stimuli

are periodic, meaning that the respective partials are present in the input signal. This

scheme is able to track partials, even in the presence of vibrato or beating. This model

for tracking individual partials was extended into a model for tracking groups of harmon-

ically related partials. This was done by joining adaptive oscillators into networks. Each

network consisted of up to 10 interconnected oscillators with their initial frequencies set to

integer multiples of the frequency of the first oscillator. A total of 88 oscillator networks,

with initial frequencies corresponding to all 88 piano tones (A0-C8) were created. Then,

a set of 76 neural networks is employed to perform note recognition. The inputs of each

network are taken from the outputs of the oscillator networks, combined with the outputs

from the auditory model. Each of the 76 neural network is trained to recognized one piano

note (from A1 to C8). The used network model was the time delay neural network

(TDNN) (Waibel et al., 1989). This method was further integrated into a system called

SONIC3 to transcribe piano music. This system also includes an onset detector, a module

for detecting repeated notes and simple algorithms for length and loudness estimation.

SONIC is constrained to piano transcription since the system was trained by using only

piano sounds.

Support Vector Machines

Like Neural Networks, Support Vector Machines (SVMs, also support vector net-

works Cortes and Vapnik (1995)) are supervised learning models with associated learning

algorithms that can be used for: data analysis, pattern recognition, classification and

regression analysis.

The method proposed by Poliner and Ellis (2007b,a) employs SVMs on a frame-by-

frame spectral analysis and then performsHidden Markov Models (HMM) to refine the

estimated pitches. SVMs were previously trained with spectrograms of synthesized MIDI

notes. The SVMs consist in a total of 87 note classifiers trained to detect the presence

of the corresponding musical note in a given time frame. The input time frames consist

on a 255 feature vector consisting of normalized spectral bins. The output of the SVM

classifier (referred as posteriogram) is fed into a two state (on/off) HMM to improve the

temporal coherence of the estimate. The HMM performs temporal smoothing by inferring

the temporal structure from the musical signal. This way, the HMM post-processing stage

3http://lgm.fri.uni-lj.si/SONIC/

47

http://lgm.fri.uni-lj.si/SONIC/

3. Related Work

is applied to the unlabeled data classification, resulting in class assignment updates (in

some cases), due to temporal context. This system is constrained to polyphonic piano

transcription and its experimental results outperformed those of Marolt (2004a,b) using

Neural Networks.

Zhou (2006) also used SVMs on Method II, employing 88 binary classifiers, each corre-

sponding to one piano note. The classifier inputs are the peaks extracted from the RTFI

energy spectrum.

Specmurt Analysis

Specmurt Analysis is a method proposed by Sagayama et al. (2004) that enables “pitch

likelihood distribution visualization”, unlike standard methods for pitch estimation Saito

et al. (2008). Specmurt Analysis, like short-time spectrum analysis, is a frame-wise signal

processing method. On the contrary to the Cepstral analysis, which is the inverse Fourier

Transform of the short-time power spectrum with log-scaled magnitude, it is the inverse

Fourier transform of the short-time power spectrum with log-scaled frequency. The de-

convolution of the spectrum by a common harmonic pattern is achieved by division. In

this method, the input signal is first processed by a constant-Q transform (Brown, 1991)

so its power spectrum is on the log-frequency scale. The log-frequency spectrum is then

transformed into Specmurt by inverse Fourier Transform.

Bispectrum

According to Nikias and Mendel (1993) and Nikias and Raghuveer (1987) the bispectrum

is a bidimensional frequency representation capable of detecting nonlinear harmonic inter-

actions, which are typically present in musical audio signals. Furthermore, in the presence

of interfering sound partials, the bispectrum ideally enables to resolve the contribution

of each single harmonic by performing a bidimensional cross-correlation procedure with a

fixed 2D-harmonic pattern. The bispectrum belongs to the class of Higher-Order Spectra

(HOS, or polyspectra), used to represent the frequency content of a signal. An overview of

the theory of HOS can be found in Nikias and Mendel (1993) and Nikias and Raghuveer

(1987). The bispectrum is defined to be the third-order spectrum, being the amplitude

spectrum and the power spectral density, respectively, the first and second-order ones.

In Nesi et al. (2009a) method, multiple-F0 estimation has been performed, on a frame

by frame basis, through a joint constant-Q and bispectral analysis of the input audio

signal. The bispectrum was computed using by using Nikias and Mendel (1993) direct

method. F0-tracking has been obtained by detecting note onsets and durations through

the analysis of the signal spectrogram.

Hypothetical Partial Sequence

The method proposed by Yeh (2008); Yeh et al. (2010) is a frame-based system for joint

estimation of multiple fundamental frequencies, based on the STFT representation. The

first stage of this method consists on applying an adaptive noise level estimation algo-

rithm (Yeh and Röbel, 2006) to provide a probabilistic classification of the spectral peaks

48

3.3. Joint Estimation

into sinusoids or noise. The sinusoidal peaks are considered the partials of the quasi-

periodic sources such that a combination of harmonic patterns related to F0 hypotheses

will match (Yeh et al., 2005). To reduce the computational cost of the approach, a set of

F0 hypotheses is selected from the spectral peaks using a harmonic matching technique.

Each hypothesis is related to its hypothetical partial sequence (HPS). The correct

combination of HPSs will lead to their partials matching as many sinusoidal peaks as

possible in the observed spectrum. This way, the HPS is a source model with estimated

frequencies and amplitudes obtained by partial selection and overlapping partial treat-

ment. Partials are identified with spectral peaks within a tolerance deviation from their

ideal position. If two or more peaks are within the tolerance range, the peak performing a

smoother HPS envelope is selected. Amplitudes of overlapped partials in the combination

are estimated by using linear interpolation, as in Maher (1990), and a set of rules (Yeh,

2008). The HPS is flattened by exponential compression. A score function is then used

on the estimated HPSs to select the plausible sets of F0 hypotheses. To infer the best

combination, hypothetical sources are progressively combined and iteratively verified. A

hypothetical source is considered valid if it either explains more energy than the noise, or

improves significantly the envelope smoothness once the overlapping partials are treated.

The score function for a given hypothesis is computed considering the following aspects,

for each hypothetical source: spectral match with low inharmonicity, spectral smoothness

and synchronous amplitude evolution of the partials. The score function is a weighted

sum of these four criteria, and the weights are optimized using the evolutionary algorithm

Schwefel (1995) using a large dataset. The estimation of the number of concurrent sounds

is finally done by iterative score improvement (Chang et al., 2008; Yeh et al., 2006), based

on the explained energy and the improvement of the spectral smoothness: the polyphony

hypothesis is progressively increased and all possible combinations are evaluated. Finally,

a post-processing stage can be added by tracking the F0 candidates trajectories, using

a high-order HMM and a forward-backward tracking scheme proposed by Chang et al.

(2008).

Gaussian Mixture Models

Pertusa and Inesta (2008a) proposed a multiple-F0 estimator using Gaussian smoothness.

This method selects a set of fundamental frequency candidates at each time frame, gen-

erating all the possible candidate combinations. The combination with highest salience

is selected, taking into account the sum of the harmonic amplitudes and the spectral

smoothness of its candidates. An interpolation method is introduced in Pertusa and In-

esta (2008a) to deal with some overlap situations. Each frame is analyzed, yielding a

combination of F0s that maximizes a salience measure. This approach was later extended

in Pertusa and Inesta (2008b) to deal with low frequency resolution by adding short con-

text information to get the combination of pitches at each frame: instead of selecting the

combination with highest salience at each time frame, short context information is taken

into account to get the salience of each combination of pitches, performing a temporal

smoothing. For grouping similar information across time, a set of F0 combinations are

generated at each time frame. In order to have unique combinations in each time frame,

49

3. Related Work

if more than one combination with the same pitches is found in a single frame, only the

combination with the highest salience is kept, removing duplicates with lower saliences.

This method has a high computational efficiency, which is the main handicap of joint

estimation approaches.

The method from Canadas-Quesada et al. (2009) also assumes that a polyphonic sound

can be modeled by a sum of weighted Gaussian mixture models. In this approach, an

adaptive logarithmic threshold is used to select the possible partials. Then, given a pitch

range, the F0 candidates are chosen from the previous selected partials and, for each can-

didate, a harmonic pattern is built in the log-frequency domain, considering one semitone

bandwidth for partial search. All the possible candidate combinations are modeled by

a sum of weighted GMMs. The corresponding weights are composed by non-overlapped

partials and/or colliding partial magnitudes. Overlapped partial amplitudes are estimated

by means of linear interpolation using the nearest neighboring non-overlapped partials, as

in the work of Pertusa and Inesta (2008a).

3.3.4 Statistical Modeling using Parametric Models

Contrarily to the non-parametric models, which assume that the spectral pattern of a har-

monic structure is fixed, statistical parametric methods can model varying time-frequency

envelopes like, for instance, saxophone sounds. Saxophone cannot be considered to have

fixed spectral profile, since real saxophone sounds, in general, contain varying dynamics

and expressive alterations, like breathing noise, causing several notes with same pitch to

sound differently.

Statistical approaches are generally formulated with Bayesian models. Bayesian sta-

tistical methods provide a complete paradigm for both statistical inference and decision

making under uncertainty.

Waveform Models

According to Davy (2006), page 203: “tonal music can be exploited to build a Bayesian

model, that is, a mathematical model embedded into a probabilistic framework that leads

to the simplest model that explains a given waveform”. These models are also known as

generative models because they can be used to generate data by changing its parameters

and the noise. Some multiple-F0 estimation systems rely on these kind of models for

modeling the acoustic waveform. Most of these generative models assume that the F0

belongs to a fixed set of values, associated to the pitches. Waveform Models try to

adaptively match the observed waveform in the time domain.

The method from Walmsley et al. (1999) segments the observed signal into 20ms audio

frames assuming that, during each frame, the signal is stationary. The model is employed

as a sum of an unknown number of concurrently sounding notes, the parameters of each

source being: the fundamental frequency, number of partials, partial amplitudes and the

residual variance. These parameters are estimated jointly across a number of adjacent

frames by means of Markov chain Monte Carlo (MCMC) method. Davy and Godsill

50

3.3. Joint Estimation

(2003) extended this method by introducing a prior distribution of the inharmonicity

factor.

The generative music signal model proposed by Cemgil et al. (2003, 2006b) introduces

a higher-level parameter related to tempo, with several modifications. This method is

based on a generative model formulated as a dynamical Bayesian network. This proba-

bilistic model assumes that the partials have harmonic frequency relationships and also

an exponentially decaying spectral envelope. This approach allows to write noisy sum-of-

sines models into a sequential form. The model relies on damped sinusoids with constant

frequency. The piano-roll is inferred by assigning to each of the grid frequencies the state

“on” or “off ” at each instant. The algorithm for estimating the most likely piano-roll is

based on Greedy Search and Kalman filtering on a sliding window over the audio signal.

This technique can be considered as a time-domain method, since the discrete Fourier

transform is not being explicitly computed, and, thus, can be used to analyze music to

sample precision, although with a very high computational cost.

Spectral Models

While Waveform Models try to adaptively match the observed waveform in the time

domain, Spectral Models try adaptively to match the observed signal in the frequency

domain. The phase information is often discarded.

Vincent and Rodet (2004) proposed a generative model based on nonlinear Indepen-

dent Subspace Analysis (ISA) and factorial HMM. Linear ISA describes the short-time

power spectrum of a musical excerpt as a sum of power spectra (or partials) with time-

varying weights, where the modeling error is a Gaussian noise. In order to overcome

several known limitations of linear ISA (Plumbley et al., 2002; Eronen, 2003; Eggink and

Brown, 2003; Mitianoudis and Davies, 2002) a nonlinear ISA model was derived consider-

ing both summation of power spectra and of log-power spectra. This method is based on

creating specific instrument models by learning its parameters on solo excerpts and use

them to transcribe polyphonic excerpts. The instruments model is defined as a collection

of parameters: the means and variances of partial amplitudes, partial frequencies and

residuals. To transcribe a signal, the spectrum is considered as a sum of spectral models

whose weights are optimized using an approximation to the second order Newton method.

The HMM is used for adding temporal continuity and modeling note duration priors.

Goto (2000) proposed the PreFEst method to detect melody and bass lines in musical

signals. This system assumes that the melody line has the most predominant harmonic

structures in middle and high frequency regions and the bass line has the most predomi-

nant harmonic structure in a low frequency region. It also assumed that melody and bass

lines tend to have temporally continuous trajectories. The first stage consists on calculat-

ing the instantaneous frequencies by using a multirate filterbank and extracts candidate

frequency components on the basis of an instantaneous-frequency-related measure. Then,

two bandpass filters are used to separate the spectral components of the bass and melody

lines. For each set of filtered frequency components, a probability density function

(PDF) of the F0 is formed, representing the relative dominance of every possible harmonic

structure. The observed PDF is considered as being generated by a weighted mixture of

51

3. Related Work

harmonic-structure tone models. These model parameters are estimated using the EM

algorithm. Finally, to consider a continuity of the F0 estimate, the most dominant and

stable F0 trajectory is selected, by tracking the peak trajectories in the temporal transi-

tion of the F0’s PDFs. This step is achieved by multiple agents that track the temporal

trajectories of salient promising peaks in the F0’s PDF and the output F0 is determined

on the basis of the most dominant and stable trajectory. This system works in real time.

The method proposed by Vincent (2004) models the observed spectrum according to

the means and variances of partial amplitudes, frequencies and residuals. This way, the

spectrum can be interpreted as a sum of the spectral models with the related weighting

optimized by Newton’s method. A factorial model is also applied for constraining the

temporal continuity and for adapting the duration.

Kameoka et al. (2005a) formulates the multi-pitch estimation problem as a time-space

clustering of harmonic sounds, which is named harmonic temporal clustering (HTC)

method (Kameoka et al., 2007). This approach decomposes the power spectrum time se-

ries into distinct clusters corresponding to single sources. This way, HTC method models

the pitch, the relative partial amplitudes, the intensity, the onset and the duration of

each underlying source. The input of the system is the observed power spectrum with

log-frequency scale. The HTC model assumes that all sources are periodic signals having

smooth power envelopes with decaying partial amplitudes. Using this model, a goodness

of the partitioned cluster is calculated using the Kullback-Liebler (KL) divergence. The

model parameters are estimated using the expectation-constrained maximization (ECM)

(Meng and Rubin, 1993; Kameoka et al., 2005b). Partials of a harmonic source are mod-

eled as Gaussian distributions with initial spectral envelopes. The evolution of partial

amplitudes is modeled by Gaussian mixtures across frames such that the synchronous

evolution is constrained and the duration is adaptively modeled. In the evaluation done

by Kameoka et al. (2007), the HTC system outperformed the PreFEst results.

The approach proposed by Li and Wang (2007) is somehow related to Ryynänen and

Klapuri (2005) in the sense that the preliminary pitch estimate and the musical pitch

probability transitions are integrated into a HMM. Nevertheless, for pitch estimation,

this method uses statistical tone models that characterize the spectral shapes of the in-

struments. Instrument models are built using Kernel density estimation. This method is

intended for single instrument transcription only.

The method introduced by Emiya et al. (2008a) consists in applying the onset de-

tector from (Alonso et al., 2005) on the observed signal and, for each segment between

two consecutive onsets, a set of candidates is selected using the probabilistic spectral

smoothness principle (Emiya et al., 2010). The most likely combination of pitches

within each segment is selected using an HMM, embedding a spectral maximum likeli-

hood. Notes with the same pitch in two consecutive segments are merged if they are still

present at the end of the first segment and if the increase of an energy criterion is below

a predefined threshold. Apart from that, notes are considered as repeated.

The method proposed by Duan et al. (2009a) models spectral peaks and non-peak

regions. Given pitch estimates for individual frames, pitch trajectory formation is cast

as a constrained clustering problem, where each cluster corresponds to a trajectory. Har-

52

3.3. Joint Estimation

monic structure is used as the feature of each pitch in clustering. Finally, note formation

happens after pitch trajectories are formed, instead of forming notes and then placing

them in streams. The problem is addressed in two stages: the first stage is multi-pitch

estimation, where pitches and polyphony in each frame are estimated, and then refined us-

ing estimates in neighboring frames; the second stage is pitch trajectory formation, where

initial pitch trajectories are formed by grouping pitch estimates across frames according

to pitch height. Within each initial trajectory, pitch estimates that are close in frequency

and contiguous in time are grouped to form notelets. Final pitch trajectories are ob-

tained through constrained clustering of pitch estimates, where must-link constraints are

imposed on pitch pairs in each notelet and cannot-link constraints are imposed on pitch

pairs of concurrent notelets. From the view of Auditory Scene Analysis, the first stage is

simultaneous grouping and the second stage is sequential grouping.

3.3.5 Blackboard Systems

Blackboard Systems (Engelmore and Morgan, 1988) are artificial intelligence applica-

tions based on the blackboard architectural model, where a common knowledge base -

the “blackboard” - is iteratively updated by a group of specialists or knowledge sources

that start by specifying the problem into the blackboard and end with a solution. Each

specialist updates the blackboard with a partial solution when its internal constraints

match the blackboard state, thus, working together to solve the problem. As a metaphor,

one can say that there is a group of specialists, seated in a room with a large blackboard.

These specialists are working as a team to brainstorm a solution to a problem, using the

blackboard as the workplace to cooperatively develop the solution. The session begins

when the problem specifications are written into the blackboard. Then, the specialists

watch the blackboard, looking for an opportunity to apply their expertise into the devel-

opment of a solution. When someone writes something on the blackboard, that allows

another specialist to apply their expertise, the second specialist records their contribution

on the blackboard, hopefully enabling other specialists to apply their expertise as well.

This process continues until the problem is solved.

Blackboard systems consist of three major components: the knowledge sources, the

blackboard and control shell. The knowledge sources typically consist on a set of rules,

the blackboard is a shared repository of problems, partial solutions, suggestions and con-

tributed information. The blackboard can also be thought as a dynamic “library” of

contributions to the current problem that have been recently “published” by other knowl-

edge sources. The control shell, or the scheduler, determines the order in which knowledge

sources are allowed to act. The system converges when the knowledge sources are satisfied

with the hypothesis in the blackboard, given an error margin.

In general, the blackboard architectures used in music transcription are similar to

the one proposed by Martin (1996). The blackboard hierarchy is ordered by increasing

abstraction, being the observed signal at the lowest level: power spectrum, tracks, partials,

notes, intervals, chords and tonality).

Bello and Sandler (2000) extended Martin (1996) approach by including top-down

processing by means of a Neural Network to detect the presence or absence of a chord. The

53

3. Related Work

output of the Neural Network is fed into the blackboard system reshaping the hypothesis

matrix, changing its structure and adding a new level of information to the system: chords.

This way, the knowledge sources that interact with the mentioned matrix are structurally

modified and urged to link strong note hypotheses present in the blackboard to produce

hypothetic chords.

Other blackboard systems have been also proposed by Ellis (1996); Monti and Sandler

(2002); Plumbley et al. (2002). For a more detailed review on these methods please refer

to McKay (2003).

3.4 Discussion

Multiple-F0 estimation is a very complex task and although there are many and different

approaches, as we reviewed during this chapter, it is a problem that still remains unsolved.

Moreover, there is no method suitable for all the variety of musical sounds. The advantages

and drawbacks among the different methods previously described are discussed in this

section.

3.4.1 Spectral Representation: Multi-resolution or Fixed-resolution?

Most multiple-F0 estimation and multi-pitch estimation methods involve analysis in the

frequency domain. This representation has the advantage of providing an intuitive repre-

sentation of the harmonic structure and the spectral envelope of a sound source, which

eases the modeling of sound sources. Spectral representations can either be multi-resolution

or fixed-resolution.

Multi-resolution representations, like constant-Q transform, wavelets or filter-banks,

have the advantage of representing the signal with different resolutions for distinct fre-

quency bands. Although several authors claim that by using a multi-resolution spectral

representation a benefit results from its similarity to the equal tempered music scale or the

human auditory system (Chafe and Jaffe, 1986; Keren et al., 1998; Fernandez-Cid, 1998;

Chien and Jeng, 2002; Kobzantsev et al., 2005; Sagayama et al., 2004; Patterson and

Holdsworth, 1996; Wu et al., 2003; Marolt, 2004a; Klapuri, 2005), there are still no phys-

ical reasons why multi-resolution is better for representing the structure of a harmonic

sound. As discussed by Hainsworth (2003) and Yeh (2008), page 27, multi-resolution

representations do not really solve the time-frequency main issue and, as a matter of

fact, the advantage of multi-resolution also happens to be its disadvantage: wavelets

sacrifice frequency resolution at high frequencies, which can be a major drawback for dis-

tinguishing individual partials of concurrent sources, and constant-Q and wavelets loose

temporal precision in the lower frequencies. For these reasons most of the multiple-F0

and multi-pitch estimation methods still rely on the fixed-resolution representation. In

this dissertation, the STFT is chosen for signal representation, despite being criticized for

its fixed-resolution.

54

3.4. Discussion

3.4.2 Computational Efficiency or Greater Accuracy: Iterative or

Joint Estimation?

Acoustic signals containing more than one concurrent source are said to be polyphonic.

The main issue when dealing with polyphonic signals is that the components of concurrent

sources may overlap. In general, iterative estimation algorithms attenuate the predomi-

nant source at each iteration. Since the F0s that will be extracted in future iterations are

unknown upon the attenuation or cancellation time, it is almost impossible to estimate

which partials overlap and to prevent over-attenuation of partials.

On the other hand, joint estimation methods have the advantage of inferring which

partials overlap from a set of hypothetical sources. This way, a better treatment of over-

lapping partials can, thus, be expected. Nevertheless, the downside of the joint estimation

approach is its computational cost because the number of hypothetical combination grows

exponentially with the polyphony hypothesis.

Although there is no significant proof that joint estimation has better results than

iterative estimation, theoretically joint estimation is better since it can handle partial

collision. This way, we decided to adopt a joint estimation approach.

3.4.3 Which Joint Estimation Method?

Joint cancellation approaches perform better than iterative cancellation (de Cheveigné,

2005) because a single-F0 estimation failure will lead to successive errors in an iterative

manner. However, joint cancellation is computationally more demanding than iterative

cancellation and since it also has both iterative estimation and cancellation stages, it has

the same disadvantages as the iterative estimation approaches.

Polyphonic salience functions are computationally efficient and they also provide a

mid-level representation, which is useful for F0 estimation. Some of these functions are

just enhanced representations which need a posterior methodology (e.g. peak picking) to

estimate the fundamental frequencies. The main disadvantage of these salience functions

is that, in some situations, they can lose relevant information or even produce spurious

components in the signal transformation process (Pertusa (2010), page 76). As an example,

SACF performs half wave rectification. The output spectrum of a half wave rectified

signal (see Klapuri (2004a), page 38) consists of a DC-component, of the original power

spectrum scaled down by four, and of a convolution of the original power spectrum by

itself. As a matter of fact, the convolution of a spectrum by itself produces spectral

components centered at the locations that are multiple of the original spectral intervals,

emphasizing partial beating, which might be very useful for single-F0 estimation. However,

for polyphonic signals, all the intervals between partials of different sources (and also

between different fundamental frequencies) generate prominent components at beating

frequencies in the half-wave rectified spectrum, adding spurious data for the subsequent

analysis.

Non-parametric models or static models assume that the spectral pattern of a har-

monic structure is fixed. These methods can only handle fixed spectral patterns like, for

instance, piano sounds. Despite these methods have been successfully applied considering

55

3. Related Work

specific instrument transcription (usually piano). Modeling harmonic sounds with varying

harmonic components still remains a challenge (Abdallah and Plumbley, 2004).

Statistical parametric methods can model varying time-frequency envelopes like, for

instance, saxophone sounds. However some of those methods, like the Bayesian waveform

models, although they provide an elegant way for modeling the acoustic signal, they are

mathematically complex and have high computational cost. Statistical spectral models,

despite being also complex, are computationally efficient.

Blackboard systems are, to some extent, general architectures. This means that these

systems depend on other methods to use them as knowledge sources (Martin, 1996; Bello

and Sandler, 2000).

Among all these previously stated approaches, the non-parametric methods are the less

complex. Sparse coding is a non-parametric technique for finding a representation of the

observed signal as a linear combination of elementary signals called atoms. This can also

be seen as a combinatorial optimization problem where the goal is to find the combination

of atoms that best resembles the observed signal. Although this approach is limited to

fixed spectral patterns, this can be extended by employing an adaptive mechanism in

the atoms. By extending sparse coding with Evolutionary Algorithms, namely Genetic

Algorithms, which are adaptive by nature, the harmonic structure of each atom can adapt

so that their linear combination best fits the observed signal. This way, by using sparse

approximation, along with evolutionary algorithms, our non-parametric method will be

able to cope with harmonic sounds with varying harmonic components.

56

Chapter 4

Genetic Algorithms

To describe what a Genetic Algorithm is, one must explain first what an Algorithm is.

This chapter presents the concept of Algorithm and its main purpose: problem solving.

Several types of problems are presented: decision, search, counting and optimization

and it is discussed how search, counting and optimization problems can be viewed as

decision problems. Several classes of decision problems are then presented, according

to their computational complexity: P, NP, NP-Complete and NP-Hard. Bio-inspired

Algorithms are introduced as a mean of addressing NP-Complete and NP-Hard problems.

Finally, Genetic Algorithms are presented. Both biological background behind a Genetic

Algorithm and its terminology are explained.

4.1 Algorithm

There are several definitions of the term algorithm: “A mathematical rule or procedure

for solving a problem.” (Jančař́ık, 2007); “A set of well-defined rules or procedures for

solving a problem in a finite number of steps.” (Lemon et al., 2007) or even “A finite and

sorted set of operations to achieve a solution of one problem.” (Gersting and Schneider,

1995). Nevertheless, all definitions state that the goal of the algorithm is to solve a given

problem, usually with the requirement that the procedure terminates at some point.

The process of applying an algorithm to an input in order to obtain an output its

called a computation.

4.2 Problem

A problem is an exercise whose solution is desired. However, theoretical computer science

defines the term computational problem as a mathematical object representing a col-

lection of questions that computers might solve. As an example, the problem of factoring

“Given a positive integer n, find a non-trivial prime factor p of n.” is a computational

problem.

57

4. Genetic Algorithms

A computational problem can also be viewed as an infinite collection of instances,

together with a solution for every instance. For example, in the factoring problem, the

instances are the integers n, and solutions are prime numbers p that describe non-trivial

prime factors of n. Both instances and solutions are conventionally represented as binary

strings, namely elements of {0, 1}∗. That is: numbers can be represented as binary strings

using the binary encoding1. During this chapter, for improved readability, numbers will

be identified instead of their binary encodings.

Computational problems are one of the main objects of study in theoretical computer

science and include decision problems, search problems, counting problems and

optimization problems.

4.2.1 Decision problems

A problem is said to be a decision problem if its output should be a simple “YES” or

“NO” (or derivatives like “TRUE/FALSE”, “0/1”, “Accept/Reject”, etc.). An example of

a decision is the primality testing problem: “Given a positive integer n, determine if n is

prime.”.

A decision problem is typically represented as the set of all instances for which the

answer is “YES”. For the primality testing example, it is represented as the infinite set

L = {2, 3, 5, 7, 11, . . .}.

4.2.2 Search problems

A search problem is represented as a relation encompassing all the instance-solution pairs,

called a search relation. For example, factoring can be represented as the relation R =

{(4, 2), (6, 2), (6, 3), (8, 2), (9, 3), (10, 2), (10, 5), . . .} which consist of all pairs of numbers

(n, p), where p is a non-trivial prime factor of n.

In a search problem, the answers can be arbitrary strings. For example, factoring

is a search problem where instances are string representations of positive integers and

solutions are string representations of collections of prime numbers.

Search problems and decision problems

A relation R can be viewed as a search problem, and an algorithm which calculates R is

also said to solve it. Every search problem has a corresponding decision problem, namely

L(R) = {x | ∃yR(x, y)}.
This definition may be generalized to n-ary relations using any suitable encoding

which allows multiple strings to be compressed into one string (for instance by listing

them consecutively with a delimiter).

1Traditional Genetic Algorithms also use this encoding to represent problem instances and solutions.

58

4.3. Polynomial Time as a Reference

4.2.3 Counting problems

A counting problem asks for the number of solutions to a given search problem. For

example, the counting problem associated with factoring is “Given a positive integer n,

count the number of non-trivial prime factors of n.”

A counting problem can be represented by a function f from {0, 1}∗ to the non-negative
integers. For a search relation R, the counting problem associated to R is the function

fR(x) = |{y : (x, y)R}|.

4.2.4 Optimization problem

An optimization problem asks for finding the “best possible” solution among the set of

all possible solutions to a search problem. One example is the maximum independent set

problem: “Given a graph G, find an independent set of G of maximum size.” Optimization

problems can be represented by their search relations.

An optimization problem is the problem of finding the best solution from all feasible

solutions and can be divided into two categories depending on whether the variables are

continuous or discrete. An optimization problem with discrete variables is known as a

combinatorial optimization problem. In a combinatorial optimization problem, we

are looking for an object such as an integer, permutation or graph from a finite (or possibly

countable infinite) set.

Decision Problems and optimization problems

Many of the practical problems are optimization problems, where the goal is to minimize

or maximize a given metric or cost function. Each combinatorial optimization problem

can be expressed as a decision problem that asks whether there is a feasible solution for

some particular measure m0. For instance: “What is the lowest number of colors that can

be used to paint a graph?” can be expressed as: “Given a graph G and an integer k, is it

possible to paint G with k colors?”. Moreover, the Music Transcription problem “Which

are the musical notes that are present in an acoustic signal?” can also be expressed as

a decision problem: “Given an acoustic signal s and a set of musical notes M , are those

musical notes the same set of musical notes present in s?”. This problem can be answered

with a simple “YES” or “No”.

In the real world or industry, algorithms are designed to find near-optimal solutions

to hard problems. The usual decision version is then an inadequate definition of the

problem since it only specifies acceptable solutions. Even though we could introduce

suitable decision problems, the problem is more naturally characterized as an optimization

problem (Ausiello et al., 1999).

4.3 Polynomial Time as a Reference

The field of Computational Complexity (Hartmanis and Stearns, 1965) attempts to explain

why certain computational problems are intractable for computers, i.e. why they cannot be

59

4. Genetic Algorithms

solved by an algorithm in polynomial time. Essentially, there are several types and classes

of problems. However, most problems are divided into two main categories: easy problems

and hard problems. Here, easy stands for problems that can be solved in polynomial time

by an algorithm.

The polynomial time is a reference that both defines and separates the class of problems

that can be solved efficiently. Therefore, if a problem can be solved efficiently, its execution

time is polynomial. This evaluation is generally measured in terms of algorithm execution

time, using the complexity of the worst possible case, as a function of n, which is the

input size of the problem.

In some practical cases, some algorithms can solve simple problems in reasonable time

(e.g. n ≤ 20). But when the number of inputs is larger (e.g. n ≥ 100) the algorithms

performance considerably decreases. These kind of algorithms could be executing in ex-

ponential time, in the order: n
√
n, 2n, 22

n

, n!, or even worse.

For some classes of problems, it is hard to see if there is any paradigm or algorithm

which can lead to their solution, or if there is some way to prove that the problem is

intrinsically hard, not being possible to find an algorithmic solution whose performance

is sub-exponential. For some classes of hard problems it is possible to show that if one

of these problems can be solved in polynomial time, then all these problems can also be

solved in polynomial time.

A polynomial time algorithm has an execution time in the order of O(nk), where k is

a constant independent of n. A problem is said to be solved in polynomial time if there is

an algorithm that can solve it in polynomial time.

Some functions might not appear polynomial but can be treated like that, for instance:

O(n log(n)) has a superior limitation by order O(n2). Some other functions might appear

to be polynomial but, if we look closely, they are not. For instance: O(nk), is not poly-

nomial if k is a function of n, the input size. Figure 4.1 represents the most common

execution times.

4.3.1 P and NP classes

TheP class of problems is defined by all decision problems that can be solved in polynomial

time. There are also other kind of problems, such as the NP class, that cannot be solved

in polynomial time but when an answer is provided it is possible to verify that answer in

polynomial time.

Consider the subset problem, an example of a problem that is easy to verify, but whose

solution cannot be computed in polynomial time: Given a set of integers, does some empty

subset of them sum to 0?. For instance: does a subset of the set {−2,−3, 15, 14, 7,−10}
add up to 0? The answer is “YES, because {−2,−3,−10, 15} add up to 0” can be verified

with four additions. However, there is no known algorithm to find such a subset in

polynomial time: there is one in exponential time, which consists of 2n − 1 tries, i.e.

complexity O(2n). In this case, the subset {−2,−3,−10, 15} is said to be a solution. If

it is possible to evaluate a solution for a problem in polynomial time, it is said that the

problem is verifiable in polynomial time. Not all the problems have the property of being

easily verified. For instance, if the problem is to identify if the set has only one subset

60

4.3. Polynomial Time as a Reference

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

O(log
2
(n)) O(n) O(n log

2
(n))

O(n
2
) O(n

3
) O(2

n
)

Figure 4.1: Most common execution times.

with zero sum. It is easy to verify is there is at least one subset, but it is not easy to

demonstrate that there are no other subsets with zero sum.

The class of NP problems is defined by all problems that can be verified by an algorithm

in polynomial time. NP stands for Nondeterministic Polynomial Time, which is related

to a program being executed on a non-deterministic computer, with guessing capabilities.

Basically this architecture could be able to non-deterministically find the value of the

solution and verify, in polynomial time, if the solution really solves the problem.

Recall that the P class is defined by all problems that are solvable in polynomial time.

This way, if a problem is solvable in polynomial time then it can certainly be verified in

polynomial time if the solution is correct: P ⊆ NP.

No one knows if P = NP (Baker et al., 1975). Hence, being able to verify if a solution

is correct in polynomial time does not help to find an algorithm to solve the problem in

polynomial time. Many authors believe that P 6= NP but there is still no proof (Cook,

1971; Baker et al., 1975; Ladner, 1975; Fortnow, 2009).

If any NP problem can be transformed in polynomial time into a certain NP problem,

this means that this certain problem is NP-Complete, i.e. it is at least as hard as any

NP problem (Cook, 1971). This way, if it could be possible to solve an NP-Complete

problem in polynomial time, it would be possible to solve all NP problems in polynomial

time (Michael and Johnson, 1979). Also, if an NP-Complete problem can be reduced in

polynomial time into other problem, this problem is proven to also be NP-Complete. The

61

4. Genetic Algorithms

C
o

m
p

le
x
it
y

P ≠ NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP =

NP-Complete

Figure 4.2: Classes of problems according to their computational complexity.

first problem known as NP-Complete was the Boolean satisfiability (SAT) problem (Cook,

1971).

According to Cook (1971), NP-Complete problems are those which are at least as

hard as the hardest problems in NP. That is: any NP-Complete problem is both NP and

NP-Hard. However, an NP-Hard problem might not belong to the NP-Complete class:

there are NP-Hard problems that are not NP-Complete, indeed, they may not even be

decision problems.

4.4 Bio-inspired Algorithms

Bio-inspired Algorithms (BAs) are based in analogies with natural or social systems and

are used for the design of heuristic and non-deterministic methods for the resolution of

complex problems, like the NP-Complete and NP-hard problems. Usually, BAs have a

parallel structure (multiple agents) and are adaptive.

The brain, the immune system of living beings, even simple living beings as a whole,

and the process of organic evolution, led to models or systems worthy of imitation. These

models are of broad interest for creating such intelligent machines, like neural networks,

cellular automata, animats, etc Schwefel (1994). The most well known bio-inspired com-

putational models are: Evolutionary Algorithms, Neural Networks, Immune Systems, Cel-

lular Automata and Swarm Intelligence (e.g.: Ant Colony Optimization, Particle Swarm

Optimization, etc.).

4.4.1 Evolutionary Computation

Evolutionary Computation (EC) is a field based in Darwin’s theory of Evolution

Darwin (1859) and in Mendel’s laws of inheritance (Mendel and Bateson, 1925): evolution

of the species is made by natural selection where the fittest will breed - survival of the

62

4.4. Bio-inspired Algorithms

fittest -, thus contribute to evolution, and by elimination of the less fit individuals. This

is based on three assumptions:

Outbreed There are more descendants (λ+ µ) than the ones who can survive (µ).

Variability There is variability regarding structure and corporal function in the whole

species.

Inheritance Many characteristics of the individual will pass to their descendants by

means of genetic transmission.

Evolutionary Process

Natural evolution is an evolving process over a population of reproductive individuals who

have inheritable characteristics, which may change the individual’s fitness value (chance

to breed). Therefore, to have evolution, the individuals should be able to reproduce,

their survival depends from their characteristics (which may be affected by variations -

mutation), those characteristics pass from fathers to sons by inheritance and all individuals

are competing for the same resources.

The evolutionary process happens due to some mechanisms, which are not totally

known, but only a few of their characteristics:

• Evolution is a process which operates more over the chromosomes than over the

structures of life encoded on them.

• Natural selection is the linkage between the chromosomes and behaviors of their

decoded structures.

• Reproduction is the process where evolution appears.

Biological evolution does not have memory. Species are created, evolve and then

disappear if they don’t adapt. Only the best, the fittest, those who best adapt to their

environment will survive to perpetuate their skills.

Computation sees in this a clear process of optimization: we have the fittest individuals

- the best temporal solutions -, they reproduce, breed new born individuals - new solutions

-, which contain part of the genetic code - information - of their parents and the average

fitness value turns into a better value.

Hence, Artificial Evolution consists on modeling an evolution process based on popu-

lations whose elements are candidate solutions to the problems. The simulation of this

process in a computer turns to be a stochastic optimization technique, which turns to be

a better option than other classic methods for hard problems, like the NP-hard problems.

It is an alternative approach for complex search and learn problems using computational

models of evolutionary processes (De Jong and Spears, 1989).

Evolutionary Computation arises from a fact observed in nature: the living organisms

possess dexterity in the resolution of the faced problems, acquiring their abilities by natu-

ral evolution. Evolution processes in all living organisms as a consequence of two primary

63

4. Genetic Algorithms

processes: natural selection and reproduction. Therefore, any Evolutionary Program must

have the following attributes Michalewicz (1994):

• A genetic representation of possible solutions for the problem.

• Some kind of mechanism to crate the initial population to contain potential solu-

tions.

• A Fitness Function to simulate the role of the environment.

• Genetic Operators to change the composition of new born solutions.

• Values for the different parameters used by the algorithm.

Evolutionary Computation as a mechanism for solving optimization and search prob-

lems

Evolutionary Computation started in the 50’s with works of Anderson (1953); Fraser

(1957); Bremermann (1962); Friedberg (1958), among others (Schwefel, 1981). The field

remained in the unknown for almost three decades due to the absence of a robust and

computational platform and also methodological defects in the first methods (Fogel). The

works of Holland (1975); Rechenberg (1973); Schwefel (1975); Fogel et al. (1966) changed

slowly this scenario. Nowadays, the growth of scientific production in this field is expo-

nential.

The benefits on using Evolutionary Computation are gains in flexibility and adaptabil-

ity, with robust performance and general characteristics. Its main concept can be applied

in problem resolution, specially hard optimization problems. An optimization problem

requires the fulfillment of a set of parameters in order to achieve a certain quality criteria:

max(f(x)) or min(f(x)). All kinds of hard or unsolvable problems like: high number

of dimensions, multi modalities, strong non-linearity, non-differentiable, noisy and time

dependent functions are perfect candidates of Evolutionary Algorithms.

In a few words, Evolutionary Computation is a term for referring systems for solving

optimization or search based problems on a computer. These systems apply computational

models of a known evolution mechanism as the key in its design and implementation.

Why do they work? Evolutionary Algorithms are solution generation methods which

start from an initial set of candidate solutions and then employ several search operators

that refine that set. This refinement is made by several gradient follow techniques with

biological-based mechanisms of exploration: population of solutions and genetic operators

(Rudolph, 1998; Oliveto and Witt, 2012). The basic operations are: evaluation, selection,

reproduction and mutation. There are two tasks implicitly made: exploration of the search

space and exploitation of “good” zones. The basic paradigms of Evolutionary Algorithms

are:

Evolutionary Programming (EP) which emphasizes the behavior changes among species.

Its first roots were laid by Fogel et al. (1966) and designed by Fogel (1992) in its

currently practiced form;

64

4.4. Bio-inspired Algorithms

Evolutionary Strategies (ES) which emphasize the behavior changes among individ-

uals. ES were first introduced by Rechenberg (1973) and further developed by

Schwefel (1975);

Genetic Algorithms (GAs) which use genetic operators over chromosomes and the

concept of sexual reproduction (recombination). GAs were first introduced by Hol-

land (1975) and were first used for optimization tasks by De Jong (1975);

Genetic Programming (GP) which is one of the subbranches of the GAs and applies

the genetic operators to programs or mathematical expressions represented as trees

of operands and operators (Koza, 1992).

Evolutionary Algorithms

Evolutionary Algorithms start with a population of µ individuals and then generates λ

offspring individuals. The next generation is composed by the best µ individuals from the

previous generation λ + µ individuals. Algorithm 4.1 shows the pseudo code of a classic

Evolutionary Algorithm:

Algorithm 4.1: Algorithm ((µ+ λ)EA)

1: t← 0;
2: Initialize P0 with µ individuals chosen uniformly at random;
3: repeat
4: for i = 1 to λ do
5: choose xi ∈ Pt uniformly at random;
6: flip each bit in xi with probability p;
7: end for
8: Create the new population Pt+1 by choosing the best µ individuals out of

Pt ∪ {x1, . . . , xλ};
9: t← t+ 1;

10: until a stop condition is fulfilled.

p = 1
n
is generally considered as best choice (Bäck, 1993; Droste et al., 1998). If µ = λ = 1,

the resulting Evolutionary Algorithm is a (1+1)-EA (see Algorithm 4.2). In this case, if

only one bit is flipped per iteration, the resulting algorithm is Random Local Search

(RLS).

When not to use Evolutionary Algorithms

As pointed by Schwefel (1994), “Nobody should make use of Evolutionary Computation

in cases where other methods like linear and dynamic programming, quasi-Newton, or

other well known approaches work. None of the Evolutionary Algorithms (EAs) would

perform the job better not even as good as those. Evolutionary Computation should only

be taken in consideration if and only if classical methods for the problem at hand do not

exist, are not applicable or, obviously, fail. Even at this stage, at least two alternatives

should be discussed: either total enumeration or other brute force methods, when the

65

4. Genetic Algorithms

Algorithm 4.2: Algorithm ((1 + 1)EA)

1: t← 0;
2: Initialize P0 with x ∈ {0, 1}n by flipping each bit with p = 1

2
;

3: repeat
4: create x′ by flipping each bit with p = 1

n
;

5: if f(x′) ≥ f(x) then
6: x′ ∈ Pt+1

7: else
8: x ∈ Pt+1

9: end if
10: t← t+ 1;
11: until a stop condition is fulfilled.

necessary computation power is at hand, and, last but not least, the development of a

specific method, which makes full use of the knowledge of the problem’s structure, like

expert systems. Evolutionary Algorithms are weak methods, which should be handled as

last resort.”.

4.5 Genetic Algorithms

Genetic Algorithms (GAs) are a subclass of the Evolutionary Algorithms. Genetic Algo-

rithms are optimization, search and learning algorithms inspired in the Natural Evolution

and in Mendel theory of inheritance (Mendel and Bateson, 1925). GAs model the evo-

lutionary process as a succession of gene changes, with candidate solutions analogous to

chromosomes. The entire search space is explored by applying transformations to these

candidate solutions, just as it happens in the living beings: recombination, selection and

mutation.

Genetic Algorithms constitute the most complete paradigm on the Evolutionary Com-

putation, since they resume in a natural way all the fundamental ideas of natural evolution.

GAs are also very flexible, thus it is easy to adopt new ideas that may occur from the evo-

lutionary computation field. They are also easy to hybridize with other paradigms which

are not related to Evolutionary Computation, like local search. For instance: Memetic

Evolutionary Algorithms Moscato (1989) are hybrid Genetic Algorithms with local search

operators.

4.5.1 Biological Background

The Deoxyribonucleic acid - DNA - is the fundamental genetic material of all living organ-

isms. It is a double-stranded macro-molecule shaped like a double helix. The two strands

are linear molecules of nucleic acid without ramifications, formed by alternate molecules of

deoxyribose (sugar) and phosphate. The four bases of nucleotide: Adenine (A), Thymine

(T), Cytosine (C) and Guanine (G) are the alphabet of the genetical information. The

66

4.5. Genetic Algorithms

Cytosine

Thymine

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O_

O_

O_

O_

O_

_O

NH2

OH

OH

NH

H2N

HN

NH2

H2N

HN

H2N

NH

NH2

3' end

5' end

3' end

5' end

Figure 4.3: DNA chemical structure (from: http://en.wikipedia.org/wiki/DNA).

sequences formed in the molecule by those four bases will specify the constructive plan of

any organism (see Figure 4.3).

A gene is one DNA section, which encodes a certain biochemical function, usually

defined in the production of a protein. It is mainly a heritage unit. The DNA of an

organism may contain from one dozen of genes (like the viruses) to thousands of genes

(like the humans).

Chromosomes are the structure of the DNA and protein found in the cell nucleus. Each

chromosome contains hundreds or thousands of genes that form our hereditary blueprint.

Humans have 23 pairs of chromosomes (each parent contributes with one chromosome in

each pair), containing a total of 50,000 to 100,000 genes. The chromosomes are responsible

for the genetic information transmission. Each gene only occupies one particular region

of a chromosome - locus. For each specific place, there can be several alternative forms of

the gene, among the population. These alternatives are called alleles.

The Genome is the entire collection of genes (therefore, chromosomes) of an organism.

A particular set of genes of the genome is the genotype. The genotype is the basis of the

67

http://en.wikipedia.org/wiki/DNA

4. Genetic Algorithms

Genetic Algorithm Terminology Meaning
Chromosome (Individual) Solution (code)

Gene (bit) Part of the solution
Locus Gene position
Allele Gene value

Genotype Encoded solution (internal appearance)
Phenotype Decoded solution (external appearance)

Table 4.1: Genetic Algorithm terminology

phenotype of an organism: its physical and mental characteristics (for instance: the eye

color, intelligence, etc.).

During the reproduction or recombination the genes of the parents are combined to

form a new chromosome. The new descendant (offspring) may suffer mutations: the DNA

changes slightly due to errors when copying the genes of the parents. The aptitude (fitness)

of an organism is measured by its success in surviving (selection).

4.5.2 Terminology

In biology, a cell contains chromosomes, which contain genes. Each gene is in a locus (its

place on the chromosome) and the alleles are the values that a gene can have.

In Genetic Algorithms terminology, there is the chromosome, which is the individual or

the genotype. The individuals are candidate solutions to the problems, which are usually

encoded as a binary string. In this case the alleles are 0 and 1. Table 4.1 shows the main

terms in the Genetic Algorithm terminology and their meaning.

4.5.3 Definition

A Genetic Algorithm is a highly parallel algorithm which transforms a set of individual

objects, using modeled operations according to the Darwin’s theories of reproduction and

survival of the fittest (Darwin, 1859). The transformation occurs after several genetic

operations, from which we emphasize the recombination. Each individual may be a set

of characters (letters or numbers) with fixed length, which fits to the model of the set of

chromosomes, and is associated with a certain mathematic function to reflect its aptitude

(fitness).

The algorithm starts with an initial population of individuals (chromosomes), which

are candidate solutions to the problem. Some solutions are used to form a new popula-

tion hoping that its individuals are better than the individuals from the old population

(previous generation). The solutions are selected by their aptitude (fitness) to form the

next population (generation). This process is repeated until a satisfactory condition is

achieved (number of generations, improvements of the best solution, etc.). Algorithm 4.3

presents the Standard Genetic Algorithm (SGA).

The main idea behind Genetic Algorithms is to have a set of candidate solutions (in-

dividuals) which evolve towards the desired solution. In each iteration (generation) those

candidate solutions are evaluated according to their quality (fitness). The worst ones are

68

4.5. Genetic Algorithms

Algorithm 4.3: Genetic Algorithm
1: t← 0
2: generate initial population(Pt)
3: evaluate(Pt)
4: while stopping criteria does not meet do
5: P ′

t ← select(Pt)
6: recombine(P ′

t)
7: mutate(P ′

t)
8: Pt+1 ← create next population (Pt, P

′
t)

9: t← t+ 1
10: end while
11: return best individual found

discarded and the best will generate new candidate solutions, which result by merging

(recombination) their parents characteristics (genes) and applying minor variations (mu-

tation). Candidate solutions with best quality will tend to live longer and to generate

better solutions, improving the robustness of the algorithm.

Genetic Algorithms model the evolution process as a succession of gene changes, with

solutions analogous to chromosomes. The entire search space is explored by applying

transformations to these candidate solutions, just as it happens in the living beings: re-

combination, selection and mutation (Goldberg, 1989). The evolution usually starts from

an initial population of randomly generated individuals and happens in generations. In

each generation, the fitness of every individual in the population is evaluated, multiple

individuals are selected from the current population (based on their fitness), and modified

(recombined and possibly mutated) to form a new population. The new population is then

used in the next iteration of the algorithm. Commonly, the algorithm terminates when

either a maximum number of generations has been produced, or a satisfactory fitness level

has been reached for the population. If the algorithm has terminated due to a maximum

number of generations, a satisfactory solution may or may not have been reached.

Representation of Individuals

Genetic Algorithms started and still mainly operate with binary strings for representing

candidate solutions for the given problem (their genotype). This encoding follows the

computation problem description in Section 4.2: both problem instances and solutions

are conventionally represented as binary strings, namely elements of {0, 1}∗.

Generation of Initial Population

The initial population is usually generated with individuals chosen uniformly at random.

Sexual Reproduction - Recombination

Genetic Algorithms emphasize the role of recombination. To generate the offspring (next

generation), individuals are selected for breeding and are then recombined. The selection

69

4. Genetic Algorithms

Offspring

Random points of cutRandom point of cut

Parents

One Point Crossover Two Point Crossover Uniform Crossover

Figure 4.4: One point crossover, two point crossover and uniform crossover.

for breeding is proportional to the fitness of each individual: the fittest have higher chance

of being selected to breed.

There are two main proportional selection mechanisms: roulette wheel and tournament

Goldberg (1989). In the roulette wheel, a roulette wheel slot is assigned to each individual

in the population, whose size is proportional to their fitness. The roulette wheel consists

in an array of partial cumulative fitnesses:

fc =
s∑

j=1

f(j) (4.1)

where an uniformly distributed random number r between zero and the total cumulative

fitness fc(M) is drawn and the minimum string index s that satisfies the fc(s) > r

condition is chosen.

The tournament selection operator consists in randomly selecting n (where n is the

tournament size) individuals and then returning the one who has the highest fitness value.

After the parent selection, both parents are recombined to form two new individuals

(offspring). There are three main crossover operators: one-point crossover, two-point

crossover and uniform crossover Goldberg (1989). Both one-point and two-point crossover

exchange genetic material from both parents according to the random generated point of

cuts, while the uniform crossover swaps random selected genes. These crossover operators

are illustrated in Figure 4.4.

Mutation

Mutation consists of random bit inversions in the binary encoding of each individual,

generally occurring with low frequencies.

Selection

The selection procedure decides which individuals will survive (pass to the next genera-

tions). There are elitist variants, where good parental individuals cannot get lost (this

is good for proving global convergence Rudolph (1998)) and the classical one, where the

offspring generation simply replaces the parent generation.

70

4.6. Summary

4.6 Summary

During this chapter, we presented the concept of Algorithm and its main purpose: prob-

lem solving. Different types of problems have been introduced (decision, search, counting

and optimization) and how they can be viewed as decision problems. We have intro-

duced different classes of decision problems, according to their computational complexity,

namely: P, NP, NP-Complete and NP-Hard problems.

Bio-inspired algorithms were introduced as mean of addressing NP-Complete and NP-

Hard problems. Genetic Algorithms were finally presented as a kind of Evolutionary Algo-

rithms. Both biological background and Genetic Algorithm terminology were explained.

71

Chapter 5

Automatic Transcription of Music and

Multi-Pitch Estimation - A Deeper

Analysis

This chapter presents the problem Automatic Transcription of Music from the search

space or optimization point of view. Automatic Transcription of Music is presented as

an optimization problem, and an idea about the size of the search space is given. The

computational complexity of the problem is studied and the NP-Completeness of the

problem is discussed. Then, a discussion is presented on how to address combinatorial

optimization problems with Genetic Algorithms and, finally, the problem of achieving

Automatic Transcription of Music with Genetic Algorithms is addressed.

5.1 Automatic Transcription of Music as Optimization or

Search Space Problem

Formally, a Combinatorial Optimization optimization problemA is a quadruple (I, f,m, g),

where:

• I is a set of instances;

• given an instance x ∈ I, f(x) is the set of feasible solutions;

• given an instance x and a feasible solution y of x,m(x, y) denotes the measure of y,

which is usually a positive real.

• g is the goal function, and is either min or max.

The goal is to find for some instance x an optimal solution, that is, a feasible solution

y with m(x, y) = g{m(x, y′)|y′ ∈ f(x)}.

73

5. Automatic Transcription of Music and Multi-Pitch Estimation - A

Deeper Analysis

5.1.1 Search Space Size

If we consider an audio signal with a single audio frame, and polyphony-order k (k notes

played at the same time), the size of the set f(x) (feasible solutions) is

(
127

k

)
=

127!

k! (127− k)!
(5.1)

if we consider the 127 musical notes specified in the MIDI specification. On the other,

hand if we consider only a single audio frame, with l musical instruments, playing k

musical notes, the set of feasible solutions will contain

(
127

k

)l

=

[
127!

k! (127− k)!

]l
(5.2)

elements. Finally, if we consider n time frames, the size of the search space will increase

to

[(
127

k

)l
]n

=

([
127!

k! (127− k)!

]l)n

. (5.3)

Recall that Multi-Pitch Estimation consists in estimating the musical notes that are

present in each time frame. On the other hand, Automatic Transcription of Music consists

in discrete note tracking, that is, besides estimating the pitch of each musical note in

the acoustic signal, the respective start time, end time and timbre, among many others

features, should also be inferred. This way, when compared to Multi-Pitch Estimation,

the problem complexity of Automatic Transcription of Music is increased exponentially

almost until infinity, since much more dimensions are taken into account and it should

also be considered that a musical note can occur at any time and have any duration.

5.1.2 Computational Complexity: NP-Complete or NP-Hard?

The question may arise whether Multi-Pitch estimation is NP-Complete or NP-Hard,

given the almost infinite size of the search space. Until now, no one can state that

Multi-Pitch Estimation is NP-Complete, since there is no agreed-upon algorithm (at any

computational cost) for determining whether the problem can been solved. In fact, Multi-

pitch Estimation is a problem that remains unsolved. We also believe that it cannot be

shown that it is NP-Hard, since no one has proved that a polynomial-time algorithm to

solve Multi-Pitch Estimation does not exist.

As a matter of fact, NP-Completeness or NP-Hardness of Automatic Transcription of

Music is indeed an interesting question, but Automatic Transcription of Music is not a

well posed problem such as factoring, sorting, network flow or subset problems. While it

sounds easy to state “In a given polyphonic music recording, find the musical notes that

best describe the input signal.”, some research has focused in formulating the problem as a

proper computational problem (Smaragdis and Brown, 2003; Cemgil et al., 2006a; Févotte

et al., 2009).

74

5.2. Addressing Combinatorial Optimization Problems with Genetic Algorithms

Current approaches typically have an underlying model like, for instance, some kind

of factorial Hidden Markov Models or Non-negative Matrix Factorization (see Chapter

3), and the Multi-Pitch Estimation is cast as an inference/optimization problem in this

context. For such formulations, one could speak about the computational complexity of

exact optimization but most of the time there are NP-Hardness results (specially for NMF

or HMM). In practice, authors work with approximations, i.e. approximate algorithms

are used for approximate models, so computational complexity results are not much of

focus in Multi-Pitch Estimation or Automatic Transcription of Music.

In this context, the problem with underlying models like NMF is that there is typically

a large computational step excluded from the analysis. Unless there is a way to figuring

out appropriate initialization matrices, there is absolutely no guarantee that the decom-

position of the spectrogram will lead to a decomposition that will be found useful (e.g.

into notes, into single sources, or into spectral elements that come exclusively from single

sources). Therefore, there is a lot of “back end” work to group the resulting decomposed

elements into something useful, as well as a lot of “front end” work to seed the matrices

just right. In our opinion, any reasonable analysis of the time/space effort required to

make NMF practically useful should include the cost of this aspect.

5.2 Addressing Combinatorial Optimization Problems with

Genetic Algorithms

The main idea behind a Genetic Algorithm (Holland, 1992b) is to have a set of candi-

date solutions (individuals) to a problem evolving towards the desired solution. In each

generation those individuals are evaluated according to their quality (fitness). The worst

individuals are then discarded and the best will generate new individuals resulting from

the combination of their parent’s characteristics (genes) and minor variations (mutation).

Therefore, individuals with better quality tend to live longer and to generate better and fit-

ter offspring, thus improving the robustness of the algorithm. This way, there is a natural

relation between these concepts and the formal definition of Combinatorial Optimization

problems (defined in Section 5.1):

• I is a set of instances;

• given an instance x ∈ I, f(x) is the set of feasible solutions: f(x) is the search space

of the Genetic Algorithm for x (input problem);

• given an instance x and a feasible solution y of x,m(x, y) denotes the measure of

y, which is usually a positive real: m(x, y) is the fitness value (quality) of the y

individual for the input problem x;

• g is the goal function, and is either min or max: the goal of the genetic algorithm

is to minimize or maximize the fitness value.

The goal to find for some instance x an optimal solution, that is, a feasible solution y

with m(x, y) = g{m(x, y′)|y′ ∈ f(x)}: the objective of the Genetic Algorithm is to find

75

5. Automatic Transcription of Music and Multi-Pitch Estimation - A

Deeper Analysis

best possible solution - the one who has the biggest or the lowest fitness from all the

feasible solutions.

5.3 Addressing Automatic Transcription of Music and

Multi-Pitch Estimation with Genetic Algorithms

When addressing Genetic Algorithms to the problem of Automatic Transcription of Music

or Multi-Pitch estimation, there are several aspects that must be taken into account,

mainly: genotype, fitness function, selection, recombination, mutation, creation of the

initial population, and the survivor selection method.

5.3.1 Genotype

As explained in the previous chapter, the Genotype specifies how each individual or feasible

solution is encoded. Given that each individual represents a candidate solution to the

problem, for the Automatic Transcription of Music, the problem should be encoded as a

sequence of discrete note events (transcription). One must be aware that the number of

musical notes that are present in the input signal is not known beforehand, furthermore,

different input signals have, most likely, different number of musical notes. This, way,

the number of genes (note events) varies from individual to individual and will probably

change during the evolutionary process. For discrete note tracking, each note encoded

in the individual’s genome should have, at least, the following information: start time

(onset), duration, note pitch and other information like the dynamics of the musical note

(loudness or MIDI velocity). It might also be useful to encode the harmonic model of each

musical note, specially in case of instrument classification or recognition.

Multi-Pitch Estimation, takes only into account the frequencies or musical notes which

are present in an audio signal. This way, each individual should encode at least the set

of frequencies or pitches. Here, the temporal information (onset time and offset time) are

not taken into account. To best cope with the harmonic collision, it might also be useful

to include the harmonic model of each musical note into the individual.

When transcribing audio signals, the residual noise should also be taken into account,

so that spurious frequency components are not considered as musical notes. This way,

one can also take into account noise estimation and encode this information within the

individual’s genome.

5.3.2 Fitness Evaluation

Fitness evaluation allows us to measure the quality of each candidate solution. That is:

how close each candidate transcription is to the desired solution. Fitness evaluation plays

the major role in evolutionary algorithms, since it is what tells the algorithm what fitter

solutions are.

In Automatic Transcription of Music, fitness evaluation will measure the similarity

between the generated transcriptions and the original audio. This way, the algorithm

76

5.3. Addressing Automatic Transcription of Music and Multi-Pitch Estimation with
Genetic Algorithms

must be able to look at each note sequence and measure how close it is, from the musical

point of view, to the original audio. Since the algorithm does not know what is the solution

(the correct transcription), one question arises: how can a feasible transcription be assessed

in terms of how much close it is to the desired solution?. To answer this question, there

are two possible choices, one of them being to apply some sort of correlation coefficient

between the input signal spectrum and a comb spectrum generated by the Fundamental

Frequencies encoded in each individual. The other possible answer to this question relies

on synthesis. It is possible to synthesize each candidate solution into an acoustic signal,

and then compare the generated signal with the input signal: the closer the two signals

are, the better the transcription is. On the other hand, this raises new questions:

• What kind of synthesis (additive synthesis, subtractive synthesis, FM synthesis,

physical modeling synthesis, sample based techniques, etc.) should we use?

• In which domain should we perform the comparison: temporal domain or frequency

domain?

• What happens if the synthesizers used for rendering each individual into an audio

signal have spectral envelopes (timbres) very different from those played in the input

signal? This way, transcriptions assessed as good will be measured as “not so good”

transcriptions.

• How do we deal with noise?

A good function should address all these questions.

5.3.3 Selection

Genetic Algorithms use three main operations: selection, recombination and mutation.

The purpose of the selection operators is to select individuals for breeding (generate new

individuals). In order for the algorithm to converge, the selection procedure must not

be random. Instead, the selection procedure should be proportional to the rank (fitness

value) of each individual. That is: fitter individuals should have higher probability of

being selected. On the other hand, and since the algorithm should be able to overcome

the local maxima and explore different areas of the search space, one cannot use only

the best two individuals to generate the entire offspring. This way, the selection operator

should also be stochastic but ensure that the fittest individuals have higher probabilities

of being selected.

5.3.4 Recombination

Recombination is the main pillar of Genetic Algorithms and it is the feature that distin-

guishes GAs from other Evolutionary Algorithms. The main purpose of recombination is

to exchange genetic material from two individuals (parents) and, by doing this, generate

two new individuals (offspring). By doing so, the two new born individuals inherit the

genes of both parents, that is, they inherit both parents characteristics.

77

5. Automatic Transcription of Music and Multi-Pitch Estimation - A

Deeper Analysis

Recombination has the role of exploring new areas of the search space, by combining

the already achieved feasible solutions. In the case of Multi-Pitch Estimation or Automatic

Transcription of Music problems, one must have into account that the number of musical

notes or fundamental frequencies might differ from individual to individual. This way, the

classic one-point, two-point and uniform crossovers Goldberg (1989) cannot be applied.

Instead, they must be adapted in order to cope with individuals with different number of

genes.

5.3.5 Mutation

Mutation also has an important role on the robustness of Genetic Algorithms. The role

of the mutation operator is to perform minor changes inside the genetic code of each

individual. This way, the Genetic Algorithm can explore new areas of the search space

that could not be searched by using only recombination. Typically, mutation consists of

random bit changes, with very low probability Goldberg (1989).

Regarding the problem of Multi-Pitch Estimation, the GA will need to be able to

delete musical notes, create new notes (totally random or based on existing musical notes)

or changing the existing musical notes, by modifying its pitch, dynamics or source, if

present, and also, for Automatic Transcription of Music, its start time and duration.

5.3.6 Creation of the Initial Population

A Genetic Algorithm starts by creating an initial population, and then applies the selec-

tion, recombination and mutation operators, resulting on the next generation. The same

process happens over and over again until a stopping criterion is met. This way, the

initial population happens to be the first step/stage of the evolutionary process. In most

Genetic Algorithm applications, the initial population is randomly generated. This has

the advantage of exploring completely different areas of the search space. On the other

hand, if one manages to create an initial population that is close to the desired solution,

the algorithm will need less generations to find the global optimum.

By taking into account the scope of Multi-Pitch Estimation and Automatic Transcrip-

tion of Music, it makes sense to perform some kind of spectral analysis on the input signal.

This way, by analyzing the spectral peaks, one can estimate which is the set of possible

notes inside the signal and, in case of Music Transcription, where they are. By doing this

kind of analysis, one can reduce significantly the size of the search space and constrain

the possible musical notes or fundamental frequencies to a much smaller set to be used

for the random generation of the initial population.

5.3.7 Survivor Selection

The survivor selection consists in choosing which individuals from both current population

and offspring will survive, that is, to create the next generation. Survivor selection plays

a major role in the convergence of the Genetic Algorithm. The definition of convergence

of an Evolutionary Algorithm implies that

78

5.4. Summary

• Ideally the Evolutionary Algorithm should find the solution in finite steps with

probability 1 (visit the global optimum in finite time);

• If the solution is held forever after, then the algorithm converges to the optimum.

According to Rudolph Rudolph (1998), convergence implies two conditions:

• There is a positive probability to reach a point in the search space from any other

point;

• the best found solution is never removed from the population (elitism).

GA theory also says that canonical GAs using mutation, crossover and proportional

selection do not converge Oliveto and Witt (2012). On the other hand, elitist variants do

converge. This way, and since the goal is to find the global solution (perfect transcription

or perfect set of fundamental frequencies) the convergence of the algorithm is mandatory:

elitist variants should be taken into account.

5.4 Summary

This chapter presented the problem Automatic Transcription of Music as a combinato-

rial optimization problem and a perspective about the size of the search space was given.

Then, we presented a discussion about the computational complexity of the problem. We

have also shown how to address combinatorial optimization problems with Genetic Algo-

rithms and, finally, proposed a way to address the problems of Automatic Transcription

of Music and Multi-Pitch Estimation with Genetic Algorithms. Several important issues

were identified and discussed.

79

Chapter 6

Early Genetic Algorithm Approaches to

Automatic Transcription of Music:

Synthesized Signals and Simple

Mathematical Models

During the entire chapter we will describe the first Genetic Algorithm approaches to the

problem of Automatic Transcription of Music. We will also discuss how each approach

found in the literature addresses each of these topics: genotype, fitness evaluation, selec-

tion, recombination, mutation, creation of the initial population and survivor selection.

6.1 First Genetic Algorithm approach to Polyphonic Pitch

Detection

The first work in the literature using Genetic Algorithms for polyphonic pitch detection

appears in 2001 by Garcia (2001). Garcia claims that polyphonic pitch detection can be

considered as a search space problem where the goal is to find the pitches that compose a

polyphonic acoustic signal. This way, it makes sense to use genetic algorithms since they

perform very well in search space problems (Goldberg, 1989).

According to Garcia, when there is no a-priori knowledge about the number of fun-

damental frequencies present on a signal, the size of the search space can be extremely

large since it consists of all possible combinations of 1, 2, · · · , Fs
2
simultaneous frequencies,

where Fs
2

is half of the sampling rate. For instance, for signal with 44.100Hz sample rate,

from 21Hz to 22.050Hz, with an F0 resolution of 10.766 Hz and up to 4 fundamental

frequencies, the size of the search space is 1, 7549× 1013.

81

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

L LL

Figure 6.1: Garcia’s approach chromosome structure with L = 4 bits.

6.1.1 Genotype

Garcia’s approach encodes each chromosome as a binary string with variable length (see

Figure 6.1). The chromosome’s structure is a concatenation of N substrings of L bits each.

Each substring encodes one F0 value using binary fixed-point representation. Although

the length of the L substrings is fixed since F0 range and resolution is specified as an input

parameter, the length of the chromosome is variable because no assumption is made about

the number of F0s in the signal. The length of the substrings is defined according to the

frequency range, ∆F0, and frequency resolution, dF0, as the minimum integer L, where:

2L ≥ ∆F0

dF0
. (6.1)

6.1.2 Fitness Function

The fitness measure of Garcia’s approach (Garcia, 2001), f(s), for a given string or chro-

mosome, s, is based upon a correlation between the input spectrum and a comb spectrum

defined in Martin (1981). The partial fitness value fp(s, j) is computed for each funda-

mental frequency value, F0j, coded by substring j in string s, as the correlation between

the input magnitude spectrum |X(ω)| and a reference comb spectrum with exponentially

decreasing amplitudes e−αh, where h is the harmonic index and α a specified input pa-

rameter:

fp(s, j) =
∑

h

∣∣X(2πhF0j)
∣∣ .e−αh. (6.2)

After the partial fitness fp(s, j) is computed for a substring j, the input DFT bins

used in the correlation sum are zeroed for the remaining partial fitness evaluations of the

string. This way, each spectral bin is constrained to belong to only one harmonic series.

This strategy penalizes strings or chromosomes that contain correct F0 values along with

spurious multiples or submultiples. For each chromosome a raw fitness value, fraw, is then

calculated as the sum of partial fitnesses over all its j substrings:

fraw(s) =

NS∑

j=1

fp(s, j). (6.3)

The chromosome fitness, f(s), is then computed from the raw fitness as:

f(s) = fraw(s)−Nsf p (6.4)

82

6.1. First Genetic Algorithm approach to Polyphonic Pitch Detection

where f p is the mean partial fitness over the whole population:

f p =

∑
s,j fp(s, j)∑

sNs

(6.5)

and where Ns is the number of F0s or substrings in the chromosome. The subtraction

by Nsf p in Equation 6.4 is a way to penalize strings with too many F0 codes (it is equiv-

alent to subtracting the average partial fitness from each partial fitness) since substrings

with partial fitness values smaller than average will become negative and then will penal-

ize the global fitness of the chromosome. Strings with any F0 value outside the allowed

range are assigned null fitness.

A final fitness correction step is applied to prevent the premature convergence of the

genetic algorithm. This is employed by imposing a fitness floor value Fmin, such as:

Fmin =
Fmax

β
(6.6)

where Fmax is the maximum fitness in the current generation, and β is an input positive

constant. Individuals whose f(s) < Fmin have their fitness reset at f(s) = Fmin.

6.1.3 Selection

Each individual is selected for breeding according to the roulette wheel (Goldberg, 1989)

selection operator: for each individual in the population a roulette wheel slot is assigned,

whose size is proportional to its fitness f(s). Garcia implements the roulette wheel as an

array of partial cumulative fitnesses:

fc =
s∑

j=1

f(j) (6.7)

where an uniformly distributed random number r between zero and the total cumulative

fitness fc(M) is drawn and then minimum string index s that satisfies the fc(s) > r

condition is chosen.

6.1.4 Recombination

As recombination operator, Garcia uses the single-point crossover. This operator is de-

signed as follows: two different points of cut are selected - one per individual - since

the number of encoded F0s can differ from individuals. This way, two individuals with

different chromosome sizes can breed and generate two offspring also, with different chro-

mosome sizes. This operator also ensures that the chromosomes length of the offspring

are always multiples of L.

6.1.5 Mutation

The mutation operator consists on flipping single bit in the whole genome of an individual.

The probability of mutation (Pn)is given by:

Pn = (1− Pm)
(N.L) (6.8)

83

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

where Pm is the probability of mutation per bit and (N.L) is the chromosome length.

6.1.6 Initialization

The initial population is composed by randomly generated individuals: random number

of F0s, each with a random F0 value. Both maximum number of F0s and F0 frequency

range are specified inputs.

6.1.7 Survivor Selection

Each new generation consists of individuals selected from the previous generation. This

selection is made using the roulette wheel selection operator. Afterwards both recombina-

tion (one point crossover) and mutation are applied. Finally, if the current best individual

is not as fit as the best individual of the previous generation, the current worst individ-

ual is replaced by the best from the previous generation. This strategy is called elitism

(Goldberg, 1989).

6.1.8 Experiments and Results

Garcia evaluated his method with synthetic test signals, consisting of N square wave

signals plus Gaussian white noise with SNR = 9 dB. N was not known a priori by the

Genetic Algorithm, which means that it had two tasks: find the number of signals and

their corresponding frequency. The generated test signals had random frequencies, within

the allowed frequency range.

For the first test, Garcia used a monophonic input signal and performed 30 runs of

the algorithm using G = 20 generations and a population size of M = 100 strings. The

algorithm always found the correct answer: the best individual had only one F0, with the

correct frequency.

Next, for the second test, Garcia set an input signal with two fundamental frequencies

and a population size of M = 200 strings. The algorithm found the best solution in 9

out of 10 runs. The wrong answer actually contained the two correct F0 values, plus

a spurious one. There is no information on the manuscript (Garcia, 2001) about the

harmonic relation between the spurious F0 and the other two fundamental frequencies.

For the next test, Garcia set and input signal with 4 F0 values and performed two runs

consisting of G = 15 generations and a population size of M = 500 strings. During the

first run, the algorithm found an individual with all correct F0 values, plus one spurious

value. In the subsequent run, it found a perfect solution.

Afterwards, the algorithm was tested with an input signal with 5 fundamental frequen-

cies. Three different runs were performed with M = 500 and G = 15. The algorithm

constantly found solutions with the five correct fundamental frequencies, plus two spuri-

ous ones. Once again, there is no information about the harmonic relation between the

spurious frequencies and the correct ones.

One final test was performed as a series of one-run experiments for inputs containing 6,

7, 8, 10 and 15 F0s, with M = 500 and G = 15. For the input signal with 6 fundamental

84

6.2. Moving from Polyphonic Pitch Detection to Automatic Transcription of Music

frequencies, the algorithm found a solution with 6 correct values and 2 spurious ones.

For the input signal with 7 fundamental frequencies it also found a solution containing 6

correct fundamental frequencies and 2 spurious ones. With the input signal with 8 F0s,

a solution with 7 correct values and 2 false ones was found. With the input mixture of

10 fundamental frequencies, the solution found by the algorithm consisted in in 5 correct

values plus two spurious ones: only 7 F0s. The author then increased the population size

to M = 1000, and the algorithm increased the number of correct F0s to 8 plus one false.

Finally, for the input signal with 15 fundamental frequencies, M = 1000 and G = 15, the

algorithm found 6 correct fundamental frequencies plus two spurious ones.

6.1.9 Additional Constraints

Note that this approach, besides correctly estimating up to 6 fundamental frequencies,

does not have in consideration: onset, offset and also dynamics. The algorithm can tell

which are the fundamental frequencies present on an audio signal but is unable to detect

where those pitches start, where do they end and which are their dynamics. Moreover,

by including this three dimensions in the problem, the size of the search space increases

exponentially.

6.2 Moving from Polyphonic Pitch Detection to Auto-

matic Transcription of Music

Despite Garcia’s approach (Garcia, 2001) being able to work with almost any frequency

and resolution, Lu (2007) considers that a polyphonic audio signal is made of by the 128

possible pitches (from the low C, frequency 8.18 Hz to a high G, 12543.88 Hz) defined

in MIDI specification (Association, 2008), therefore an audio signal can have up to 128

specific frequencies. As a search space approach, by considering only 128 possible pitches,

the size of the search space of a signal with up to 4 fundamental frequencies can be reduced

from 1, 7549× 1013 to 258.096.640 ≃ 2, 58× 108.

Lu claims that the problem of automatic music transcription is like “reverse-engineering

the ‘source code’ of the music signal” and that it may never be understood. Nevertheless,

according to this author, the forward engineering process is known: sound synthesis. Thus,

he proposes a method which uses additive sound synthesis, combined with a genetic algo-

rithm, to render each solution or transcription into an audio signal and then compare it

with the original audio signal. The result of the comparison is the quality of the individual:

how close the transcription is to the desired solution. Lu also states that the main benefit

of this kind of approaches is that they are not limited by any particular harmonic model:

polyphonic music creates a complex frequency lattice that is computationally infeasible

to deconstruct, even for monophonic signals (as reviewed by Gómez et al. (2003)) and by

mimicking the process in which the original audio was created, this lattice does not need

to be deconstructed but rather be reconstructed.

85

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

Figure 6.2: Genotype of Lu’s approach: notes are separated according to each instrumen-
t/track. Each note has frequency, start time and length. Start and length are truncated
to time slices.

6.2.1 Genotype

Traditionally, solutions or chromosomes are represented as binary strings of 0s and 1s (such

as in Garcia (2001) approach), but other encodings are also possible. Lu encoded each

individual as a hierarchical structure, which is not far from the internal representation

of a MIDI file (Association, 2008) (see Figure 6.2). Each individual is made of several

sequences of notes, organized as tracks, according to each instrument. Each note has a

frequency, a start time and length. Both start time and length are truncated to time

slices. For instance: for transcribing a set of eight notes, the eighth note should be the

time slice.

As mentioned before, Lu (2007) reduces the size of the search space from 1, 7549×1013

to 2, 58 × 108 by taking into account just the 128 MIDI pitches. On the other hand, by

including three new dimensions to the problem: instrument playing each pitch, start time

and duration, the size of the search space becomes much more greater. For instance: for

transcribing a signal with duration of 5 time slices and only one instrument playing up to

4 notes, the size of the search space would be: 1, 3502× 1042. If the same signal happens

to have two instruments, playing up to 4 notes, and same length, the size of the search

space is: 1, 7961× 1084.

6.2.2 Fitness Function

To evaluate each individual or transcription each transcription is rendered using additive

synthesis into an audio signal, which will be compared with the original audio. The

result of the comparison (distance) is the fitness value of the corresponding individual. To

avoid problems like phase, Lu (2007) proposes that the distance between each individual’s

transcription and the original audio should be measured in the frequency domain. The

86

6.2. Moving from Polyphonic Pitch Detection to Automatic Transcription of Music

fitness function, similar to euclidean distance, is defined as:

Fitness =
1−∑tmax

t=0

∑Rochelim

f=fmin (O(t, f)−X(t, f))2

σ
(6.9)

where O(t, f) is the magnitude of frequency f at time t of the original audio, X(f, t) is

the same for the individual’s transcription and σ acts as a scaling factor, equivalent to

the first worst transcription, putting all fitnesses values between [0,1].

6.2.3 Selection

Although the author of this approach claims that he is addressing music transcription using

genetic algorithms, his approach does not use recombination, which is the main pillar of

genetic algorithms (Goldberg, 1989). The approach relies exclusively on mutations. This

way, individuals are not selected for reproduction.

6.2.4 Recombination

The author of this approach claims that “the genetic material found inside high-fitness

individuals is good enough such that most of the material is at least partially correct”.

According to Lu , the removal of this material for addition into another individual is

detrimental for the donating individual. This way, recombination was not included in the

approach.

6.2.5 Mutation

Lu applies a roulette selection to determine which mutation will be applied to each individ-

ual. The main purpose of this roulette wheel is having some mutations being performed

more often that others. The proportions of the roulette wheel also change over time so

that mutations that perform small incrementational changes are more often applied during

the last generations of the algorithm.

This approach uses the following mutations:

Irradiate Randomly changes one feature (pitch, start time or end time) of a gene.

Nudge Similar to Irradiate, except that changes are on the smallest amount possible:

pitch is changed by one semitone, and both start and end time are changed by one

time slice.

Lengthen Adds a random musical note to the chromosome.

Split Inserts silence into an encoded musical note. This mutation is capable of deleting

a note by inserting a silence with the length of the selected note, shortening a note

by inserting the silence on its end or even split the note into two notes by inserting

the silence in the middle.

87

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

Reclassify Moves a section of the chromosome to a different spot in the chromosome.

This mutation allows a set of multiple notes being changed from one instrument to

another.

Assimilate Takes a section of the chromosome from one individual and copies it to

another individual.

6.2.6 Initialization

The initial population is generated by randomly generated individuals: random number

of notes, each with a random start and duration.

6.2.7 Survivor Selection

The top third of the population are copied and then mutations are applied on those copies.

These new individuals replace the bottom third (less fit) of the population.

6.2.8 Experiments and Results

In order to be possible to get perfect transcription, Lu rendered several MIDI files using

the same synthesizers of the Genetic Algorithm. The resulting audio files composed the

test set for the algorithm. Lu also synthesized MIDI files because this way, the ground-

truth transcription is known. All the input signals have their difficulty rated by the triplet

(x, y, z), where x refers to the number of notes per musical instrument (synthesizer), y is

the number of instruments and z is the length (number of time slices).

The system was able to transcribe the monophonic melodies: the monophonic song

“Row row row your boat”, consisting of 48 notes played by a single instrument - difficulty

rating of (1,1,48) -, was successfully transcribed in 233 generations.

For more complete testing, Lu generated several music representations, ranging from

(1,1,1) to (3,5,5). For each triplet value in this range, 10 different musical representations

were randomly generated. According to the author, “the results were surprisingly good”,

since for most of the parameter triplets, was able to get at least one exact transcription:

only 14 of the 75 triplets were not perfectly transcribed. According to Lu, the biggest set

of perfectly transcribed notes consisted in 32 notes, with the corresponding (2,4,4) triplet.

When considering only the (x, y, 1) triplets, his system was able to correctly transcribe

all trials of the triplet (3,5,1), which means that the algorithm was able to identify 15

overlapping notes, played by a total of 5 instruments.

6.2.9 Additional Constraints

Note that this approach does not have into account the dynamics of each note. More-

over,for the synthesis process, instead of using sample based techniques as Reis et al.

(2007), Lu (2007) uses simple and very-well known mathematical models like the sine,

square, sawtooth and triangle waves. Therefore, this approach is only able to deal with

sounds generated by those mathematical models. Also, the input audio files are MIDI files

88

6.3. Automatic Music Transcription using Synthesized Instruments

Individual

Gene Sequence

Note: 65 Note: 69 Note: 72 Note: 76

G
e

n
o

ty
p

e
P

h
e

n
o

ty
p

e

Figure 6.3: Encoding for monophonic transcription. The individual is divided in time
frames, where each time frame has can be one of 128 possible MIDI pitches plus the
option of silence.

synthesized with the same synthesizers used inside the genetic algorithm, which makes

turns the transcriptions much easier to find and without the problem of harmonic overfit-

ting (Reis et al., 2007).

6.3 Automatic Music Transcription using Synthesized In-

struments

In 2007 we proposed a new genetic algorithm approach to automatic music transcription,

using synthesized instruments (Reis and Fernandez, 2007a). Unlike Lu’s method Lu (2007)

the synthesized instruments were not simple mathematical models (sine, sawtooth and

triangle waves) but, instead, synthesized instruments (piano and vibraphone). Similarly

as Garcia Garcia (2001), we proposed a genetic algorithm with recombination, mutation

and crossover operators for pitch detection. The latter approach only takes into account

the possible 128 MIDI pitches, just as it happens with Lu’s Lu (2007) algorithm.

6.3.1 Genotype

We started proposing a system for monophonic pitch detection and later upgraded it

to support polyphonic audio signals, just with minor adjustments (Reis and Fernandez,

2007a). The encoding for the monophonic transcription task is based on the assumption

that a signal is divided in several time frames, where there can be one of the 128 possible

pitches plus the option of having a silence (see Figure 6.3). For polyphonic transcription

of music, we extend the previous encoding to support several pitches at the same time, as

shown of Figure 6.4.

89

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

G
e

n
o

ty
p

e
P

h
e

n
o

ty
p

e

Individual

Gene Sequence

Note: 67 Note: 69 Note: 71 Note: 72

Note: 64 Note: 65 Note: 67 Note: 69

Note: 60 Note: 62 Note: 64 Note: 65

Figure 6.4: Encoding for polyphonic transcription. The individual is divided in time
frames, where each time frame has can be one of 128 possible MIDI pitches plus the
option of silence.

6.3.2 Fitness Function

Similarly as Lu’s proposal (Lu, 2007), the evaluation of each individual is done in the

frequency domain, to avoid phase problems, using the STFT. To compare each MIDI-

like individual with the target acoustic signal, each individual is rendered into an audio

signal using additive sound synthesis. We implemented a synthesizer with the respective

oscillator and envelope for the synthesis process (Reis and Fernandez, 2007a). The fitness

evaluator renders each MIDI-like individual converting it into an audio signal and then

computes it’s fitness value by summing the difference between each frequency in each time

slice of the song:

Fitness =
tmax∑

t=0

fmax∑

f=0

(|O(t, f)| − |X(t, f)|)2 (6.10)

where O(t, f) is the magnitude of frequency f at time slot t in the acoustic audio signal,

and X(t, f) is the same for each individual. Fitness is computed from time slot 0 to tmax,

traversing all time from the beginning to the end, and from fmin = 0 Hz to fmax = 22050

Hz, which is the nyquist frequency of 44100 Hz sample rate.

6.3.3 Selection

Individuals are selected for breeding with the deterministic tournament (Goldberg, 1989).

The size of the tournament is 5.

6.3.4 Recombination

The offspring is generated by applying the classic one-point crossover (Goldberg, 1989)

on each pair of parents.

90

6.3. Automatic Music Transcription using Synthesized Instruments

(A) (B)

Figure 6.5: Transcription of 3 (A) and 5 (B) consecutive chords. The upper part of the
figure corresponds to the original piano-roll and the bottom part is the corresponding
generated transcription.

6.3.5 Mutation

We have only implemented a simple mutation that changes the pitch of a random note by

-1,1 semitone.

6.3.6 Initialization

As in all the previous works by other authors (Garcia, 2001; Lu, 2007) the initial popula-

tion consists of random generated individuals.

6.3.7 Survivor Selection

The new individuals generated by recombination and mutation are added to the popula-

tion. Then, the N fittest individuals (where N is the initial population size) are selected

for the next generation.

6.3.8 Experiments and Results

The first experiment consisted in transcribing an audio signal containing for simultaneous

notes: the C major triad (C4 + E4 + G4) plus a duplicated root (C5). The algorithm

successfully transcribed these notes with a perfect match. Major chords have harmonic

related notes, which make them harder to transcribe due to harmonic collisions in the

frequency domain. Moreover, C4 + C5 are octave related notes, which means that almost

all the harmonics of C5 are also C4 harmonics. This might lead to the transcription

error if ignoring C5 and treat its spectral components as components of the C4 spectral

envelope.

Two more tests were performed, the first consisted in transcribing three consecutive

chords in the C major scale (C3 + E3 + G3; D3 + F3 + A3; E3 + G3 + B3) and another

91

6. Early Genetic Algorithm Approaches to Automatic Transcription of

Music: Synthesized Signals and Simple Mathematical Models

by adding two more chords to this chord sequence: C3 + E3 + G3; D3 + F3 + A3; E3

+ G3 + B3; F3 + A3 + C4; G3 + B3 + D4 (see Figure 6.5). The first chord sequence

was transcribed in 6 generations and the second sequence was transcribed in 100. Both

sequences were transcribed with 100% accuracy.

6.3.9 Additional Constraints

Although this approach is able to deal with simultaneous notes, it is not able to deal with

multiple musical instruments as Lu (2007). This approach can neither work with note

dynamics.

Implementation issues

Dealing with audio signals with 44.1 KHz sampling frequency means that each individ-

ual, when rendered to audio, will have 44100 samples per second. The API used for

implementation, jMusic (Brown and Sorensen, 2000), considers each music sample as a

single-precision floating-point (32 bits). This way, to deal with 5 seconds of music, each

individual, when rendered to audio, will require a memory amount of 44.100 samples × 5

seconds × 4 bytes = 1.764.000 bytes. Considering that each generation of the algorithm

consists of an initial population of 200 individuals and another 100 individuals (offspring),

this means that this implementation requires 529.200.000 bytes ≃ 505 MB of memory.

We must bear in mind that we are only talking about 5 seconds of audio: to deal with 30

seconds it would require 3,028 GB per generation.

Another handicap is the fact that jMusic (Brown and Sorensen, 2000) deals with

each sound sample as a single-precision floating point rather than dealing with it as a

short int, which has also 32 bits of precision. By dealing with sort int instead of single-

precision floating point numbers, the precision would not drop since both have 32 bits

and the algorithm would be computationally faster since integer operations require fewer

clock cycles than floating point operations.

Given these implementation drawbacks, we rewrote our entire approach from scratch

(Reis and Fernandez, 2007b), using the C++ programming language. Moreover, to in-

crease the algorithm performance, our code was compiled using the Intel® C compiler

(icc) and the signal processing tasks used the Intel® Integrated Performance Primitives

(Stewart, 2004; Taylor, 2007). This resulted in significant speedups: the computational

required for transcribing both signals in Figure 6.5 was reduced from 6 minutes and 4

seconds to 3,0 seconds (signal A) and from 64 minutes and 43 seconds to 19,523 seconds

(signal B).

6.4 Summary

Throughout this chapter we have described the first Genetic Algorithm approaches and

presented their main problems. We have presented our first proposal to the problem, by

addressing synthesized signals. Our method successfully transcribed with 100% accuracy

92

6.4. Summary

the C major triad plus a duplicated root and also a series of major and minor chords

along the C major scale.

Synthesized audio files using simple mathematical models are easier to transcribe than

real audio recordings, since they do not have inharmonic partials, spurious components,

transients and neither have noise. When dealing with real audio recordings, all these prob-

lems must be addressed. These aspects will be described during the following chapters.

93

Chapter 7

Moving to Real Audio Recordings

This chapter presents our first Genetic Algorithm approaches to the problem of Auto-

matic Transcription of Music on real audio recordings. We will also present how each

approach addresses the following topics: genotype, fitness evaluation, selection, recombi-

nation, mutation, creation of the initial population and survivor selection. Considering

that polyphonic real audio recordings have different spectral envelopes for different sources

and inharmonic partials, spectral envelope modeling is also introduced.

7.1 First Proposal on Real Audio Recordings

We describe below our first attempt to polyphonic music transcription dealing with real

audio data and real instruments (piano recordings) (Reis et al., 2007). Although Genetic

Algorithms had already been tried for polyphonic music transcription (see previous Chap-

ter), authors always employed simple simplified audio signals such as mathematical models.

To the best of our knowledge, what we present has been the first time Genetic Algorithms

face polyphonic music transcription with real audio signals. Since at that time there were

only three different genetic algorithm approaches to automatic music transcription (Lu,

2007; Reis and Fernandez, 2007a) and polyphonic pitch estimation (Garcia, 2001), we

decided to propose a standard and generic genetic algorithm approach to the problem,

which emphasized the considerations discussed in the previous chapter: genotype, fitness

evaluation, recombination, mutation, how to generate the initial population and survivor

selection.

7.1.1 Genotype

In this new proposal, each individual or chromosome corresponds to a candidate solution

(transcription), therefore it is encoded as a sequence of discrete note events. The number

of genes (note events) varies from one individual to another. Each gene has all the

information needed to represent that note event: note onset, duration, dynamics and

95

7. Moving to Real Audio Recordings

Individual

Gene Sequence

Note: 60

Start: 0

Duration: 44100

Velocity: 32

Note: 64

Start: 44100

Duration: 44100

Velocity: 64

Note: 67

Start: 88200

Duration: 44100

Velocity: 96

Note: 72

Start: 132300

Duration: 44100

Velocity: 127G
e

n
o

ty
p

e
P

h
e

n
o

ty
p

e

Figure 7.1: Proposed encoding of the individuals. The individual is encoded as a set note
events. Each event has a pitch, start time, duration and velocity.

also an instrument/timbre associated with that event, if necessary. Figure 7.1 shows our

proposed encoding.

7.1.2 Fitness Function

Since piano synthesis can be easily achieved with sampling methods by playing pre-

recorded samples of each piano note, for the evaluation of an individual, each note event

passes through an internal synthesizer consisting of previously recorded piano samples.

The audio signal generated from each candidate transcription, is then compared with the

original audio. The result of the comparison is the fitness value: how close is an individual

(transcription) to the input signal.

This way, fitness evaluation consists of two main tasks: synthesis and similarity mea-

sure. After rendering each individual into an audio signal, a comparison is made with the

original audio. The way audio is compared is the fundamental role on the system, since

it measures how close a feasible solution is to the optimal solution. The idea is to have a

method that gives importance to aspects that are perceptual and musically relevant and

discards other aspects that are not perceptual or musically important. For instance, doing

a simple sample comparison (summing the errors between each sample of the original sig-

nal and the synthesized one) will most likely have bad results: even two identical signals,

but with opposed phase, will be measured as very different.

We propose a fitness evaluation process composed by six different modules (see Figure

7.2):

Pre-Synthesis : note events are processed before synthesis;

Synthesis : the note event sequence is rendered into an audio signal;

Framing : the audio signal is fragment into several audio frames;

Domain : each time frame is converted into a specific domain (e.g. frequency domain);

Post-Processing : post-processing is applied to the obtained values;

96

7.1. First Proposal on Real Audio Recordings

Figure 7.2: Block diagram of the fitness evaluation process.

Difference Measure : applies a mathematical function for measuring the quality of the

values (e.g. sum of the squared differences).

Questions

Since this is our first approach on real audio recordings, we faced lot of questions regarding

the fitness evaluation like, for instance: “Which is the best domain to compare two audio

signals?”. This way, and in order to address all these questions, all the 6 fitness function

modules (pre-synthesis, synthesis, framing, domain, post-processing and difference mea-

sure) encompassed several and different features. The idea was to see which are the best

options for each module and the best combination of parameters.

The following subsections will describe all the features of each of the fitness func-

tion modules. On section 7.1.8 we will describe the best combination of parameters and

respective features of each module.

Pre-Synthesis Processing

During pre-synthesis processing, several operations were applied:

• Discard notes whose duration is smaller than n.

• Discard notes whose dynamic values are x dB below the highest dynamic note on

the note vicinity;

• Dynamics Average: force all notes to share the same dynamics value by applying

the average between all notes;

• Overlapping Removal: prevent two notes with the same pitch to play at the same

time;

Synthesis

The internal synthesizer consisted of previously recorded piano 30 seconds samples from

a Korg SP100 Piano Keyboard at the made MIDI velocity: 64. The release time of each

note was created by applying a fade-out curve to the audio sample of the corresponding

97

7. Moving to Real Audio Recordings

musical note. The decay after releasing the note key was created applying the following

equation:

R (t) = max

(
0,

2000.0− t
36

2000.0 + t

)
, (7.1)

where t varies from t = 0 · · · 72000.
For the dynamic behavior, we considered a dynamic range of 50 dB, that is: one

note can vary its dynamic between 1 and 127. In particular, 127 MIDI velocity value

correspond to +25 dB gain, 1 MIDI velocity value corresponds to -25 dB gain and 64

MIDI velocity corresponds to 0 dB gain. The gain, according to each note dynamic is

given by:

gain = 10
vel−64

25 . (7.2)

Framing

The user was able to choose the frame size, overlap and window type: rectangular, Ham-

ming or Hanning (Harris, 1978). The size of the frame is a trade-off between temporal

resolution and frequency resolution: smaller frames improve temporal resolution and larger

frames improve frequency resolution.

Domain

Each time frame was converted to one of the following specific domains:

• STFT with linear scale;

• STFT with logarithmic scale;

• Filter banks;

• Cepstrum;

• Hybrid (STFT and Cepstrum);

• Autocorrelation (ACF);

• Summary autocorrelation (SACF).

Post-Processing

During post-processing, several rules were applied:

Peaks Only : only data from the local peaks is considered;

Dynamic Range : discards frequency values x dB below the highest frame value;

98

7.1. First Proposal on Real Audio Recordings

Normalization : applies a gain factor (up to ±20 dB) to the synthesized frame data

to decrease the impact of envelope differences (attack, decay and release) between

the original audio and the candidate transcription. This factor could be calculated

considering the average frame data, the frame data peak or iteratively, trying several

gains with decreasing steps until the best gain was detected to minimize the error;

Data Blur : applies a low-pass filter to blur the frame data. The low-pass filter consists

on applying a window (rectangular, triangle or gauss) with a predefined x octave

width. The window can either be symmetrical (same frequency width on both sides)

or asymmetrical (same octave width on both sides) forms.

Error Measurement

The fitness value is obtained by summing up the frame differences over time t, using

frequency f ranging from 27.5 Hz (lowest piano note) to the Nyquist frequency (22050

Hz, which is half of the sampling frequency). The frame error is obtained by using one

of the following equations (7.3-7.11). These equations range from the traditional error

measurements (equations 7.3-7.5), area interception (equation 7.8), correlation (equation

7.11) and other variations:

tmax∑

t=0

22050∑

f=27.5

||O(t, f)| − |X(t, f)|| , (7.3)

tmax∑

t=0

22050∑

f=27.5

∣∣|O(t, f)|2 − |X(t, f)|2
∣∣ , (7.4)

tmax∑

t=0

22050∑

f=27.5

||O(t, f)| − |X(t, f)||2 , (7.5)

tmax∑

t=0

22050∑

f=27.5

||O(t, f)| − |X(t, f)||
max (|O(t, f)| , |X(t, f)|) , (7.6)

tmax∑

t=0

22050∑

f=27.5

||O(t, f)| − |X(t, f)||2
max (|O(t, f)| , |X(t, f)|) , (7.7)

tmax∑

t=0

22050∑

f=27.5

max (|O(t, f)| , |X(t, f)|)
min (|O(t, f)| , |X(t, f)|) , (7.8)

tmax∑

t=0

22050∑

f=27.5

max (|O(t, f)| , |X(t, f)|)2
min (|O(t, f)| , |X(t, f)|) , (7.9)

tmax∑

t=0

22050∑

f=27.5

log10 ||O(t, f)| − |X(t, f)|| , (7.10)

tmax∑

t=0

corr (|O(t)| , |X(t)|) . (7.11)

99

7. Moving to Real Audio Recordings

Figure 7.3: One point crossover performed on temporal dimension.

7.1.3 Selection

As in our previous approach (see Chapter 6, Section 6.3.3), the selection for breeding is

based on the deterministic tournament, with size of 5.

7.1.4 Recombination

The proposed recombination operator is based on the classic one point crossover (Goldberg,

1989). Instead of choosing a random crossover point in the individuals chromosome, this

recombination operator, chooses a random crossover point on temporal dimension. This

happens because despite the individuals might differ in the number of genes, they have

the same temporal length. The randomly selected crossover point in time will split any

note events that cross the chosen time value (see Figure 7.3).

7.1.5 Mutation

We implemented several mutation operators:

• note change (± octave, ± half tone);

• start position (up to ± 0.5 second change);

• duration (from 50% to 150%);

• velocity (up to ± 16 in a scale of 128);

• event split (splits a note event in two events by inserting silence between them);

• event merge (merges two note events having a silence between them);

• event remove;

• new event (random event or duplication with different note).

100

7.1. First Proposal on Real Audio Recordings

Figure 7.4: Block diagram of the creation of the starting population.

When performing the mutation, one of this mutation operators is randomly chosen

and applied.

7.1.6 Initialization

For the starting population, we create a first individual based on the highest peaks of the

STFT on the original audio signal. The highest peaks, during each time frame, create (or

maintain) a musical note with the corresponding F0s. Afterwards, this individual goes

through a hill-climber process that changes all the events equally in terms of velocity,

duration and start time to adjust durations and velocity to overcome decay and level

differences between the original instrument and the internal synthesizer. Each additional

individual in the initial population is created based on the initial individual after 10 forced

mutations. Figure 7.4 illustrates this process.

7.1.7 Survivor Selection

After recombination and mutation, some individuals will populate the next generation.

The selection of which individuals will pass to the next generation is performed in two

steps. The first step consists in selecting the best individual of the current generation and

use it directly to populate 5% of the new generation by creating mutated versions of this

individual. This extends the robustness of the genetic algorithm, improving the global

search by using local search on the vicinity of the best achieved solution (Hart et al., 2004).

The second step consists in populate the remainder of the next generation with the fittest

individuals of the current generation (elitism).

7.1.8 Initial Experiments and Tuning

Before beginning the experimental step, we ran the proposed system a number of times

in order to have an idea about its capabilities. Different combinations of parameters

were tried so that we could select an appropriate configuration for each fitness function

module (see Section 7.1.2). By assuming that synthesis is not a problem (the internal

piano synthesizer or sampler presented a good audio quality), we focused on the analysis

of the system ability for searching and measuring similarity.

Pre-synthesis processing

This module revealed to be an important feature of the system, by discarding up many

spurious notes. Overlapping notes need to be discarded as well as notes with very small

durations (less than 50 milliseconds). Also, note events with small dynamics, when com-

pared to their vicinity notes (below 10 dB), most likely exist due to harmonic overfitting.

101

7. Moving to Real Audio Recordings

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 .2

0 .3

0 .4

0 .5

Figure 7.5: Original audio (top) and the piano-roll of the corresponding transcription
(bottom)

.

By applying these features on the pre-synthesis module, better results were obtained:

precision improved around 15%.

On the other hand, forcing all notes to have the same dynamics values, although it

leads to better results when transcribing audio files with a similar behavior (e.g. same

MIDI velocity for all musical notes), it is not a realistic feature, and presented worse

results on audio recordings with dynamic behavior.

Framing

Tests were done with several parameter values. Frame size ranged from from 512 to 8192

samples and hop size from 0% to 75%. Different windows were also tried: Hamming,

Hanning, rectangular, Gaussian, Blackman, etc. The best results were obtained with a

frame size of 4096 samples (92 milliseconds at a sampling frequency of 44100 Hz) and a

hop size of 1024 samples (23 milliseconds), i.e. 75% overlap. The window function that

presented best results was the Hanning window.

Domains

Regarding the best domain for audio comparison, on the contrary to what we were ex-

pecting, STFT with linear scale on the magnitude axis presented better results than using

a logarithmic scale. We were somehow surprised, considering that the human earing per-

ception has a behavior much more similar to the logarithm scale than the linear one.

Probably, the reason why linear scale achieved better results, could be related to the fact

that the linear scale increases the importance of higher amplitude frequency components,

when compared to the logarithmic scale.

102

7.1. First Proposal on Real Audio Recordings

We also had some expectations regarding the SACF domain (Klapuri (2004a), page 27),

since it is currently being used in many polyphonic transcription and melody extraction

systems (Klapuri, 2008), but, regarding our tests, linear STFT continued to present better

results.

Post-processing

The post-processing feature that presented better results was the ability to limit the

dynamic range, that is: consider only the frequency components on the top 40 dB range.

This way, a better comparison is achieved, discarding spurious spectral components.

Other available features like, peaks only, normalization and data blur did not present

better results during our tests.

Error Measurement

The best results were achieved by using the following Equation 7.12:

Fitness =
tmax∑

t=0

Note108∑

f=Note21

||O (t, f) | − |X (t, f) ||. (7.12)

Although the 2D correlation between original audio and the synthesized audio, on

a logarithmic STFT domain, presented interesting results, these results were still worse

than those obtained with the previous equation.

7.1.9 Experiments and Results

After setting up all the fitness function modules and respective parameters, we focused on

the transcription of a single audio file. The tests were based on the polyphonic fragment

shown in Figure 7.5, which tries to represent the complexity of a polyphonic audio signal.

The base audio signal uses the piano sounds from Microsoft General Midi Synthesizer.

This means that although we use piano sounds on the original audio and in the internal

synthesizer, they will present differences in their harmonic structure and envelope/release

behavior. Table 7.1 shows the parameters of the algorithm.

The quality of the resulting transcriptions was measured using two Information Re-

trieval measures: Recall and Precision. Precision is the percentage of notes that were

correctly transcribed, and is given by the following equation:

precision =
|{original notes} ∩ {transcribed notes}|

|{transcribed notes}| =
tp

tp+ fp
, (7.13)

where tp are the true positives (notes correctly transcribed) and fp are the false positives

(notes that were transcribed but are not present in the original audio). Recall is the

percentage of correctly transcribed notes present in the original audio:

recall =
|{original notes} ∩ {transcribed notes}|

|{original notes}| =
tp

tp+ fn
, (7.14)

103

7. Moving to Real Audio Recordings

Table 7.1: Algorithm parameters.

Starting Population 200

Number of Generations 1000

Crossover Probability 0.75

Mutation Probability 0.10

Nome Minimal Duration 20 ms

Time Frame 4096 samples

Frame Overlapping 75%

STFT Window Hanning

where tp are the true positives and fn are the false negatives (number of missed notes).

We have followed the evaluation used by the music information retrieval evaluation

exchange (MIREX) (Downie, 2008b; Downie et al., 2010a), that is: a musical note is

considered as correctly transcribed (true positive) not only if its frequency is correct, but

also if its start time is within ±50 ms tolerance interval.

Results

The tests shown that, in the end, the system was able to detect all notes (recall 100% -

Figure 7.6) although creating some additional wrong notes (precision 81%). Figure 7.6

also shows us that in some runs/generations, the GA was able to find the exact match

(achieving 100% in our performance measure), but was unable to keep it.

Although fitness continues to decrease through generations (Figure 7.6 A), after some

point, the quality of the results begin to decrease, mainly because of harmonic overfitting.

Detected notes continue there, as shown by recall values (Figure 7.6 B), but many addi-

tional notes begin to emerge, dropping the precision value (Figure 7.6 C). Since both audio

signals use different piano synthesizers (different spectral envelope and decay behaviors),

the system begins to create additional notes to compensate those differences in higher

harmonics. This means that the fitness function is still needing additional work, since it

is not fully working as it should (measuring the right similarity between audio signals).

By comparing the “piano-roll” of the original audio signal (ground-truth) with the

best generated transcriptions of each generation, we observe that most errors consist in

additional notes that are created in harmonic locations of the original notes, with lower

amplitudes and equal or smaller durations. Figure 7.7 shows the piano-roll of the original

audio and the generated transcription with the additional low intensity notes on harmonic

locations.

We have designated this behavior as “harmonic overfitting”, because these additional

notes were inserted by the algorithm has a way to decrease the error (fitting) on harmonic

locations (harmonic), but using wrong notes (overfitting) since it could not decrease the

error using only the right notes.

104

7.1. First Proposal on Real Audio Recordings

0 100 200 300 400 500 600 700 800 900 1000
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

12

Generation

F
it
n
e
s
s

(A) Fitness Value

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Generation

%

(B) Recall

DAN D DA DN

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Generation

%

(C) Precision

DAN D DA DN

Figure 7.6: Evolution of fitness (A), recall (B) and precision (C) values over 1000 genera-
tion, with different configurations.

7.1.10 Additional Constraints

If we make a closer and deeper analysis of this approach, specially on the error measure-

ment module of the fitness function given by equation 7.12, there are two main problems

in the fitness function that contribute to harmonic overfitting:

• The fitness function relies on the linear scale instead of relying on the logarithmic

scale of the frequency spectrum;

• The fitness function considers that each frequency bin has the same weight during

the error measurement.

This way, by considering the linear scale, the system increases the importance of

higher amplitude frequency components when measuring the error differences, leading

the algorithm to create additional notes in these frequency locations to overcome those

differences. Figure 7.8 shows the magnitude spectrum of a middle C or C4 (MIDI note

60) played by a piano in an input audio file (left part of the figure) and the magnitude

spectrum of the internal piano sampler of the same musical note. As you can see, there is a

big difference in the first harmonic (around frequency bin 50). This means, that the same

105

7. Moving to Real Audio Recordings

Original Audio Generated Transcription

Figure 7.7: Original audio and corresponding transcription.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Frequency Bin

M
a
g
n
it
u
d
e

Original Audio Middle C − C4

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Frequency Bin

M
a
g
n
it
u
d
e

Internal Piano Sampler Middle C − C4

Figure 7.8: Magnitude spectrum from piano played in the original audio (on the left) and
from the internal piano sampler, both on the Middle C note (C4).

musical note played by the internal piano sampler will have a big difference on the first

harmonic, which will lead the algorithm to create an additional note on that frequency

location (musical note C5) to compensate this difference. Thus, the system achieves, as

final result, a sound that from the perception point of view is very near the original audio,

but since the focus of the problem is to discover only the notes that are played in the

original song, the removal of all those additional notes is mandatory.

106

7.2. Reducing the Harmonic Overfitting

Moreover, and according to equation 7.12, each frequency bin has exactly the same

weight for the error measurement. Considering that the highest octave occupies half of

the frequency bins, it means that the higher octave weights the same as the sum of all

other octaves. Which means that higher octaves (frequencies) have much higher impact

in the error measurement than lower octaves or frequencies. In other words: the current

fitness function gives much more importance to higher frequencies, that is: it favors the

harmonic overfitting, since it occurs due to differences in higher frequency locations. This

stresses the need of a mechanism to perform some kind of frequency normalization so that

each octave has the same contribution/weight to the error measurement module.

7.2 Reducing the Harmonic Overfitting

During the approach proposed in the previous Section, we have noticed that the genetic

algorithm tends to create additional notes (with lower amplitudes) in harmonic locations

of the original notes to overcome the timbre differences between the internal samples and

original piano sounds: despite the fitness values continues to decrease through generations,

the quality of their results started to decrease after some point, mainly because of harmonic

overfitting. The original notes continued there (as shown by recall values) but many

additional notes begin to emerge, dropping the precision value.

The fact of these additional notes have low amplitudes and are placed in harmonic

locations, most of the times with similar onsets, strongly decreases their impact from

the perception point of view. Nevertheless, for the metrics or in situations where the

dynamic information is discarded (for instance: creating music sheets), these errors are

very undesirable.

To study more accurately the harmonic overfitting phenomena, our system went through

several changes. The first change was to include 3 different pianos samplers (Steinway,

Bosendorfer and Bechstein piano samplers, from Native Instruments) into the internal

synthesizer. This way, we could rely on the spectral difference between different pianos

and perform a more accurate study on harmonic overfitting removal. On a second phase

of the work, the architecture of the system suffered more architecture changes in order to

adapt the internal piano samplers to the piano played on the input audio files. This way,

the goal was to be able to evolve, not only the note sequence, but also the synthesizer

characteristics for better modeling the original piano sound.

7.2.1 Evolving Timbre

There are several aspects that can differ in two piano sounds. For instance, figure 7.9

shows how the spectral envelope of a piano note varies over time, on two different pianos.

This way, it is important to identify what sound features can two piano sounds have,

so that the synthesized piano sound could be adapted to the original, if not completely,

at least partially, and thus avoiding harmonic overfitting. We consider the following six

domains:

107

7. Moving to Real Audio Recordings

Figure 7.9: Magnitude spectrum of two different pianos (Steinway and Bechstein) playing
the middle C (note C4) during one second.

Waveform Envelope : the behavior of the waveform amplitude over time is an impor-

tant factor. The way the sound attack occurs, how long it takes to decay and how

it behaves on note release;

Spectral Envelope : what is the amplitude relation between partials;

Inharmonicy : how much each partial deviates from the closest multiple of the F0;

Dynamics : how both waveform and spectral envelopes change by playing the same note

at different velocity values;

Static Ressonances : how different is the behavior of the piano internal resonances;

Recording Frequency Response : how different is the frequency response of the record-

ing process: microphone locations, frequency responses and directivity patterns.

Each one of these six domains represents a dimension of the same sonic space and

cannot be handled separately. Waveform envelope, for instance, depends on the spectral

envelope, since each sinusoidal component has its own waveform envelope. But, once

again, the waveform envelope of each component will also depend on the note dynamics,

not only by a constant gain form, but because “piano” musical notes have a different

timbres than “forte” musical notes.

7.2.2 Genotype

Our initial approach begins by considering only the spectral envelope and inharmonicity

domains. This way, along with the note event sequence that encodes a candidate tran-

scription, the harmonic structure information is included inside the individual genome

(see figure 7.10). This harmonic structure information consists of 19 gains and 19 shifts:

the gains and shifts indicate to the internal synthesizer how much gain and inharmonicity

deviation should be applied to each one of the first 19 partials above the fundamental

108

7.2. Reducing the Harmonic Overfitting

Figure 7.10: Encoding of the individual with the Harmonic Structure.

frequency of the playing musical note. The gain represents the gain (in dB) that should

be applied to that partial and the shift represents the amount of STFT bins that that

gain should be shifted.

Since the evaluation of each individual is done in the frequency domain (see Section

7.1.8) we apply the gains and shifts directly to the spectrum of each musical note frame,

rather than applying filters in each note waveform. In practice, this done by applying

different weights on the STFT bins belonging to the note harmonic series. This way,

instead of applying filters on each note sample, adding the resulting samples to generate

the final audio signal and then process the STFT information based in the polyphonic

audio, we use a different approach: for each time frame, the frames of the sound notes

were converted to their spectral representation, harmonic gains and shifts are applied

and then the spectrum of each note is combined to create the final signal spectra to be

compared to the original STFT frame data. This enables each individual to have its own

synthesizer, with a complete evolving harmonic structure: the harmonic structure of the

internal synthesizer evolves until it matches the synthesizer played on the original audio,

and the note events evolve towards the original song’s notes.

To combine the spectral data of several notes, some additional tests were made with

and without phase information, so we could verify if just the magnitudes were sufficient or

if phase values should be taken into consideration, since they have an impact in the final

magnitude: two signals with opposing phase result on zero amplitude. As we expected,

considering phase values did not bring significant improvements (≃ 3%).

7.2.3 Fitness Function

Before the error measurement (fitness value) we include two new pre-synthesis features:

note discard and dynamic range.

Note Discard

Another feature that we proposed as a means to avoid the harmonic overfitting is note

discard. Note discard is based on the assumption that most notes have similar dynamics.

109

7. Moving to Real Audio Recordings

By considering that each note has dynamic scale between 1 and 128 (MIDI velocity range),

this feature discards all notes present that have a dynamic difference of 20 between the

their dynamics and the dynamics of the other notes existing during the note duration.

Dynamic Range

Harmonic overfitting can also happen due to noise, weak harmonics or even frequency

neighborhood. Dynamic range feature uses the highest value of the STFT bins of the

current frame as a reference, and sets all bins of the same frame with values 40 dB below

this reference to 0.

Error Measurement

Due to the natural logarithmic scale of musical notes, STFT bins are not equally dis-

tributed by all octaves (e.g. the highest octave occupies the highest half of frequency

bins). To reduce the higher impact of higher notes and, thus, reduce the harmonic over-

fitting, we perform a division by f for frequency normalization:

Fitness =
tmax∑

t=0

fs

2∑

f=27.5Hz

||O (t, f) | − |X (t, f) ||
f

. (7.15)

7.2.4 Recombination

By extending the individual genotype in order to include the harmonic gains and shifts, the

recombination operator had also to be extended to support these additional chromosomes:

the note events are still recombined using the one point crossover on the temporal dimen-

sion (see Section 7.1.4) and both harmonic series and harmonic shifting are recombined

using the classic one point crossover (Goldberg, 1989).

7.2.5 Mutation

Besides the mutations already defined in Section 7.1.5, two new mutations were included

to support the additional chromosomes:

• harmonic change (up to ± 0.50 gain);

• inharmonicity deviation (up to ± 3 frequency bins).

7.2.6 Experiments and Results

Tests were made with 30 seconds audio extracted from “Mozart’s Pano Sonata No. 17 in

B flat (K570)”, played by a Bechstein piano. To test the proposed approach two banks

of tests were made using Bosendorfer piano samples or Steinway piano samples inside

the internal piano sampler. Since the base audio signal uses different piano sounds from

our internal piano samplers, they will present differences in their harmonic structure and

envelope/release behavior.

110

7.2. Reducing the Harmonic Overfitting

Table 7.2: Results of the proposed approach.

Recall Precision F-Measure Overlap Ratio

Bosendorfer “onset only” 0.673 0.726 0.699 0.631

Steinway “onset only” 0.659 0.745 0.699 0.631

Mean “onset only” 0.666 0.736 0.699 0.631

Bosendorfer “onset/offset” 0.369 0.398 0.382 0.798

Steinway “onset/offset” 0.368 0.398 0.383 0.798

Mean “onset/offset” 0.369 0.398 0.383 0.798

Our current approach used the following parameters: population size of 200, in each

generation 100 more individuals are breed, only the best 200 pass to the next generation

(elitism), the maximum number of generations is 1500, the probability of crossover is 75%,

mutation 4% and the note minimal duration is 10 ms.

For better performance, the original audio fragment was split into 5 second fragments

and the algorithm was run on each fragment. Each run consisted on 1500 generations.

Then, the respective results were merged to create the transcribed 30 seconds sequence.

The CPU time needed for transcribing a 5 seconds fragment with 1500 generations is

around 7 hours, using one core of a Dual Core 2.0 GHz processor, which still needs

improvement.

The used metrics were based on MIREX 2007 (mir, 2007), and consists of “onset only”

and “onset/offset” analysis. In “onset only” a note is considered correctly transcribed if

pitch is ±1
2
semitone apart and with onset inside ±50ms tolerance. In “onset/offset” a

note is considered correct if, besides “onset only” requirements, offset is within ±50ms or

20% of the note duration (which is the bigger value).

Results are presented using recall (percentage of original notes that were transcribed),

precision (percentage of transcribed notes that were present on the original signal), F-

measure and mean overlap ratio. F-measure is the harmonic mean (Nostrand, 1962)

between precision and recall:

F −measure =
2× recall × precision

recall + precision
(7.16)

and mean overlap ratio is the average of notes overlap ratio, that in each corrected tran-

scribed note, measures the overlap between original and transcribed note:

OverlapRatio =
min(offsets)−max(onsets)

max(offsets)−min(onsets)
. (7.17)

We also consider that the same note cannot overlap (e.g. two C4 notes paying at the

same time) and that notes with duration smaller than 10 ms are discarded.

111

7. Moving to Real Audio Recordings

0 200 400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

Evolution of F−Measure values along 1500 generations (A)

Onset only

Onset−offset

0 200 400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

Evolution of Recall and Precision values along 1500 generations (B)

Recall Onset−only

Precision Onset only

Recall Onset−offset

Precision Onset−offset

Figure 7.11: Evolution of F-Measure (A) and Reacall and Precision (B) values along 1500
generations.

Results

Table 7.2 shows that both Bosendorfer piano and Bechstein piano present similar results.

This means that, despite of algorithm started with different timbres (different pianos)

both ended with the same results. This happens due to the harmonic structure evolution:

both instruments evolve until they match the original piano. Therefore, the harmonic

structure evolution presented very similar results with different pianos, showing that dif-

ferent pianos were able to adjust to minimize timbre differences, making an approximation

to the original piano sound.

7.2.7 Additional Constraints

Note that at some point, the F-Measure values decrease (see Figure 7.11 (A)). As a

matter of fact, the highest F-measure value during the evolutionary process was 0.7076

for “Onset-only” metric and 0.4059 for “Onset-offset” and the algorithm ended with 0.6286

and 0.3828 F-measure values. This means that the harmonic overfitting still exists, but in

a much smaller scale, when compared with our previous approach. The left plot of figure

7.11 shows that, when compared to precision, the recall values on both “Onset only”

and “Onset-offset” metrics is improving with few oscillations. This means that detected

musical notes continue present in the transcription. On the other hand, Precision has big

oscillations. As a matter of fact, Precision in the “Onset only” metric starts decreasing

around generation 200. This means that rate of false positives starts increasing, lowering

the quality of the results. Those false positive notes are added by the algorithm as a means

to decrease the spectral differences between the piano played in the original audio and the

internal piano sampler: harmonic overfitting. Some additional notes are present in the

original, thus correctly transcribed, and contribute to the recall improvement during the

evolutionary process.

112

7.3. Automatic Music Transcription of Multi-Timbral Music

In order to avoid the precision values to start decreasing, spectral envelope modeling

should be improved. For instance, it should also take into account the note and time:

the spectral envelope changes according to the notes played (each note has its spectral

envelope) and that envelope changes through time.

This approach has also a performance handicap. Recall that, for better performance,

the original audio fragment was divided into 5 second fragments and a different run of the

algorithm was processed for each fragment, consisting of 1500 generations. After those

1500 generations the results were merged to create the transcribed 30 seconds sequence.

The CPU time needed for transcribing a 5 seconds fragment with 1500 generations is

around 7 hours, using one core of a Dual Core 2.0 GHz processor, which is a lot of

computational time. This is one of the main issues addressed in the following proposals.

7.3 Automatic Music Transcription of Multi-Timbral Mu-

sic

All our previous approaches were proposed for transcription of polyphonic piano music.

To demonstrate that these approaches were general enough to work with other musical

instruments besides piano, and to show the applicability of our system to other musical in-

struments, we extended our approach to deal with other kinds of pitched instruments, such

as: trumpet, saxophone, clarinet and trombone. Basically, both our previous approach

and this new one are essentially the same, except that the individuals chromosome now

includes the spectral envelope and its inharmonicity deviation for each different timbre.

To extend our previous GA approach to Automatic Music Transcription to support

different instruments or voices at the same time, there are several important considerations

that need to be addressed:

• How to encode the individual or how the additional information related with timbre

should be encoded in the individual’s genome?

• How to avoid the harmonic overfitting when different instruments are present in the

audio?

• What are the implications of the multi-timbral support for the harmonic overfitting

mitigation?

• What new recombination and mutation operators should be created and which ones

should be adapted?

• Which samples should be used for each instrument?

7.3.1 Genotype

For the encoding of the individual, we decided to extend the encoding proposed during our

previous approach. Several internal samplers and synthesizers (e.g. piano, bass, acoustic

guitar, flute, violin, cello, etc.), with samples extracted from the Musical Instrument

113

7. Moving to Real Audio Recordings

Figure 7.12: Encoding of the individuals with timbre information.

Sound Database - RWC Music Database (Goto and Nishimura, 2003), were included in

our system. The information about which instrument plays each note was included in the

genotype, on the note event, as timbre information. Figure 7.12 illustrates the current

encoding of each individual.

Avoiding Harmonic Overfitting

By including several instrument or voices, the harmonic complexity of the acoustic signal

increases exponentially: since several instruments are playing the same music piece, they

are most likely playing on the same music scale and also on several octave related notes,

therefore there will be several harmonic collisions: a Fundamental Frequency (note) can

easily be masked by or even misunderstood as an harmonic of another note, which may

lead to greater harmonic overfitting.

Harmonic Series Evolution : Our previous solution to the problem of harmonic over-

fitting (see Section 7.2.2), was to create harmonic gains, that boost or cut the value

of the first 19 partial peaks: almost like an equalizer, but instead of operating on

fixed frequency bands, it operates on each note partial. From the implementation

point of view, this was not done with real filters, but by changing the values of the

STFT bins that correspond to the note partial locations.

This means that each individual, besides having a sequence of note events as their

candidate solution to the problem, also includes additional parameters to help the

synthesizer to get a timbre more similar with the original instrument. The gain of

the Fundamental Frequency of the note - F0 - is always 1.

Inharmonicity Evolution : Sometimes the partials are not located in integer multiples

of the Fundamental Frequency. Those partials are often shifted some bins to the left

or to right of the real multiple corresponding frequency bin. To solve this problem,

the amount of shifting for each harmonic in the harmonic structure was also encoded

within the individual’s genotype, together with the harmonic structure. This way

each individual had his own piano sampler with a complete evolving harmonic struc-

ture towards the original piano and also with evolving notes towards the original

song’s notes. The shift of the Fundamental Frequency of the note - F0 - is always 0.

114

7.3. Automatic Music Transcription of Multi-Timbral Music

Figure 7.13: Internal structure of an individual.

Multi-Timbre Support

In order to fully support Multi-Timbre and still continue to have both harmonic series

and inharmonicy evolution as a mean to mitigate the harmonic overfitting, the harmonic

structure of each internal synthesizer was encoded inside the individuals genome (see

Figure 7.13). This way, it is possible to avoid the harmonic overfitting in each instrument

or voice.

7.3.2 Fitness Function - Individual Evaluation

The error measurement or fitness function is the same defined in Section 7.2.3, Equation

7.15.

7.3.3 Recombination

For recombining the additional data (spectral envelope of each instrument), besides the

recombination operator presented in Section 7.2.4, two more random points of cut are

used for each harmonic structure: one for splitting the harmonic series and another for

splitting the harmonic shifting.

7.3.4 Mutation

Regarding mutation operator, besides the mutations defined in Section 7.2.5, one addi-

tional mutation operator was created: change the instrument that plays a musical note.

When performing the mutation, one of the mutation operators is randomly chosen and

applied.

115

7. Moving to Real Audio Recordings

Figure 7.14: Spectrum of the Alto Saxophone, Clarinet and Trombone respectively for
the note F4 ≃ 349.23Hz.

7.3.5 Instrument Identification

As for our previous genetic algorithm approaches, our algorithm uses an internal synthe-

sizer so that it can evaluate each individual by comparing its synthesized sound with the

original acoustical signal. For the internal synthesizer instead of just using bosendorfer,

bechstein and steinway pianos, we used several woodwind, string and piano instruments,

extracted from the RWC Musical Instrument Database (Goto and Nishimura, 2003). The

timbre information encoded in each gene (note) tells the algorithm which internal synthe-

sizer should be used to render that note. By including the timbre information in each

gene, the algorithm is able to choose the correct instrument for each note by changing

its timbre property, thus identifying which is the instrument that plays that note in the

original signal the one who makes less spectral error.

7.3.6 Experiments and Results

To test the proposed approach and also to have some kind of comparison with a state-

of-the-art approach, all the tests were made using the same audio data published on Bay

and Beauchamp (2006)1.

We used the same parameters as our previous approach: population size of 200, in each

generation 100 more individuals are breed, only the best 200 pass to the next generation

(elitism), the maximum number of generations is 1500, the probability of crossover is 75%,

mutation 4% and the note minimal duration is 10 ms.

Transcription of Solo Instruments

Since the test data set has three different instruments with three different spectra (see

figure 7.14) the first test consisted in trying to transcribe the solo performances of each in-

strument. The algorithm was running with the three different internal synthesizers to see

if it was able to choose the appropriate synthesizer for each solo performance (Instrument

Recognition). Although Instrument Recognition is not the main scope of this dissertation,

we wanted to see if the proposed system was able to recognize the instrument played on

each note. Figures 7.15, 7.16 and 7.17 show the spectral from both internal synthesizers

(left) and original instruments (right) used to transcribe the Alto Saxophone, the Clarinet

1The audio data is available on: http://ems.music.uiuc.edu/beaucham/sounds/sep/sep.bay/

116

http://ems.music.uiuc.edu/beaucham/sounds/sep/sep.bay/

7.3. Automatic Music Transcription of Multi-Timbral Music

Figure 7.15: Spectrum of the internal synthesizer for alto saxophone (left) and of the
original alto saxophone for the note F4 ≃ 349.23Hz.

Figure 7.16: Spectrum of the internal synthesizer for clarinet (left) and of the original
clarinet for the note F4 ≃ 349.23Hz.

Figure 7.17: Spectrum of the internal synthesizer for trombone (left) and of the original
trombone for the note F4 ≃ 349.23Hz.

and the Trombone mixture. You can see that the internal synthesizer for the alto saxo-

phone is somehow similar with the internal synthesizer used for the trombone. This could

lead to wrong instrument identification, for instance: the internal synthesizer for the alto

saxophone, with the propper harmonic structure (harmonic gain and harmonic shifting)

could generate less error for a trombone transcription than using the right instrument

with a different harmonic structure or different velocity (note amplitude).

The system correctly transcribed, with 100% of accuracy all the three solo perfor-

mances and recognized the instrument played in each note with 100% of accuracy. This

test was also made to see the performance of algorithm using the RWC Music Database

samples as internal synthesizers since those samples are not normalized and some of them

117

7. Moving to Real Audio Recordings

Table 7.3: Initial results of the proposed approach for the whole mixture and for each
instrument inside the whole mixture.

F-Measure Recall Precision
Whole Mixture 0.23 0.54 0.93
Alto Saxophone 0.09 0.07 0.13

Clarinet 0.32 0.24 0.47
Trombone 0.21 0.2 0.23

Figure 7.18: Sample used as internal clarinet synthesizer for the F4 note.

have noise, which may lead to a bad synthesis of correct individuals and may lead also to

incorrect transcriptions. The fact of the RWC Music Database samples are not normalized

is enough for the algorithm to identify the wrong instrument of a note: it may choose an

instrument with the closest amplitude (sound volume) to the original note rather than

the one with the closest timbre, since the one which has same amplitude generates less

error.

Transcription of the Whole Mixture

After successfully transcribing the solo performances, the files corresponding to the clar-

inet, saxophone and trombone solo performances, were mixed in a single monaural file,

which was used as the input file of our system. Table 7.3 presents the results of the tran-

scription of the mixture file. Results are also presented as Recall Precision and F-Measure,

which are standard measuring in information retrieval.

Due to the presence of noise and also latency in several samples of the RWC Music

Instrument Database, the transcription achieved by the algorithm was shifted to the left

to compensate the delay of the instruments samples. Figure 7.18 shows that between the

start of the sample and the earing of the sound we have a latency of 125 milisseconds.

Since the notes from the transcription are only considered correct if their onsets are within

± 50 milisseconds interval from the original music score, almost all notes were considered

as incorrect. The algorithm shifted the transcription around 125 milisseconds earlier to

compensate the delay of the internal synthesizers.

To test if the algorithm was working properly discarding the latency of the inter-

118

7.3. Automatic Music Transcription of Multi-Timbral Music

Table 7.4: Results of the proposed approach for the whole mixture and for each instrument
inside the whole mixture.

F-Measure Recall Precision
Whole Mixture 0.68 0.54 0.93
Alto Saxophone 0.61 0.46 0.9

Clarinet 0.77 0.64 0.96
Trombone 0.67 0.54 0.88

Table 7.5: Comparison of the algorithms.

Proposed Previous
Approach Approach

Whole F-measure 0.68 0.51
Mixture Precision 0.93 0.66

Recall 0.54 0.42
Alto F-measure 0.61 0.65

Saxophone Precision 0.9 0.71
Recall 0.46 0.60

F-measure 0.77 0.44
Clarinet Precision 0.96 0.69

Recall 0.64 0.32
F-measure 0.67 0.45

Trombone Precision 0.88 0.52
Recall 0.54 0.4

nal samples, we evaluated the transcription generated by the genetic algorithm with 175

milliseconds of tolerance (125 for the internal samples and 50 milisseconds for the tran-

scription interval). The algorithm obtained a final score of 68% of F-Measure (see Table

7.4), which appear to be very promising results, when compared to the results obtained

in the 2008 MIREX contest (Downie, 2008b), where the winning automatic music tran-

scription algorithm (Multiple F0 Estimation and Tracking Task, subtask no. 2) had an

F-measure of 61.4%.

One final test was made, running our previous approach (see Section 7.2 on the same

data set, as a mean of comparison. Table 7.5 shows the comparison of both approaches.

Despite the proposed method performing better than the previous method when tran-

scribing the whole mixture (it has 68% of F-Measure against 51%), we can see that the

previous method performed better on the notes played by the alto saxophone. This hap-

pens because the internal synthesizer of the piano has a more close spectrum to the alto

saxophone played on the mixture, rather than the spectrum of the internal saxophone

synthesizer.

119

7. Moving to Real Audio Recordings

7.3.7 Additional Constraints

If we make a closer and deeper analysis of this approach, specially on the error measure-

ment module of the fitness function, there is still one main problem that contributes to

harmonic overfitting: the fitness function relies on the linear scale instead of relying on

the logarithmic scale of the frequency spectrum. This way, by considering the linear scale,

the system gives more importance to frequency components with higher amplitude when

measuring the error differences, leading the algorithm to create additional notes in these

frequency locations to overcome those differences.

Also, the spatial complexity of the search space is enormous. There is an almost

infinite combination of musical notes, given that they can occur at any time and have

any duration. This way, and in order to work properly, the system lacks some kind of

mechanism to detect where the musical notes are present (e.g. onset detector) and focus

only on those spots of the audio signal to perform the transcription.

7.4 Summary

As previously discussed in Sections 7.2.7 and 7.3.7, the main drawback of the approaches

presented during this chapter relies on the spectral envelope modeling, i.e. harmonic

overfitting still exists. In order to avoid the precision values to start decreasing at some

point during evolution, spectral envelope modeling should be improved by taking into

consideration both note and time: different musical notes of the same musical source may

have different spectral envelopes, according to their frequency region, and the spectral

envelope should be able to evolve through time.

If we look closer to the error measurement module of the fitness functions, there is

also another aspect that contributes to the harmonic overfitting: the fitness functions

rely on the linear scale instead of the relying on the logarithmic scale of the frequency

spectrum. By considering the linear scale, the proposed systems give more importance

to frequency components with higher amplitude when measuring the error differences,

leading the corresponding algorithm to create additional notes in those frequency locations

to overcome those differences. Also, the noise is not being estimated, leading to errors in

the transcription.

There is also a performance handicap. During Section 7.2.6 it was described that, for

better performance, the original audio was split into smaller fragments and a different

run of the algorithm was processed along each fragment. The results of each run were

then merged to generate the whole transcription. This was done because the spatial

complexity of the search space is enormous: there is an almost infinite combination of

musical notes, given that they can occur at any time and have any duration. This way,

the described approaches lack some kind of mechanism to detect where the musical notes

are present (onset detector) so that they could perform the transcription only on those

areas of the signal. Also, the CPU time needed for transcribing a 5 seconds fragment

with 1500 generations is around 7 hours, using one core of a Dual Core 2.0 GHz processor,

which is a lot of computational time.

120

Chapter 8

Gene Fragment Competition:

Improving the Performance of the

Algorithm for Real Audio Transcription

During our research, specially when proposing the approaches presented in the previous

chapter, we have noticed that the individuals evaluation demanded a lot of digital signal

processing based on an high number of STFTs, which resulted on heavy computational

cost. We also realized that, during the evaluation of an individual, it was possible to know

which were the better and worst audio fragments of the corresponding individual. In order

to solve this problem related to the computational cost, we used the information obtained

during evaluation and created a new and intelligent recombination operator. This resulted

in a Hybrid Genetic Algorithm, which we baptized as Gene Fragment Competition.

This new algorithm is general enough to be used for solving other kind of decomposable

problems, specially in signal and image processing.

This chapter presents the Gene Fragment Competition algorithm and shows its appli-

cability not only in the Automatic Transcription of Music problem, but also in other kinds

of decomposable problems, such as the Royal Roads functions. The presented method is

also compared with other classical evolutionary approaches on the Royal Road functions.

8.1 Introduction

Although Genetic Algorithms are very good at rapidly identifying good areas of the search

space (exploration), they are often less good at refining near-optimal solutions (exploita-

tion). For instance: when a Genetic Algorithm is applied to the “OneMax” problem1,

near-optimal solutions are quickly found but convergence to the optimal solution is slow.

Therefore, hybrid GAs using local search can search more efficiently by incorporating a

1The OneMax problem is a binary maximization problem, where the fitness function is simply the
count of the number of genes set to “1”

121

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

more systematic search in the vicinity of “good” solutions (Hart et al., 2004). For instance:

a bit-flipping hill-climber could be quickly applied within each generation for the OneMax

to ensure fast convergence. Memetic Algorithms (MAs) are a class of stochastic global

search heuristics in which Evolutionary Algorithms-based approaches are combined with

local search techniques to improve the quality of the solutions created by evolution (Hart

et al., 2004). This means that Memetic Algorithms go a further step by combining the

robustness of GAs on identifying good areas of the search space with local search for refin-

ing near-optimal solutions. Recent studies on MAs have revealed their successes on a wide

variety of real world problems (Hart et al., 2004). Particularly, they not only converge

to high quality solutions, but also search more efficiently than their conventional coun-

terparts. In diverse contexts, MAs are also commonly known as hybrid EAs, Baldwinian

EAs, Lamarkian EAs, cultural algorithms and genetic local search.

However, a new problem with traditional local search operators arises due to the cost of

evaluation. If the calculation of the fitness function is heavy, having local search operators

changing each individual several times means lots of individual evaluations and, thus, lots

of computational cost. Therefore, as in our problem, where the evaluation of a single

individual takes a lot of computational effort, this might be a prohibitive solution.

Fitness evaluation allows us to measure the whole “quality” of each individual, and in

many cases, it is obtained by simply combining the values of the evaluations of each gene

or gene fragment. In these cases where the evaluation of gene fragments is possible, those

fragment evaluation values are not taken on consideration during recombination.

Gene Fragment Competition is a different approach to recombination that takes ad-

vantage of gene/fragment evaluation and gene/fragment selection as a way to speed up

the process, especially when evaluation of individuals is a demanding computational task.

In our specific problem, this is useful given that by recombining the best fragments of

each individual, when generating the offspring, the algorithm has a speedup.

8.2 Gene Fragment Competition

In the traditional GA approach (see Figure 8.1a), genetic algorithms are based on a cy-

cle made of evaluation, selection, recombination and mutation: individuals are evaluated,

based on their evaluation parents are selected for recombination, creating new individuals

that are subject to mutation. On the other hand classical MAs apply a new local search

operator in each individual just after the mutation (or even after recombination), looking

for better solutions in the vicinity of already found good solutions. Gene Fragment Com-

petition uses a different kind of global/local search approach: instead of using separate

operations for global and local search, like the Memetic Algorithms, a different type of

recombination is proposed which is responsible for a semi-global/semi-local search.

We can consider that traditional recombination operators are made of two operations:

fragmentation (parent’s genes are divided on two or more fragments), and merging (these

gene fragments are merged to create new individuals). The main idea of the proposed

method is to add two additional steps inside recombination: gene fragment evaluation and

gene fragment selection. Parent genes are split on n fragments, each fragment is evaluated

122

8.2. Gene Fragment Competition

Figure 8.1: Classic Genetic Algorithm approach (A) vs Traditional Memetic Algorithm
approach (B) vs Gene Fragment Competition (C).

and then a selection method is applied to choose the best gene fragments, which will be

merged to create a new born individual. To split the parents in n fragments two methods

can be applied: static fragment size, on which equally sized fragments are created or

dynamic fragment size where fragments with random sizes are created. For selecting gene

fragments classic selection methods also apply (roulette, tournament, etc.). Although

standard recombination operators breed two individuals from two parents, our method

breeds only one individual from two or more parents.

As can be seen, a very important requirement must be fulfilled: it must be possible

to evaluate gene fragments. If this is not possible, the method cannot be applied. This

does not mean that the system must be able to evaluate individual genes, or every kind

of group of genes. In some applications it simply means that some special type of frag-

mentation must be applied to make possible the evaluation of its fragment (see section

8.3). For instance, in signal processing applications or image processing applications we

can fragment the individual in time fragments or spatial fragments. In the cases when

evaluation is a complex operation a cache feature is highly desirable, for quick evaluation

of gene fragments, since its only a matter of adding partial fitness values.

Many of the canonical aspects of evolutionary algorithms are retained under the Gene

Fragment Competition (see Figure 8.2), allowing a great flexibility in its deployment.

However, each implementation is necessarily application dependent, where the design of a

suitable fragment evaluation is a determinant factor. Thus, the following implementation

issues have been identified:

Fragmentation The genetic representation of an individual is decomposed in several

123

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

Figure 8.2: Outline of the Gene Fragment Competition, compared with the classical GA.
During the recombination each parent is fragmented, the resulting fragments are evaluated
and the best fragments of each parent are selected and merged to generate the offspring.

fragments so that they can be evaluated independently. The Fragmentation process

can use either static fragment sizes, where equally sized fragments are created, or

dynamic, which creates fragments with random sizes.

Fragment Evaluation Ameaningfull merit function must be designed for each fragment.

In this way, the worthiness of a single fragment can be evaluated in order to estimate

the potential contribution to the global solution.

Fragment Selection - Recombination Engine The breeding of the offspring should

promote the emergence of better aggregate solutions. The evolutionary engine re-

quires a scheme for aggregating the whole fitness value from partial ones.

124

8.3. Applying Gene Fragment Competition to Music Transcription

Gene Gene Gene Gene Gene Gene Gene Gene Gene Gene

60 62 64 65 67 69 71 72 74 76

Individual

Figure 8.3: Individual’s encoding on the “Find the sequence problem”.

60 62 64 65 67 69 71 72 74 76

Target

60 63 64 65 66 69 67 74 74 76

Individual 1

0 1 0 0 1 0 4 2 0 0+ + + + + + + + + Fitness = 8

57 64 64 65 66 69 71 72 73 75

Individual 2

3 2 0 0 1 0 0 0 1 1+ + + + + + + + + Fitness = 8

Figure 8.4: Fitness values of Individual1 and Individual2. The fitness value of each
individual is calculated by the sum of the absolute difference between the values of their
genes and the target individual’s genes.

8.2.1 Simple example

Imagine that our goal is to create an individual which is an exact copy of a target sequence

of integer numbers. Therefore the individual’s encoding could be an array of integers,

where each gene would correspond to each sequence number (see Figure 8.3).

Let’s consider that the fitness value is obtained by the sum of the absolute differences

(Equation 8.1) of each individual’s gene (X(i)) and the our target individual (O(i)) (see

Figure 8.4).

Fitness =

genes∑

i=1

|O(i)−X(i)| (8.1)

Important note: since the best individuals are those who are closer to our target and

the fitness function is measuring that distance, the best individuals are those who have

lower fitness values.

If we want to breed a new Individual from the parents Individual1 and Individual2

with 2 random crossover points (dynamic fragment size) our intelligent recombination

operator will calculate the fitness value of each fragment and then choose for the new

born individual the fragments with the best fitnesses (see Figure 8.5).

8.3 Applying Gene Fragment Competition to Music Tran-

scription

To apply the proposed operator to the music transcription problem, for instance the

approach presented in Chapter 7, Section 7.1, there are some remarks. The requirement

125

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

60 63 64 65 66 69 67 74 74 76

Individual 1

0 1 0 0 1 0 4 2 0 0 Fitness = 8

57 64 64 65 66 69 71 72 73 75

Individual 2

3 2 0 0 1 0 0 0 1 1 Fitness = 8

1 7 0

5 1 2 Fr�����t Fitness

Fr�����t Fitness

R��a�� ��	�
 �o ��
 R��a�� ��	�
 �o ��

65 66 69 71 72

New born individual

0 1 0 0 0 Fitness = 2

1 Fragment Fitness

60 63 64

0 1 0

1

74 76

0 0

0

Figure 8.5: Breeding of a new born individual. The best fragments of each father are
inherited to the new born individual.

needed for gene fragment competition is that it must be possible to evaluate genes or gene

fragments. In the music transcription approach presented before, each gene represents

a musical note, and it is not possible to evaluate each note, especially in polyphonic

parts. Nevertheless, there is a solution for that. The overall fitness of each individual

is obtained by adding the STFT differences over the different time frames, which means

that although it is not possible to evaluate note by note, it is possible to evaluate time

frames (for instance, it is possible to evaluate the behavior of an individual on a time

fragment between time=2.0s and time=4.0s). This way, it is possible to map that time

interval to the genes (notes) acting on that time fragment. If some notes on that fragment

began before or end after the time frontiers, the note is split, and only the inside part are

considered. Later, during the recombination merge phase, if a note ends on the exact same

time that a similar one begins, notes are merged as one, since the algorithm considers that

a previous split happened.

For global selection, the “deterministic tournament” method was used, but in fragment

selection a “non-deterministic tournament” method was used as a means to preserve some

biodiversity. Regarding fragment size, that in this case is measured in seconds since we

consider time fragments, the value of 5 seconds was used. Increasing the fragment size

should decrease the impact of the operator, and decreasing fragment size has the side

effect of splitting too much the notes.

For each individual, a cache feature was implemented, that stored the fitness values for

each time frame, which means that evaluating a time fragment is simply done by adding

fitness values of its internal time frames.

126

8.3. Applying Gene Fragment Competition to Music Transcription

Table 8.1: Algorithms parameters.

Common Parameters
Population 100
Survivor Selection Best 100 individuals (population size)
Crossover Probability 75%
Mutation Probability 1%
Note Minimal Duration 20 ms

Classic GA
Selection Deterministic Tournament (5 individuals)
Recombination 1-point time crossover (with eventual note split)

Gene Fragment
Individual Selection Deterministic Tournament (5 individuals)
Fragment Selection Tournament (5 individuals)
Fragment size 5 seconds3

8.3.1 Experiments and Results

To analyze the impact of the presented method, several tests were made. The proposed

method was applied on our music transcription approach on an audio file with the first 30

seconds of the piano performance of the Schubert’s Impromptu No.2 in E Minor. Each set

of tests consists in 1000 generations, and at least 4 different runs2. The values presented

correspond to the average values.

In the first set of tests, there were 3 different scenarios: classic GA approach, static

fragment size and dynamic fragment size of the proposed method (see Table 8.1). In these

tests (and on the following ones), the presented values are the fitness values. Since our

goal is not to evaluate our music transcription approach, presenting other results (% of

transcribed notes, etc) would remove the focus from the Gene Fragment Competition.

Table 8.2 and left part of the Figure 8.6 show the fitness evolution (average fitness

values over several different runs) over 1000 generations. Once again, it is important to

recall that in our implementation, since fitness measure the error between STFT’s, the

lower values of fitness, means better individuals.

The first test, shows us that the proposed method achieves a better performance in

this scenario. Nevertheless, there are other situations that needed to be tested in order

to discard other hypothesis. One question that could rise is regarding the “Tournament”

vs. “Deterministic Tournament” selection. A new set of tests was run using the classic

GA, but changing the selection mode from “Deterministic Tournament” to “tournament”.

The obtained results were identical within a range ≃ 0.1%. The other question that

could rise is related to mutation probabilities. Since the proposed method fragments the

genes, could it be that changing the mutation probabilities of the classic GA could result

in much better results? A new set of tests was made with classic GA approach with

different mutation probabilities (5%, 1% and 0.05%). Figure 8.6(right) and Table 8.2

show the results. Using different mutation probabilities above (5%) or bellow (0.5%) did

2The value differences between runs are very small (< 3%)

127

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

Figure 8.6: Fitness values over 1000 generations using classic GA, using static fragment
size gene competition and dynamic fragment size gene competition (left) and with different
values of mutation probabilities in generic GA approach (right).

Table 8.2: Average best fitness values over 1000 generations using classic GA, using static
GFC and dynamic GFC.

Generation GA (1%) Dyn GFC Static GFC GA (0,5)% GA (5%)
250 1,808 E12 1,670 E12 1,718 E12 1,839 E12 1,882 E12
500 1,690 E12 1,554 E12 1,580 E12 1,708 E12 1,811 E12
750 1,621 E12 1,492 E12 1,512 E12 1,624 E12 1,765 E12
1000 1,571 E12 1,455 E12 1,464 E12 1,563 E12 1,728 E12

not present significant improvements.

Tests were also made with another audio file to confirm the earlier results. A 30 seconds

audio file of Mozart’s Piano Sonata n. 17 in B flat K5704 was used and is presented in

Figure 8.7. Once again the proposed method presents an increase of performance. In this

test the performance difference between static and dynamic fragment size also increases

comparatively with the initial test.

It is important to say that in both tests by applying our operator with dynamic size,

we have achieved in only 500 generations the same results the classical GA achieves in

1000 generations, which is a very significant gain in performance. Moreover, this new

method employ less computational cost than the standard GA since each recombination

operator only generates one offspring, which in turn results in less computing time.

Although the Gene Fragment Competition presents some requirements that are not

fulfilled on several GA applications (capability of evaluating fragment of genes), it is shown

that at least in some scenarios can achieve an important performance increase.

8.4 Gene Fragment Competition: a Deeper Analysis

Throughout the rest of this chapter, we apply two decomposable and cooperative ap-

proaches: Gene Fragment Competition and Parisian approach (“Individual Evolution”)

which exploit the modularity and hierarchical structure of the Royal Road functions (see

4Audio files are available at: http://www.native-instruments.com/index.php?id=apsounds.

128

http://www.native-instruments.com/index.php?id=apsounds

8.4. Gene Fragment Competition: a Deeper Analysis

Figure 8.7: Average best fitness values over 1000 generations using classic GA, using
static fragment size gene competition and dynamic fragment size gene competition for the
Mozart’s Piano Sonata.

Section 8.4.3). We will empirically show that both approaches overcome standard genetic

algorithms, previous studied multiple-population co-evolutionary approaches, and most

importantly, the random mutation hill-climber on Royal Road functions. The optimal

number of separation components for each approach is found, as well as the ideal popula-

tion size for each algorithm. An explanation for each of these numbers is also proposed.

The Parisian Approach is included in this study because, besides being a very well

known decomposable approach, it also has some characteristics in common with the Gene

Fragment Competition like, for instance, local and global evaluation.

8.4.1 Comparing Gene Fragment Competition and Parisian Approach

Traditionally, evolutionary algorithms (EAs) encode each individual as a possible solution

to the whole problem. In other words: each individual represents the entire problem.

As a natural extension to standard EAs, problem decomposition emerged for addressing

complex problems. Although many problem decomposition methods rely on dividing the

main problem in several less complex sub-problems, launching independent populations

(species) to solve each of them, there are also other problem decomposition approaches

that require a single population. Besides Gene Fragment Competition (GFC), Parisian

approach (Collet et al., 2000)(often called Individual Evolution) is also a single-population

problem decomposition approach, where the problem can be decomposed in smaller sub-

problems, so that they can be evaluated individually reducing the size of the search space.

In Individual Evolution only part of the problem is encoded on each individual, hav-

ing all individuals in the same population, interacting with each other. This approach is

similar to the Michigan approach (Holland, 1975) developed for classifier systems, where

each individual represents a single rule and the solution is a rule base made of some of

the best individuals of the final population. Each solution (aggregate solution or global

129

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

solution) is a set of partial solutions (individuals). Parisian approach can then be con-

sidered as a single population approach to cooperative co-evolution: despite being on the

same population, the individuals interact between themselves in order to evolve a better

aggregate or global solution. This stresses the need of two fitness measures (local and

global) so that the individuals can be evaluated individually (local fitness) and also how

they interact with each-other as an aggregate solution (global fitness).

As stated above, Gene Fragment Competition is a more recent concept and differs

mainly from the Individual Evolution on the fact that each individual encodes the whole

solution. Despite those differences, GFC employs a recombination mechanism where the

parents’s genes are fragmented and evaluated at fragment level. Thus, similarly with

Parisian approach, GFC also employs two kinds of fitness evaluation: local evaluation or

partial solution evaluation (fragment fitness) and global evaluation (individual fitness).

While Parisian approach is restricted to problems where the solution can be decom-

posed into homogenous elements or components, this is not mandatory in GFC as long

as individuals can be evaluated in fragments.

We take advantage of the modular and hierarchical structure of the Royal Road test

functions to adapt them to both Individual Evolution and Gene Fragment Competition. It

is our claim that these functions may serve in the theoretical studies of single-population

problem decomposable approaches, such as the Parisian and Gene Fragment Competition,

since the landscape can be varied in a number of ways, and the global optimum and all

possible fitness values are known in advance. Besides presenting a comparison between a

standard genetic algorithm and both Individual Evolution and Gene Fragment Competi-

tion on several instances of the Royal Road functions, it is also presented a comparison

between these single-population problem decomposition approaches and the results of a

previous study made by Ochoa et al. (2007) about multi-population co-evolutionary ap-

proaches to the same Royal Road functions. One final comparison was made against

the Random Mutation Hill Climber. Both Individual Evolution and GFC explore all the

possible problem decompositions with modular Royal Road functions. Our results show

that Parisian approach and Gene Fragment Competition overcome not only the multi-

population co-evolutionary approach but also the Random Mutation Hill Climber in all

functions.

8.4.2 Parisian Approach

The main difference from traditional approaches to evolutionary computing relies on a

single individual in the population representing only a part of the problem solution. As

previously mentioned Parisian approach is similar with the Michigan approach (Holland,

1992a), which was developed for classifier systems since it requires an aggregation of

multiple individuals in order to obtain a solution to the problem being studied. This

favors the evolution of the whole population instead of the emergence of only a single

dominant solution. The main motivation behind this approach is to make an efficient use

of the genetic search process. First, the algorithm discards less computational effort at the

end of execution, while considering more than a single best individual as output. Second,

the computational expense of the fitness function evaluation is considerably reduced for

130

8.4. Gene Fragment Competition: a Deeper Analysis

Figure 8.8: Outline of the Parisian approach, compared with the classical GA, done by
Dunn et al.[2]. Fitness evaluation takes into account the local and global contribution of
an individual.

a single individual. Successful applications of the Parisian approach can be found in the

image analysis, signal processing and also in data retrieval applications (Collet et al., 2000;

Louchet et al., 2002; Dunn et al., 2005; Landrin-Schweitzer et al., 2006; Dunn et al., 2006;

Olague and Puente, 2006).

Many of the canonical aspects of evolutionary algorithms are retained under the

Parisian approach (see Figure 8.8), allowing a great flexibility in its deployment. How-

ever, the applicability of this algorithm is restricted to problems where the solution can

be decomposed into homogeneous elements or components, whose individual contribution

to the complete solution can be evaluated. Therefore, each implementation is necessarily

application dependent, where the design of a suitable problem decomposition is a deter-

minant factor. Thus, the following implementation issues have been identified:

Partial Encoding The genetic representation used for a single individual encodes a par-

131

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

tial solution.

Order Dependency Although in previous implementations of Parisian approach the

aggregation process was not order dependent, the order of the individuals (partial

solutions) was not relevant for the global solution, there are some specific problems

where order plays a very important role. For example: An aggregate solution of

{Ind1, Ind2, Ind3} might not be the same as {Ind3, Ind1, Ind2}.

Local Fitness A meaningfull merit function must be designed for each partial solution.

In this way, the worthiness of a single individual can be evaluated in order to estimate

the potential contribution to an aggregate solution.

Global Fitness A method for the aggregation of multiple partial solutions must be de-

termined. In turn, a problem defined fitness function can be evaluated from this

complete solution. However, the worthiness of this composite solution should be

reflected on each partial solution.

Evolutionary Engine The evolution of the complete population should promote the

emergence of better aggregate solutions. The evolutionary engine requires a scheme

for combining local and global fitness values. It may also require a diversity preserv-

ing mechanism in order to mantain a set of complementary partial solutions.

8.4.3 Royal Road Functions and the

Hitchhiking Phenomena

The building-block hypothesis (Holland, 1975) states that a genetic algorithm performs

well when short, low-order, highly-fit schemata (building blocks) recombine to form even

more highly-fit, higher-order schemata. The ability to produce fitter and fitter partial

solutions by combining building blocks is believed to be the primary source of the GA’s

search power. Although there have been recent criticism, empirical evidence, and theo-

retical arguments against the building-blocks hypothesis (Reeves and Rowe, 2003), the

study of schemata has been fundamental in our understanding of genetic algorithms. The

first counter-evidence against the building-block hypothesis came from Holland himself, in

collaboration with Mitchell et al. (1992); Forrest and Mitchell (1993) when they proposed

the Royal Road functions which emphasize one feature of the fitness landscapes: hierarchy

of schemata.

The Royal Road functions were created to demonstrate the superiority of the genetic

algorithms over local search methods such as hill-climbing and then prove the usefulness

of the recombination. Surprisingly, the results from their investigation demonstrated

the opposite: the random mutation hill-climber significantly outperformed the genetic

algorithm on those functions. In the random mutation hill-climber (RMHC) a string is

initially generated and then its fitness function is evaluated. Afterwards that string is

mutated (bit flip mutation) at a random locus, and a new fitness is calculated. If the

new generated string has an equal or higher fitness than the previous one it replaces the

old string. This process is iterated until the string reaches the optimal solution or until a

132

8.4. Gene Fragment Competition: a Deeper Analysis

s1 =11111111**; c1 = 8

s2 =********11111111**; c2 = 8

s3 =****************11111111**; c3 = 8

s4 =************************11111111********************************; c4 = 8

s5 =********************************11111111************************; c5 = 8

s6 =**11111111****************; c6 = 8

s7 =**11111111********; c7 = 8

s8 =**11111111; c8 = 8

sopt =11

Figure 8.9: Royal Road function R1. An optimal string is broken up into eight building
blocks. The function R1(x) (where x is a bit string) is computed by summing the co-
efficients cs corresponding to each of the given schemas of which x is an instance. For
example, R1(11111111 . . . 0) = 8, and R1(1111111100 . . . 011111111) = 16. Here cs =
order(s).

maximum number of generations is achieved. This hill-climber algorithm revealed to be

the ideal for the Royal Road functions since it traverses the “plateaus” and achieves the

successive fitness levels. However, RMHC, like any other hill-climber algorithm, will have

problems with any function with many local optima.

In Mitchell et al. (1992); Forrest and Mitchell (1993) the authors also found that

despite the contribution of the crossover to the genetic algorithm performance on the

Royal Road functions, there was a detrimental role of the intermidate stepping stones

(intermediate-order schemata obtained by recombining fit low-order schemata). This is

caused by the hitchhiking phenomenon (also called spurious correlation): unfavorable

alleles are spread over the population due to an early association with an instance of an

highly fit schema. In Mitchell et al. (1994) the same authors described the hitchhiking

phenomenon as follows: “once an instance of a higher-order schema is discovered, its high

fitness allows the schema so spread quickly in the population, with 0s in other positions

in the string hitchhiking along with the 1s in the schema’s defined positions. Hitchhiking

can in general be a serious bottleneck for the GA.”

Royal Road Function R1

The function R1 (Figure 8.9) is computed very simply: a bit string x gets 8 points added

to its fitness for each of the given order-8 schemata (si = 1 . . . 8) of which it is an instance.

For example, if x contains exactly two of the order-8 building blocks, then R1(x) = 16.

Likewise, R1(111 . . . 1) = 64. More generally, the value R1(x) is the sum of the coefficients

cs corresponding to each given schema of which x is an instance. Here cs is equal to order

(s). The fitness contribution from an intermediate stepping stone (such as the combination

of s1 and s3 in Figure 8.9) is thus a linear combination of the fitness contribution of the

lower-level components. R1 is similar to the plateau problem described by Schaffer and

Eshelman (1991).

133

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

s1 =11111111**; c1 = 8

s2 =********11111111**; c2 = 8

s3 =****************11111111**; c3 = 8

s4 =************************11111111********************************; c4 = 8

s5 =********************************11111111************************; c5 = 8

s6 =**11111111****************; c6 = 8

s7 =**11111111********; c7 = 8

s8 =**11111111; c8 = 8

s9 =1111111111111111**; c1 = 16

s10 =****************1111111111111111********************************; c2 = 16

s11 =********************************1111111111111111****************; c3 = 16

s12 =**1111111111111111; c4 = 16

s13 =11111111111111111111111111111111********************************; c5 = 32

s14 =********************************11111111111111111111111111111111; c6 = 32

sopt =11

Figure 8.10: Royal Road function R2. Some intermediate schemata are added to the
those in R1. Namely, s9 . . . s14. R2 is computed in the same way as R1: by summing the
coefficients cs corresponding to each of the given schemas of which x is an instance. For
example, R2(1111111100 . . . 011111111) = 16, but R2(111111111111111100 . . . 0) = 32.
R2(11111111 . . . 1) = 192.

Royal Road Function R2

In R2, the fitness contribution of some intermediate stepping stones is much higher (Figure

8.10). R2 is calculated in the same way as R1: the fitness of a bit string x is the sum of the

coefficients corresponding to each schema (s1 . . . s14) of which a string is an instance. For

example, R2(1111111100 . . . 011111111) = 16, since the string is an instance of both s1 and

s8, but R2(111111111111111100 . . . 0) = 32, since the string is an instance of s1, s2 and s9.

Therefore, a string’s fitness depends not only on the number of 8-bit schemas to which it

belongs, but also on their positions in the string. The optimum string x = 11111111 . . . 1

has fitness 192, since the string is an instance of each schema on the list.

Given the increased number of stepping stones, in Mitchell et al. (1992) the authors

were expecting the genetic algorithm to perform better on R2 rather than on R1, since in

R2 there is a clear path via crossover from pairs of the initial order-8 schemata (s1 . . . s8), to

the four order-16 schemata (s19 . . . s12), and from the two order-32 schemata (s13 and s14),

and finally to the optimum (sopt). They believed that the presence of this stronger path

would speed up the genetic algorithm’s discovery of the optimum, but their experiments

showed the opposite: the GA performed significantly better on R1 that on R2. In Forrest

and Mitchell (1993) they noticed that this bottleneck was caused by hitchhicking.

8.4.4 Methodology

As cooperative and decomposable approaches to the Royal Road functions we used both

Parisian approach and Gene Fragment Competition. Besides comparing those two ap-

proaches with each-other it is also our aim to make a further comparison with a previous

134

8.4. Gene Fragment Competition: a Deeper Analysis

study made by Ochoa et al. (2007) on the same Royal Road functions since it uses multiple-

population co-evolutionary approach and also with the Random Mutation Hill Climber,

which is very well known for being the best algorithm performing on the Royal Road

functions (Forrest and Mitchell, 1993).

In order to adapt the Royal Road functions to the decomposable setting, a solution

string is broken into equally sized sub-strings that contain one (or more) of the original

function low-order schemata. Each of these substring represents a problem subcomponent

or fragment and it is assigned to an individual in the Individual Evolution and assigned to

a fragment in Gene Fragment Competition. To maintain resemblance with the originally

proposed Royal Road functions, we used functions (both R1 and R2) with low order

schemata (building blocks - BBs) of length 8. Both Parisian and GFC were evaluated by

comparing its performance with a standard genetic algorithm on the Royal Road functions

(R1 and R2).

For a realistic comparison with the previous works made by Ochoa et al. (2007) on

applying multi-population decomposition on both Royal Road (R1 and R2), we consid-

ered functions with string length L=64, 128 and 256 (functions containing 8, 16 and 32

of those BBs). In other words: we considered several numbers of components/fragments,

starting from the minimum of two components/fragments and doubling this number up

to the maximum given by the number of BBs in the function. This corresponds to hav-

ing the Royal Road functions R1 and R2 decomposed in components/fragments having,

respectively, a string length L equal to half of total Royal Road function length (half

the number of BBs), down to fragments/components having a string length of 8 (i.e. a

single BB or schemata). The tested population size values were also 64, 128, 256 and

512, respectively. The remaining algorithm parameters are the same used in Ochoa et al.

(2007), so we can have a true comparison, and were applied to both Parisian approach and

Gene Fragment Competition and held constant over the experiments: binary tournament

selection, 2-point crossover (rate = 0.8) and bit-flip mutation (rate = 1
L
, L = chromosome

length), and 50 runs for experiments.

8.4.5 Parisian approach

The Individual Evolution approach to both Royal Road functions R1 and R2 consists in

breaking the solution string into equally sized-substrings, which contain one (or more) of

the original function low-order schemata. Each of those substrings will be encoded in the

individuals genome. Since in this problem the optimal string is x = 11111111 . . . 1, this

means that all the individuals composing this aggregate solution will be equal (11 . . . 11

substrings). Thus, we decided not to use any niche strategy mechanism. Otherwise the

fitness of similar individuals would be dramatically reduced and the optimal string would

never be found. Regarding the problem specific implementation issues identified in Section

2, we did the following:

Partial Encoding The genetic representation used for a single individual encodes a par-

tial solution. Thus it will encode from order-8 schemata (1 BB) doubling this value

up to half of the optimal string size, L.

135

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

Order Dependency Since the optimal solution sopt is x = 11111111 . . . 1, the order of

the individuals was not considered relevant when making up the whole solution: all

partial solutions (substrings with maximum fitness) will be exactly the same.

Local Fitness The individuals were evaluated according to the Royal Road functions.

Global Fitness The best individuals are selected from the population and then aggre-

gated to compose a single aggregate solution. This solution is then evaluated ac-

cording to the Royal Road functions R1 and R2.

Evolutionary Engine As previously mentioned there was no niche strategy mechanism

since the optimal string sopt is composed by equal individuals (all of them will be

substrings of (11111111 . . . 1).

8.4.6 Gene Fragment Competition

The Gene Fragment Competition approach to the Royal Road functions R1 and R2 con-

sists in assigning each individual to a possible solution. During the recombination process

the individuals are broken in several fragments, breaking the solution string into equally

sized-substrings, which contain one (or more) of the original function low-order schemata.

Regarding the problem specific implementation issues identified in Section 3, we did the

following:

Fragmentation The genetic representation of an individual is decomposed in several

fragments so that they can be evaluated independently. The Fragmentation process

uses static fragment sizes, where equally sized fragments are created. The size of

those fragments varies from 8 bit strings (one order-8 schemata) doubling its size

up to half of the optimal string size, L.

Fragment Evaluation The worthiness of a single gene fragment is evaluated according

to both Royal Road functions R1 and R2..

Fragment Selection - Recombination Engine The selection of each fragment to gen-

erate the offspring is the classical binary tournament.

8.4.7 Results and Analysis

The first set of tests consisted in comparing how each algorithm performed for each differ-

ent population size. Although it is not fair to compare a classical genetic algorithm with

different population sizes, we are comparing three different algorithms: standard genetic

algorithm, Parisian approach and Gene Fragment Competition. The population values

that gave the best results for each set of experiments are present in Table 8.3. Those values

were also used in all other experiments. Notice that whenever the number of components

or fragments is the same as the number of building blocks (BBs), the best population size

is always 512, except for Individual Evolution with 32 components which could not be

136

8.4. Gene Fragment Competition: a Deeper Analysis

Table 8.3: Optimal population sizes for Standard Genetic Algorithm, Parisian approach
and Gene Fragment Competition. The tested population values were: 64, 128, 256 and
512. For Parisian and GFC the best performance over all the numbers of fragments (from 2
up to the block size) was considered. L stands for the Royal Road function’s string length.
The number of evaluations for the Parisian approach with 32 components (Parisian32) was
too big.

R1 R2
L = 64 L = 128 L = 256 L = 64 L = 128 L = 256
(8 BBs) (16 BBs) (32 BBs) (8 BBs) (16 BBs) (32 BBs)

SGA 64 512 64 64 256 128
GFC2 64 64 64 64 64 64
GFC4 256 64 64 128 128 64
GFC8 512 128 64 512 64 64
GFC16 512 64 512 64
GFC32 512 INF

Parisian2 64 64 512 64 64 256
Parisian4 64 64 64 64 64 64
Parisian8 512 64 64 512 64 64
Parisian16 512 128 512 128
Parisian32 INF INF

determined. In the Parisian approach, having the problem decomposed in several compo-

nents is the same as having several individuals to form the possible solution. Since the

optimal solution is sopt is x = (11111111 . . . 11111111), all the individuals composing it

must be optimal and completely equal. If the population size increases, the probability

of having completely equal and optimal individuals also increases. This is why when the

number of components is the maximum possible (number of components = number of

BBs) the algorithm performs better with the population size also set to the maximum

(512). Bigger populations also means more recombinations per generation and Gene Frag-

ment Competition exploits recombination to generate fitter individuals by gathering the

best fragments of each parent. Thus, when the number of fragments is maximized, simi-

larly as it happens with the Parisian approach, GFC algorithm performs better with the

maximum population size. Almost all the other instances performed better with popu-

lation size = 64. This happens because with greater population the algorithm tends to

have slower convergence, therefore it needs more generations and thus, more evaluations

to discover the optimal string.

Although Parisian approach performs better than Gene Fragment Competition in both

Royal Road functions (see Table 8.4), its performance, after some point, drops completely

when the number of components continues to increase. As previously mentioned, having

the global solution decomposed in several components, stresses the need to have that same

number of individuals completely equal in order to find the global solution. Therefore if

the number of components starts to increase, it also increases the number of the individuals

needed to be completely equal and optimal, decreasing exponentially the probability of

having that number of optimal individuals among the population: any of them can suffer

137

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

mutations, be discarded between generations or even replaced by a less fit offspring. On

the other hand GFC performs better when the number of fragments is the same as the

number of building blocks.

Table 8.4: Average number of evaluations and standard deviations (×102) to find the
optimal string in both R1 and R2 functions. The results of a previous study in the
literature about multi-population co-evolutionary approaches[7] are also included (CCEA),
as well as the Random Mutation Hill Climber (RHMC). Both Parisian and GFC methods
significantly overcome both CCEAs and RHMC.

R1
Algorithm L=64 (8 BBS) L=128 (16 BBs) L=256 (32 BBs)

SGA 211.66 (128.06) 654.5 (291.05) 2633.54 (896.85)
CCEA2 165.4 (66.22) 571.4 (270.62) 2161.2 (768.20)
CCEA4 142.2 (71.56) 402.2 (143.18) 1473.9 (577.42)
CCEA8 114.1 (43.30) 327.1 (130.71) 1094.8 (464.03)
CCEA16 365.2 (128.84) 851.5 (319.73)
CCEA32 1140.9 (352.26)
GFC2 201.8 (90.58) 624.9 (206.79) 2367.84 (927.23)
GFC4 149.98 (63.54) 546.04 (314.03) 1843.86 (654.87)
GFC8 56.22 (24.07) 463.84 (207.96) 1760.08 (651.49)
GFC16 172.2 (121.18) 1477.16 (423.91)
GFC32 476.9 (312.23)
Parisian2 87.62 (67.52) 227.66 (137.21) 689.58 (336.35)
Parisian4 54.42 (45.39) 99.04 (65.88) 240.34 (136.35)
Parisian8 99.58 (76.88) 195.14 (191) 136.6 (77.26)
Parisian16 38 543.24 (33 701.63) 115 197.18 (111 628.6)
Parisian32 INF

R2
Algorithm L=64 (8 BBS) L=128 (16 BBs) L=256 (32 BBs)

SGA 299.1 (158.03) 1025.94 (442.72) 3643.92 (1902.96)
CCEA2 173.5 (74.76) 640.8 (301.91) 2480.1 (1141.24)
CCEA4 115.6 (51.22) 412.2 (214.98) 1432.1 (472.53)
CCEA8 127.0 (56.36) 305.7 (92.60) 1094.5.52 (430.02)
CCEA16 399.9 (142.02) 876.2 (330.46)
CCEA32 1389.2 (365.93)
GFC2 203.6 (98.74) 702.54 (281.63) 2100.58 (605.92)
GFC4 149.12 (95.93) 542 (199.61) 1857.46 (684.64)
GFC8 59.82 (37.75) 459.26 (194.48) 1660.52 (469.93)
GFC16 170.94 (171.87) 1471.9 (608.44)
GFC32 576.68 (518.77)
Parisian2 80.38 (50.44) 319.24 (187.72) 1092.1 (502.79)
Parisian4 54.42 (45.39) 99.04 (65.88) 330.12 (195.81)
Parisian8 99.58 (76.88) 195.14 (191) 142 (88.39)
Parisian16 38 543.24 (33 701.63) 115 197.18 (111 628.6)
Parisian32 INF

R1 and R2

Algorithm L=64 (8 BBS) L=128 (16 BBs) L=256 (32 BBs)
RHMC 66.74 (36.57) 176.44 (79.55) 386.34 (104.4)

Table 8.4 also shows that GFC and Parisian approach perform very similar in both

Royal Road functions, thus both approaches can cope very well against the hitchhiking

138

8.5. Summary

phenomenon. This happens because the individuals are split in fragments according to

the hierarchical structure of the Royal Road functions. Thus, when recombining individ-

ual fragments or aggregating partial solutions, we are only dealing with the fragments

themselves and not with the fragments’s neighbors genes, which are the most likely po-

sitions for hitchhikers. Another interesting observation is that the behavior on Parisian

approach in R2 only differs from R1 when the number of components is two or when the

number of components is four and the size of the string L is 256. This happens because,

by only evaluating the partial solutions, the fitness of the intermediate stepping stones of

R2 is discarded. This does not happens in GFC because the individuals are evaluated as

a global solution, and so the intermidate stepping stones are taken into account.

The results obtained in Ochoa et al. (2007) using a multiple-population and co-evolutionary

approach to the same problem are also included in Table 8.4 (CCEAs). We can see that

both Parisian approach and Gene Fragment Competition overcome the multi-population

co-evolutionary approach to the problem. The superiority of single-population approaches

is due to focusing the global search space inside only one population, which leads to a

more effective search. In the multiple-population approach there was no interaction be-

tween the individuals of different populations, which means that despite one specie or

sub-population might have several sub-optimal individuals or near sub-optimal, the indi-

viduals in other sub-population or specie could be far way of the desired solution. By

focusing the search space one population all the individuals can interact with each other,

recombine and exchange genetic material, which leads to a faster and better search.

Finally, the last experiment consisted in running the Random Mutation Hill-Climber

(Forrest and Mitchell, 1993) and then compare its performance with both approaches.

This hill-climber algorithm is very well known because it significantly outperforms the

standard genetic algorithm approaches on those Royal Road functions. The RHMC, as it

happened with the other algorithms, was run 50 times for each test. Results are shown

in Table 8.4 (RMHC). By looking at those results we can see that Individual Evolution

outperforms the RMHC in all instances, as well as Gene Fragment Competition overcame

the Random Mutation Hill-Climber, except the instances with string length L = 256 (32

BBs).

8.5 Summary

During our research, we noticed that the individuals evaluation demanded a lot of compu-

tation cost due to the high number of STFTs. We also realized that, during the evaluation

of an individual, it was possible to know which were the better and worst audio fragments

of the corresponding individual. By exploiting this knowledge, we have designed a new

recombination operator for solving the problem related to the computational cost and

created the Gene Fragment Competition.

We have presented an analysis of how decomposable approaches are suitable to decom-

posable problems. Moreover, we have taken advantage of the modular and hierarchical

structure of the Royal Road functions in order to use them as test functions and see

139

8. Gene Fragment Competition: Improving the Performance of the

Algorithm for Real Audio Transcription

how single-population decomposable approaches can overcome the spurious correlation or

hitchhiking.

Our empirical results have shown that both Parisian approach and Gene Fragment

Competition clearly outperform not only the standard genetic algorithm and the multiple-

population co-evolutionary approach but also the random mutation hill-climber, except

the GFC on the instances with string length L = 256.

Hitchhiking is known to be, in general, one of the major bottlenecks of the genetic al-

gorithms performance, thus avoiding hitchhiking boosts the performance of the algorithm.

Applying problem decomposition in building blocks appears to be a very advantageous

optimization technique.

Despite the random mutation hill-climber algorithm has been revealed to be the ideal

for the Royal Road functions in the past, since it traverses the plateaus and achieves the

successive fitness levels, we have shown that single population decomposable approaches

can explore more efficiently the search space on Royal Road functions.

140

Chapter 9

Multiple-F0 Estimation on Piano

Recordings using Spectral Envelope

Modeling and Dynamic Noise Level

Estimation

The main drawback of our proposed approaches (see Chapter 7, Sections 7.2.7 and 7.3.7)

relies on the spectral envelope modeling, i.e. harmonic overfitting still exists. The spec-

tral envelope modeling should be improved having in consideration that different musical

notes of the same musical source may have different spectral envelopes, according to their

frequency region. Also, the spectral envelope should be able to evolve through time.

Those same approaches presented also a performance handicap. This way, and for

better performance, the original audio was split into smaller fragments and a different

run of the algorithm was processed along each fragment. The results of each run were

then merged to generate the whole transcription. Due to the enormous complexity of the

search, our methods lacked some kind of mechanism to detect where the musical notes

are present (onset detector) so that they could perform the transcription only on those

areas of the signal.

If we perform a deeper analysis on the error measurement module of the fitness func-

tions, there is also another aspect that contributes to the harmonic overfitting: the fitness

functions rely on the linear scale instead of relying on the logarithmic scale of the fre-

quency spectrum. Thus, by considering the linear scale, the proposed systems give more

importance to frequency components with higher amplitudes when measuring the error

differences, leading the corresponding algorithm to create additional notes in those fre-

quency locations to overcome those differences.

Finally, the noise is not being estimated, leading to errors in the transcription.

This chapter presents a new method for multiple-F0 estimation on piano recordings

that aims at solving all the presented problems. We propose a framework based on a

genetic algorithm in order to analyze the overlapping overtones and search for the most

141

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

likely F0 combination. The search process is aided by adaptive spectral envelope modeling

and dynamic noise level estimation: while the noise is dynamically estimated, the spectral

envelope of previously recorded piano samples (internal database) is adapted in order to

best match the piano played on the input signals and aid the search process for the most

likely combination of F0s. For comparison, several state-of-the-art algorithms were run

across various musical pieces played by different pianos and then compared using three

different metrics.

9.1 System Overview

By analyzing Equation 2.27 or even the equation of a short-time monodic signal:

x[n] =
H∑

h=1

Ahcos(hω0 + φh) + z[n] (9.1)

for both y[n] and x[n] modulation, there are three properties that must be considered:

(1) the fundamental frequency (ω0); (2) the spectral envelope (Ah); and (3) the residual

noise (z[n]). The method we introduce now, works on all these properties: partial track-

ing, adaptive spectral envelope modeling and dynamic noise level estimation. Figure 9.1

shows the proposed system, which consists of three phases: (1) audio segmentation; (2)

transcription process; (3) note duration adjustment.

During the Audio segmentation an onset detector is applied on the input signal to

extract onset information. Afterwards, the audio signal is divided into several audio

segments according to the detected onsets. Each interval between two consecutive onsets

is considered a segment. Then, for each segment, a thread is launched running a 50-

generation genetic algorithm to perform the corresponding transcription. The search

for the most-likely combination of F0s to model y[n] is aided by an internal database

consisting of previously recorded piano samples. The genetic algorithm also adapts the

spectral envelope of the used piano samples in order to best match the power spectrum of

the corresponding audio segment. During this process, residual noise’s spectral envelope

is also dynamically estimated to favor the search process towards the desired solution (see

Figure 9.1). The results obtained on each audio segment are then merged into one whole

transcription. Finally, a hill-climber algorithm (Russell and Norvig, 2003) is applied on

the global transcription to adjust note duration or to merge notes that transverse several

segments. The output of the system is the hill-climber’s final result.

Since the main focus of our work is the actual transcription problem and not the onset

detection (and also because the lack of accuracy of the onset detector could compromise

the performance of the algorithm) the user is able to choose other onset information as an

input to the algorithm. The audio will then be segmented in accordance to the supplied

information. This way, other onset detection systems that might be more robust can be

used and, when dealing with labeled data, usage of the real onsets as input is also possible.

142

9.2. Proposed Genetic Algorithm

Figure 9.1: Block diagram of the transcription algorithm.

9.2 Proposed Genetic Algorithm

Since the problem being solved is the automatic transcription of an audio segment, a

candidate solution must be a candidate transcription of the corresponding segment. We

consider a transcription as a set of musical notes where each note has four attributes: start

time, duration, MIDI note and also MIDI velocity. Therefore, an individual is encoded

as a chromosome with a set of genes where each gene corresponds to a musical note (see

Figure 9.2 (A)).

Despite the onset being fixed to its segment boundaries, the onset information needs

to be included into the chromosome so the Hill-Climber can operate properly: after the

transcription of each onset-synchronous segment, those transcriptions are merged into one

whole transcription (new individual). At this stage, the onset time differs from each gene.

143

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Individual

Gene Sequence

Note: 65

Onset: 0

Duration: 22050

Velocity: 32

Note: 69

Onset: 22050

Duration: 22050

Velocity: 32

Note: 72

Onset: 44100

Duration: 22050

Velocity: 32

Note: 76

Onset: 66150

Duration: 22050

Velocity: 32

G
e
n
o
ty

p
e

P
h
e

n
o

ty
p

e

Individual

Spectral Envelope

gain h2

∆h2

gain h3

∆h3

gain h4

∆h4

gain h6

∆h6
... gain h20

∆h20

gain h1

∆h1

gain h5

∆h5

Individual

Noise Level

ϑ2 ϑ3 ϑ4 ϑ6 ...ϑ7ϑ1 ϑ5

(A)

(B)

(C)

Figure 9.2: (A): Genotype of an individual and corresponding phenotype. (B): Spectral
envelope encoding. Each gene corresponds to a pair of values: the gain of the respective
harmonic (expressed in dB) and its inharmonicity deviation. (C): The noise is encoded
as an adaptive threshold below a maximum peak of the current time frame. Each gene
corresponds to the noise threshold (expressed in dB) of the corresponding frequency bin.

Moreover, the purpose of the Hill-Climber algorithm is to adjust the duration of notes

and merge notes that overlap (transverse several audio segments). This process requires

both duration and onset information on each gene.

In order to deal with dynamic noise level estimation and also spectral envelope mod-

eling, additional chromosomes were included inside the genotype: one additional chromo-

some to encode the adaptive threshold used for the dynamic noise level estimation and

one additional chromosome for each internal piano to adapt its spectral envelope to best

match the piano played in the original audio.

Spectral Envelope Modeling

As in our previous approaches (see Chapter 7, Sections 7.2 and 7.3), the spectral envelope

is encoded on the individual as a new chromosome (see Figure 9.2 (B)), where each gene

corresponds to a pair of values: the gain for its harmonic - gain hi - expressed in dB and

its inharmonicity deviation - ∆hi - for each partial. Although the frequency of each partial

could be calculated using the equation proposed by Fletcher et al. (1962), such as in the

works of Emiya et al. (2008a, 2010): fh = hf0
√
1 + βh2 where β is the inharmonicity

coefficient of the piano tone (Fletcher and Rossing, 1998), the encoding of the harmonic

deviation of each partial pertaining to the genome of each individual genome was adopted

so the system could be general enough to work with other kinds of pitched instruments.

Noise Level Estimation

During the transcription process, the algorithm compares the magnitude spectrum of

each generated transcription with the original audio. This comparison should rely only on

the spectral peaks of both sounds. Otherwise, spectral differences on spurious locations

might lead the algorithm to an erroneous transcription. Thus, spectral data which does

144

9.2. Proposed Genetic Algorithm

not belong to the spectral peaks should be discarded. This requires a way to somehow

ignore spectral differences of spurious components.

As in Yeh et al. (2010), the noise is understood as generated from white noise filtered

by a frequency-dependent spectral envelope. This way, the noise level is defined as the

expected magnitude level of noise peaks and encoded in an additional chromosome. This

chromosome has the noise level for each frequency bin (see Figure 9.2 (C)). The noise

level is encoded as an adaptive threshold below the maximum peak of the current time

frame n, such that:

z[k] = max(X(n, k)) + ind.noise[k] (9.2)

where ind.noise[k] corresponds to the noise value encoded in the kth gene (see Figure 9.2

(C)). Therefore, synthesized peaks below the z[k] threshold are considered as noise peaks:

X̂(n, k) =

{
min(z[k], X(n, k)) if X̂(n, k) < z[k]

X̂(n, k), if X̂(n, k) ≥ z[k]
(9.3)

where X(n, k) is the magnitude of the kth bin from the nth frame of the original spec-

trum, X̂(n, k) represents the magnitude of the kth bin of the nth frame of the model

spectrum (individual). This way, spectral data below the noise threshold will be consid-

ered as min(z[k], X(n, k)). Thus, below the threshold, the spectrum of each generated

transcription will be equal to the spectrum of the original audio: their difference below

the noise threshold will always be zero (see top right plot of Figure 9.3). Moreover, the

spectral peaks (or at least most of them) will be above the threshold and, thus, have im-

pact on the comparison. If it happens, for some reason, to have a spectral peak below the

threshold there are two hypotheses: (1) if the corresponding spectral peak on the original

audio is also below the threshold: they will be equal (see top right plot of Figure 9.3,

below 3500 Hz); (2) if the corresponding spectral peak on the original audio is above the

threshold: the spectral peak of the candidate transcription will be equal to the threshold

(see top right plot of Figure 9.3, below 3500 Hz) - this way, it will still have impact on

the comparison, but since its difference between the corresponding spectral peak on the

original audio is diminished, it is easier for the adaptive spectral envelope modeling to

compensate their differences and to do the rest.

Figure 9.3 illustrates how both Spectral Envelope Modeling and Dynamic Noise Level

estimation work, by showing an example of a transcription of a C major chord (C4 -

261.6256 Hz; E4 - 329.6276 Hz; and G4 - 391.9954 Hz) played by a Bosendorfer piano

(original audio) and its generated transcription (Bechstein). The bottom left plot on this

Figure shows the corresponding input chord played the Bosendorfer piano (the original

audio) and its generated transcription (Bechstein). The spectrum of the generated tran-

scription consists of the sum of each estimated component (top 3 plots on the left of the

same figure). The top right plot shows how the algorithm sees the generated mixture

played by the internal synthesizer (Bechstein) after applying the noise level estimation,

and the bottom right plot shows how the algorithms sees the generated mixture after

applying both noise model estimation and spectral envelope. If we compare the bottom

145

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

0 500 1000 1500 2000 2500 3000 3500 4000
−60
−40
−20

0
20
40

Estimated Note: C4

0 500 1000 1500 2000 2500 3000 3500 4000
−60
−40
−20

0
20
40

M
a
g
n
it
u
d
e
 s

p
e
c
tr

u
m

 (
d
B

)

Estimated Note: E4

0 500 1000 1500 2000 2500 3000 3500 4000
−60
−40
−20

0
20
40

Hz

Estimated Note: G4

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−40

−20

0

20

40

Hz

M
a
g
n
it
u
d
e
 s

p
e
c
tr

u
m

 (
d
B

)

Estimated Chord: C4+E4+G4 Major Chord

bosendorfer

bechstein

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−40

−20

0

20

40

Dynamic Noise Level Estimation: Major Chord C4 + E4 + G4

Hz

M
a
g
n
it
u
d
e
 s

p
e
c
tr

u
m

 (
d
B

)

bosendorfer

bechstein

noise

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−40

−20

0

20

40

Evolved Spectral Envelope Modeling: Major Chord C4 + E4 + G4

Hz

M
a
g
n
it
u
d
e
 s

p
e
c
tr

u
m

 (
d
B

)

bosendorfer

bechstein

Figure 9.3: The bottom left plot represents a major chord (C4 - 261.6256 Hz; E4 - 329.6276
Hz; and G4 - 391.9954 Hz) played by a Bosendorfer piano (original audio) and its generated
transcription (Bechstein). The spectrum of the generated transcription consists of the sum
of each estimated component (top 3 plots on the left of the same figure). The top right
plot represents the same spectrum after applying the noise level estimation (light gray)
and, finally, the bottom right plot represents the latter spectrum with the evolved spectral
envelope modeling.

left plot, which represents the original audio versus the generated mixture with the bot-

tom right plot, where both dynamic noise level estimation and adaptive spectral envelope

modeling were applied, we can see that the two initially different spectra became almost

identical. This way, the algorithm will consider the generated transcription as correct

despite their spectral differences (bottom left plot).

9.2.1 Fitness Evaluation

A good evaluation of each candidate’s quality leads to a better selection of candidate solu-

tions to form the next generation, speeding up the convergence of the algorithm towards a

possible maximum. On the other hand, a less efficient quality (fitness) evaluation of each

candidate (individual) can drastically reduce the evolution of the genetic algorithm. The

fitness function is the key in the evolution/convergence of the genetic algorithms when

solving different kinds of problems.

To evaluate candidate transcriptions, we need first to render them to an audio signal

and then compare the corresponding audio signals to the input audio segment. Transcrip-

146

9.2. Proposed Genetic Algorithm

Parents Random point of cut

Random point of cut

Offspring

Random point of cut

Classic One-point Crossover (B)One-point Cut and Slice Crossover (A)

Figure 9.4: Recombination operators: one-point cut and slice crossover (A) and classic
one-point crossover (B).

tions whose audio is similar to the audio input are closer to the desired solution and, thus,

have fewer errors. The comparison between the candidate transcriptions and the input

audio segment is done in the frequency domain.

For the rendering process, we considered a dynamic range of 16dB, that is: a note can

vary its dynamics between 1 and 127. In particular, 127 MIDI velocity value corresponds

to +8dB gain and 1 MIDI velocity corresponds to −8dB gain and 64 MIDI velocity

corresponds to 0 dB gain. The gain, according to each note dynamic, is given by 10
vel−64

80 .

After each note offset, the following release equation is applied: release(t) =
2000− t

36

2000+t
,

where t varies from t = 0 . . . 72000.

The current fitness function is based on the Log Spectral Distance or Log Spectral

Distortion and was chosen empirically among several other spectral distances (Wei and

Gibson, 2000). The fitness function is defined by the equation:

f(i) =
nMax∑

n=1

√√√√√
N
2∑

k=2




10 log10

|X(n, k)|∣∣∣X̂(n, k)
∣∣∣




2

× log2

(
1 +

1

k

)
 (9.4)

where N is the size of the Hamming window, which is 93 ms (i.e. N = 4096 with 44100

Hz sampling rate). k starts in 2 because it is the bin corresponding to the frequency of

the first piano note (A0 = 27,5 Hz). The multiplication by log2(1 + 1
k
) normalizes the

weight of the bins of each octave so that, when summed, all the octaves have the same

weighted sum equal to 1. As in Eq. 9.3, X(n, k) is the magnitude of the kth bin from the

nth frame of the original spectrum, X̂(n, k) represents the magnitude of the kth bin of

the nth frame of the model spectrum (candidate solution being evaluated).

9.2.2 Recombination

In this specific problem, individuals might differ in the number of genes (detected F0s) so

the classic one-point crossover (Goldberg, 1989) had to be adopted to recombine individ-

147

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

uals with different number of genes by choosing different points-of-cut on each parent to

generate the offspring. This one-point cut-and-splice recombination operator is described

in Figure 9.4 (A).

The chromosomes encoding the spectral envelope of each instrument or the noise level

estimation have always the same size: the number of genes is fixed. Thus, the classic

one-point crossover operator (Goldberg, 1989) (see Figure 9.4 (B)) can be easily applied

without any restriction.

9.2.3 Mutation

The mutation operator consists on the following steps described in Algorithm 9.1, where

P is the mutation probability.

Algorithm 9.1: Mutation

1: for each gene do
2: r ← random()
3: if r ≤ Pm then
4: Choose one of the following mutations:

note change

duration change by [−50ms, 50ms]

harmonic change

add a new note

velocity change by [−8, 8]

timbre change

remove the current gene

5: end if
6: end for

During the note change and add a new note mutations, the note value is chosen from

a list containing all allowed notes. This list is previously calculated according to the

most prominent spectral peaks in each frame (see Appendix D). The harmonic change

mutation changes the current note to a harmonic location: minus 12 semitones (half of

the frequency of the note - one octave below); minus 19 semitones; minus 24 semitones

(one fourth of the frequency of the note - two octaves below); minus 28 semitones; minus

31; minus 34 and, minus 36. This mutation has the purpose of solving harmonic errors

that may occur in the detection of the possible notes, since the detection only selects notes

from the most prominent spectral peaks. Timbre change mutation happens to change the

instrument that plays a given note. This mutation exists to improve the support of other

kind of pitched instruments.

148

9.2. Proposed Genetic Algorithm

Spectral Envelope Modeling

The chosen mutations for this chromosome are changing the gain of a harmonic by a

random value in the range [−12, 12] dB and changing the inharmonicity deviation using a

bin value in the range [−3, 3]. The gain for F0 and its inharmonicity deviation are always

0 since they are not coded in the chromosome.

Noise Level Estimation

The mutation may occur in each gene and changes the power magnitude of the corre-

sponding bin by a value in the range [−3, 3] dB.

9.2.4 Initialization

According to our previous approach (see Chapter 7, Section 7.1.6), the initial population

has two major contributions to the end result. First, if the initial population is created

nearer (or even half way) to the final result than a randomly generated initial population,

the genetic algorithm will need a much smaller number of generations to achieve the target

result. Nevertheless, it is also important to have a very heterogeneous initial population

to allow a better exploration of different areas of our search space.

The first step to get good results is to find a way to create an initial population

somehow based on the original audio signal. Although we are aware that the initial

population could have been based on cepstrum (Bogert et al., 1963), we choose to base

it on the major peaks of the spectrogram. This happens to ensure that the genetic

algorithm has enough biodiversity (genetic material) to perform the search process. The

main power behind genetic algorithms relies on the capability of selecting the best parts of

each candidate solution and recombining them into fitter and fitter solutions, something

which requires a more heterogeneous population (Holland, 1992b). Thus, for the starting

population, each individual is created with a random number of notes selected from the

previously generated list of possible notes (see Appendix D). After its creation, each

individual suffers 10 forced mutations.

Although the initialization stage depends on the spectral peak picking to determine

the list of possible notes, the lack of frequency resolution does not hinder the accurate

peak picking at the low frequencies, and thus does not affect the estimation of those notes.

During the selection of possible notes stage, the α most prominent peaks are selected

from the original spectrum and then, for each peak, the corresponding musical notes are

added to the list of possible notes (see Appendix D). This process takes into account that

each bin (specially on lower frequencies) might correspond to several musical notes and,

if it is the case, all those notes are added to the possible notes list. This way, even with

low frequency resolution, we assure that at least the correct note is added to the list of

possible notes. Therefore, the algorithm is able to choose the correct note from the set of

candidates. Moreover, since we are selecting the α most prominent peaks, there is a high

probability of selecting harmonically related notes of the correct ones. If this is the case,

the harmonic change mutation will fix those notes.

149

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Tests were also performed using the cepstrum for this process, but the experiments have

shown that despite having several individuals that are harmonically related, the genetic

algorithm performs better when the initial population is based on the spectrogram.

9.2.5 Survivor Selection

During recombination, each pair of individuals generates two offsprings. This leads to

an overcrowded population. The survivor selection operator chooses which individuals

should or should not pass to the next generation. As in our previous approaches (see

Chapter 7), the chosen selection method consists in determining the best individuals for

survival. Also, 5% of the new generation consists on copies of the best individual of the

previous generation, each with one forced mutation. This extends the robustness of the

genetic algorithm, improving the global search by using local search on the vicinity of the

best achieved solution (Hart et al., 2004).

9.3 Hill-Climber

Algorithm 9.2: Hill-Climber

1: best← individual returned by the genetic algorithm
2: bestF itness← best.evaluateF itness()
3: i← 1
4: while i ≤ best.numberOfNotes do
5: ind← best

6: change ind.notes[i] duration by +50ms
7: if ind.notes[i] now overlaps with another note then
8: merge both notes
9: end if

10: fit← ind.valuateF itness()
11: if fit ≥ bestF itness then
12: best← ind

13: bestF itness← fit

14: else
15: i← i+ 1
16: end if
17: end while
18: return MIDI file

The Hill-Climber algorithm (see Algorithm 9.2) is fed with the final transcription

generated by the algorithm and consists in applying the following steps: traversing all

musical notes and, for each note, increasing its duration by 50ms. If this note now overlaps

with another note both notes are merged. Also, if the quality of the individual improves,

this process is then repeated on the same musical note, otherwise the last change is

discarded and the algorithm goes for the next musical note.

150

9.4. Experiments and Results

Table 9.1: Genetic Algorithm parameters

Genetic Algorithm parameters

population size 200

maximum number of generations 50

probability of recombination 0.8

parent Selection
tournament

(tournament size = 2)

probability of mutation

0.2 (transcription)

0.01 (spectral envelope)

0.02 (noise)

The output of the system is the result achieved by the hill-climber. The impact of the

Hill-Climber on the overall results is studied in Section 9.4.4.

9.4 Experiments and Results

9.4.1 Implementation and Tuning

The proposed approach was implemented using the C programming language. The tran-

scription of each audio segment was run in parallel (one thread per segment). The com-

putational time of the approach is 60 × real time. Several tests were carried out across a

selection of audio files, including a development database of 2700 mixtures from 7 different

pianos, with polyphony levels from 2 to 7 (more details about this database are provided

in Section9.4.2). Those same tests employed various frame lengths, window functions and

hop sizes. A 93-ms frame length with Hamming window function and 75% hop size were

chosen empirically. α = 10 is used for generating the possible notes list (see Appendix

D) and the number of harmonics for the spectral envelope modeling was also empirically

set to 20. The algorithm was also set to a 5 limit polyphony since polyphony levels in

musical recordings have a 4.5 average polyphony and a 3.1 standard deviation reported

for a number of classical music pieces (Emiya, 2008, p.114). The probabilities and other

parameters specific to the Genetic Algorithm are shown in Table 9.1.

Although the resolution of 10.76 Hz might not appear enough for discriminating notes

starting at MIDI note A0 (25.500 Hz), it suits their spectrum comparison. Recall that

the algorithm searches for the best combination of notes by performing an evaluation

based on their spectrum comparison with the original audio. Thus, same musical notes

have similar harmonic locations, even if played by different pianos. Therefore, and that

is also the case for lower notes, the algorithm tends to choose the correct piano samples

because they correlate best with those played in the original audio. In fact, the algorithm

is capable of identifying and discriminating notes from the 21 MIDI note (A0 - 27.500 Hz)

to the 108 MIDI note (C8 - 4186.0 Hz). Also, the comparison between the original audio

151

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

2 3 4 5
50

60

70

80

90

%

Polyphony

2 3 4 5
50

60

70

80

90

%

Polyphony

(b) Precision

2 3 4 5
50

60

70

80

90

%

Polyphony

(c) Recall

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

(b) Precision

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

(c) Recall

F-measure F-measure

(A) MPE on 2.700 Random Chords (B) MPE on 5.160 Common Chords

Figure 9.5: (A) Multi-pitch estimation results for each polyphony on 2.700 random-pitched
chords; (B) Multi-pitch estimation results for each polyphony on 5.160 common chords.

and the individual’s audio is made on the frequency domain, frame by frame. A frame

overlap ratio of 25% means less STFT frames and, therefore, fewer comparisons, which

in turn means having fewer mathematical calculations that consequently computationally

accelerate the algorithm. Moreover, less STFT frame comparisons mean fewer errors in the

signal comparison that might occur due to spurious components or harmonic cancellation,

which ultimately leads to a faster conversion of the Genetic Algorithm, hence better results.

Even though it might occur an amplitude modulation during overlap-add, it will happen

on both signals being compared therefore, so it will not affect the comparison.

9.4.2 Evaluation

The proposed algorithm has been tested on a database called MAPS (Emiya, 2008; Emiya

et al., 2010) consisting of around 10,000 piano sounds either recorded by using an upright

Disklavier piano or generated by several virtual piano software products based on sample

sounds. The development set and the test set are disjoint. A set of 2,700 random chords

between A0 (25.500 Hz) and C8 (4186Hz) with polyphony levels ranging from 2 to 7 were

used in the former while the latter comprises 2,700 random chords and 5,160 common

chords from western music (major, minor, etc.) from C2 (65.406 Hz) to B6 (1975.5 Hz).

For each sound, a single 93ms-frame located after the last onset time is extracted and

analyzed. In total, 10,560 audio files were used from two upright pianos and five grand

pianos. The authors considered only the frame after the last onset for both training and

test tasks because both tasks consisted in transcribing simple chords and also due to time

restrictions since there were used a total of 10,560 different chords. During all other tests,

the algorithm performs a frame by frame analysis.

General results are presented in Figure 9.5. Relevant items are defined correct notes

after rounding each F0 to the nearest half-tone. Typical metrics are used: the recall is

the ratio between the number of relevant items and of original items; the precision is the

ratio between the number of relevant items and detected items; and the F-measure is the

harmonic mean (Nostrand, 1962) between the precision and the recall. In this context,

152

9.4. Experiments and Results

2 3 4 5
50

60

70

80

90

%

Polyphony

2 3 4 5
50

60

70

80

90

%

Polyphony

(b) Precision

2 3 4 5
50

60

70

80

90

%

Polyphony

(c) Recall

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

(b) Precision

2 3 4 5 6 7
50

60

70

80

90

%

Polyphony

(c) Recall

F-measure F-measure

(A) MPE on 2.700 Random Chords (B) MPE on 5.160 Common Chords

Figure 9.6: The distribution of estimated polyphony for the polyphony from 2 to 7 on
(A) random-pitched chords and from 2 to 5 on (B) common chords. The title of each
subfigure indicates the correct polyphony; the x-axis represents the estimated polyphony;
the y-axis represents the percentage of the estimated polyphony among all instances. The
peaking at the correct polyphony is observed for polyphony below six, except for four.

our system returns F-measures of 84%, 79%, 74%, 73%, 69% and 65% for polyphony 2, 3,

4, 5, 6 and 7 on random chords and 84%, 84%, 81% and 78% for polyphony 2, 3, 4 and 5

on common chords. Moreover, the precision is high for all polyphony levels whereas the

recall is decreasing whenever polyphony increases.

The ability of the system to infer the polyphony levels (independently of the pitches)

is presented on Figure 9.6. For polyphony levels from 2 to 5 the system only fails on

detecting the correct polyphony level on polyphony 4 on the random chords data set.

Polyphony levels of 6 and 7 obviously fail because the system is set to a maximum 5

polyphony. On the other hand, the system successfully detects the correct polyphony for

all polyphonies in the common chords data set. Also, F-measure values are between 6%

and 10% better for common chords than for random-pitched chords. This suggests that,

while the algorithm faces more harmonically related notes in common chords (spectral

overlap), widely-spread F0s in random chords are a bigger difficulty. By limiting the

algorithm polyphony to 5, the proposed system underestimates the polyphony level since

the parameter tuning consists in optimizing the F-measure on the development set. This

objective function could have been changed to take the polyphony level balance into

account. This would result in reducing the polyphony underestimation trend. However,

the overall F-measure would decrease. Moreover, from a different perspective, it has

been shown that a missing note is generally less annoying than an added note when

listening to a re-synthesized transcription (Cemgil et al., 2006b). Thus, underestimating

the polyphony may be preferable to overestimating it. Still, this trend turns out to be

the main shortcoming of the proposed method, and should be fixed in the future so it can

efficiently address sounds with polyphony higher than 5 notes.

While the test database has 7 different pianos, the internal synthesizer of the algorithm

consists only of three pianos, which means that the spectral envelope modeling plays a

major role in the achieved results by adapting the internal piano samples to the 7 pianos

153

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

on the database. Moreover, the results are comparable from one piano to another, with

only a small % deviation. This means that the results do not significantly depend on the

upright/grand piano differences.

9.4.3 Comparison with other State-of-the-art algorithms

For a deeper analysis, we decided to extend a previous study performed by Emiya et al.

(2008a). This study compares several state-of-the-art music transcription algorithms:

Emiya et al. (2008a); Vincent et al. (2008); Bertin et al. (2007); Marolt (2004a). We

included four new algorithms: Reis et al. (2009); Vincent et al. (2010); Ryynänen and

Klapuri (2005)1 and the proposed method. In total, our algorithm is compared to seven

other state-of-the-art transcription algorithms:

• Vincent’10 (Vincent et al., 2010);

• Reis’09 (Chapter 7, Section 7.3);

• Emiya EUSIPCO’08 (Emiya et al., 2008a);

• Vincent B’07 - The baseline method presented in (Vincent et al., 2008);

• Vincent H’07 - The harmonic method presented in (Vincent et al., 2008);

• Bertin’07 (Bertin et al., 2007);

• Marolt’04 (Marolt, 2004a);

• Ryynänen’05 (Ryynänen and Klapuri, 2005) - The authors thought that the inclu-

sion of this algorithm was very important for the study performed since this algo-

rithm won the last MIREX (Downie, 2008a; Downie et al., 2010b) competitions.

Our previous method (see Chapter 7, Section 7.3) was also included for comparison.

These algorithms were run on 9 randomly chosen pieces of music used on Emiya

benchmark (Emiya et al., 2008a)2. All the results that will be presented on this section

are available at the author’s website3. Along with these results we also provide the audio

files and their MIDI representation in visual form.

Figure 9.7 (A) shows the results obtained by our algorithm in comparison to the other

seven state-of-the-art algorithms and (B) shows the Friedman Mean Ranks with regard

to F-measure on individual files. Results in Figure 9.7 (A) are presented using the Onset-

only metric. In this metric a correct note implies a correct onset with a deviation up to

50 ms. Results are presented on the Onset-only metric as Recall, Precision, F-measure

and Mean Overlap Ratio (MOR) (Ryynänen and Klapuri, 2005). Mean Overlap Ratio is

an averaged ratio between the length of the intersection of the temporal supports of an

1The authors asked to several researchers in the field for their algorithms so that they could also be
included in this study. These were the algorithms provided.

2see: http://www.irisa.fr/metiss/vemiya/EUSIPCO08/bench0.html
3http://www.estg.ipleiria.pt/~gustavo.reis/benchmark

154

http://www.irisa.fr/metiss/vemiya/EUSIPCO08/bench0.html
http://www.estg.ipleiria.pt/~gustavo.reis/benchmark

9.4. Experiments and Results

F−Measure Precision Recall Mean Overlap Ratio
20

30

40

50

60

70

80

90

100

%
(A) Onset−Only metric

proposed

Vincent 10

Reis 09

Emiya 08

Vincent B 07

Vincent H 07

Bertin 07

Ryyannen 05

Marolt 04

Marolt’04 Proposed Emiya’08 Ryyannen’05 Vincent’10 Vincent H’07 Vincent B’07 Reis’09 Bertin’07
−2

0

2

4

6

8

10

M
e

a
n

 C
o

lu
m

n
 R

a
n

k
s

(B) Friedman Mean Ranks

Figure 9.7: (A) Onset-only F-measure, Precision, Recall and Mean Overlap Ratio, respec-
tively; (B) Friedman Mean Ranks with regard to F-measure on individual files.

original note and its transcription, and of the length of their union. This measure acts

more like a guideline for researchers to know how the correctly transcribed notes intersect

with the original notes in terms of note duration. It is also used to measure the phrasing

similarity with the original piece.

Performance rates on Figure 9.7 (A) have been averaged with respect to all tested

musical pieces, and the respective standard deviation is also represented. While we have

achieved low F-measure deviation on the evaluation of audio chords (multi pitch esti-

mation), on the automatic transcription benchmark we have a deviation around 15%,

no matter the method. This happens because in the chord evaluation we used isolated

frames composed of one chord, while here the evaluation implies several other difficulties,

like having asynchronous notes overlapping in time, detecting onsets, estimating the end

of damping notes, dealing with reverberation queues and so on. Thus, large standard

deviation values are due to the dependency of musical excerpts. For instance: F-measure

greater than 85% is reached on musical pieces with slow tempo or low polyphony, while

fast pieces are generally difficult to transcribe. Since the results dramatically depend on

the database, this was the main reason why we decided to extend a previous study. This

way we can have a more realistic comparison among all tested algorithms.

In this context (Figure 9.7 (A)) our system is comparable to the state-of-the-art: it

ranked the 2nd place, below Marolt’04 and above Emiya’08. It should be noted that

Emiya’08 is the algorithm with higher Mean Overlap Ratio, which suggests that the used

HMM framework for note tracking is efficient in both selecting pitches among candidates,

and also in detecting their possible endings.

Regarding the proposed approach and Reis’09, both algorithms have large differences

in F-Measure (20%), Precision (32%) and Mean Overlap Ratio (25%) and a small dif-

ference on Recall (6%). The large F-Measure difference (20%) shows that the proposed

system has much better performance than the previous genetic algorithm approaches. It

also features a smaller percentage of both false positive rate and false negative rate (Preci-

155

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Table 9.2: Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-
only metric

Algorithm Algorithm
Lower

Mean
Upper

Significance
Bound Bound

Marolt’04 Proposed -3.2317 1.0000 5.2317 FALSE
Marolt’04 Emiya’08 -3.1692 1.0625 5.2942 FALSE
Marolt’04 Ryyannen’05 -2.7317 1.5000 5.7317 FALSE
Marolt’04 Vincent’10 -2.7942 1.4375 5.6692 FALSE
Marolt’04 Vincent H’07 -1.4817 2.7500 6.9817 FALSE
Marolt’04 Vincent B’07 0.3933 4.6250 8.8567 TRUE
Marolt’04 Reis’09 1.3308 5.5625 9.7942 TRUE
Marolt’04 Bertin’07 2.0183 6.2500 10.4817 TRUE
Proposed Emiya’08 -4.1692 0.0625 4.2942 FALSE
Proposed Ryyannen’05 -3.7317 0.5000 4.7317 FALSE
Proposed Vincent’10 -3.7942 0.4375 4.6692 FALSE
Proposed Vincent H’07 -2.4817 1.7500 5.9817 FALSE
Proposed Vincent B’07 -0.6067 3.6250 7.8567 FALSE
Proposed Reis’09 0.3308 4.5625 8.7942 TRUE
Proposed Bertin’07 1.0183 5.2500 9.4817 TRUE
Emiya’08 Ryyannen’05 -3.7942 0.4375 4.6692 FALSE
Emiya’08 Vincent’10 -3.8567 0.3750 4.6067 FALSE
Emiya’08 Vincent H’07 -2.5442 1.6875 5.9192 FALSE
Emiya’08 Vincent B’07 -0.6692 3.5625 7.7942 FALSE
Emiya’08 Reis’09 0.2683 4.5000 8.7317 TRUE
Emiya’08 Bertin’07 0.9558 5.1875 9.4192 TRUE

Ryyannen’05 Vincent’10 -4.2942 -0.0625 4.1692 FALSE
Ryyannen’05 Vincent H’07 -2.9817 1.2500 5.4817 FALSE
Ryyannen’05 Vincent B’07 -1.1067 3.1250 7.3567 FALSE
Ryyannen’05 Reis’09 -0.1692 4.0625 8.2942 FALSE
Ryyannen’05 Bertin’07 0.5183 4.7500 8.9817 TRUE
Vincent’10 Vincent H’07 -2.9192 1.3125 5.5442 FALSE
Vincent’10 Vincent B’07 -1.0442 3.1875 7.4192 FALSE
Vincent’10 Reis’09 -0.1067 4.1250 8.3567 FALSE
Vincent’10 Bertin’07 0.5808 4.8125 9.0442 TRUE

Vincent H’07 Vincent B’07 -2.3567 1.8750 6.1067 FALSE
Vincent H’07 Reis’09 -1.4192 2.8125 7.0442 FALSE
Vincent H’07 Bertin’07 -0.7317 3.5000 7.7317 FALSE
Vincent B’07 Reis’09 -3.2942 0.9375 5.1692 FALSE
Vincent B’07 Bertin’07 -2.6067 1.6250 5.8567 FALSE

Reis’09 Bertin’07 -3.5442 0.6875 4.9192 FALSE

sion and Recall). Note that there is also a considerable difference on Mean Overlap Ratio

(25%). This means that our system results in a more efficient transcription, enhancing

the phrasing similarity with the original pieces and thus improving the subjective quality

when hearing the correctly transcribed notes. The computation time of Reis’09 algorithm

is 540 times real-time which is much higher than the proposed method: 60 times real-

time. This also represents a significant improvement. Also, the most significant difference

between both algorithms relies on Precision (32%). This shows that the adaptive spec-

tral envelope modeling, along with the dynamic noise level estimation, play a major role

in reducing the false positive rate: precision is the percentage of the transcribed notes

that are correctly transcribed. Thus, the proposed algorithm is much more effective on

reducing the harmonic overfitting. On the other hand, a lower difference on Recall tells

us that both systems have a similar false negative rate, which again emphasizes that the

main difference on both systems is on how the dynamic noise level estimation, along with

the adaptive spectral envelope modeling, have a significant impact on reducing the false

156

9.4. Experiments and Results

F−Measure Precision Recall MOR

0

10

20

30

40

50

60

70

80

90

100

%
(A) Onset−Offset metric

proposed

Vincent 10

Reis 09

Emiya 08

Vincent B 07

Vincent H 07

Bertin 07

Ryyannen 05

Marolt 04

Emiya’08 Proposed Ryyannen’05 Vincent’10 Marolt’04 Vincent H’07 Vincent B’07 Reis’09 Bertin’07

−2

0

2

4

6

8

10

M
e

a
n

 C
o

lu
m

n
 R

a
n

k
s

(B) Friedman Mean Ranks

Figure 9.8: (A) Onset-Offset F-measure, Precision, Recall and Mean Overlap Ratio, re-
spectively; (B) Friedman Mean Ranks with regard to F-measure on individual files.

positive rate: this system is much more effective in dealing with the harmonic overfitting.

Figure 9.7 (B) shows that the proposed approach achieves the second best mean rank,

which means that, on average, our system ranked second place in each individual file. Ta-

ble 9.2 shows the Tukey-Kramer Honestly Significant Difference (HSD) multi-comparison

of the Friedman Mean Ranks calculated on Figure 9.7 (B). This table shows that the

difference between the proposed system and the algorithm that ranked first is not sta-

tistically significant. Moreover, on this metric, our proposal is significantly better than

Reis’09 (best algorithm of all previous genetic algorithm approaches) and Bertin’07.

Figure 9.8 (A) shows the same benchmark using the Onset-Offset metric. This metric

also presents the results as Recall, Precision, F-measure and Mean Overlap Ratio (MOR).

In the Onset-Offset metric a correct note implies a correct onset with a deviation up

to 50ms and a correct offset with a deviation of up to 20% of the note length or 50ms.

Performance rates have also been averaged with respect to all tested musical pieces, and

the respective standard deviation is also represented.

According to this metric, our system is also comparable to the state-of-the-art: it

ranked the 2nd place, below Emiya’08 and above Vincent’10. It should be noted that,

in this context, Emiya’08 is the algorithm with higher F-measure, Precision, Recall and

Mean Overlap Ratio. This happens because it is the most effective algorithm estimating

the offset time, which reinforces what was mentioned before: the HMM framework used by

Emiya’08 for note tracking is efficient in both selecting pitches among candidates, and also

in detecting their possible endings. However, Emiya’08 algorithm has a computing time

of 200 times real-time while our system’s computing time is 60 times real-time. Figure 9.8

(B) shows that the proposed approach achieves the fourth best mean rank, which means

that, despite having the second best overall mean on F-Measure, on average, our system

ranked fourth place in each individual file. Table 9.3 shows the Tukey-Kramer HSD multi-

comparison of the Friedman Mean Ranks calculated on Figure 9.8 (B). This table shows

that the difference between the proposed system and the algorithm that ranked first is

157

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Table 9.3: Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-
Offset metric

Algorithm Algorithm
Lower

Mean
Upper

Significance
Bound Bound

Emiya’08 Proposed -3.2339 1.0000 5.2339 FALSE
Emiya’08 Ryyannen’05 -3.3589 0.8750 5.1089 FALSE
Emiya’08 Vincent’10 -2.8589 1.3750 5.6089 FALSE
Emiya’08 Marolt’04 -3.7339 0.5000 4.7339 FALSE
Emiya’08 Vincent H’07 -2.2339 2.0000 6.2339 FALSE
Emiya’08 Vincent B’07 -1.2964 2.9375 7.1714 FALSE
Emiya’08 Reis’09 1.3911 5.6250 9.8589 TRUE
Emiya’08 Bertin’07 1.1411 5.3750 9.6089 TRUE
Proposed Ryyannen’05 -4.3589 -0.1250 4.1089 FALSE
Proposed Vincent’10 -3.8589 0.3750 4.6089 FALSE
Proposed Marolt’04 -4.7339 -0.5000 3.7339 FALSE
Proposed Vincent H’07 -3.2339 1.0000 5.2339 FALSE
Proposed Vincent B’07 -2.2964 1.9375 6.1714 FALSE
Proposed Reis’09 0.3911 4.6250 8.8589 TRUE
Proposed Bertin’07 0.1411 4.3750 8.6089 TRUE

Ryyannen’05 Vincent’10 -3.7339 0.5000 4.7339 FALSE
Ryyannen’05 Marolt’04 -4.6089 -0.3750 3.8589 FALSE
Ryyannen’05 Vincent H’07 -3.1089 1.1250 5.3589 FALSE
Ryyannen’05 Vincent B’07 -2.1714 2.0625 6.2964 FALSE
Ryyannen’05 Reis’09 0.5161 4.7500 8.9839 TRUE
Ryyannen’05 Bertin’07 0.2661 4.5000 8.7339 TRUE
Vincent’10 Marolt’04 -5.1089 -0.8750 3.3589 FALSE
Vincent’10 Vincent H’07 -3.6089 0.6250 4.8589 FALSE
Vincent’10 Vincent B’07 -2.6714 1.5625 5.7964 FALSE
Vincent’10 Reis’09 0.0161 4.2500 8.4839 TRUE
Vincent’10 Bertin’07 -0.2339 4.0000 8.2339 FALSE
Marolt’04 Vincent H’07 -2.7339 1.5000 5.7339 FALSE
Marolt’04 Vincent B’07 -1.7964 2.4375 6.6714 FALSE
Marolt’04 Reis’09 0.8911 5.1250 9.3589 TRUE
Marolt’04 Bertin’07 0.6411 4.8750 9.1089 TRUE

Vincent H’07 Vincent B’07 -3.2964 0.9375 5.1714 FALSE
Vincent H’07 Reis’09 -0.6089 3.6250 7.8589 FALSE
Vincent H’07 Bertin’07 -0.8589 3.3750 7.6089 FALSE
Vincent B’07 Reis’09 -1.5464 2.6875 6.9214 FALSE
Vincent B’07 Bertin’07 -1.7964 2.4375 6.6714 FALSE

Reis’09 Bertin’07 -4.4839 -0.2500 3.9839 FALSE

not statistically significant. Moreover, on this metric, our proposal is significantly better

than Reis’09 and Bertin’07.

Finally, one last metric was employed for algorithm comparison: the Hybrid Decay/-

Sustain Score (Nuno Fonseca, 2010). This metric was employed because it is the one

that best correlates with the human hearing perception (Nuno Fonseca, 2010). Figure 9.9

(A) shows the results obtained using this metric. Results are presented as Decay Score,

Sustain Score and Final Score: Decay Score is used for percussive pitched instruments

and employs a note oriented approach considering only pitches and onsets, generating

a score ([0-100]%) for each note; Sustain Score is used for sustain musical instruments

(eg.: woodwind) and employs a time oriented approach measuring the overlap between

the original and transcribed notes; the Final Score is the average value between Sustain

Score and Decay Score.

According to this metric, the proposed system ranks the 1st place, above Vincent’10.

This means that our system results in an efficient transcription, enhancing the phrasing

158

9.4. Experiments and Results

Final Score Decay Score Sustain Score
20

30

40

50

60

70

80

%
(A) DSS metric

proposed

Vincent 10

Reis 09

Emiya 08

Vincent B 07

Vincent H 07

Bertin 07

Ryyannen 05

Marolt 04

Proposed Vincent’10 Marolt’04 Ryyannen’05 Emiya’08 Vincent H’07 Vincent B’07 Reis’09 Bertin’07
−2

0

2

4

6

8

10

M
e

a
n

 C
o

lu
m

n
 R

a
n

k
s

(B) Friedman Mean Ranks

Figure 9.9: Final Score, Decay Score and Sustain Score, respectively.

similarity with the original piece and thus improving the subjective quality when hearing

the correctly transcribed notes. Note that, since we are dealing with piano transcriptions,

we can consider the value Decay Score instead of the Final score. In this case all algorithms

rank the same places (not the same results), except Vincent’10. This happens because

the latter algorithm has a relatively high Sustain Score.

Figure 9.9 (B) shows that the proposed approach achieves the best mean rank, which

means that, on average, our system ranked first place in each individual file. Moreover,

Figure 9.9 (B) along with Table 9.4 shows that our proposal is significantly better than

Vincent B’07, Reis’09 and Bertin’07.

We believe that our approach has perceptually better results because, among all the

other state-of-the-art algorithms, our system is the only one that tries to mimic the way

how professional musicians learn to play a new song by ear: the algorithm “listens” to an

audio file and then, during the transcription process, is always comparing the available

candidates, to figure out which one is closer to the original song. In the end, it returns

the transcription that most resembled the original audio.

9.4.4 Contribution of each module to the overall results

Figure 9.10 shows the contribution of each module to the global results of the proposed

system: näıve, adaptive spectral envelope modeling (ASEM), dynamic noise level esti-

mation (DNLE), both spectral envelope modeling and dynamic noise level estimation

(ASEM+DNLE) and Hill-climber. Näıve corresponds to the genetic algorithm without

the spectral envelope modeling and noise level estimation; ASEM is the näıve version with

the spectral envelope modeling; DNLE is the näıve version with the dynamic noise level

estimation; ASEM+DNLE corresponds to näıve version with both spectral envelope mod-

eling and dynamic noise level estimation; and, finally, Hill-climber is the ASEM+DNLE

with the Hill-climber applied i.e., the whole system. All these versions of the algorithm

were run with same parameters, included in Table 9.1.

159

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Table 9.4: Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Hy-
brid Decay/Sustain metric

Algorithm Algorithm
Lower

Mean
Upper

Significance
Bound Bound

Proposed Vincent’10 -3.4817 0.7500 4.9817 FALSE
Proposed Marolt’04 -2.2942 1.9375 6.1692 FALSE
Proposed Ryyannen’05 -2.6692 1.5625 5.7942 FALSE
Proposed Emiya’08 -1.7317 2.5000 6.7317 FALSE
Proposed Vincent H’07 -2.0442 2.1875 6.4192 FALSE
Proposed Vincent B’07 0.5183 4.7500 8.9817 TRUE
Proposed Reis’09 1.0808 5.3125 9.5442 TRUE
Proposed Bertin’07 2.6433 6.8750 11.1067 TRUE
Vincent’10 Marolt’04 -3.0442 1.1875 5.4192 FALSE
Vincent’10 Ryyannen’05 -3.4192 0.8125 5.0442 FALSE
Vincent’10 Emiya’08 -2.4817 1.7500 5.9817 FALSE
Vincent’10 Vincent H’07 -2.7942 1.4375 5.6692 FALSE
Vincent’10 Vincent B’07 -0.2317 4.0000 8.2317 FALSE
Vincent’10 Reis’09 0.3308 4.5625 8.7942 TRUE
Vincent’10 Bertin’07 1.8933 6.1250 10.3567 TRUE
Marolt’04 Ryyannen’05 -4.6067 -0.3750 3.8567 FALSE
Marolt’04 Emiya’08 -3.6692 0.5625 4.7942 FALSE
Marolt’04 Vincent H’07 -3.9817 0.2500 4.4817 FALSE
Marolt’04 Vincent B’07 -1.4192 2.8125 7.0442 FALSE
Marolt’04 Reis’09 -0.8567 3.3750 7.6067 FALSE
Marolt’04 Bertin’07 0.7058 4.9375 9.1692 TRUE

Ryyannen’05 Emiya’08 -3.2942 0.9375 5.1692 FALSE
Ryyannen’05 Vincent H’07 -3.6067 0.6250 4.8567 FALSE
Ryyannen’05 Vincent B’07 -1.0442 3.1875 7.4192 FALSE
Ryyannen’05 Reis’09 -0.4817 3.7500 7.9817 FALSE
Ryyannen’05 Bertin’07 1.0808 5.3125 9.5442 TRUE
Emiya’08 Vincent H’07 -4.5442 -0.3125 3.9192 FALSE
Emiya’08 Vincent B’07 -1.9817 2.2500 6.4817 FALSE
Emiya’08 Reis’09 -1.4192 2.8125 7.0442 FALSE
Emiya’08 Bertin’07 0.1433 4.3750 8.6067 TRUE

Vincent H’07 Vincent B’07 -1.6692 2.5625 6.7942 FALSE
Vincent H’07 Reis’09 -1.1067 3.1250 7.3567 FALSE
Vincent H’07 Bertin’07 0.4558 4.6875 8.9192 TRUE
Vincent B’07 Reis’09 -3.6692 0.5625 4.7942 FALSE
Vincent B’07 Bertin’07 -2.1067 2.1250 6.3567 FALSE

Reis’09 Bertin’07 -2.6692 1.5625 5.7942 FALSE

By analyzing Figure 9.10 we can tell that the näıve (genetic algorithm without hill-

climber, spectral envelope modeling and dynamic noise level estimation) has a performance

of: 18.25% F-measure, 18.25% Precision, and 18.5% Recall. By enabling the adaptive spec-

tral envelope modeling (ASEM), Precision, F-Measure and Recall have an improvement

around 1.75%: ASEM by itself does not bring significant improvements on the quality of

the results since differences on spurious components will bias the comparison (candidate

evaluation), and thus, the convergence of the genetic algorithm. On the other hand, if we

only enable the dynamic noise level estimation (DNLE), F-Measure decreases 2.5%, Preci-

sion decreases 1.3% and Recall decreases 3.0%. This happens because the noise estimation

discards all the spurious information when evaluating the transcriptions: only the spec-

tral peaks above the noise threshold are considered. This leads the algorithm on adding

several notes in harmonic locations to compensate the timbre differences, decreasing both

precision and recall.

Adaptive spectral envelope modeling along with dynamic noise level estimation (ASEM

160

9.4. Experiments and Results

F−Measure Precision Recall Mean Overlap Ratio
0

10

20

30

40

50

60

70

80

90

100

%
(A) Onset−Offset metric

naive

ASEM

DNLE

ASEM+DNLE

Hill−climber

Hill−Climber ASEM+DNLE ASEM Bare−bones DNLE
0

1

2

3

4

5

6

7

M
e

a
n

 C
o

lu
m

n
 R

a
n

k
s

(B) Friedman Mean Ranks

Figure 9.10: (A) Contribution of each module to the global results of the proposed system
- Onset-offset; (B) Friedman Mean Ranks with regard to F-measure on individual files.

+ DNLE), improve the system’s performance: F-measure increases 4.88% and Precision

has a boost of 6.5%. This tells that adaptive spectral envelope modeling together with

dynamic noise level estimation have a great impact on reducing the harmonic overfitting:

the percentage of correctly transcribed notes increases around 6.5%, which means that the

system significantly reduced the false positive rate. Recall improves 3.38%. The algorithm

performs well because both ASEM and DNLE were designed to work together so that they

can compensate each-other.

Hill-Climber gives the major improvement to the proposed system. It raises the per-

formance of ASEM + DNLE by: 5.13% F-Measure, 5.88% Precision and 4.88% Recall.

Figure 9.10 (B), along with Table 9.5 show that the contributions made by Hill-Climber

along with ASEM+DNLE are statistically significant: Hill-Climber with ASEM+DNLE

are statistically better than the bare-bones GA, ASEM and DNLE.

The computing time of the proposed system is 60 times real-time. However, the

proposed system has several parallelization capabilities since a separate genetic algorithm

is run on each audio segment. This way, the transcription task could be run on a separate

CPU for each audio segment. Thus, we could have one master CPU to apply onset

detection and distribute the resulting audio segments for several CPUs and wait for their

results. Afterwards, the master CPU merges their results into one whole transcription

and applies the hill-climber.

9.4.5 Impact of the onset detector on the overall results

By taking into account that onsets are used as guidelines for the segmentation of the

input signal, the occurrence of false negatives might have a considerable impact in the

final results of the event segregation. To evaluate the impact of the chosen onset detection

algorithm, we ran the same experiments using the ground-truth onset information as the

output of the onset detector. Figure 9.11 shows the comparison between the proposed

161

9. Multiple-F0 Estimation on Piano Recordings using Spectral

Envelope Modeling and Dynamic Noise Level Estimation

Table 9.5: Tukey-Kramer HSD (Honestly Significant Difference) Multi-Comparison Onset-
offset metric

Algorithm Algorithm
Lower

Mean
Upper

Significance
Bound Bound

Hill-Climber ASEM+DNLE -0.7894 1.3125 3.4144 FALSE
Hill-Climber ASEM 0.0231 2.1250 4.2269 TRUE
Hill-Climber Bare-bones 1.2106 3.3125 5.4144 TRUE
Hill-Climber DNLE 1.1481 3.2500 5.3519 TRUE

ASEM+DNLE ASEM -1.2894 0.8125 2.9144 FALSE
ASEM+DNLE Bare-bones -0.1019 2.0000 4.1019 FALSE
ASEM+DNLE DNLE -0.1644 1.9375 4.0394 FALSE

ASEM Bare-bones -0.9144 1.1875 3.2894 FALSE
ASEM DNLE -0.9769 1.1250 3.2269 FALSE

Bare-bones DNLE -2.1644 -0.0625 2.0394 FALSE

Figure 9.11: F-measure, Precision, Recall and Mean Overlap Ratio, using onset detection
and ground-truth information.

system using the implemented onset detector and using the ideal onset detector.

The F-measure difference between using the ground-truth information rather than

the onset detector is around 1%, which means that the implemented onset detection has

good performance and does not have a significant impact in the proposed system: the

performance of the algorithm does not drop significantly.

162

9.5. Summary

9.5 Summary

We have proposed a new approach for automatic transcription of polyphonic piano music

using genetic algorithms for multi-pitch estimation and also for spectral envelope mod-

eling and dynamic noise level estimation. The transcription process happens in three

stages: first an onset detector is applied, so that the audio can be separated in several

audio segments; then, for each segment, the genetic algorithm is applied to perform the

transcription of the corresponding audio segment; and, finally, a hill-climber is applied to

adjust note durations that cross multiple audio segments. The performance of the algo-

rithm does not drop significantly when compared to the usage of the ideal onset detector.

Nevertheless, since there is some decay in the quality of the results, the user is able to use

any other onset detector and use its data as system input. Due to the fact that the audio

segmentation is based on onset information, the duration of each segment is very short,

which reduces the search space of the genetic algorithm. Thus, 50 generations are more

than enough for the algorithm to find the appropriate solution. Each candidate solution

is encoded as a set of discrete note events associated with a timbre and noise model. The

evolution of these two models aids the transcription process because it mitigates the spec-

tral differences between different instruments. The hill-climber, by adjusting the duration

of the transcribed notes, gives a major contribution to the quality of the results from the

perception point of view.

The performance of the method was measured using 7,860 audio files and was also

compared to the state-of-the-art. The comparison was made using three different met-

rics: onset-only (to measure the ability of detecting the F0s), onset-offset (to measure the

overlap between the original score and the transcribed score) and, finally, Hybrid Decay/-

Sustain score for an evaluation from the human hearing perception point of view. The

proposed method achieved satisfying results when compared to other algorithms on all

metrics: it ranked as the best algorithm on the metric that best correlates with the human

hearing perception - Hybrid Decay/Sustain Score - and it ranked as second best on both

Onset-only and Onset-Offset metrics. Also, when compared to previous genetic algorithm

approaches, the proposed system brings significant improvements on both computation

time and quality of the results.

163

Chapter 10

Public Evaluations

The method presented along the previous chapter consists in applying an improved version

of our Evolutionary Algorithm based approach to the Automatic Transcription of Music

problem. As a best way to evaluate our proposal we aimed at submit our system to two

specific contests, being one contest related to Music Information Retrieval (the domain of

our proposal) and the other related to Evolutionary Algorithms (the technique employed);

so that experts from both fields could evaluate the proposal.

This chapter presents the results obtained in both the Music Information Retrieval

eXchange (MIREX) and Hummies contest, 2013, held at GECCO 2013 in Amsterdam.

10.1 MIREX

“The Music Information Retrieval Evaluation eXchange (MIREX) is the community-

based framework for the formal evaluation of Music Information Retrieval

(MIR) systems and algorithms.” (Downie, 2008b).

The Music Information Retrieval Evaluation eXchange (MIREX) (Downie, 2008b;

Downie et al., 2010a) is an annual evaluation campaign for Music Information Retrieval

(MIR) algorithms, coupled to the international conference of the International Society for

Music Information Retrieval (ISMIR). MIREX is hosted by the International Music In-

formation Retrieval Systems Evaluation Laboratory (IMIRSEL) at the Graduate School

of Library Information Sciences (GSLIS), which is part of the University of Illinois at

Urbana-Champaign (UIUC)1.

MIREX allows researchers around the world to submit their algorithms for evaluation,

see how they perform and also to compare their results with the results achieved by

other researchers. MIREX plays a fundamental role on the comparison between different

algorithms and is built upon three basic components:

• a set of standardized collections;

1See: http://www.music-ir.org/mirex/wiki/MIREX_HOME

165

http://www.music-ir.org/mirex/wiki/MIREX_HOME

10. Public Evaluations

• a set of standardized tasks/queries to be performed against these collections;

• a set of standardized evaluations of the results generated with regard to the tasks/-

queries.

During 2006, MIREX marked the introduction of two important enhancements to the

MIREX framework:

• tests of statistical significance (i.e., Friedman Test);

• the use of human evaluators (i.e., Evalutron 6000).

10.1.1 MIR Tasks Hosted on MIREX

MIR tasks evaluated at several MIREX editions include:

• Audio Train/Test Tasks

– Audio US Pop Genre Classification

– Audio Latin Genre Classification

– Audio Music Mood Classification

– Audio Classical Composer Identification

• Audio Cover Song Identification

• Audio Tag Classification

• Audio Music Similarity and Retrieval

• Symbolic Melodic Similarity

• Audio Onset Detection

• Audio Key Detection

• Real-time Audio to Score Alignment (a.k.a Score Following)

• Query by Singing/Humming

• Audio Melody Extraction

• Multiple Fundamental Frequency Estimation & Tracking

• Audio Chord Estimation

• Query by Tapping

• Audio Beat Tracking

• Structural Segmentation

• Audio Tempo Estimation

166

10.2. Multiple Fundamental Estimation & Tracking

10.2 Multiple Fundamental Estimation & Tracking

Among all MIREX tracks, there is one that aims at evaluating Polyphonic Pitch Estima-

tion and Automatic Music Transcription Algorithms. That is the Multiple Fundamental

Estimation & Tracking track. According to this track organizers, “That a complex music

signal can be represented by the F0 contours of its constituent sources is a very useful

concept for most music information retrieval systems. There have been many attempts at

multiple (aka polyphonic) F0 estimation and melody extraction, a related area. The goal

of multiple F0 estimation and tracking is to identify the active F0s in each time frame and

to track notes and timbres continuously in a complex music signal.”. In this task, state-of-

the-art multiple-F0 estimation and tracking algorithms are evaluated. Since F0 tracking

of all sources in a complex audio mixture can be very hard, the problem is restricted to 3

cases:

1. Estimate active fundamental frequencies on a frame-by-frame basis.

2. Track note contours on a continuous time basis (as in audio-to-midi). This task also

includes a piano transcription sub task.

3. Track timbre on a continuous time basis. This task is usually canceled due to lack

of participation. It was run only on 2010.

10.2.1 Data

The data used for algorithm evaluation includes a woodwind quintet transcription of

the fifth variation from Ludwig van Beethoven’s Variations for String Quartet Op.18 No.

5. Each part (flute, oboe, clarinet, horn, or bassoon) was recorded separately while the

performer listened to the other parts (recorded previously) through headphones. Later the

parts were mixed to a monaural 44.1kHz/16bits file. The data also includes synthesized

pieces using RWC MIDI and RWC samples, from the RWC Music Database (Goto and

Nishimura, 2003). It also includes pieces from Classical and Jazz collections. Polyphony

changes from 1 to 4 sources. Polyphonic piano recordings generated using a disklavier

playback piano were also included in the evaluation dataset.

There are 6, 30-sec clips for each polyphony (2-3-4-5) for a total of 30 examples, plus

there are 10 30-sec polyphonic piano clips. All files are in 44.1kHz / 16 bit wave format.

There is also available a development, which can be found at Development Set for MIREX

2007 MultiF0 Estimation Tracking Task 2.

10.2.2 Evaluation

Both tracks Multiple Fundamental Frequency Estimation and Note Tracking are evaluated

differently: the first is evaluated on a frame level basis and the latter is evaluated according

to the note event data.

2http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm

167

http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm

10. Public Evaluations

Frame Level Evaluation

For Task 1 (frame level evaluation), submitted systems must report the number of active

pitches every 10ms, so that precision (the portion of correct retrieved pitches for all pitches

retrieved for each frame) and Recall (the ratio of correct pitches to all ground truth pitches

for each frame) can be reported. A Returned Pitch is assumed to be correct if it is within a

half semitone (± 3%) of a ground-truth pitch for that frame. Only one ground-truth pitch

can be associated with each Returned Pitch. Also as suggested, an error score as described

in Poliner and Ellis (2007b) is calculated. The frame level ground truth is calculated by

the YIN algorithm (De Cheveigné and Kawahara, 2002) and hand corrected.

Besides Precision and Recall, each algorithm is also evaluated on the following metrics:

Acc =
TP

TP + FP + FN
(10.1)

Etot =

∑T

t=1max (Nref (t) , Nsys (t))−Ncorr (t)∑T

t=1Nref (t)
(10.2)

Esubs =

∑T

t=1min (Nref (t) , Nsys (t))−Ncorr (t)∑T

t=1 Nref (t)
(10.3)

Emiss =

∑T

t=1 max (0, Nref (t)−Nsys (t))∑T

t=1 Nref (t)
(10.4)

Efa =

∑T

t=1 max (0, Nsys (t))−Nref (t)∑T

t=1 Nref (t)
(10.5)

whereNref is the number of non-zero elements in the ground truth data, Nsys is the number

of active elements returned by the system, Ncorr is the number of correctly identified

elements and E stands for error.

Note Tracking

For Task 2 (note tracking), again Precision and Recall are reported. A ground truth note

is assumed to be correctly transcribed if the system returns a note that is within a half

semitone (± 3%) of that note and if the returned note’s onset is within a 50ms range(

± 25ms) of the onset of the ground truth note, and its offset is within 20% range of the

ground truth note’s offset. Again, one ground truth note can only be associated with one

transcribed note.

The ground truth for this task is annotated by hand. An amplitude threshold relative

to the file/instrument is determined: note onset is set to the time where its amplitude

rises higher than the threshold and the offset is set to the time where the note’s amplitude

decays lower than the threshold. Moreover, the ground truth is set as the average F0

between the onset and the offset of the note. In the case of legato, the onset/offset is set

to the time where the F0 deviates more than 3% of the average F0 through out the note

up to that point. There are no vibratos larger than a half semitone in the test data.

168

10.3. Multiple F0 Estimation and Tracking: Note Tracking Piano Subtask Results
2007-2011

This subtask is evaluated in two different ways. In the first setup, a returned note

is assumed to be correct if its onset is within ±50ms of a reference note and its F0 is

within ± quarter tone of the corresponding reference note, ignoring the returned offset

values (Onset-only metric). In the second setup, on top of the above requirements, a

correct returned note is required to have an offset value within 20% of the reference notes

duration around the reference note’s offset, or within 50ms, whichever is larger (Onset-

Offset metric). The Overlap ratio is calculated for an individual correctly identified note

as:

overlapratio =
min (offsets)−max (onsets)

max (offsets)−min (onsets)
(10.6)

10.3 Multiple F0 Estimation and Tracking: Note Track-

ing Piano Subtask Results 2007-2011

The main issue about MIREX submissions and their respective results is that the submit-

ted algorithms are only compared with those submitted in the same year. There is no

information about how each algorithm compares to those submitted in previous editions.

This way, and to have a better idea of how our submission compares to the other

previous submissions, we have compiled the results of all years, from 2007 to 2011. The

approach presented on the previous chapter was submitted to 2011 edition of MIREX

and had the identifier name “RFF 2011”, where RFF stands for the name of the authors

(Reis, Fernandéz and Ferreira) and 2011 is the submission year. Since we submitted two

different versions of the same algorithm those are identified as “RFF1 2011” and “RFF2

2011”.

Figure 10.1 shows the piano subtask results of the note tracking task of all previous

submissions of MIREX. Results are presented as F-Measure on both Onset-only and

Onset-Offset metrics. Most of the submissions presented in this figure are from the sames

authors. For instance, RFF1 2011 and RFF2 2011 are two slightly different versions of the

same algorithm, where the latter uses other kinds of pitched instruments besides piano,

as internal samplers. As matter of fact several submissions represent exactly the same

systems with slight changes. Moreover, different editions have also repeated submissions.

As an example, both RK 2007 and RK 2008 submissions represent the same system.

Furthermore, several teams submit the same system over the years but with improvements,

where each new submission results in the improvements achieved during the last year of

research. For instance, the RFF 2008 submission is a previous version (Reis et al., 2008) of

our approach, that evolved over the years during our research process and was resubmitted

in 2011 as RFF 2011, resulting in an F-Measure improvement of 25.25%. This way, and

for a better comparison, we have discarded all redundant submissions and only considered

the best algorithm of each team (see Figure 10.2). As in Figure 10.1, the results presented

are F-Measure on both Onset-Onset and Onset-only metrics.

Figure 10.2 also shows that our approach is ranked on the Top 9, among all the 19

different state-of-the art algorithms, submitted since 2007. This way, we can conclude

169

10. Public Evaluations

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

ZR3 − 2008

EBD1 − 2008

EBD2 − 2008

ZR2 − 2008

ZR1 − 2008

RK − 2008

RK − 2007

AR6 − 2010

AR5 − 2010

YR1 − 2011

EV4 − 2007

PE2 − 2007

CRVRC2 − 2010

LYLC2 − 2010

VBB − 2008

RFF1 − 2011

EV3 − 2007

LYC1 − 2011

YR3 − 2011

PI1 − 2008

YRC − 2008

NPA2 − 2009

DCL2 − 2010

RFF2 − 2011

YR − 2009

DHP1 − 2009

NEOS2 − 2009

EOS − 2008

PI2 − 2008

NPA1 − 2009

RS1 − 2009

DHP2 − 2010

BD3 − 2011

RS6 − 2009

RS3 − 2009

PI2 − 2007

RS4 − 2009

BD2 − 2011

RS2 − 2009

CRVRC4 − 2010

RS5 − 2009

PI3 − 2007

VE2 − 2007

RFF2 − 2008

RFF1 − 2008

KE3 − 2007

AC3 − 2007

AC4 − 2007

KE4 − 2007

JW3 − 2010

NEOS1 − 2009

JW4 − 2010

BVB − 2009

%

A
lg

o
rith

m
s

A
v
e
, F

−
M

e
a
s
u
re

 O
n
s
e
t−

O
ffs

e
t

A
v
e
, F

−
M

e
a
s
u
re

 O
n
s
e
t O

n
ly

Figure 10.1: Mirex piano results.

170

10.3. Multiple F0 Estimation and Tracking: Note Tracking Piano Subtask Results
2007-2011

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Z
R

3
 −

 2
0
0
8

E
B

D
1
 −

 2
0
0
8

R
K

 −
 2

0
0
8

A
R

6
 −

 2
0
1
0

E
V

4
 −

 2
0
0
7

P
E

2
 −

 2
0
0
7

C
R

V
R

C
2
 −

 2
0
1
0

L
Y

L
C

2
 −

 2
0
1
0

R
F

F
1
 −

 2
0
1
1

P
I1

 −
 2

0
0
8

N
P

A
2
 −

 2
0
0
9

D
C

L
2
 −

 2
0
1
0

D
H

P
1
 −

 2
0
0
9

N
E

O
S

2
 −

 2
0
0
9

E
O

S
 −

 2
0
0
8

R
S

1
 −

 2
0
0
9

B
D

3
 −

 2
0
1
1

A
C

3
 −

 2
0
0
7

J
W

3
 −

 2
0
1
0

%
Best piano result of each team

Ave, F−Measure Onset−Offset

Ave, F−Measure Onset Only

Figure 10.2: MIREX piano by teams.

that our approach achieves the state-of-the art performance, according to the MIREX

Note Tracking Piano subtask. The 19 different algorithms submitted from 2007 to 2011

are the following:

ZR3 - 2008 Ruohua Zhou and Joshua D. Reiss, method described in: Zhou and Reiss

(2008); Zhou (2006); Zhou and Mattavelli (2007);

EBD1 - 2008 Valentin Emiya, Roland Badeau and Bertrand David. Method described

in: Emiya et al. (2008b,a); Emiya (2008); Emiya et al. (2010);

RK - 2008 Matt Ryynänen, Anssi Klapuri. Method described in: Ryynänen and Kla-

puri (2008, 2005);

AR6 - 2010 Chunghsin Yeh and Alex Roebel. Method described in: Yeh and Roebel

(2010); Yeh et al. (2010); Raiford (1942); Chang et al. (2008); Yeh et al. (2005);

EV4 - 2007 Emmanuel Vincent, Nancy Bertin and Roland Badeau. Method described

in: Vincent et al. (2007); Bertin et al. (2007); Smaragdis and Brown (2003); Vincent

et al. (2008);

PE2 - 2007 Graham Poliner and Daniel Ellis. Method described in: Poliner and Ellis

(2007b,a);

171

10. Public Evaluations

CRVRC2 - 2010 Francisco Jesus Canadas Quesada, Francisco José Rodriguez Serrano,

Pedro Vera-Candeas, Nicolas Ruiz Reyes and Julio José Carabias-Orti. Method

described in: Canadas et al. (2010); Canadas Quesada et al. (2010);

LYLC2 - 2010 Cheng-Te Lee, Yi-Hsuan Yang, Keng-Sheng Lin and Homer Chen. Method

described in: Lee et al. (2010); Chen (2011);

RFF1 - 2011 Gustavo Reis, Francisco Fernandéz and Ańıbal Ferreira. Method described

on the previous chapter (Reis et al. (2012));

PI1 - 2008 Antonio Pertusa, José M. Iñesta. Method described in: Pertusa and Inesta

(2008b,a);

NPA2 - 2009 Paolo Nesi, Gianni Pantaleo and Fabrizio Argenti. Method described in:

Nesi et al. (2009b); Argenti et al. (2011); Nikias and Mendel (1993); Nikias and

Raghuveer (1987);

DCL2 - 2010 Arnaud Dessein, Arshia Cont and Guillaume Lemaitre. Method described

in: Dessein et al. (2010a,b);

DHP1 - 2009 Zhiyao Duan, Jinyu Han and Bryan Pardo. Method described in: Duan

et al. (2009b,a, 2008);

NEOS2 - 2009 Masahiro Nakano, Koji Egashira, Nobutaka Ono and Shigeki Sagayama.

Method described in: Nakano et al. (2009); Kameoka et al. (2007);

EOS - 2008 Kogi Egashira, Nobutaka Ono and Shigeki Sagayama. Method described

in: Egashira et al. (2008); Kameoka et al. (2007);

RS1 - 2009 Stanislaw Andrzej Raczyński and Shigeki Sagayama. Method described in:

Raczyński and Sagayma (2009); Raczyński et al. (2007);

BD3 - 2011 Emmanouil Benetos and Simon Dixon. Method described in: Benetos and

Dixon (2011a,b); Smaragdis et al. (2008);

AC3 - 2007 Arshia Cont. Method described in: Cont (2007, 2006b); Cont et al. (2007);

JW3 - 2010 Jun Wu, Nobutaka Ono and Shigeki Sagayama. Method described in: Wu

et al. (2010);

10.3.1 Chroma Evaluation

Systems submitted after 2008 were also evaluated on chroma results, where all F0’s are

mapped to a single octave before evaluating. Figure 10.3 shows these Chroma F-Measure

values. As we can see, our approach achieves the 5th place, on the Onset-Offset metric,

according to chroma results. This means that our approach is efficient in transcribing

non-harmonically related notes.

172

10.4. Humies Awards

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Z
R

3
 −

 2
0
0
8

E
B

D
1
 −

 2
0
0
8

R
K

 −
 2

0
0
8

N
P

A
2
 −

 2
0
0
9

R
F

F
1
 −

 2
0
1
1

D
C

L
2
 −

 2
0
1
0

C
R

V
R

C
2
 −

 2
0
1
0

A
R

6
 −

 2
0
1
0

L
Y

L
C

2
 −

 2
0
1
0

P
I1

 −
 2

0
0
8

N
E

O
S

2
 −

 2
0
0
9

D
H

P
1
 −

 2
0
0
9

E
O

S
 −

 2
0
0
8

R
S

1
 −

 2
0
0
9

B
D

3
 −

 2
0
1
1

J
W

3
 −

 2
0
1
0

%
Best piano result of each team

Ave, F−Measure Chroma

Ave, F−Measure Onset Only Chroma

Figure 10.3: MIREX piano by teams - chroma evaluation.

10.4 Humies Awards

The “Humies” Awards for Human-Competitive Results Produced by Genetic and Evolu-

tionary Computation3 is an award for researchers that employ techniques of evolutionary

computation to difficult real-world problems and have results that are human-competitive.

Entries are solicited for awards totaling $10,000. Any method presenting human-

competitive results and that have been produced by any form of genetic and evolutionary

computation and that have been published in the open literature between the deadline

of the previous Humies competition and the deadline for the current competition can be

submitted for the awards.

The prize competition is based on published results. The publication may be a paper

at any conference, a paper published anywhere in the open literature, or a paper in

final form that has been unconditionally accepted by a publication and is actually and

unconditionally “in press” (that is, the entry must be identical to something that will be

published imminently). Also, the submitted publication must meet the usual standards

of a scientific publication in that is must clearly describe a problem, the methods used to

address the problem, the results obtained, and sufficient information to enable the work

described to be replicated by an independent person.

3see http://www.genetic-programming.org/hc2005/main.html

173

http://www.genetic-programming.org/hc2005/main.html

10. Public Evaluations

10.4.1 Human-Competitiveness

An automatically created result is considered “human-competitive” if it satisfies at least

one of the eight criteria below:

A The result was patented as an invention in the past, is an improvement over a patented

invention, or would qualify today as a patentable new invention.

B The result is equal to or better than a result that was accepted as a new scientific

result at the time when it was published in a peer-reviewed scientific journal.

C The result is equal to or better than a result that was placed into a database or archive

of results maintained by an internationally recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result independent of the

fact that the result was mechanically created.

E The result is equal to or better than the most recent human-created solution to a

long-standing problem for which there has been a succession of increasingly better

human-created solutions.

F The result is equal to or better than a result that was considered an achievement in its

field at the time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H The result holds its own or wins a regulated competition involving human contestants

(in the form of either live human players or human-written computer programs).

10.4.2 Submission

We presented a submission of the method (Reis et al., 2012), based on the following

criteria:

B and E Several state-of-the-art algorithms published in peer-reviewed scientific journals

were compared with our approach and our algorithm ranked first with the metric

that best resembles the human earing perception, also it ranked as the 2nd best

algorithm on the other two metrics: Onset-Offset and Onset only (see Chapter 9,

Section 9.4.3). Furthermore, our proposal was also ranked as 2nd best algorithm on

MIREX 2011 contest (i.e. 2nd best algorithm among all MIREX 2011 submissions),

on Piano subtask (Multiple Fundamental Frequency Estimation and Tracking).

H Our algorithm was submitted to MIREX 2011, Piano subtask (Multiple Fundamental

Estimation and Tracking) and ranked as 2nd best. The other competing algorithms

were created by humans.

Our method was selected as one of the 10 finalists, among 14 entries, where it achieved

the 4th place4.
4The list of the selected finalists is available on:

http://http://www.genetic-programming.org/combined.php

174

http://http://www.genetic-programming.org/combined.php

10.5. Summary

10.5 Summary

Considering the best submission of each team of researchers to MIREX, our method ranks

9 out of 19 on piano transcription. Moreover, if we take into account the chroma results,

our method ranks the 5th place, which means that the algorithm can cope with non-

harmonically related notes. From the perception point of view, our method is on the

top 5 among the state of the art. This makes us believe that Genetic Algorithms are

a valid approach and present competitive results, when compared to other state-of-the-

art algorithms. This was also the opinion of the Humies committee, when selecting our

research as one of the 7 finalists for the $5,000 gold prize.

RFF2 2011 MIREX submission presented slightly worst results because it was blindly

adapted to multi-timbral (it is exactly the same algorithm than RFF1 2011, but with a

larger sample database). Since RFF2 deals with a bigger database of internal samples,

the size of the search space is much greater and this requires different parameters, namely

a greater number of generations to converge to the desired solution.

175

Chapter 11

Conclusions and Future Work

11.1 Conclusions

1. During our research, we have employed several genetic algorithm approaches to

address the problem of multi-pitch estimation. We first started with simple synthe-

sized models of instruments. Then, we moved to real audio recordings and performed

several experiments. Those experiments included different domains (log spectra, lin-

ear spectra, filter banks, real cepstrum, hybrid cepstral and spectral analysis, ACF

and SACF) for audio similarity measurement and several error measurements (from

Hamming and Itakura-Saito distance to area intersection, correlation and other vari-

ations). We faced the problem of Harmonic Overfitting, which is related to timbre

differences, and proposed a spectral envelope modeling technique to address this is-

sue. Furthermore, we have employed this approach on musical signals with different

audio instruments to show the feasibility of the approach on multi-timbral music.

2. During our research, we have also made contributions to the field of Evolutionary

Computation, namely: the evolutionary algorithmGene Fragment Competition,

which can be used is most decomposable problems in signal or image processing.

We presented an analysis of how decomposable approaches are suitable to decom-

posable problems and took advantage of the modular and hierarchical structure of

the Royal Road functions so we could use them as test functions to show how single-

population decomposable approaches, such as the Gene Fragment Competition, can

overcome the spurious correlation or hitchhiking. We have shown empirically that

both Parisian approach and Gene Fragment Competition clearly outperform not

only the standard genetic algorithm and the multiple-population co-evolutionary

approach but also the random mutation hill-climber, except for the GFC in the

instances with string length L = 256. Hitchhiking is known to be, in general, one

of the major bottlenecks of the genetic algorithms performance. This way, avoiding

hitchhiking boosts the performance of the algorithm. Applying problem decomposi-

tion in building blocks is an advantageous optimization technique, since this avoids

the hitchhiking phenomena. Despite the random mutation hill-climber algorithm

177

11. Conclusions and Future Work

has been revealed to be the ideal for the Royal Road functions in the past, we have

shown that single population decomposable approaches can explore more efficiently

the search space on Royal Road functions.

3. We have also proposed a new approach for automatic transcription of polyphonic

piano music using genetic algorithms for multi-pitch estimation and also for spec-

tral envelope modeling and dynamic noise level estimation. This transcription

method happens in three stages: first an onset detector is applied, so that the audio

can be separated in several audio segments; then, for each segment, a genetic algo-

rithm is applied to perform the transcription of the corresponding audio segment;

and, finally, a hill-climber is applied to adjust note durations that cross multiple

audio segments. We have shown that the performance of this algorithm does not

drop significantly when compared with the usage of the ideal onset detector. Nev-

ertheless, since there is some decay in the quality of the results, one can use any

other onset detector and fed its data to the system input. Due to the fact that the

audio segmentation is based on onset information, the duration of each segment is

very short, which reduces the search space of the genetic algorithm. This way, we

have shown that 50 generations are more than enough for the algorithm to find an

appropriate solution. Each candidate solution is encoded as a set of discrete note

events associated with a spectral envelope and noise model. The evolution of these

two models aids the transcription process because it mitigates the spectral differ-

ences between different instruments. The hill-climber, by adjusting the duration of

the transcribed notes, gives a major contribution to the quality of the results from

the perception point of view. The performance of the method was measured using

7,860 audio files and was also compared to the state-of-the-art. The comparison was

made using three different metrics: onset-only (to measure the ability of detecting

the F0s), onset-offset (to measure the overlap between the original score and the

transcribed score) and, finally, Hybrid Decay/Sustain score for an evaluation from

the human hearing perception point of view. The proposed method achieved sat-

isfying results when compared to other algorithms on all metrics: it ranked as the

best algorithm on the metric that best correlates with the human hearing perception

- Hybrid Decay/Sustain Score - and it ranked as second best on both Onset-only

and Onset-Offset metrics. Also, when compared to previous genetic algorithm ap-

proaches, the proposed system brings significant improvements on both computation

time and quality of the results.

11.2 Future Work

For future steps, we would like to propose a more general approach, i.e. not sample

based, to the problem addressed. The current method relies on an internal synthesizer

consisting of previous recorded audio samples, which are used to search for the most-likely

combination of pitches. Spectral envelope modeling is also done, along with the pitch

estimation, to avoid spurious notes due to timbre differences. One interesting feature

178

should be to evolve from scratch the entire harmonic model, instead of starting from

previous recorded samples. This way, the system would be general enough to transcribe

any kind of harmonic model.

We also intend to exploit the parallelization capabilities of the proposed system to

reduce its computing time.

Planning ahead we are looking forward to apply a deeper analysis on both Gene

Fragment Competition and Parisian approaches and see how they perform in several

classical problems in comparison to standard evolutionary algorithms.

We also aim to apply Gene Fragment Competition and Parisian approaches to real

world problems and study how they perform when compared with classical approaches.

179

Bibliography

(2007). Music information retrieval evaluation exchange (mirex 2007). http://www.music-

ir.org/mirex/2007/index.php. [cited at p. 111]

Abdallah, S. and Plumbley, M. (2003). An independent component analysis approach to automatic music

transcription. PREPRINTS-AUDIO ENGINEERING SOCIETY. [cited at p. 46]

Abdallah, S. and Plumbley, M. (2004). Polyphonic music transcription by non-negative sparse coding of

power spectra. In Proceedings of the Fifth International Conference on Music Information Retrieval

(ISMIR04), pages 10–14. [cited at p. 46, 56]

Alonso, M., Richard, G., and David, B. (2005). Extracting note onsets from musical recordings. In

Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, page 4 pp. [cited at p. 52]

Anderson, R. (1953). Recent advances in finding best operating conditions. Journal of the American

Statistical Association, 48(264):789–798. [cited at p. 64]

Argenti, F., Nesi, P., and Pantaleo, G. (2011). Automatic transcription of polyphonic music based on the

constant-q bispectral analysis. [cited at p. 172]

Association, M. M. (1999/2008). Complete MIDI 1.0 Detailed Specification. [cited at p. 12, 14, 15, 85, 86]

Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., and Kann, V. (1999).

Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability

Properties. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition. [cited at p. 59]

Bach, F. and Jordan, M. (2005). Discriminative training of hidden markov models for multiple pitch

tracking [speech processing examples]. In Acoustics, Speech, and Signal Processing, 2005. Proceed-

ings.(ICASSP’05). IEEE International Conference on, volume 5, pages 489–492. IEEE. [cited at p. 41]

Bäck, T. (1993). Optimal mutation rates in genetic search. In Proceedings of the fifth International

Conference on Genetic Algorithms, pages 2–8. Morgan Kaufmann. [cited at p. 65]

Baker, T., Gill, J., and Solovay, R. (1975). Relativizations of the p=?np question. SIAM Journal on

computing, 4(4):431–442. [cited at p. 61]

Baskind, A. and de Cheveigné, A. (2012). Pitch-tracking of reverberant sounds, application to spatial

description of sound scenes. Watermark, 1. [cited at p. 37]

Bay, M. and Beauchamp, J. W. (2006). Harmonic source separation using prestored spectra. In ICA,

pages 561–568. [cited at p. 116]

Beauchamp, J., Maher, R., and Brown, R. (2012). Detection of musical pitch from recorded solo perfor-

mances. Watermark, 1. [cited at p. 37]

181

Bello, J., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. (2005). A tutorial on onset

detection in music signals. Speech and Audio Processing, IEEE Transactions on, 13(5):1035–1047.

[cited at p. 37]

Bello, J., Daudet, L., and Sandler, M. (2002). Time-domain polyphonic transcription using self-generating

databases. In 112th Convention of the Audio Engineering Society, Munich, Germany. [cited at p. 45]

Bello, J. and Sandler, M. (2000). Blackboard system and top-down processing for the transcription

of simple polyphonic music. In Proceedings of the COST G-6 Conference on digital Audio Effects

(DAFX-00). [cited at p. 45, 53, 56]

Bello, J. P. (2003). Towards the automated analysis of simple polyphonic music: A knowledge-based

approach. PhD thesis, University of London, London, UK. [cited at p. 4]

Benetos, E. and Dixon, S. (2011a). Multiple-f0 estimation and note tracking using a convolutive proba-

bilistic model. In Proceedings of the Fifth Music Information Retrieval Evaluation eXchange (MIREX

2011), Miami. [cited at p. 172]

Benetos, E. and Dixon, S. (2011b). Multiple-instrument polyphonic music transcription using a convolu-

tive probabilistic model. 8th Sound and Music Computing Conf, page 1924. [cited at p. 45, 172]

Bertin, N., Badeau, R., and Richard, G. (2007). Blind signal decompositions for automatic transcription

of polyphonic music: NMF and K-SVD on the benchmark. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), volume 1, pages 65–68. [cited at p. 46, 154, 171]

Bogert, B., Healy, M., and Tukey, J. (1963). The quefrency alanysis of time series for echoes: Cepstrum,

Pseudo-Autocovariance, Cross-Cepstrum and Saphe Cracking. In Proc. Symp. on Time Series Analysis,

pages 209–243. [cited at p. 149]

Bregman, A. (1990). Auditory scene analysis. MIT press Cambridge, Mass. [cited at p. 23]

Bremermann, H. J. (1962). Optimization through evolution and recombination. In Yovits, M. C., Jacobi,

G. T., and Golstine, G. D., editors, Proceedings of the Conference on Self-Organizing Systems – 1962,

pages 93–106, Washington, DC. Spartan Books. [cited at p. 64]

Brown, A. R. and Sorensen, A. C. (2000). Introducing jMusic. In Brown, A. R. and Wilding, R., editors,

Australasian Computer Music Conference, pages 68–76, Queensland University of Technology, Brisbane.

ACMA. [cited at p. 92]

Brown, J. (1991). Calculation of a constant Q spectral transform. The Journal of the Acoustical Society

of America, 89:425. [cited at p. 48]

Brown, J. (1992). Musical fundamental frequency tracking using a pattern recognition method. The

Journal of the Acoustical Society of America, 92:1394. [cited at p. 29]

Burred, J., Röbel, A., and Rodet, X. (2006). An accurate timbre model for musical instruments and its

application to classification. In Workshop on Learning the Semantics of Audio Signals, Athens, Greece.

[cited at p. 35]

Canadas, F., Rodriguez, F., Vera, P., Ruiz, N., and Carabias, J. (2010). Multiple fundamental frequency

estimation & tracking in polyphonic music for mirex 2010. In Proceedings of the Fourth Music Infor-

mation Retrieval Evaluation eXchange (MIREX 2010), Utrecht. [cited at p. 172]

Canadas-Quesada, F., Vera-Candeas, P., Ruiz-Reyes, N., and Carabias-Orti, J. (2009). Polyphonic tran-

scription based on temporal evolution of spectral similarity of gaussian mixture models. In 17th

European Signal Processing Conference (EUSIPCO), pages 10–14. Citeseer. [cited at p. 50]

182

Cañadas-Quesada, F., Vera-Candeas, P., Ruiz-Reyes, N., Mata-Campos, R., and Carabias-Orti, J. (2008).

Note-event detection in polyphonic musical signals based on harmonic matching pursuit and spectral

smoothness. Journal of New Music Research, 37(3):167–183. [cited at p. 42]

Canadas Quesada, F. J., Ruiz Reyes, N., Vera Candeas, P., Carabias, J. J., and Maldonado, S. (2010). A

multiple-f0 estimation approach based on gaussian spectral modelling for polyphonic music transcrip-

tion. Journal of New Music Research, 39(1):93–107. [cited at p. 172]

Cemgil, A. (2004). Bayesian music transcription. PhD thesis, Radboud University of Nijmegen, Nether-

lands. [cited at p. 4]

Cemgil, A., Kappen, B., and Barber, D. (2003). Generative model based polyphonic music transcription.

In Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., pages 181–184.

IEEE. [cited at p. 51]

Cemgil, A., Kappen, H., and Barber, D. (2006a). A generative model for music transcription. IEEE

Transactions on Audio Speech and Language Processing, 14(2):679. [cited at p. 74]

Cemgil, A. T., Kappen, H. J., and Barber, D. (2006b). A Generative Model for Music Transcription.

IEEE Transactions on Audio, Speech and Language Processing, 14(2):679–694. [cited at p. 3, 51, 153]

Chafe, C. and Jaffe, D. (1986). Source separation and note identification in polyphonic music. In

Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’86., volume 11.

[cited at p. 54]

Chang, W.-C., Su, A. W., Yeh, C., Roebel, A., and Rodet, X. (2008). Multiple-f0 tracking based on a

high-order hmm model. In Digital Audio Effects (DAFx-08), Espoo, Finland. [cited at p. 49, 171]

Chen, H. (2011). Automatic transcription of piano music by sparse representation of magnitude spectra.

2011 IEEE International Conference on Multimedia and Expo, pages 1–6. [cited at p. 172]

Chien, Y. and Jeng, S. (2002). An automatic transcription system with octave detection. In IEEE

INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, vol-

ume 2. IEEE; 1999. [cited at p. 54]

Collet, P., Lutton, E., Schoenauer, M., Collet, P., Lutton, E., Raynal, F., and Schoenauer, M. (2000).

Polar ifs + parisian genetic programming = efficient ifs inverse problem solving. Genet. Programm.

Evolvable Mach. J, 1:361. [cited at p. 129, 131]

Comon, P. (1994). Independent component analysis, a new concept? Signal processing, 36(3):287–314.

[cited at p. 46]

Conklin Jr, H. (1999). Generation of partials due to nonlinear mixing in a stringed instrument. The

Journal of the Acoustical Society of America, 105:536. [cited at p. 36]

Cont, A. (2006a). Realtime multiple pitch observation using sparse non-negative constraints. In Proc.

Int. Conf. on Music Information Retrieval (ISMIR), pages 206–212. [cited at p. 46]

Cont, A. (2006b). Realtime multiple pitch observation using sparse non-negative constraints. Signal

Processing, pages 206–211. [cited at p. 172]

Cont, A. (2007). Real-time transcription of music signals: Mirex 2007 submission description. Proc of

the 3rd Music Information Retrieval Evaluation eXchange (MIREX). [cited at p. 172]

Cont, A., Dubnov, S., and Wessel, D. (2007). Realtime multiple-pitch and multiple-instrument recogni-

tion for music signals using sparse non-negative constraints. In Proceedings of Digital Audio Effects

Conference (DAFx), pages 10–12. [cited at p. 172]

183

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the third annual

ACM symposium on Theory of computing, pages 151–158. ACM. [cited at p. 61, 62]

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.

[cited at p. 47]

Darwin, C. (1859). On the Origin of the Species by Natural Selection. Murray, London, UK. [cited at p. 62,

68]

Daudet, L. (2004). Sparse and structured decompositions of audio signals in overcomplete spaces. In

Proc. Intl Conference on Digital Audio Effects (DAFx), Naples, Italy, pages 22–26. [cited at p. 37]

Davy, M. (2006). Multiple fundamental frequency estimation based on generative models. Signal Pro-

cessing methods for music transcription, pages 203–227. [cited at p. 50]

Davy, M. and Godsill, S. (2003). Bayesian harmonic models for musical signal analysis. Bayesian Statistics,

7. [cited at p. 50]

De Cheveigné, A. (1993). Separation of concurrent harmonic sounds: Fundamental frequency estimation

and a time-domain cancellation model of auditory processing. JOURNAL-ACOUSTICAL SOCIETY

OF AMERICA, 93:3271–3271. [cited at p. 40, 43]

de Cheveigné, A. (2005). Pitch perception models. Springer Handbook of Auditory Research, 24:169.

[cited at p. 30, 43, 55]

De Cheveigné, A. and Kawahara, H. (2001). Comparative evaluation of f0 estimation algorithms. In Proc.

Eurospeech, volume 1, pages 2451–2454. [cited at p. 25]

De Cheveigné, A. and Kawahara, H. (2002). Yin, a fundamental frequency estimator for speech and

music. The Journal of the Acoustical Society of America, 111:1917. [cited at p. 25, 168]

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD thesis,

Ann Arbor, MI, USA. AAI7609381. [cited at p. 65]

De Jong, K. A. and Spears, W. M. (1989). Using genetic algorithms to solve np-complete problems. In

ICGA, pages 124–132. [cited at p. 63]

Dessein, A., Cont, A., and Lemaitre, G. (2010a). Real-time polyphonic music transcription with non-

negative matrix factorization and beta-divergence. In 6th Music Information Retrieval Evaluation

eXchange (MIREX), Utrecht, Netherlands. [cited at p. 46, 172]

Dessein, A., Cont, A., Lemaitre, G., and Umr, I. C. (2010b). Real-time polyphonic music transcription

with non-negative matrix factorization and beta-divergence. October, (Ismir):489–494. [cited at p. 172]

Donoho, D. (2006). For most large underdetermined systems of linear equations the minimal l1-norm

solution is also the sparsest solution. Communications on pure and applied mathematics, 59(6):797–829.

[cited at p. 45]

Doval, B. and Rodet, X. (1991). Estimation of fundamental frequency of musical sound signals. In

Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, pages

3657–3660. IEEE. [cited at p. 29]

Downie, J., Ehmann, A., Bay, M., and Jones, M. (2010a). The music information retrieval evaluation

exchange: Some observations and insights. Advances in Music Information Retrieval, pages 93–115.

[cited at p. 104, 165]

184

Downie, J., Ehmann, A., Bay, M., and Jones, M. (2010b). The music information retrieval evaluation

exchange: Some observations and insights. In Ras, Z. and Wieczorkowska, A., editors, Advances

in Music Information Retrieval, volume 274 of Studies in Computational Intelligence, pages 93–115.

Springer Berlin / Heidelberg. [cited at p. 154]

Downie, J. S. (2008a). The music information retrieval evaluation exchange (2005–2007): A window into

music information retrieval research. Acoustical Science and Technology, 29(4):247–255. [cited at p. 154]

Downie, J. S. (2008b). The music information retrieval evaluation exchange (2005-2007): A window into

music information retrieval research. Acoustical Science and Technology, 29(4):247–255. [cited at p. 104,

119, 165]

Droste, S., Jansen, T., and Wegener, I. (1998). A rigorous complexity analysis of the (1 + 1)- evolution

strategy for separable functions with boolean inputs. In In Proceedings of the 5th IEEE International

Conference on Evolutionary Computation (ICEC’98), pages 499–504. IEEE Press, Piscataway (NJ).

[cited at p. 65]

Duan, Z., Han, J., and Pardo, B. (2009a). Harmonically informed multi-pitch tracking. In Proc. ISMIR.

[cited at p. 52, 172]

Duan, Z., Han, J., and Pardo, B. (2009b). A multi-pitch tracking system (mirex 2009). In Proceedings of

the Fifth Music Information Retrieval Evaluation eXchange (MIREX 2009), Kobe. [cited at p. 172]

Duan, Z. D. Z., Zhang, Y. Z. Y., Zhang, C. Z. C., and Shi, Z. S. Z. (2008). Unsupervised single-channel

music source separation by average harmonic structure modeling. [cited at p. 172]

Duifhuis, H., Willems, L., and Sluyter, R. (1982). Measurement of pitch in speech: An implementation

of goldsteins theory of pitch perception. The Journal of the Acoustical Society of America, 71:1568.

[cited at p. 29]

Dunn, E., Olague, G., and Lutton, E. (2005). Automated photogrammetric network design using

the parisian approach. In 8th European Workshop on Evolutionary Computation in Image Analy-

sis and Signal Processing. Lecture Notes in Computer Science, volume 3449, pages 356–365. Springer.

[cited at p. 131]

Dunn, E., Olague, G., and Lutton, E. (2006). Parisian camera placement for vision metrology. Pattern

Recognition Letters, 27(11):1209–1219. [cited at p. 131]

Egashira, K., Ono, N., and Sagayama, S. (2008). Sequential estimation of multiple fundamental frequen-

cies through harmonic-temporal-structured clustering. Proc of the 4th Music Information Retrieval

Evaluation eXchange (MIREX). [cited at p. 172]

Eggink, J. and Brown, G. J. (2003). Application of missing feature theory to the recognition of musical

instruments in polyphonic audio. In ISMIR. [cited at p. 51]

Ellis, D. (1996). Prediction-driven computational auditory scene analysis. PhD thesis, Massachusetts

Institute of Technology. [cited at p. 54]

Emiya, V. (2008). Transcription automatique de la musique de piano. These, Télécom ParisTech.

[cited at p. 4, 151, 152, 171]

Emiya, V., Badeau, R., and David, B. (2008a). Automatic transcription of piano music based on HMM

tracking of jointly-estimated pitches. In Proc. of European Conference on Signal Processing (EU-

SIPCO). [cited at p. 52, 144, 154, 171]

185

Emiya, V., Badeau, R., and David, B. (2008b). Automatic transcription of piano music based on HMM

tracking of jointly-estimated pitches. In Proceedings of the Fourth Music Information Retrieval Evalu-

ation eXchange (MIREX 2008), Philadelphia, PA, United States. [cited at p. 171]

Emiya, V., Badeau, R., and David, B. (2010). Multipitch estimation of piano sounds using a new prob-

abilistic spectral smoothness principle. Audio, Speech, and Language Processing, IEEE Transactions

on, 18(6):1643 –1654. [cited at p. 52, 144, 152, 171]

Engelmore, R. and Morgan, T. (1988). Blackboard systems: edited by Robert Engelmore, Tony Morgan.

Insight series in artificial intelligence. Addison-Wesley. [cited at p. 53]

Eronen, A. (2003). Musical instrument recognition using ica-based transform of features and discrimina-

tively trained hmms. In Signal Processing and Its Applications, 2003. Proceedings. Seventh Interna-

tional Symposium on, volume 2, pages 133–136. IEEE. [cited at p. 51]

Every, M. and Szymanski, J. (2004). A spectral-filtering approach to music signal separation. In Proc.

DAFx, pages 197–200. [cited at p. 33]

Fernandez-Cid, P.; Casajus-Quiros, F. (1998). ”multi-pitch estimation for polyphonic musical signals”.

[cited at p. 54]

Févotte, C., Bertin, N., and Durrieu, J.-L. (2009). Nonnegative matrix factorization with the itakura-saito

divergence: With application to music analysis. Neural computation, 21(3):793–830. [cited at p. 74]

FitzGerald, D. (2004). Automatic drum transcription and source separation. PhD thesis, Dublin Institute

of Technology. [cited at p. 46]

Fletcher, H., Blackham, E. D., and Stratton, R. (1962). Quality of piano tones. The Journal of the

Acoustical Society of America, 34(6):749–761. [cited at p. 144]

Fletcher, N. H. and Rossing, T. D. (1998). The physics of musical instruments / Neville H. Fletcher,

Thomas D. Rossing. Springer, New York ; London :, 2nd ed. edition. [cited at p. 36, 144]

Fogel, D. B. (1992). Evolving artificial intelligence. PhD thesis, La Jolla, CA, USA. UMI Order No.

GAX93-03240. [cited at p. 64]

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence through Simulated Evolution.

John Wiley, New York, USA. [cited at p. 64]

Forrest, S. and Mitchell, M. (1993). Relative building-block fitness and the building-block hypothesis. In

Foundations of Genetic Algorithms 2, pages 109–126. Morgan Kaufmann. [cited at p. 132, 133, 134, 135,

139]

Fortnow, L. (2009). The status of the p versus np problem. Communications of the ACM, 52(9):78–86.

[cited at p. 61]

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers. II. Effects of linkage

on rates of advance under selection. Australian Journal of Biological Science, 10:492–499. [cited at p. 64]

Friedberg, R. M. (1958). A learning machine: Part i. IBM Journal of Research and Development, 2(1):2

–13. [cited at p. 64]

Gabor, D. (1946). Theory of communication. J. of the Institute of Electrical Engineers Part III, 93:429–

457. [cited at p. 42]

Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature, 159(4044):591–594. [cited at p. 42]

186

Garcia, G. (2001). A genetic search technique for polyphonic pitch detection. In Proceedings of the

International Computer Music Conference (ICMC), Havana, Cuba. [cited at p. 81, 82, 84, 85, 86, 89, 91,

95]

Gersting, J. L. and Schneider, G. M. (1995). An invitation to computer science. [cited at p. 57]

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley Professional. [cited at p. 69, 70, 78, 81, 83, 84, 87, 90, 100, 110, 147, 148]

Goldstein, J. (1973). An optimum processor theory for the central formation of the pitch of complex

tones. The Journal of the Acoustical Society of America, 54(6):1496–1516. [cited at p. 29]

Gómez, E., Klaupuri, A., and Meudic, B. (2003). Melody description and extraction in the context of

music content processing. Journal of New Music Research, 32(1). [cited at p. 85]

Goto, M. (2000). A robust predominant-f0 estimation method for real-time detection of melody and bass

lines in cd recordings. In Acoustics, Speech, and Signal Processing, 2000. ICASSP’00. Proceedings.

2000 IEEE International Conference on, volume 2, pages II757–II760. IEEE. [cited at p. 51]

Goto, M. and Nishimura, T. (2003). Rwc music database: Music genre database and musical instrument

sound database. pages 229–230. [cited at p. 114, 116, 167]

Gribonval, R. and Bacry, E. (2003). Harmonic decomposition of audio signals with matching pursuit.

Signal Processing, IEEE Transactions on, 51(1):101–111. [cited at p. 42]

Groble, M. (2008). Multiple fundamental frequency estimation. In Proceedings of the Fourth Music

Information Retrieval Evaluation eXchange (MIREX), pages 1–4, Philadelphia, USA. [cited at p. 45]

Hainsworth, S. W. (2003). Techniques for the automated analysis of musical audio. PhD thesis, University

of Cambridge. [cited at p. 4, 54]

Harris, C. and Weiss, M. (1963). Pitch extraction by computer processing of high-resolution fourier

analysis data. The Journal of the Acoustical Society of America, 35(3):339–343. [cited at p. 29]

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete fourier transform.

Proceedings of the IEEE, 66(1):51–83. [cited at p. 21, 98]

Hart, W., Krasnogor, N., and Smith, J. (2004). Recent Advances in Memetic Algorithms, chapter Memetic

Evolutionary Algorithms. Springer. [cited at p. 101, 122, 150]

Hartmanis, J. and Stearns, R. E. (1965). On the computational complexity of algorithms. Transactions

of the American Mathematical Society, 117:285–306. [cited at p. 59]

Hartmann, W. (1997). Signals, Sound, and Sensation. Modern Acoustics and Signal Processing. American

Inst. of Physics. [cited at p. 23]

Hartmann, W. M. (1996). Pitch, periodicity, and auditory organization. The Journal of the Acoustical

Society of America, 100:3491. [cited at p. 23]

Hermansky, H. and Morgan, N. (1994). RASTA processing of speech. IEEE transactions on speech and

audio processing, 2(4):578–589. [cited at p. 40]

Hess, W. (1983). Pitch determination of speech signals: algorithms and devices. Springer series in

information sciences. Springer-Verlag. [cited at p. 25]

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Arbor, MI, USA. [cited at p. 64, 65, 129, 132]

187

Holland, J. H. (1992a). Adaptation in natural and artificial systems. MIT Press, Cambridge, MA, USA.

[cited at p. 130]

Holland, J. H. (1992b). Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. The MIT Press. [cited at p. 75, 149]

Jančař́ık, A. (2007). Algorithms and Solving Strategies. Antonin Jancarik. [cited at p. 57]

Jensen, K. (1999). Timbre models of musical sounds. Københavns Universitet, Datalogisk Institut.

[cited at p. 35]

Jordan, M. (2004). Graphical models. Statistical Science, pages 140–155. [cited at p. 41]

Jutten, C. and Herault, J. (1991). Blind separation of sources, part i: An adaptive algorithm based on

neuromimetic architecture. Signal processing, 24(1):1–10. [cited at p. 46]

Kameoka, H., Nishimoto, T., and Sagayama, S. (2005a). Audio stream segregation of multi-pitch music sig-

nal based on time-space clustering using Gaussian Kernel 2-dimensional model. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05), volume 3.

[cited at p. 52]

Kameoka, H., Nishimoto, T., and Sagayama, S. (2005b). Harmonic-temporal-structured clustering via

deterministic annealing EM algorithm for audio feature extraction. In Proc. ISMIR, pages 115–122.

[cited at p. 52]

Kameoka, H. K. H., Nishimoto, T. N. T., and Sagayama, S. S. S. (2007). A multipitch analyzer based on

harmonic temporal structured clustering. [cited at p. 52, 172]

Keren, R., Zeevi, Y., and Chazan, D. (1998). Automatic transcription of polyphonic music using the

multiresolution fourier transform. In Electrotechnical Conference, 1998. MELECON 98., 9th Mediter-

ranean, volume 1, pages 654 –657 vol.1. [cited at p. 54]

Klapuri, A. (1998). Number theoretical means of resolving a mixture of several harmonic sounds. In

Proceedings of the European Signal Processing Conference, page 400. [cited at p. 32]

Klapuri, A. (2001). Multipitch estimation and sound separation by the spectral smoothness principle. In

Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International

Conference on, volume 5, pages 3381 –3384 vol.5. [cited at p. 41]

Klapuri, A. (2003). Multiple fundamental frequency estimation based on harmonicity and spectral smooth-

ness. IEEE Transactions on Speech and Audio Processing, 11(6):804–816. [cited at p. 40, 42]

Klapuri, A. (2004a). Signal processing methods for the automatic transcription of music. PhD thesis,

Tampere University of Technology Finland. [cited at p. xv, xvi, 4, 26, 29, 30, 36, 39, 55, 103]

Klapuri, A. (2005). A perceptually motivated multiple-f0 estimation method. In IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, 2005, pages 291–294. [cited at p. 41, 54]

Klapuri, A. (2006). Multiple fundamental frequency estimation by summing harmonic amplitudes. In

Proc. ISMIR, pages 216–221. [cited at p. 41]

Klapuri, A. (2008). Multiplitch analysis of polyphonic music and speech signals using an auditory model.

IEEE Transactions on Audio and Language Processing, 16(2):255–264. [cited at p. 41, 103]

Klapuri, A. P. (2004b). Automatic music transcription as we know it today. Journal of New Music

Research, 33(3):269–282. [cited at p. 13]

188

Klapuri, A. P. and Astola, J. T. (2002). Efficient calculation of a physiologically-motivated representation

for sound. In Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on,

volume 2, pages 587–590. IEEE. [cited at p. 29]

Kobzantsev, A., Chazan, D., and Zeevi, Y. (2005). Automatic transcription of piano polyphonic music.

In Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International

Symposium on, pages 414–418. IEEE. [cited at p. 54]

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural

Selection (Complex Adaptive Systems). A Bradford Book, 1 edition. [cited at p. 65]

Ladner, R. E. (1975). On the structure of polynomial time reducibility. Journal of the ACM (JACM),

22(1):155–171. [cited at p. 61]

Lahat, M., Niederjohn, R., and Krubsack, D. (1987). A spectral autocorrelation method for measurement

of the fundamental frequency of noise-corrupted speech. Acoustics, Speech and Signal Processing, IEEE

Transactions on, 35(6):741–750. [cited at p. 28]

Landrin-Schweitzer, Y., Collet, P., and Lutton, E. (2006). Introducing lateral thinking in search engines.

Genetic Programming and Evolvable Machines, 7(1):9–31. [cited at p. 131]

Large, E. W. and Kolen, J. (1994). Resonance and the perception of musical meter. Connection science,

6(2-3):177–208. [cited at p. 47]

Lea, A. (1970). Auditory model of vowel perception. PhD thesis, University of Nottingham. [cited at p. 40]

Lee, C.-T., Yang, Y.-H., Lin, K.-S., and Chen, H. (2010). Multiple fundamental frequency estimation

of piano signals via sparse representation of fourier coefficients. In Proceedings of the Fourth Music

Information Retrieval Evaluation eXchange (MIREX 2010), Utrecht. [cited at p. 45, 172]

Lemon, S. M., Hamburg, M. A., Sparling, P. F., Choffnes, E. R., Mack, A., et al. (2007). Global Infectious

Disease Surveillance and Detection: Assessing the Challenges–Finding Solutions, Workshop Summary.

National Academies Press. [cited at p. 57]

Leveau, P., Vincent, E., Richard, G., and Daudet, L. (2008). Instrument-specific harmonic atoms for mid-

level music representation. Audio, Speech, and Language Processing, IEEE Transactions on, 16(1):116–

128. [cited at p. 42]

Li, Y. and Wang, D. (2007). Pitch detection in polyphonic music using instrument tone models. In Acous-

tics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 2,

pages II–481. IEEE. [cited at p. 52]

Licklider, J. (1951). A duplex theory of pitch perception. Cellular and Molecular Life Sciences (CMLS),

7(4):128–134. [cited at p. 43]

Louchet, J., Guyon, M., Lesot, M., and Boumaza, A. (2002). Dynamic flies: a new pattern recognition tool

applied to stereo sequence processing. Pattern Recognition Letters, 23(1-3):335–345. [cited at p. 131]

Loureiro, M., De Paula, H., and Yehia, H. (2004). Timbre classification of a single musical instrument. In

Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR 2004), pages

546–549. [cited at p. 35]

Lu, D. (2007). Automatic music transcription using genetic algorithms and electronic synthesis. Computer

Science Undergraduate Research, University of Rochester, New York, USA. [cited at p. 85, 86, 88, 89,

90, 91, 92, 95]

189

Lyon, R. (1984). Computational models of neural auditory processing. In Acoustics, Speech, and Signal

Processing, IEEE International Conference on ICASSP’84., volume 9. [cited at p. 43]

Maher, R. (1989). An approach for the separation of voices in composite musical signals. PhD thesis,

University of Illinois, IL, USA. [cited at p. 4]

Maher, R. (1990). Evaluation of a method for separating digitized duet signals. Journal of the Audio

Engineering Society, 38(12):956–979. [cited at p. 49]

Maher, R. C. and Beauchamp, J. (1993). Fundamental frequency estimation of musical signals using a

two-way mismatch procedure. Journal of the Acoustical Society of America. [cited at p. 43]

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. Signal Processing,

IEEE Transactions on, 41(12):3397–3415. [cited at p. 42]

Marolt, M. (2002). Automatic Transcription of Piano Music with Neural Networks. PhD thesis, University

of Ljubljana, Slovenia. [cited at p. 4]

Marolt, M. (2004a). A connectionist approach to automatic transcription of polyphonic piano music.

IEEE Transactions on Multimedia, 6(3):439–449. [cited at p. 46, 48, 54, 154]

Marolt, M. (March 01, 2004b). Networks of adaptive oscillators for partial tracking and transcription of

music recordings. Journal of New Music Research, 33:49–59(11). [cited at p. 46, 48]

Martin, K. D. (1996). A blackboard system for automatic transcription of simple polyphonic music.

Technical report, Tech. Rep. 385, MIT Media Lab, Perceptual Computing Section. [cited at p. 53, 56]

Martin, P. (1981). Mesure de la frquence fondamentale par intercorrlation avec une fonction peigne.

Technical report, JEP. [cited at p. 82]

Martin, P. (1982). Comparison of pitch detection by cepstrum and spectral comb analysis. In Acoustics,

Speech, and Signal Processing, IEEE International Conference on ICASSP’82., volume 7, pages 180–

183. IEEE. [cited at p. 29]

McIntyre, M., Schumacher, R., and Woodhouse, J. (1983). On the oscillations of musical instruments.

The Journal of the Acoustical Society of America, 74:1325. [cited at p. 37]

McKay, C. (2003). Using blackboard systems for polyphonic transcription: A literature review. Course

Paper, McGill University. [cited at p. 54]

Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. The Journal

of the Acoustical Society of America, 79:702. [cited at p. 47]

Meddis, R. and Hewitt, M. J. (1991a). Virtual pitch and phase sensitivity of a computer model of the

auditory periphery. i: Pitch identification. The Journal of the Acoustical Society of America, 89:2866.

[cited at p. 29]

Meddis, R. and Hewitt, M. J. (1991b). Virtual pitch and phase sensitivity of a computer model of the

auditory periphery. ii: Phase sensitivity. The Journal of the Acoustical Society of America, 89:2883.

[cited at p. 29]

Mendel, G. and Bateson, W. (1925). Experiments in plant-hybridisation /. Cambridge, Mass. :Harvard

University Press,. http://www.biodiversitylibrary.org/bibliography/4532. [cited at p. 62, 66]

Meng, X. and Rubin, D. (1993). Maximum likelihood estimation via the ecm algorithm: A general

framework. Biometrika, 80(2):267–278. [cited at p. 52]

190

Michael, R. G. and Johnson, D. S. (1979). Computers and intractability: A guide to the theory of

np-completeness. WH Freeman & Co., San Francisco. [cited at p. 61]

Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs (2nd, extended ed.).

Springer-Verlag New York, Inc., New York, NY, USA. [cited at p. 64]

Min, K., Chien, D., Li, S., and Jones, C. (1988). Automated two speaker separation system. In Acoustics,

Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference on, pages 537–540.

[cited at p. 43]

Mitchell, M., Forrest, S., and Holland, J. H. (1992). The royal road for genetic algorithms: Fitness

landscapes and ga performance. In Proceedings of the First European Conference on Artificial Life,

pages 245–254. MIT Press. [cited at p. 132, 133, 134]

Mitchell, M., Holland, J. H., and Forrest, S. (1994). When will a genetic algorithm outperform hill

climbing. In Advances in Neural Information Processing Systems 6, pages 51–58. Morgan Kaufmann.

[cited at p. 133]

Mitianoudis, N. and Davies, M. (2002). Intelligent audio source separation using independent component

analysis. In Audio Engineering Society Convention 112. Audio Engineering Society. [cited at p. 51]

Molla, S. and Torrésani, B. (2004). Determining local transientness of audio signals. Signal Processing

Letters, IEEE, 11(7):625–628. [cited at p. 37]

Monti, G. and Sandler, M. (2002). Automatic polyphonic piano note extraction using fuzzy logic in

a blackboard system. In Proceedings of the 5th International Conference on Digital Audio Effects

(DAFx-02), pages 26–28. [cited at p. 54]

Moorer, J. (1975). On the segmentation and analysis of continuous musical sound by digital computer.

PhD thesis, Stanford University. [cited at p. 4]

Moorer, J. A. (1977). On the transcription of musical sound by computer. Computer Music journal,

1(4):32–38. [cited at p. 39]

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards

memetic algorithms. Caltech concurrent computation program, C3P Report, 826:1989. [cited at p. 66]

Nakano, M., Egashira, K., Ono, N., and Sagayama, S. (2009). Harmonic temporal structured clustering

with unsupervised model learning for multipitch estimation. In proceedings of the fifth music informa-

tion retrieval evaluation exchange (mirex 2009), kobe. [cited at p. 172]

Nesi, P., Argenti, F., and Pantaleo, G. (2009a). Automatic transcription of real, polyphonic and multi-

instrumental music based on constant-q bispectral analysis. Tech. report, Dep. of Systems and Infor-

matics, University of Florence, Italy. [cited at p. 48]

Nesi, P., Pantaleo, G., and Argenti, F. (2009b). Automatic transcription of polyphonic music based on

constant-Q bispectral analysis for mirex 2009. In proceedings of the fifth music information retrieval

evaluation exchange (mirex 2009), kobe. [cited at p. 172]

Nguyen, L. and Imai, S. (1977). Vocal pitch detection using generalized distance function associated with

a voice-unvoice decision logic. Bull. PME, 39:11–21. [cited at p. 25]

Nikias, C. L. and Mendel, J. M. (1993). Signal processing with higher-order spectra. Signal Processing

Magazine IEEE, 10(3):10–37. [cited at p. 48, 172]

Nikias, C. L. and Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework.

Proceedings of the IEEE, 75(7):869–891. [cited at p. 48, 172]

191

Noll, A. (1967). Cepstrum pitch determination. The journal of the acoustical society of America,

41(2):293–309. [cited at p. 26]

Nostrand, V. (1962). Mathematics of Statistics, volume 1 of 3, chapter Harmonic Mean, pages 57–58.

Princeton, NJ. [cited at p. 111, 152]

Nuno Fonseca, A. F. (2010). Measuring music transcription results based on a hybrid decay/sustain

evaluation. ESCOM 2009 - 7th Triennial Conference of European Society for the Cognitive Sciences

of Music, Finland. [cited at p. 158]

Ochoa, G., Lutton, E., and Burke, E. K. (2007). The cooperative royal road: Avoiding hitchhiking. In

Artificial Evolution, pages 184–195. [cited at p. 130, 135, 139]

Olague, G. and Puente, C. (2006). Parisian evolution with honeybees for three-dimensional reconstruction.

In Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 191–198.

ACM New York, NY, USA. [cited at p. 131]

Oliveto, P. S. and Witt, C. (2012). On the analysis of the simple genetic algorithm. In Proceedings of the

fourteenth international conference on Genetic and evolutionary computation conference, GECCO ’12,

pages 1341–1348, New York, NY, USA. ACM. [cited at p. 64, 79]

Oppenheim, A. and Schafer, R. (2004). From frequency to quefrency: a history of the cepstrum. Signal

Processing Magazine, IEEE, 21(5):95–106. [cited at p. 26]

Oppenheim, A., Willsky, A., and Nawab, S. (1997). Signals and systems. Prentice-Hall signal processing

series. Prentice Hall. [cited at p. 16]

Ortiz-Berenguer, L., Casajus-Quiros, F., and Torres-Guijarro, S. (2005). Multiple piano note identification

using a spectral matching method with derived patterns. Journal of the Audio Engineering Society,

53(1/2):32–43. [cited at p. 40]

Parsons, T. W. (1976). Separation of speech from interfering speech by means of harmonic selection. The

Journal of the Acoustical Society of America, 60(4):911–918. [cited at p. 33, 40]

Patterson, R. D. and Holdsworth, J. (1996). A functional model of neural activity patterns and auditory

images. Advances in speech, hearing and language processing, 3(Part B):547–563. [cited at p. 47, 54]

Peeters, G. (2006). Music pitch representation by periodicity measures based on combined temporal and

spectral representations. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.

2006 IEEE International Conference on, volume 5, pages V–V. IEEE. [cited at p. 43]

Pertusa, A. (2010). Computationally efficient methods for polyphonic music transcription. PhD thesis,

Universidad de Alicante. [cited at p. 4, 55]

Pertusa, A. and Inesta, J. (2008a). Multiple fundamental frequency estimation using gaussian smoothness.

In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,

pages 105 –108. [cited at p. 49, 50, 172]

Pertusa, A. and Inesta, J. (2008b). Multiple Fundamental Frequency Estimation using Gaussian Smooth-

ness and Short Context. In Proceedings of the Fourth Music Information Retrieval Evaluation eXchange

(MIREX 2008), Philadelphia, PA, United States. [cited at p. 49, 172]

Piszczalski, M. and Galler, B. A. (1977). Automatic music transcription. Computer Music Journal,

1(4):24–31. [cited at p. 39]

Plante, F. (1995). A pitch extraction reference database. Children, 8(12):30–50. [cited at p. 41]

192

Plumbley, M., Abdallah, S., Bello, J., Davies, M., Monti, G., and Sandler, M. (2002). Automatic music

transcription and audio source separation. Cybernetics &Systems, 33(6):603–627. [cited at p. 46, 51, 54]

Poliner, G. and Ellis, D. P. W. (2007a). Improving generalization for polyphonic piano transcription.

In Proc. IEEE Workshop on Apps. of Sig. Proc. to Audio and Acous., pages 86–89, Mohonk NY.

[cited at p. 47, 171]

Poliner, G. E. and Ellis, D. P. W. (2007b). A discriminative model for polyphonic piano transcription.

EURASIP J. Appl. Signal Process., 2007(1):154–154. [cited at p. 47, 168, 171]

Rabiner, L., Cheng, M., Rosenberg, A., and McGonegal, C. (1976). A comparative performance study

of several pitch detection algorithms. Acoustics, Speech and Signal Processing, IEEE Transactions on,

24(5):399–418. [cited at p. 26, 27]

Raczyński, S., Ono, N., and Sagayama, S. (2007). Multipitch analysis with harmonic nonnegative matrix

approximation. In in ISMIR 2007, 8th International Conference on Music Information Retrieval.

Citeseer. [cited at p. 46, 172]

Raczyński, S. and Sagayma, S. (2009). Multiple frequency estimation for piano recordings with concate-

nated regularized harmonic nmf. In Proceedings of the Fifth Music Information Retrieval Evaluation

Exchange (MIREX 2009), Kobe. [cited at p. 172]

Raiford, T. E. (1942). Skewness of combined distributions. j-J-AM-STAT-ASSOC, 37(219):391–393.

[cited at p. 171]

Rechenberg, I. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologis-

chen evolution. Frommann-Holzboog. [cited at p. 64, 65]

Reeves, C. and Rowe, J. (2003). Genetic algorithms : principles and perspectives ; a guide to GA theory.

Kluwer Acad. Publ. [cited at p. 132]

Reis, G. and Fernandez, F. (2007a). Electronic synthesis using genetic algorithms for automatic music

transcription. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pages 1959–1966, New York, NY, USA. ACM Press. [cited at p. 89, 90, 95]

Reis, G. and Fernandez, F. (2007b). Polyphonic music transcription by means of genetic algorithms.

In CEDI ’07: Proceedings of the I Jornadas sobre Algoritmos Evolutivos y Metaheuristicas of the II

Congreso Español de Informática, Zaragoza, Spain. ACM Press. [cited at p. 92]

Reis, G., Fernandez, F., and Ferreira, A. (2009). Transcripcin de música multi-timbre mediante algo-

ritmos genéticos. In MAEB 2009 VI Congreso Espaol sobre Metaheursticas, Algoritmos Evolutivos y

Bioinspirados. [cited at p. 154]

Reis, G., Fernandéz, F., and Ferreira, A. (2012). Automatic transcription of polyphonic piano music using

genetic algorithms, adaptive spectral envelope modeling and dynamic noise level estimation. Audio,

Speech, and Language Processing, IEEE Transactions on, 18(6):1643 –1654. [cited at p. 172, 174]

Reis, G., Fonseca, N., and Fernandez, F. (2007). Genetic algorithm approach to polyphonic music tran-

scription. Proceedings of WISP 2007 IEEE International Symposium on Intelligent Signal Processing,

pages 321–326. [cited at p. 88, 89, 95]

Reis, G., Fonseca, N., Fernandez, F., and Ferreira, A. (2008). A genetic algorithm approach with harmonic

structure evolution for polyphonic music transcription. In The 8th IEEE International Symnposium

on Signal Processing and Information Technology. [cited at p. 169]

193

Reyes, N., Candeas, P., Cañadas Quesada, F., and Carabias, J. (2009). New algorithm based on spectral

distance maximization to deal with the overlapping partial problem in note–event detection. Signal

Processing, 89(8):1653–1660. [cited at p. 42]

Röbel, A. (2003). Transient detection and preservation in the phase vocoder. In Proc. Int. Computer

Music Conference (ICMC), pages 247–250. [cited at p. 37]

Rodet, X. and Jaillet, F. (2001). Detection and modeling of fast attack transients. In Proceedings of the

International Computer Music Conference, pages 30–33. [cited at p. 37]

Ross, M., Shaffer, H., Cohen, A., Freudberg, R., and Manley, H. (1974). Average magnitude difference

function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353 –

362. [cited at p. 25]

Rudolph, G. (1998). Finite markov chain results in evolutionary computation: a tour d’horizon. Fundam.

Inf., 35(1-4):67–89. [cited at p. 64, 70, 79]

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall, second

edition. [cited at p. 142]

Ryynänen, M. (2008). Automatic Transcription of Pitch Content in Music and Selected Applications.

PhD thesis, Tampere University of Technology. [cited at p. 4]

Ryynänen, M. and Klapuri, A. (2005). Polyphonic music transcription using note event modeling. In

Proc. 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages 319–

322, New Paltz, New York, USA. [cited at p. 41, 52, 154, 171]

Ryynänen, M. and Klapuri, A. (2008). Polyphonic Music Transcription using Note Event Modeling for

MIREX 2008. In Proceedings of the Fourth Music Information Retrieval Evaluation eXchange (MIREX

2008), Philadelphia, PA, United States. [cited at p. 171]

Ryynnen, M. P. and Klapuri, A. P. (2004). Modelling of note events for singing transcription. In in

Proc. ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio, page 6. MIT Press.

[cited at p. 41]

Sagayama, S., Takahashi, K., Kameoka, H., and Nishimoto, T. (2004). Specmurt anasylis: A piano-roll-

visualization of polyphonic music signal by deconvolution of log-frequency spectrum. In ISCA Tutorial

and Research Workshop (ITRW) on Statistical and Perceptual Audio Processing. ISCA. [cited at p. 48,

54]

Saito, S., Kameoka, H., Takahashi, K., Nishimoto, T., and Sagayama, S. (2008). Specmurt analysis of

polyphonic music signals. Audio, Speech, and Language Processing, IEEE Transactions on, 16(3):639–

650. [cited at p. 48]

Schaffer, J. and Eshelman, L. (1991). On crossover as an evolutionarily viable strategy. In Proceed-

ings of the Fourth International Conference on Genetic Algorithms, pages 61–68. Morgan Kaufmann

Publishers. [cited at p. 133]

Schmidt, M. and Larsen, J. (2008). Single-channel source separation using non-negative matrix factoriza-

tion. PhD thesis, Ph. D. dissertation, Technical University of Denmark. [cited at p. 46]

Schroeder, M. (1968). Period histogram and product spectrum: New methods for fundamental-frequency

measurement. The Journal of the Acoustical Society of America, 43(4):829–834. [cited at p. 28]

Schwefel, H. (1994). On the evolution of evolutionary computation. In Proceedings of 3rd International

Conference of IEEE World Congress on Computer Intelligence, Orlando, Florida, pages 116–124. Cite-

seer. [cited at p. 62, 65]

194

Schwefel, H. (1995). Evolution and Optimum Seeking. John Wiley & Sons. [cited at p. 49]

Schwefel, H. P. (1975). Evolutionsstrategie und numerische optimierung. PhD Thesis. [cited at p. 64, 65]

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley & Sons, Inc., New

York, NY, USA. [cited at p. 64]

Sha, F. and Saul, L. (2004). Real-time pitch determination of one or more voices by nonnegative matrix

factorization. Departmental Papers (CIS), page 168. [cited at p. 46]

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21.

[cited at p. 18]

Shields, V. C. (1970). Separation of added speech signals by digital comb filtering. PhD thesis, Mas-

sachusetts Institute of Technology. [cited at p. 39]

Slaney, M., Lyon, R., Inc, A., and Cupertino, C. (1990). A perceptual pitch detector. In Acoustics,

Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on, pages 357–360.

[cited at p. 43]

Sluyter, R., Kotmans, H., and Claasen, T. (1982). Improvements of the harmonic-sieve pitch extrac-

tion scheme and an appropriate method for voiced-unvoiced detection. In Acoustics, Speech, and

Signal Processing, IEEE International Conference on ICASSP’82., volume 7, pages 188–191. IEEE.

[cited at p. 29]

Smaragdis, P. and Brown, J. (2003). Non-negative matrix factorization for polyphonic music transcription.

In Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., pages 177–180.

[cited at p. 46, 74, 171]

Smaragdis, P., Raj, B., and Shashanka, M. (2008). Sparse and shift-invariant feature extraction from

non-negative data. 2008 IEEE International Conference on Acoustics Speech and Signal Processing,

pages 2069–2072. [cited at p. 45, 172]

Sreenivas, T. and Rao, P. (1981). Functional demarcation of pitch. Signal Processing, 3(3):277–284.

[cited at p. 29]

Stewart, E. (2004). Intel integrated performance primitives: How to optimize software applications using

intel ipp. [cited at p. 92]

Talkin, D. (1995). A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518.

[cited at p. 26]

Taylor, S. (2007). Optimizing applications for multi-core processors, using the Intel integrated performance

primitives. Intel Press. [cited at p. 92]

Tolonen, T. and Karjalainen, M. (2000). A computationally efficient multipitch analysis model. IEEE

Transactions on Speech and Audio Processing, 8(6):708–716. [cited at p. 27, 43]

Vincent, E. (2004). Modeles dinstruments pour la separation de sources et la transcription denreg-

istrements musicaux. Ph. D. dissertation, IRCAM, Paris, France, 2004. [cited at p. 4, 52]

Vincent, E., Bertin, N., and Badeau, R. (2007). Two nonnegative matrix factorization methods for

polyphonic pitch transcription. In 2007 Music Information Retrieval Evaluation eXchange (MIREX),

Vienna, Austria. [cited at p. 46, 171]

Vincent, E., Bertin, N., and Badeau, R. (2008). Harmonic and inharmonic nonnegative matrix factoriza-

tion for polyphonic pitch transcription, pages 109–112. Number 1. IEEE. [cited at p. 154, 171]

195

Vincent, E., Bertin, N., and Badeau, R. (2010). Adaptive harmonic spectral decomposition for multiple

pitch estimation. Trans. Audio, Speech and Lang. Proc., 18(3):528–537. [cited at p. 154]

Vincent, E. and Rodet, X. (2004). Music transcription with isa and hmm. Independent Component

Analysis and Blind Signal Separation, pages 1197–1204. [cited at p. 51]

Virtanen, T. (2003a). Algorithm for the separation of harmonic sounds with time-frequency smoothness

constraint. In Proc. Int. Conf. on Digital Audio Effects (DAFx), pages 35–40. [cited at p. 33]

Virtanen, T. (2003b). Sound source separation using sparse coding with temporal continuity objective.

In Proc. ICMC, volume 3, pages 231–234. [cited at p. 46]

Virtanen, T. (2006). Unsupervised learning methods for source separation in monaural music signals.

Signal Processing Methods for Music Transcription, pages 267–296. [cited at p. 46]

Virtanen, T. (2007). Monaural sound source separation by nonnegative matrix factorization with temporal

continuity and sparseness criteria. Audio, Speech, and Language Processing, IEEE Transactions on,

15(3):1066–1074. [cited at p. 46]

Viste, H. and Evangelista, G. (2002). An extension for source separation techniques avoiding beats. In

Proc. Int. Conf. on Digital Audio Effects (DAFx), pages 71–75. Citeseer. [cited at p. 33]

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme recognition

using time-delay neural networks. Acoustics, Speech and Signal Processing, IEEE Transactions on,

37(3):328–339. [cited at p. 47]

Walmsley, P., Godsill, S., and Rayner, P. (1999). Polyphonic pitch tracking using joint bayesian estimation

of multiple frame parameters. [cited at p. 50]

Wei, B. and Gibson, J. (2000). Comparison of distance measures in discrete spectral modeling. In Proc.

9th DSP Workshop & 1st Signal Processing Education Workshop. Citeseer. [cited at p. 147]

Weintraub, M. (1986). A computational model for separating two simultaneous talkers. In Acous-

tics, Speech, and Signal Processing, IEEE International Conference on ICASSP’86., volume 11.

[cited at p. 43]

Wood, A. (2007). The Physics of Music. Read Books. [cited at p. 34]

Wu, J., Racczyński, A., Kitano, Y., and Nishimoto, T. (2010). Flexible harmonic model for multipitch

estimation. In Proceedings of the Fourth Music Information Retrieval Evaluation eXchange (MIREX),

Utrecht. [cited at p. 172]

Wu, M., Wang, D., and Brown, G. (2003). A multipitch tracking algorithm for noisy speech. IEEE

Transactions on Speech and Audio Processing, 11(3):229. [cited at p. 43, 54]

Yeh, C. (2008). Multiple Fundamental Frequency Estimation of Polyphonic Recordings. Thése de doctorat,

University Paris 6 (UPMC), Paris. [cited at p. xvi, 4, 24, 31, 32, 33, 35, 36, 39, 48, 49, 54]

Yeh, C. and Röbel, A. (2006). Adaptive noise level estimation. In Proc. of the 9th Int. Conf. on Digital

Audio Effects (DAFx06), pages 145–148. [cited at p. 48]

Yeh, C., Robel, A., and Rodet, X. (2005). Multiple fundamental frequency estimation of polyphonic

music signals. In Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE

International Conference on, volume 3, pages iii/225 – iii/228 Vol. 3. [cited at p. 49, 171]

Yeh, C., Röbel, A., and Rodet, X. (2006). Multiple f0 tracking in solo recordings of monodic instruments.

In 120th AES Convention, pages 20–23. Citeseer. [cited at p. 37, 49]

196

Yeh, C. and Roebel, A. (2009). The expected amplitude of overlapping partials of harmonic sounds.

In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on,

pages 3169–3172. IEEE. [cited at p. 33]

Yeh, C. and Roebel, A. (2010). Multiple-f0 estimation for mirex 2010. In Proceedings of the Fourth Music

Information Retrieval Evaluation eXchange (MIREX), Utrecht. [cited at p. 171]

Yeh, C., Roebel, A., and Rodet, X. (2010). Multiple fundamental frequency estimation and polyphony

inference of polyphonic music signals. IEEE Transactions on Audio, Speech, and Language Processing,

18:1116–1126. [cited at p. 30, 48, 145, 171]

Young, S., Russell, N., and Thornton, J. (1989). Token passing: a simple conceptual model for connected

speech recognition systems. Technical report. [cited at p. 41]

Zhou, R. (2006). Feature Extraction of Musical Content for Automatic Music Transcription. PhD thesis,

Ecole Polytechnique Fdrale de Lausanne, Swiss. [cited at p. 4, 43, 44, 48, 171]

Zhou, R. and Mattavelli, M. (2007). A new time-frequency representation for music signal analysis:

Resonator time-frequency image. In Signal Processing and Its Applications, 2007. ISSPA 2007. 9th

International Symposium on, pages 1 –4. [cited at p. 43, 171]

Zhou, R. and Reiss, J. D. (2008). A real-time polyphonic music transcription system. In Proceedings

of the Fourth Music Information Retrieval Evaluation eXchange (MIREX), pages 1–4, Philadelphia,

USA. [cited at p. 171]

197

Appendices

199

Appendix A

Publications

The work presented in this Thesis is original work undertaken between June 2006 and

June 2012 at the University of Extremadura, Spain. Portions of this work have been

published elsewhere.

Journal Proceedings

• Reis, G. and Fernandéz, F. and Ferreira, Ańıbal, “Audio Analysis and Synthesis-

Automatic Transcription of Polyphonic Piano Music Using Genetic Algorithms,

Adaptive Spectral Envelope Modeling, and Dynamic Noise Level Estimation”. IEEE

Transactions on Audio Speech and LanguageProcessing Volume 20, Issue 8, pages

2313–2328.

DOI: http://dx.doi.org/10.1109/TASL.2012.2201475

Conference Proceedings

• Gustavo Reis, Francisco Fernandéz, and Ańıbal Ferreira, “Evolutionary algorithms

and automatic transcription of music”. In Proceedings of the fourteenth international

conference on Genetic and Evolutionary Computation Conference Companion, pages

477–484. Philadelphia, USA. ACM Press, 2012.

• Gustavo Reis, Francisco Fernandez, and Ańıbal Ferreira, “Genetic algorithm ap-

proach to polyphonic music transcription for mirex 2008”. MIREX (2011), Multiple-

F0 Estimation and Tracking Contest.. Miami, USA. 2011.

• Gustavo Reis, Francisco Fernandéz, Gustavo Olague, “Cooperative and Decom-

posable Approaches on Royal Road Functions: Overcoming the Random Mutation

Hill-Climber”. In GECCO 09: Proceedings of the 11th Annual Conference on Ge-

netic and Evolutionary Computation, pages 1875–1876. Montreal, Canada. ACM

Press, 2009.

201

• Gustavo Reis, Francisco Fernandéz, Ańıbal Ferreira, “Transcripción de Música

Multi-Timbre mediante Algoritmos Genéticos”. In Proceedings of MAEB 2009

VI Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados,

pages 167–174 . Malaga, Spain.

• Gustavo Reis, Nuno Fonseca, Francisco Fernandéz, Ańıbal Ferreira, “A Genetic Al-

gorithm Approach with Harmonic Structure Evolution for Polyphonic Music Tran-

scription”. In Proceedings of ISSPIT 2008 IEEE International Symposium on Signal

Processing and Information Technology (2008), pages 491–496. Sarajevo, Bosnia and

Herzegovina. IEEE, 2008.

• Gustavo Reis, Francisco Fernandez, and Ańıbal Ferreira, “Genetic algorithm ap-

proach to polyphonic music transcription for mirex 2008”. MIREX (2008), Multiple-

F0 Estimation and Tracking Contest.. Philadelphia, USA. 2008.

• Gustavo Reis, Nuno Fonseca, Francisco Fernández de Vega, and Ańıbal Ferreira,

“Hybrid Genetic Algorithm Based on Gene Fragment Competition for Polyphonic

Music Transcription”. In EvoIASP 2008, pages 305–314. Naples, Italy. Lecture

Notes in Computer Science 4974/2008.

• Gustavo Reis, Francisco Fernandez, “Genetic Algorithms for Polyphonic Music

Transcription”. In EPIA’07: Proceedings of the 2007 Doctoral Symposium on

Artificial Intelligence. Guimarães, Portugal. 2007

• Gustavo Reis, Nuno Fonseca, and F Ferndandéz, “Genetic Algorithm Approach to

Polyphonic Music Transcription”. In Intelligent Signal Processing, 2007. WISP

2007. IEEE International Symposium on, pages 321–326. Alcalá de Henares, Spain.

IEEE, 2007.

• Gustavo Miguel Jorge dos Reis, Francisco Fernandez, “Polyphonic Music Transcrip-

tion by means of Genetic Algorithms”. In CEDI0’7: Proceedings of the I Jornadas

sobre Algoritmos Evolutivos y Metaheuristicas of the II Congreso Español de In-

formática. ISBN:978-84-9732-593-6. Zaragoza, Spain, September 2007.

• Gustavo Reis and Francisco Fernandéz, “A novel approach to automatic music

transcription using electronic synthesis and genetic algorithms”. In Proceedings of

the 2007 GECCO conference companion on Genetic and evolutionary computation,

pages 2915–2922. London, UK. ACM Press, 2007.

• Gustavo Reis and Francisco Fernandéz, “Electronic synthesis using genetic algo-

rithms for automatic music transcription”. In Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation, pages 1959–1966. London, UK.

ACM Press, 2007.

202

Other papers published

• Lee Scott Reis and Gustavo Reis and João Barroso and António Pereira, “AMIGA-

An Interactive Musical Environment for Gerontechnology”. In Journal of Procedia

Computar Science, pages 208–217. Elsevier, 2012.

• Tiago Francisco and Gustavo Miguel Jorge dos Reis, “Evolving Combat Algorithms

to Control Space Ships in a 2D Space Simulation Game with Co-evolution using

Genetic Programming and Decision Trees”. In Proceedings of the 2008 GECCO

Conference Companion on Genetic and Evolutionary Computation, pages 1887–1892.

Atlanta, USA. ACM Press, 2008.

• Tiago Francisco and Gustavo Miguel Jorge dos Reis, “Evolving Predator and Prey

Behaviours with Co-evolution Using Genetic Programming and Decision Trees”. In

Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolution-

ary Computation, pages 1893–1900. Atlanta, USA. ACM Press, 2008.

Papers referring our work

• Mert Bay, Andreas F Ehmann, and J Stephen Downie. Evaluation of multiple-f0 es-

timation and tracking systems. In 10th International Society for Music Information

Retrieval Conference, pages 315–320, 2009.

• Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and

Anssi Klapuri. Automatic music transcription: Breaking the glass ceiling. 2012.

• JJ Carabias-Orti, FJ Rodriguez-Serrano, P Vera-Candeas, FJ Cañadas-Quesada,

and N Ruiz-Reyes. Constrained non-negative sparse coding using learnt instrument

templates for realtime music transcription. Engineering Applications of Artificial

Intelligence, 2013.

• Julio César Carvajal Ramı́rez and Fabián Andrés Giraldo Giraldo. Composing

music through genetic algorithms. Tecnura, 16(33):145–157, 2012.

• Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple fundamental frequency

estimation by modeling spectral peaks and non-peak regions. Audio, Speech, and

Language Processing, IEEE Transactions on, 18(8):2121–2133, 2010.

• Nuno Fonseca. Singing voice resynthesis using concatenative-based techniques.

2011.

• Nuno Fonseca and Ańıbal Ferreira. Measuring music transcription results based on

a hybrid decay/sustain evaluation. 2009.

• Nuno Fonseca and Ana Paula Rocha. Fragmentation and frontier evolution for

genetic algorithms optimization in music transcription. In Advances in Artificial

Intelligence–IBERAMIA 2008, pages 442–451. Springer, 2008.

203

• Peter Grosche, Bjorn Schuller, Meinard Muller, and Gerhard Rigoll. Automatic

transcription of recorded music. Acta Acustica united with Acustica, 98(2):199–215,

2012.

• Herve Kabamba Mbikayi. Toward evolution strategies application in automatic poly-

phonic music transcription using electronic synthesis. arXiv preprint arXiv:1304.0969,

2013.

• Antonio Pertusa and José M Iñesta. Efficient methods for joint estimation of

multiple fundamental frequencies in music signals. EURASIP Journal on Advances

in Signal Processing, 2012(1):1–13, 2012.

• Antonio Pertusa-Ibáñez. Computationally efficient methods for polyphonic music

transcription. PhD thesis, Universidad de Alicante, 2010.

• Joseph Scarr and Richard Green. Retrieval of guitarist fingering information using

computer vision. In Image and Vision Computing New Zealand (IVCNZ), 2010

25th International Conference of, pages 1–7. IEEE, 2010.

• Suyog Sonwalkar and Itthi Chatnuntawech. Autoscore: The automated music

transcriber project proposal 18-551, spring 2011 group. 2011.

• Pat Taweewat and Chai Wutiwiwatchai. Musical pitch estimation using a supervised

single hidden layer feed-forward neural network. Expert Systems with Applications,

2012.

• Mahdi Triki and Dirk TM Slock. Perceptually motivated quasi-periodic signal selec-

tion for polyphonic music transcription. In Acoustics, Speech and Signal Processing,

2009. ICASSP 2009. IEEE International Conference on, pages 305–308. IEEE,

2009.

• Mahdi Triki, Dirk TM Slock, and Ahmed Triki. Periodic signal extraction with

frequency-selective amplitude modulation and global time-warping for music signal

decomposition. In Multimedia Signal Processing, 2008 IEEE 10th Workshop on,

pages 972–977. IEEE, 2008.

• Yasunori Uchida and Shigeo Wada. Melody and bass line estimation method using

audio feature database. In Signal Processing, Communications and Computing

(ICSPCC), 2011 IEEE International Conference on, pages 1–6. IEEE, 2011.

• Sonmaz Zehtabi. Vibraphone Transcription from Noisy Audio Using Factorization

Methods. PhD thesis, University of Victoria, 2012.

204

Appendix B

Rendering an Individual into an Audio

Signal

We considered a dynamic range of 16dB, that is: one note can vary its dynamic between

1 and 127. In particular, 127 MIDI velocity value corresponds to +8dB gain and 1 MIDI

velocity corresponds to −8dB gain and 64 MIDI velocity corresponds to 0 dB gain. The

gain Equation, according to each note dynamic, is given by:

gain = 10
vel−64

80 . (B.1)

After each note offset the following release equation is applied:

release(t) =
2000− t

36

2000 + t
(B.2)

where t varies from t = 0 . . . 72000.

205

Appendix C

Proof of Octave Normalization

Proof. The following equation gives the MIDI note for a given frequency:

Note(freq) = 69 + 12 log2

(
freq

440

)
. (C.1)

For sound using Fs sampling rate and using a window size of N , the frequency reso-

lution of the STFT is Fs
N
. Thus the center frequency of each bin in the STFT is given by:

Freq(k) = k × Fs

N
. (C.2)

Considering previous Equations, the MIDI note corresponding to the center frequency of

each bin is given by Note(Frequency(k)). Therefore, the MIDI notes elapsed between the

center frequency of bin k and bin k + 1 are given by Note(Freq(k+ 1))−Note(Freq(k))

- Equation C.3.

This equation shows that the number of notes between the center frequency of the

first bin and the second is 12 (an octave), which is correct because the frequency doubles

from the first bin to the second: 12 log2(2)− 12 log2(1) = 12 notes.

207

Note(Freq(k + 1))−Note(Freq(k)) = Note

(
(k + 1)× Fs

N

)
−Note

(
k × Fs

N

)

= 69 + 12 log2

(
(k + 1)× Fs

N

440

)
−
[
69 + 12 log2

(
k × Fs

N

440

)]

= 69 + 12 log2

(
(k + 1)× Fs

N

440

)
− 69− 12 log2

(
k × Fs

N

440

)

= 12 log2

(
(k + 1)× Fs

N

)
− 12 log2(440)− 12 log2

(
k × Fs

N

)
+ 12 log2(440)

= 12 log2 (k + 1) + 12 log2

(
Fs

N

)
− 12 log2 (k)− 12 log2

(
Fs

N

)

= 12 log2 (k + 1)− 12 log2 (k) (C.3)

208

To have an octave normalization with weight = 1 per octave, the previous equation

(Equation C.3) should be divided by 12, resulting on the normalization log2(k+1)−log2(k)
applied on Equation 9.4. This way: log2(2) − log2(1) = log2(4) − log2(2) = log2(8) −
log2(4) = 1 octave.

209

Appendix D

Get Possible Notes

The function GetPossibleNotes generates a list of possible notes and is described on Al-

gorithm D.1. This function analyzes the power spectra of the acoustic signal and then

returns the list of possible notes: for each frame n the biggest α peaks are selected, and

then, for each peak, the corresponding MIDI notes are added to the possible notes list. α

was empirically set to 10. The MIDI notes corresponding to frequency bin bin are those

which verify the following equation:

bin = Round

(
freqnote

resolution

)
(D.1)

where the freqnote is the frequency of a MIDI note:

freqnote = 6.875× 2
3+note

12 (D.2)

and where the resolution is the frequency bin resolution:

resolution =
Fs

N
. (D.3)

211

Algorithm D.1: Get Possible Notes algorithm.

Require: spectrum X, hop size R

1: for each frame X(n) do
2: eliminate all non-peak values from current frame
3: for each peak p in X(n) do {p is a 2-order tuple (magnitude, bin)}
4: P ← P + p {P is the list of peaks}
5: end for
6: sort P according to the power magnitude
7: P ← first α elements of P
8: for each peak p in P do
9: beginNote← first MIDI note belonging to bin p.bin

10: endNote← first MIDI note belonging to bin p.bin+ 1
11: for i = beginNote to endNote− 1 do
12: newNote.note = i

13: newNote.start = n×R

14: newNote.duration = R

15: for each note in possibleNotes do
16: if note overlaps with newNote then
17: note.duration← note.duration+R

18: else
19: possibleNotes← possibleNotes+ newNote

20: end if
21: end for
22: end for
23: end for
24: end for
25: return possibleNotes

212

	Acknowledgements
	Resumen
	Abstract
	List of Figures
	List of Tables
	List of algorithms

	Introduction
	Objectives and Scope of the Thesis
	Thesis Contributions
	Outline of the Thesis

	Sound, Signals and Fundamental Frequency Estimation
	Audio: Sound Waves
	Analog Audio
	Digital Audio
	Signal Sampling

	Music
	Digital Signal Processing
	Fourier Analysis
	Power Spectral Density - PSD
	Spectral Leakage
	Windowing
	Relation between the signal's properties

	Fundamental Frequency and Pitch
	Single-F0 Estimation
	Spectral-location Approaches
	Spectral-interval Approaches
	Unitary model of pitch perception

	Multiple-F0 Estimation
	Problem Complexity

	Summary

	Related Work
	Multiple-F0 estimation
	Iterative Estimation Approaches
	Direct Cancellation
	Cancellation by Spectral Models
	Matching Pursuit

	Joint Estimation
	Joint Cancellation
	Polyphonic Salience Function
	Spectral Matching by Non-parametric Models
	Statistical Modeling using Parametric Models
	Blackboard Systems

	Discussion
	Spectral Representation: Multi-resolution or Fixed-resolution?
	Computational Efficiency or Greater Accuracy: Iterative or Joint Estimation?
	Which Joint Estimation Method?

	Genetic Algorithms
	Algorithm
	Problem
	Decision problems
	Search problems
	Counting problems
	Optimization problem

	Polynomial Time as a Reference
	P and NP classes

	Bio-inspired Algorithms
	Evolutionary Computation

	Genetic Algorithms
	Biological Background
	Terminology
	Definition

	Summary

	Automatic Transcription of Music and Multi-Pitch Estimation - A Deeper Analysis
	Automatic Transcription of Music as Optimization or Search Space Problem
	Search Space Size
	Computational Complexity: NP-Complete or NP-Hard?

	Addressing Combinatorial Optimization Problems with Genetic Algorithms
	Addressing Automatic Transcription of Music and Multi-Pitch Estimation with Genetic Algorithms
	Genotype
	Fitness Evaluation
	Selection
	Recombination
	Mutation
	Creation of the Initial Population
	Survivor Selection

	Summary

	Early Genetic Algorithm Approaches to Automatic Transcription of Music: Synthesized Signals and Simple Mathematical Models
	First Genetic Algorithm approach to Polyphonic Pitch Detection
	Genotype
	Fitness Function
	Selection
	Recombination
	Mutation
	Initialization
	Survivor Selection
	Experiments and Results
	Additional Constraints

	Moving from Polyphonic Pitch Detection to Automatic Transcription of Music
	Genotype
	Fitness Function
	Selection
	Recombination
	Mutation
	Initialization
	Survivor Selection
	Experiments and Results
	Additional Constraints

	Automatic Music Transcription using Synthesized Instruments
	Genotype
	Fitness Function
	Selection
	Recombination
	Mutation
	Initialization
	Survivor Selection
	Experiments and Results
	Additional Constraints

	Summary

	Moving to Real Audio Recordings
	First Proposal on Real Audio Recordings
	Genotype
	Fitness Function
	Selection
	Recombination
	Mutation
	Initialization
	Survivor Selection
	Initial Experiments and Tuning
	Experiments and Results
	Additional Constraints

	Reducing the Harmonic Overfitting
	Evolving Timbre
	Genotype
	Fitness Function
	Recombination
	Mutation
	Experiments and Results
	Additional Constraints

	Automatic Music Transcription of Multi-Timbral Music
	Genotype
	Fitness Function - Individual Evaluation
	Recombination
	Mutation
	Instrument Identification
	Experiments and Results
	Additional Constraints

	Summary

	Gene Fragment Competition: Improving the Performance of the Algorithm for Real Audio Transcription
	Introduction
	Gene Fragment Competition
	Simple example

	Applying Gene Fragment Competition to Music Transcription
	Experiments and Results

	Gene Fragment Competition: a Deeper Analysis
	Comparing Gene Fragment Competition and Parisian Approach
	Parisian Approach
	Royal Road Functions and the Hitchhiking Phenomena
	Methodology
	Parisian approach
	Gene Fragment Competition
	Results and Analysis

	Summary

	Multiple-F0 Estimation on Piano Recordings using Spectral Envelope Modeling and Dynamic Noise Level Estimation
	System Overview
	Proposed Genetic Algorithm
	Fitness Evaluation
	Recombination
	Mutation
	Initialization
	Survivor Selection

	Hill-Climber
	Experiments and Results
	Implementation and Tuning
	Evaluation
	Comparison with other State-of-the-art algorithms
	Contribution of each module to the overall results
	Impact of the onset detector on the overall results

	Summary

	Public Evaluations
	MIREX
	MIR Tasks Hosted on MIREX

	Multiple Fundamental Estimation & Tracking
	Data
	Evaluation

	Multiple F0 Estimation and Tracking: Note Tracking Piano Subtask Results 2007-2011
	Chroma Evaluation

	Humies Awards
	Human-Competitiveness
	Submission

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Publications
	Rendering an Individual into an Audio Signal
	Proof of Octave Normalization
	Get Possible Notes

