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1. Introduction

The classical Banach-Stone theorem asserts that, for a compact space K,
the linear metric structure of C(K) (endowed with the sup-norm) determines
the topology of K. This result has found a large number of extensions, general-
izations and variants in many different contexts, and these notes are intended
to be a guided tour around some of them. We shall review some classical re-
sults, as well as very recent contributions on the area, but of course we are not
trying to be exhaustive. The main theme along the paper will be the kind of
results asserting that, if X is a topological space (maybe endowed with some
richer structure, such as metric space, or Banach space, or smooth manifold),
the topology of X (respectively, its metric, or linear, or smooth structure) is
characterized in terms of a given algebraic or topological-algebraic structure
on C(X) or on a subfamily of C(X).

The contents of the paper are as follows. Section 2 is devoted to the proof
of the classical Banach-Stone theorem. We shall obtain that if K and L are
compact spaces, then a linear isometry T : C(L) → C(K) must be a weighted
composition map of the form (Tf) = a · (f ◦h), where a is a continuous scalar
function with |a| = 1 and h is a homeomorphism from K onto L. Further, the
original Banach proof for compact metric spaces is discussed. We also include
the Mazur-Ulam theorem about linearity of isometries between normed spaces.

In Section 3 we review several results concerning isometries between Ba-
nach function spaces of continuous functions. We consider here the space
C0(X), of all continuous functions vanishing at infinity on a locally compact
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space X, endowed with the sup-norm. We shall see that if X and Y are locally
compact spaces, then the existence of a linear isometry between C0(X) and
C0(Y ) (or between certain special subspaces E ⊂ C0(X) and F ⊂ C0(Y ))
leads into a homeomorphism between X and Y (or between some related sub-
spaces of X and Y ). A representation of isometries as weighted composition
maps is also achieved in this case. In fact, the existence of just an “approx-
imate isometry” between C0(X) and C0(Y ) (that is, a linear isomorphism T
with ‖T‖ · ‖T−1‖ < 2) is enough to obtain a homeomorphism between X and
Y . The case of isometries between spaces of vector-valued continuous func-
tions is briefly considered in this Section. Finally, some results about bounded
uniformly continuous and bounded Lipschitz functions are included.

Section 4 is devoted to algebra isomorphisms. We shall see that the
purely algebraic structure of C(X) determines the topology of a realcompact
space X. In fact, if X and Y are realcompact, every algebra isomorphism
T : C(Y ) → C(X) is a composition map of the form Tf = f ◦ h, where h
is a homeomorphism from X to Y . Analogous results are obtained for iso-
morphisms between special subalgebras A ⊂ C(X) and B ⊂ C(Y ), and some
applications are given. For example, if E and F are Banach spaces (respec-
tively, M and N are smooth manifolds), we give conditions under which the
existence of an algebra isomorphism between C∞(E) and C∞(F ) (respec-
tively, between C∞(M) and C∞(N)) implies that E and F are isomorphic
(respectively, M and N are C∞−diffeomorphic). Finally, we shall see that
some of the previous results about algebra isomorphisms can be extended to
the more general setting of biseparating maps between function spaces.

In Section 5 we are concerned with vector lattice isomorphisms. Our main
goal is to characterize the uniform structure and the Lipschitz structure of a
metric space X in terms of the families U(X) and Lip(X) of uniformly con-
tinuous and Lipschitz functions on X. Since these families do not have, in
general, algebra structure, we are lead to consider its natural unital vector
lattice structure. Then we shall see that, if X and Y are complete metric
spaces, every unital vector lattice isomorphism T : U(Y ) → U(X) (respec-
tively, T : Lip(Y ) → Lip(X)) is a composition map of the form Tf = f ◦ h,
where h : X → Y is a uniform homeomorphism (respectively, a Lipschitz
homeomorphism). Furthermore, the respective cases of bounded functions
are considered.

These notes are based on the lectures delivered by the second author in
a Summer Course of the University of Cantabria, held in Laredo in August,
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2001. It is a great pleasure to thank the organizers, and specially Profes-
sor Manuel González, for the nice atmosphere of the Course, both from the
mathematical and personal point of view.

2. Classical results

For a compact topological space K (which will always be assumed to be
Haussdorf), we denote as usual by C(K) the Banach space of all continuous
real functions on K endowed with the sup-norm:

‖f‖∞ = sup{|f(x)| : x ∈ K}.

In his fundamental work Théorie des Opérations Linéaires (1932), Banach [11]
considered the problem of when two spaces of type C(K) are isometric. He
solved this problem for the case of compact metric spaces K, also giving a de-
scription of such isometries. In 1937, Stone [60] extended this result to general
compact spaces K, in what is known as the classical Banach-Stone theorem.
Before giving the precise statement, some comments about isometries are in
order.

If E and F are normed spaces, by an isometry we mean a bijection u : E →
F preserving the distance, that is, such that ‖u(x)−u(y)‖ = ‖x−y‖, for every
x, y ∈ E. We say that u : E → F is a linear isometry when u is an isometry
which is also linear. This is equivalent to say that u is a linear isomorphism
and ‖u(x)‖ = ‖x‖, for every x ∈ E. Concerning this, we recall the following
nice result due to Mazur and Ulam [49]. Note that, as a consequence, we
have that two normed spaces are isometric if, and only if, they are linearly
isometric.

Theorem 1. (Mazur and Ulam 1932) Let E and F be normed spaces and
let u : E → F an isometry such that u(0) = 0. Then u is a linear isometry.

Proof. The key is to prove that u preserve the midpoints, i.e. for every
x, y ∈ E:

u

(
x + y

2

)
=

u(x) + u(y)
2

(∗)

Indeed, from (∗) it follows that u is additive, since

u(x) = u

(
2x + 0

2

)
=

u(2x) + u(0)
2

=
u(2x)

2
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implies that u(2x) = 2u(x), and then

u(x + y) = u

(
2x + 2y

2

)
=

u(2x) + u(2y)
2

=
2u(x) + 2u(y)

2
= u(x) + u(y).

Now it is easy to check that u(qx) = qu(x), for every q ∈ Q, and the continuity
of u implies that u(λx) = λu(x) for every λ ∈ R.

Thus, in order to prove (∗), we consider the sets

H1 =
{

p ∈ E : ‖x− p‖ = ‖y − p‖ =
1
2
‖x− y‖

}

and, for n > 1,

Hn =
{

p ∈ Hn−1 : ‖p− q‖ ≤ diam(Hn−1)
2

, for all q ∈ Hn−1

}
.

Claim 1. If p ∈ Hn then p̃ = x + y − p ∈ Hn.
This can be derived easily by induction.

Claim 2. The midpoint (x + y)/2 belongs to Hn, for every n.
Indeed, it is clear that (x + y)/2 ∈ H1. For n > 1 and for all q ∈ Hn−1,

we have

2
∥∥∥∥
x + y

2
− q

∥∥∥∥ = ‖x + y − 2q‖ = ‖q̃ − q‖ ≤ diam(Hn−1).

On the other hand, we have H1 ⊃ H2 ⊃ · · · and

diam(Hn) ≤ 1
2

diam(Hn−1) ≤ · · · ≤ 1
2n−1

diam(H1).

Therefore ∞⋂

n=1

Hn =
{

x + y

2

}
.

Since the sets Hn are defined only in terms of the distance, the midpoint
(x + y)/2 is then characterized in terms of the distance, so in particular it is
preserved by isometries. This proves (∗).

Now, we state the classical Banach-Stone theorem:
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Theorem 2. (Banach 1932 and Stone 1937) Let K and L be compact
spaces. Then, C(K) is isometric to C(L) if, and only if, K and L are homeo-
morphic. Moreover, every linear isometry T : C(L) → C(K) is of the form

(Tf)(k) = a(k) · (f ◦ h)(k), k ∈ K

where h : K → L is a homeomorphism and a : K → R is a continuous function
with |a(k)| = 1, for every k ∈ K.

The proof we are going to give here is quite standard (see, e.g. Dunford
and Schwartz [24] or Roy [57]), and is originally due to Arens and Kelley [7].
Before proceed with the details, we need to recall some notions and previous
results. We first see how a compact space K can be embedded into C(K)∗, the
dual of C(K), by means of the evaluation functionals δk, where δk(f) = f(k)
for every f ∈ C(K).

Lemma 3. The map δ : k ∈ K Ã δk ∈ C(K)∗ is a topological embedding
from K into C(K)∗ endowed with the weak-star topology w∗.

Proof. Since, by Urysohn’s Lemma, C(K) separates the points of K, we
have that δ is one-to-one. Now if kα is a net converging to k in K, then for
every f ∈ C(K) we have that f(kα) converges to f(k), that is, δkα converges to
δk in the w∗ topology. This shows the continuity of δ. Finally, the compactness
of K assures that δ is a homeomorphism onto its image.

It is immediate to check that every evaluation functional δk is in fact
in BC(K)∗ , the unit ball of C(K)∗. But, how to recognize in a metric way,
those functionals in BC(K)∗ that are given by evaluation at some point of K?
The next Theorem, due to Arens and Kelley [7], shows that the evaluation
functionals and their negatives are precisely the extreme points of BC(K)∗ .
For a proof of this result we refer to Arens and Kelley [7] or Dunford and
Schwartz [24]. Recall that an extreme point of a convex subset C of a linear
space E is a point of C that is not in the interior of any segment contained
in C. That is, x ∈ C belongs to ext(C) if whenever, x = λy + (1 − λ)z with
0 < λ < 1 and y, z ∈ C, we have x = y = z. This notion was introduced by
Minkowski [51] in 1911 for finite dimensional spaces, and then (1940) studied
by Krein and Milman [45] in general. A detailed study concerning extreme
points can be seen in the nice survey by Roy [57].

Theorem 4. (Arens and Kelley 1947) Let K be a compact space. Then

ext(BC(K)∗) = {± δk : k ∈ K}.
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Now we are ready for the proof of Banach-Stone theorem:

Proof of the Banach-Stone theorem (Theorem 2). If h : K → L is a
homeomorphism and a : K → R is continuous with |a| = 1, it is clear that
Tf = a · (f ◦ h) defines a linear isometry from C(L) onto C(K).

Conversely, let T : C(L) → C(K) be a linear isometry. It is easy to see
that the adjoint map T ∗ : C(K)∗ → C(L)∗ is also a linear isometry, and in
addition it is w∗-to-w∗ continuous. As a consequence, T ∗ defines a bijection
from ext(BC(K)∗) onto ext(BC(L)∗).

For each k ∈ K consider δk ∈ ext(BC(K)∗). There exists a unique h(k) ∈ L
and a unique scalar a(k) = ±1 such that T ∗(δk) = a(k)δh(k). In this way we
have defined a map h : K → L and a map a : K → R with |a| = 1.

If kα is a net converging to k in K, we have that δkα converges to δk in the
w∗ topology and then T ∗(δkα) = a(kα)δh(kα) converges to T ∗(δk) = a(k)δh(k)

in the w∗ topology. Choosing g ≡ 1 ∈ C(L), we see that a(kα) converges to
a(k). This shows that a is continuous and also δkα converges to δkα . That is,
h(kα) converges to h(k), which gives the continuity of h.

Now it is easy to see that h is bijective and h−1 is continuous. On the
other hand, note that (Tf)(k) = (δk ◦ T )(f) = (T ∗δk)(f) = a(k) · δh(k)(f) =
a(k) · (f ◦ h)(k).

The proof of Stone in [60] is different. Instead of considering the evaluation
functionals in C(K)∗, he uses a somewhat dual method, working with the “flat
faces” of the unit ball of C(K). A similar proof can be seen in Behrends [12].
On the other hand, the original proof of Banach [11] for metric spaces uses
the differentiability of the sup-norm in C(K) in order to characterize the
evaluation functionals. We are going to give an sketch of this proof, which
depends on the following Lemma.

Lemma 5. Let (E, ‖ · ‖) be a Banach space, and x ∈ E. The following are
equivalent:

(1) The norm ‖ · ‖ is Gâteaux-differentiable at x, i.e., there exists x∗ ∈ E∗

such that for every v ∈ E

x∗(v) = lim
t→0

‖x + tv‖ − ‖x‖
t

.

(2) There exists a unique supporting functional x∗ for x, i.e., there exists a
unique x∗ ∈ E∗ with ‖x∗‖ = 1 and x∗(x) = ‖x‖. (In this case, x∗ is the
Gâteaux-differential of the norm at x.)
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If now (E, ‖ · ‖) = (C(K), ‖ · ‖∞) and x = f , these conditions are also
equivalent to:

(3) The set Mf = {k ∈ K : ‖f‖∞ = |f(k)|} is a singleton {k0}. (In this case,
x∗ = sig(f(k0)) · δk0 is the supporting functional for f .)

Proof. To see that (1) implies (2), let x∗ be the Gâteaux-differential of the
norm at x. It is easily seen that x∗ is a supporting functional for x. Assume
now that y∗ is also a supporting functional for x. Since

lim
t→0

‖x + tv‖+ ‖x− tv‖ − 2‖x‖
t

= x∗(v) + x∗(−v) = 0

we have that for each ε > 0 there is some δ > 0 such that ‖x+tv‖+‖x−tv‖ ≤
2‖x‖+ εt, when 0 < t < δ. Thus,

2‖x‖+ t(x∗ − y∗)(v) = x∗(x + tv) + y∗(x− tv)

≤ ‖x + tv‖+ ‖x− tv‖ ≤ 2|x‖+ εt

and therefore (x∗ − y∗)(v) ≤ ε. This shows that x∗ = y∗.
The fact that (2) implies (3) is clear, since for every k ∈ Mf we have that

sig(f(k)) · δs is a supporting functional for f .
In order to see that (3) implies (1), let Mf = {k0}, and assume for example

that ‖f‖∞ = f(k0) (the case ‖f‖∞ = −f(k0) is analogous). Consider v ∈
C(K). Now for each t ∈ R there exists some kt ∈ K with |f + tv‖∞ =
|f(kt) + tv(kt)|. Then,

f(k0) ≤ |f(k0) + tv(k0)|+ |tv(k0)| ≤ |f(kt) + tv(kt)|+ |tv(k0)|
≤ |f(kt)|+ |t|(|v(k0)|+ |v(kt)|.

And therefore
0 ≤ f(k0)− |f(kt)| ≤ 2|t| · ‖v‖∞.

As a consequence, limt→0 |f(kt)| = f(k0), and from the compactness of K we
deduce that limt→0 f(kt) = f(k0) > 0. Now, for small |t|, we have

tv(k0) ≤ ‖f + tv‖∞ − ‖f‖∞ = f(kt) + tf(kt)− f(k0) ≤ tv(kt),

and from this we obtain that

lim
t→0

‖f + tv‖∞ − ‖f‖∞
t

= v(k0).

Finally, for a proof of (2) implies (1), we refer to [23], Corollary I.1.5, where
it is proved using Smulyan test.



358 m.i. garrido, j.a. jaramillo

Note that the characterization (3) of the above Lemma holds for arbitrary
compact spaces K. Now the proof of the Theorem goes as follows:

Banach’s proof for metric spaces. If T : C(L) → C(K) is a linear isometry,
it is is easy to see that ‖ · ‖∞ is Gâteaux-differentiable at f ∈ C(L) if, and
only if, ‖ · ‖∞ is Gâteaux-differentiable at Tf ∈ C(K); furthermore x∗ is a
supporting functional for Tf if, and only if, T ∗(x∗) is a supporting functional
for f .

Now since K is a metric space, for each k ∈ K we can choose a peak-
function gk ∈ C(K), that is, ‖gk‖∞ = gk(k) and Mgk

= {k}. Thus δk is a sup-
porting functional for gk, and therefore T−1(gk) has a supporting functional
of the form ±δh(k) = T ∗(δk). This means that there exist a unique h(k) ∈ L
and a unique a(k) ∈ R with |a(k)| = 1 such that T ∗(δk) = a(k) · δh(k). At this
point, the proof continues in the same way as before.

As we have seen, metrizability of base-spaces is used in order to assure the
existence of continuous peak-functions. Nevertheless, these kind of functions
exist in more general compact spaces, and the same proof works in this case.
See Eilenberg [27] for further results in this direction.

3. Isometries

To start this Section, we would like to recall that the classical Banach-Stone
theorem can be extended to the space of functions vanishing at infinity on a
locally compact space, with essentially the same proof (see e.g. Behrends [12]).
More precisely, if X is a locally compact space (which will be always assumed
to be Hausdorff), let C0(X) denote the Banach space of all continuous real
functions on X which vanish at infinity, endowed with the sup-norm. Then
we have:

Theorem 6. Let X and Y be locally compact spaces. Then, C0(X) is
isometric to C0(Y ) if, and only if, X and Y are homeomorphic. Moreover,
every linear isometry T : C0(Y ) → C0(X) is of the form

(Tf)(x) = a(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a homeomorphism and a : X → R is a continuous function
with |a(x)| = 1, for every x ∈ X.

One of the lines of research which developed from the Banach-Stone the-
orem, is the study of isometries between different Banach function spaces,
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and how the existence of one such isometry leads into topological connections
between the base-spaces or related subspaces. In this way, a large number
of extensions of the Theorem have been obtained, and in this Section we are
going to review some of them, without proofs. The earliest result in this di-
rection is due to Myers [52], who considered special vector subspaces of C(X),
for a compact space X. This has been extended by Araujo and Font [6] to
the same kind of subspaces of C0(X), where X is a locally compact space.
More precisely, a closed vector subspace E ⊂ C0(X) is said to be completely
regular if, for each x0 ∈ X and each neighborhood U of x0 in X, there exists
some f ∈ E such that ‖f‖ = |f(x0)| and |f(x)| < ‖f‖ for every x ∈ X \ U .

Theorem 7. (Myers 1948, Araujo and Font 1997) Let X and Y be lo-
cally compact spaces, and let E ⊂ C0(X), F ⊂ C0(Y ) be completely reg-
ular subspaces. If E and F are isometric, then X and Y are homeomorphic.
Moreover, every linear isometry T : F → E is of the form

(Tf)(x) = a(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a homeomorphism and a : X → R is a continuous
function with |a(x)| = 1, for every x ∈ X.

For further extensions along this line, we need the concept of boundary of
a subspace. Recall that a subset Ω of a locally compact space X is said to be
a boundary of a vector subspace E of C0(X) if, for each f ∈ E, there exists
some x ∈ Ω with |f(x)| = ‖f‖. When E admits a unique minimal closed
boundary, it is called the Shilov boundary of E and is denoted by ∂E. On
the other hand, the Choquet boundary of E, denoted Ch(E), is defined as
the set of all x ∈ X such that δx is an extreme point of the unit ball of E∗.
Now, modifying slightly the terminology of Araujo and Font [6], we say that
the vector subspace E ⊂ C0(X) is strongly separating if the following two
conditions are satisfied:

(i) For each x1 6= x2 ∈ X, there exits f ∈ E such that |f(x1)| 6= |f(x2)|.
(ii) For each x ∈ X, there exists f ∈ E such that f(x) 6= 0.

In this case, we define σE as the set of all x0 ∈ X such that, for each neighbor-
hood U of x0 in X, there exists f ∈ E with |f(x)| < ‖f‖, for every x ∈ X \U .
The connection with Shilov and Choquet boundaries is given in Araujo and
Font [5]:
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Theorem 8. (Araujo and Font 1997) Let X be a locally compact space,
and let E ⊂ C0(X) a strongly separating subspace. Then

(1) σE = ∂E.

(2) σE = ChE.

Note that if the subspace E ⊂ C0(X) is completely regular, then it is
strongly separating and σE = X. In particular, the following result from [6]
extends Theorem 7.

Theorem 9. (Araujo and Font 1997) Let X and Y be locally compact
spaces, let E ⊂ C0(X), F ⊂ C0(Y ) be strongly separating subspaces, and
let T : F → E be a linear isometry. Then there exist a homeomorphism
h : σE → σF and a continuous function a : σE → R with |a(x)| = 1, for
every x ∈ σE, such that

(Tf)(x) = a(x) · (f ◦ h)(x),

for every x ∈ σE and every f ∈ F . Moreover, h(ChE) = Ch(F ).

In the hypotheses of the above Theorem we have that, if the vector sub-
spaces E and F are isometric, then the Shilov boundary ∂E is homeomorphic
to ∂F , and also the Choquet boundary ChE is homeomorphic to ChF . Nev-
ertheless, we cannot deduce in general that X and Y are homeomorphic, as
the following example shows (see Araujo and Font [6]). Let Y be the open
real interval (0, 1), let X = (0, 1) ∪ (1, 2) and consider T : C0(Y ) → C0(X)
defined by:

(Tf)(t) =

{
f(t) if t ∈ (0, 1)
1
2f(t− 1) if t ∈ (1, 2).

Now if E = C0(Y ) and F = T (E), then σE = (0, 1) = σF , and T is an
isometry from E onto F , but X is not homeomorphic to Y .

Into isometries. Also starting from the Banach-Stone theorem, several re-
lated results have been obtained for into isometries (that is, not necessarily
surjective). In this sense, we would like to mention the theorem due to Hol-
sztyński [38]:

Theorem 10. (Holsztyński 1966) Let X and Y be compact spaces, and
let T : C(Y ) → C(X) be an into linear isometry. Then there exist a closed
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subset X0 of X, a continuous function h from X0 onto Y and a continuous
function a : X0 → R with |a(x)| = 1, for every x ∈ X0, such that

(Tf)(x) = a(x) · (f ◦ h)(x),

for every x ∈ X0 and every f ∈ C(Y ).

Now the following extension has been obtained in Araujo and Font [6].

Theorem 11. (Araujo and Font 1997) Let X and Y be locally compact
spaces, let F ⊂ C0(Y ) be a strongly separating subspace, and let T : F →
C0(X) be an into linear isometry. Then there exist a subset X0 of X which
is a boundary for T (F ), a continuous function h from X0 onto σF , and a
continuous function a : X0 → R with |a(x)| = 1, for every x ∈ X0, such that

(Tf)(x) = a(x) · (f ◦ h)(x),

for every x ∈ X0 and every f ∈ F . Moreover, h(ChT (F )) = Ch(F ). In
addition, if σF is closed then X0 is also closed.

Approximate isometries. Next we pass to a different kind of variant of the
Banach-Stone theorem, by considering approximate isometries. If X and Y
are locally compact spaces, and we weaken the connection between C0(X) and
C0(Y ), for example asking them to be merely isomorphic, then X and Y need
not be homeomorphic. Indeed, Milutin [50] proved that if X and Y are both
uncountable compact metric spaces, then C(X) and C(Y ) are always linearly
isomorphic. Thus, for example, C[0, 1] is linearly isomorphic to C([0, 1] ×
[0, 1]). Nevertheless, the situation is different if we consider isomorphisms with
certain bound on the norm, also called approximate isometries. In this sense,
the following result was obtained independently by Amir [1] and Cambern
[19], [20].

Theorem 12. (Amir 1966, Cambern 1966) Let X and Y be locally com-
pact spaces, and assume that there exists a linear isomorphism T : C0(X) →
C0(Y ) with ‖T‖ · ‖T−1‖ < 2. Then X and Y are homeomorphic.

The following example, due to Cambern [21], shows that, in general, 2
is the best constant. Let X = {− 1

n : n ∈ N} ∪ {0} ∪ { 1
n : n ∈ N} and
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Y = {− 1
n : n ∈ N} ∪ {0} ∪ {n : n ∈ N}, and consider the isomorphism

T : C0(Y ) → C0(X) = C(X) defined by:

Tg(x) =





g(0) if x = 0,

g(−1/n) + g(n) if x = 1/n,

g(−1/n)− g(n) if x = −1/n.

In this case we have ‖T‖ · ‖T−1‖ = 2, but obviously X is not homeomorphic
to Y .

The case of approximate isometries between subspaces was considered by
Cengiz [22], extending the above result. He defined a closed vector subspace
E of C0(X) to be extremely regular if, for each x0 ∈ X, each neighborhood
U of x0 in X and each 0 < ε < 1, there exists some f ∈ E such that
‖f‖ = |f(x0)| = 1 and |f(x)| < ε for every x ∈ X \ U .

Theorem 13. (Cengiz 1973) Let X and Y be locally compact spaces and
let E ⊂ C0(X) and F ⊂ C0(Y ) be extremely regular subspaces. Assume that
there exists a linear isomorphism T : E → F with ‖T‖ · ‖T−1‖ < 2. Then X
and Y are homeomorphic.

Spaces of vector-valued functions. Another line of research motivated by
the Banach-Stone theorem has been the study of similar problems for spaces
of vector-valued functions. There is a large number of results in this direction,
which naturally connects with the Geometry of Banach Spaces and Operator
Theory. We refer to the book by Behrends [12] for a survey in this area. Just
to give the flavor, we would like to mention some basic results. For a locally
compact space X and a Banach space E, we denote as usual by C0(X, E) the
Banach space of all continuous functions on X with values in E, vanishing at
infinity, endowed with the sup-norm:

‖f‖∞ = sup{‖f(x)‖ : x ∈ X}.

We say that the Banach space E has the Banach-Stone property if, for any
locally compact spaces X and Y , the existence of an isometry from C0(X, E)
onto C0(Y,E) implies that X and Y are homeomorphic. In this way, the
classical Banach-Stone theorem asserts that the real line R has the Banach-
Stone property. On the other hand, both the bidimensional space E = (R2, ‖ ·
‖∞) and the space E = (C[0, 1], ‖ · ‖∞) fail the Banach-Stone property (see,
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e. g. Behrends [12], pg. 143). To give positive results, we need the following
definitions. A linear operator S : E → E is said to be a multiplier if every
x∗ ∈ ext(BE∗) is an eigenvector of the adjoint S∗, that is, S∗(x∗) = aS(x∗)·x∗,
where aS is a scalar-valued function on ext(BE∗). The algebra of all multipliers
of E is denoted by Mult(E). This concept can also be defined for a complex
Banach space E, in which case the centralizer of E, denoted by Z(E), is
defined as the maximal self-adjoint subalgebra of Mult(E). For a real Banach
space E the centralizer Z(E) coincides with Mult(E). We say that Z(E)
is trivial if it contains only multiples of the identity. Now we can state the
following result, due to Behrends [12].

Theorem 14. (Behrends 1978) A Banach space with trivial centralizer
has the Banach-Stone property.

The class of Banach spaces with trivial centralizer includes all strictly
convex spaces and all smooth spaces (see Behrends [12]), so the above Theorem
covers a wide range of spaces.

As a variant, we say that the Banach space E has the isomorphic Banach-
Stone property if there exists some ε > 0 such that, for any locally com-
pact spaces X and Y , the existence of a linear isomorphism T : C0(X, E) →
C0(Y,E) with ‖T‖ · ‖T−1‖ < 1 + ε, implies that X and Y are homeomor-
phic. It was shown by Behrends and Cambern [13], and by Jarosz [40] respec-
tively, that uniformly smooth and uniformly convex spaces have the isomor-
phic Banach-Stone property. For further developments in this direction and
related results, we refer to the survey by Jarosz and Pathak [41] and references
therein.

Bounded uniformly continuous and Lipschitz functions. We would like
to recall now some results concerning isometries between spaces of bounded
continuous and uniformly continuous functions on a complete metric space.
More precisely, if X is a metric space and E is a Banach space, let C∗(X, E)
(respectively U∗(X,E)) denote the space of all bounded continuous (resp.
uniformly continuous) functions from X to E endowed with the sup-norm.
Using techniques of differentiability, Bachir has recently obtained in [10] the
following.

Theorem 15. (Bachir 2001) Let X, Y be complete metric spaces, and let
E, F be smooth Banach spaces. If C∗(X, E) is isometric to C∗(Y, F ) (re-
spectively, U∗(X,E) is isometric to U∗(Y, F )), then X and Y are homeomor-
phic. Moreover, every linear isometry T : C∗(Y, F ) → C∗(X, E) (respectively,
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T : U∗(X,E) → U∗(Y, F )) is of the form

(Tf)(x) = U(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a homeomorphism and U : X → Isom(F, E) is a
continuous map from X into the space of linear isometries between F and E.

In fact, in the case of uniformly continuous functions, we get a closer
connection between X and Y . Namely, the following result has been proved
by Araujo in [3]. The scalar-valued case has been independently obtained by
Hernández in [36].

Theorem 16. (Araujo 2001) Let X, Y be complete metric spaces, and
let E, F be Banach spaces with trivial centralizer. If U∗(X,E) is isometric to
U∗(Y, F ), then X and Y are uniformly homeomorphic. Moreover, every linear
isometry T : U∗(X, E) → U∗(Y, F ) is of the form

(Tf)(x) = U(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a uniform homeomorphism and U : X → Isom(F, E) is
a continuous map from X into the space of linear isometries between F and
E.

On the other hand, let Lip∗(X, E) denote the space of all bounded Lip-
schitz functions from a complete metric space (X, d) into a Banach space
E, endowed with the norm ‖f‖Lip∗ = sup{‖f‖∞, L(f)}, where L(f) is the
Lipschitz constant of f :

L(f) = sup
x 6=y

‖f(x)− f(y)‖
d(x, y)

.

Furthermore, if X and E are Banach spaces, let Cm
b (X,E) denote the space

of m-times continuously Fréchet-differentiable functions from X to E, such
that the function and its m derivatives are bounded on X, endowed with the
norm

‖f‖m = sup{‖f‖∞, ‖f ′‖∞, . . . , ‖f (m)‖∞}.
When we consider this space, we always assume that there exists in Cm

b (X,R)
a bump function, that is, a function with bounded nonempty support. In
[9] and [10] Bachir develops a general treatment which can also be applied to
these function spaces. In particular he obtains that, if E and F have a Fréchet
differentiable norm, then a linear isomorphism T : Lip∗(Y, F ) → Lip∗(X, E)
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(respectively, T : Cm
b (Y, F ) → Cm

b (X, E)) is of the canonical form Tf =
U · (f ◦ h) if, and only if, T is an isometry for the sup-norm.

Finally, concerning isometries between spaces of real bounded Lipschitz
functions, we have the following result due to Weaver [61]. First, recall that
a metric space is said to be 1-connected if it cannot be decomposed into two
disjoint sets whose distance is ≥ 1.

Theorem 17. (Weaver 1995) Let X,Y be 1-connected complete metric
spaces with diameter ≤ 2. If Lip∗(X) is isometric to Lip∗(Y ), then X and Y
are isometric. Moreover, every linear isometry T : Lip∗(Y ) → Lip∗(X) is of
the form

(Tf)(x) = a · (f ◦ h)(x), x ∈ X

where h : X → Y is an isometry and |a| = 1.

4. Algebra isomorphisms

Another line of research which started with the Banach-Stone theorem
stresses the link between algebraic properties of C(X) and the topology of
X. Here X will be a (Hausdorff) completely regular space and we shall con-
sider on C(X) its algebra structure or (equivalently in this context) its ring
structure. The first topological versus algebraic result was given by Gelfand
and Kolmogoroff [33] in 1939 for compact spaces. For that, they considered
the space of maximal ideals of C(X) endowed with the Stone topology. In-
cidentally, this theorem follows from the Banach-Stone theorem and the fact
that algebra isomorphism implies isometry (see Gillman and Jerison [34] 1J.6).
Nevertheless their ideas were used by Hewitt [37] in order to obtain his well
known generalization for the class of realcompact spaces (Theorem 20 below).

Theorem 18. (Gelfand and Kolmogoroff 1939) Let X and Y be compact
spaces. Then, C(X) and C(Y ) are isomorphic as algebras if, and only if, X
and Y are homeomorphic. Moreover, every algebra isomorphism T : C(Y ) →
C(X) is of the form Tf = f ◦ h where h : X → Y is a homeomorphism.

Before doing the proof, we need to establish a useful Lemma due to Stone
[60] (see also Dunford and Schwartz [24]). We shall denote by Z(f) = {x :
f(x) 6= 0} the zero-set of the function f ∈ C(X).
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Lemma 19. (Stone 1937) Let X be a compact space. For every nonzero
multiplicative functional ϕ : C(X) → R there exists a unique x ∈ X such
that ϕ = δx, that is, ϕ(f) = f(x), for all f ∈ C(X).

Proof. Firstly we shall see that ϕ(1) = 1. Indeed, since ϕ(1) = ϕ(1 · 1) =
ϕ(1) · ϕ(1) and ϕ 6= 0, then ϕ(1) = 1. As consequence ϕ(λ) = λ, for every
λ ∈ R. Moreover ϕ(g) 6= 0 when Z(g) = ∅, since in this case 1/g ∈ C(X) and
1 = ϕ(1) = ϕ(g) · ϕ(1/g).

On the other hand, for every f ∈ C(X) there exists x ∈ X such that ϕ(f) =
f(x). Otherwise, for some function f ∈ C(X) we have g(x) = f(x)−ϕ(f) 6= 0
for all x ∈ X. Thus Z(g) = ∅ and ϕ(g) = 0, which is a contradiction.

Now it is easy to check that the family {Z(f − ϕ(f))}f∈C(X) of closed
subsets of X has the finite intersection property. So, by compactness, there
exists x ∈ X with x ∈ ⋂

Z(f − ϕ(f)), i.e. ϕ = δx. Finally, note that this x is
unique since C(X) separates the points of X.

Proof of Gelfand-Kolmogoroff’s theorem. It is clear that when h : X → Y
is a homeomorphism, then T : C(Y ) → C(X) defined by Tf = f ◦ h is an
algebra isomorphism.

Conversely, if T : C(Y ) → C(X) is an algebra isomorphism then, for each
x ∈ X, δx ◦ T : C(Y ) → R is a nonzero multiplicative functional. So, by
Lemma 19, there exists a unique y = h(x) ∈ Y such that δx ◦ T = δh(x), i.e.
Tf(x) = f(h(x)), for every f ∈ C(Y ). Thus, the map h : X → Y satisfies
Tf = f ◦ h ∈ C(X), for every f ∈ C(Y ). Hence h is continuous, since C(Y )
separates points and closed subsets of Y and this implies that Y is endowed
with the weak topology generated by C(Y ). Finally, considering T−1 we get
that h is a homeomorphism.

Note that the above proof relies on the following two key facts:
(i) The topology of a compact space X is the weak topology given by C(X).
(ii) Every nonzero algebra homomorphism ϕ : C(X) → R (X compact) is an
evaluation.

In fact the same proof works in the class of spaces X satisfying these two
conditions. This was observed by Hewitt in [37], where he defined a topological
space X to be realcompact if X is completely regular and every nonzero real
algebra homomorphism on C(X) is given by evaluation at some point of X.
In this way he obtained the following theorem.

Theorem 20. (Hewitt 1948) Let X and Y be realcompact spaces. Then,
C(X) and C(Y ) are isomorphic as algebras if, and only if, X and Y are
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homeomorphic. Moreover, every algebra isomorphism T : C(Y ) → C(X) is
of the form Tf = f ◦ h where h : X → Y is a homeomorphism.

It is clear that every compact space is realcompact. More generally, it is
not difficult to see that every Lindelöf space is realcompact. For further infor-
mation on realcompactness we refer to Gillman and Jerison [34] and Engelking
[26]. On the other hand, we would like to point out that realcompactness of a
metric space is a set-theoretic notion. In fact, a metric space is realcompact if,
and only if, every discrete closed subset has nonmeasurable cardinal. Recall
that a set J is said to have measurable cardinal if there exists a non-trivial
two-valued measure defined on the power set 2J . We refer to Jech [42] for
further information about measurable cardinals. Just note that the existence
of measurable cardinals is not provable from the usual axioms of set theory
(ZFC). These cardinals, whether they exist at all, must be extremely big; in
fact, bigger than ℵ0, 2ℵ0 , 22ℵ0 , . . .

Isomorphisms between subalgebras. Now, we shall see how to generalize
last result by Hewitt for unital subalgebras A of C(X). We denote by Hom(A)
the set of all nonzero algebra homomorphisms ϕ : A → R. We say that
Hom(A) = X whenever for every ϕ ∈ Hom(A) there exists some x ∈ X, such
that ϕ = δx. Note that this x will be unique when A separates the points of
X. Thus, with the same proof of Theorem 18 or Theorem 20, the following
general result can be obtained.

Theorem 21. Let X and Y be completely regular spaces. Let A ⊂ C(X)
and B ⊂ C(Y ) unital subalgebras, such that:

(i) A separates points and closed sets of X and Hom(A) = X.

(ii) B separates points and closed sets of Y and Hom(B) = Y .

If A and B are isomorphic as algebras, then X and Y are homeomorphic.
Moreover, every algebra isomorphism T : B → A is of the form Tf = f ◦ h
where h : X → Y is a homeomorphism.

Here, the problem arises to determine conditions under which Hom(A) =
X. This has been studied by several authors, mainly in the case of algebras
of smooth functions, see for instance Kriegl and Michor [45] (Chapter IV) or
Garrido, Gómez and Jaramillo [28], and references therein. One of the more
general results in this respect is Theorem 23 below. First we need an extension
of Lemma 19 for unital subalgebras which are inverse-closed. Recall that a
subalgebra A ⊂ C(X) is said to be inverse-closed if for every f ∈ A such that
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Z(f) = ∅, the function 1/f ∈ A. As is customary, βX denotes the Stone-Čech
compactification of X and fβ : βX → R ∪ {∞} the continuous extension of
f ∈ C(X).

Lemma 22. (Garrido, Gómez and Jaramillo 1994) Let X be a completely
regular space, and let A be a unital inverse-closed subalgebra of C(X). Then
for every ϕ ∈ Hom(A) there exists some ξ ∈ βX such that fβ(ξ) 6= ∞ and
ϕ(f) = fβ(ξ), for every f ∈ A .

Note that the above Lemma, whose proof can be seen in [28], describes
every nonzero homomorphism on A as an evaluation at some point of βX. As
a consequence, the condition Hom(A) = X, also called A−realcompactness,
can be characterized as follows.

Theorem 23. (Garrido, Gómez and Jaramillo 1994) Let X be a comple-
tely regular space and let A ⊂ C(X) a unital inverse-closed subalgebra that
separates points and closed subsets of X. Then, the following conditions are
equivalent:

(a) Hom(A) = X.

(b) For every ξ ∈ βX \X there is a function f ∈ A such that fβ(ξ) = ∞.

This characterization looks quite abstract, but it can be checked directly in
many cases. For example, if A ⊂ C(Rn) is any unital inverse-closed subalgebra
containing the projection maps πj : Rn → R, for j = 1, . . . , n, then it is
easy to see that A separates points and closed sets, and it follows that Rn is
A−realcompact. Indeed, in this case the function f = π2

1+· · ·+π2
n ∈ A satisfies

fβ(ξ) = ∞, for every ξ ∈ βRn \ Rn. In particular, A could be the algebra of
all rational functions, or all real-analytic functions, or all C∞−functions on
Rn.

Another consequence of Theorem 23 is the following.

Corollary 24. (Garrido, Gómez and Jaramillo 1994) Let X be a real-
compact space and let A ⊂ C(X) a unital inverse-closed subalgebra. If A is
uniformly dense in C(X) then Hom(A) = X.

This can be applied to the algebra C∞(M) of smooth real functions on a
smooth manifold M of finite dimension (which will be assumed to be Hausdorff
and second countable). Indeed, in this case, M is realcompact (since it is
Lindelöf) and C∞(M) is uniformly dense in C(M). Then, from Corollary 24,
we have Hom(C∞(M)) = M . Now we can derive the following result, which
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is due to Myers [53] for compact manifolds, and Pursell [56] for the general
case.

Theorem 25. (Myers 1954 and Pursell 1955) Let M and N be smooth
manifolds of finite dimension. Then C∞(M) and C∞(N) are isomorphic as
algebras if, and only if, M and N are C∞−diffeomorphic.

Proof. Note that if T : C∞(N) → C∞(M) is an algebra isomorphism we
obtain, from Theorem 21, a homeomorphism h : M → N such that Tf = f◦h.
Now, we only need to use the fact that if f ◦ h is C∞−smooth for every
f ∈ C∞(N), then h is C∞−smooth.

Functions on Banach spaces. Next, we turn our attention to the case of
algebras of smooth functions on a Banach space E. As usual, P (E) denotes
the algebra of all continuous real polynomials on E, and R(E) the algebra
of all rational functions of E, that is, the functions of the form P/Q where
P, Q ∈ P (E) and Q(x) 6= 0 for all x ∈ E. Recall that a real function f defined
on an open set U ⊂ E is said to be real-analytic on U if, for every x ∈ U
there exist a neighborhood W of 0 and a sequence (Pj), with each Pj ∈ P (E)
being j-homogeneous, such that f(x + h) =

∑∞
j=0 Pj(h), for every h ∈ W .

Note that this series can be assumed to be uniformly convergent on W (see
Bochnak and Siciak [15], Propositions 5.1 and 5.2, or Kriegl and Michor [45],
Lemma 7.14). We denote by Cω(U) the algebra of all real-analytic functions
on U . It is clear that R(E) ⊂ Cω(E) ⊂ C∞(E), where C∞(E) is the algebra
of infinitely differentiable real functions on E, in the usual Fréchet sense.

The following result, due to Biström and Lindström [14], provides a general
condition under which every homomorphism on C∞(E) is given by evaluation
at some point of E.

Theorem 26. (Biström and Lidström 1993) Let E be a Banach space
which injects linear and continuously into c0(Γ), for some index set Γ with
nonmeasurable cardinal. Then Hom(C∞(E)) = E.

As a consequence, and using Theorem 21, we obtain:

Theorem 27. (Garrido, Jaramillo and Prieto 2000) Let E and F be Ba-
nach spaces which inject linear and continuously into c0(Γ), for some index
set Γ with nonmeasurable cardinal. The following are equivalent:

(a) The algebras C∞(E) and C∞(F ) are isomorphic.
(b) The spaces E and F are isomorphic.
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Proof. Again, as in Theorem 21, if T : C∞(F ) → C∞(E) is an algebra
isomorphism we obtain a bijection h : E → F such that Tf = f ◦h ∈ C∞(E),
for every f ∈ C∞(F ). In particular, for every x∗ ∈ F ∗, we have that x∗ ◦ h ∈
C∞(E), and therefore by [35], Corollary 3.8, h is C∞−smooth. Since the
same is true for h−1, h is a diffeomorphism. Hence, the differential of h at
every point is an isomorphism between E and F .

This Theorem can be applied to a wide class of spaces. Recall that a
Banach space E is said to be Weakly Compactly Generated (WCG) if there
is a weakly compact subset whose linear span is dense in E. In particular,
every separable and every reflexive space are WCG. Now, if either E or E∗ is
WCG (with nonmeasurable cardinal), then E injects linear and continuously
into c0(Γ), for some Γ (with nonmeasurable cardinal) (see e.g. Deville, Gode-
froy and Zizler [23], p. 247). For further spaces satisfying the hypothesis of
Theorem 27, we refer to Kriegl and Michor [45], 53.20 and 53.21.

In the case of algebras of rational and real-analytic functions, we have the
following.

Theorem 28. (Garrido, Gómez and Jaramillo 1994) Let E be a Banach
space which inject linear and continuously into `p(Γ), for some 1 < p < ∞,
and some index set Γ with nonmeasurable cardinal. Then Hom(R(E)) =
Hom(Cω(E)) = Hom(C∞(E)) = E.

And as a consequence,

Theorem 29. (Garrido, Jaramillo and Prieto 2000) Let E and F be Ba-
nach spaces which inject linear and continuously into `p(Γ), for some 1 <
p < ∞ and some index set Γ with nonmeasurable cardinal. The following are
equivalent:

(a) The algebras C∞(E) and C∞(F ) are isomorphic.

(b) The algebras Cω(E) and Cω(F ) are isomorphic.

(c) The algebras R(E) and R(F ) are isomorphic.

(d) The spaces E and F are isomorphic.

We point out that the class of spaces satisfying the hypothesis in Theorem
above includes separable spaces and superreflexive spaces with nonmeasurable
cardinal (see [43]). On the other hand, the equivalence between (c) and (d)
should be compared with the results by Cabello, Castillo and Garćıa in [18]
(see also Lassalle and Zalduendo [48]). They provide examples of separable
non-isomorphic spaces E and F for which the algebras P (E) and P (F ) do
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verify to be isomorphic. For instance, this is the case if E = c0 and F is
another predual of `1, not isomorphic to c0.

Structure space. Our previous results are based on Theorem 21, and there-
fore depend on the fact that the homomorphisms of the corresponding subal-
gebras are given by evaluation at some point of the base-space. In the case
that this is not longer true, or when we do not know whether it is true, we
can consider the so-called structure space associated to a subalgebra. If X
is a completely regular space and A ⊂ C(X) is a subalgebra with unit, then
the set Hom(A) endowed with the topology of pointwise convergence (that
is, considered as a topological subspace of RA with the product topology) is
called the structure space of A. The following fundamental properties of the
structure space were obtained by Isbell [39].

Theorem 30. (Isbell 1958) Let X be a completely regular space, and let
A ⊂ C(X) a unital inverse-closed subalgebra, which separates points and
closed sets of X. Then the map δ : x ∈ X Ã δx ∈ Hom(A) is a topological
embedding from X into a dense subspace of Hom(A). Moreover, each function
f ∈ A admits a (unique) continuous extension f̂ to Hom(A), given by f̂(ϕ) =
ϕ(f).

Functions on Banach manifolds. Now, as an example of application of the
structure space, we focus on smooth and real-analytic functions on Banach
manifolds. We refer to Lang [47] or Kriegl and Michor [45] for an account on
this topic. Recall that a Banach space E is said to be C∞−smooth if there
exists a C∞−real function on E with nonempty bounded support. If M is
a Banach manifold modeled on C∞−smooth Banach spaces, it is easy to see
that C∞(M) separates points and closed sets of M , that is, M carries the
initial topology for the family C∞(M) (see e.g. Bonic and Frampton [16]).

Theorem 31. (Garrido, Jaramillo and Prieto 2000) Let M and N be
paracompact Banach manifolds, modeled on C∞−smooth Banach spaces. The
following are equivalent:

(a) The algebras C∞(M) and C∞(N) are isomorphic.

(b) M and N are C∞−diffeomorphic.

Proof. That (b) implies (a) is clear. To the converse, we consider the
structure space Hom(C∞(M)). As we mentioned before, C∞(M) separates
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points and closed sets of M , and then, by Theorem 30, M can be embedded as
a dense subspace of Hom(C∞(M)) by identifying each x ∈ M with the point
evaluation δx. Moreover, each f ∈ C∞(M) admits a continuous extension f̂
to Hom(C∞(M)), given by f̂(ϕ) = ϕ(f), for each ϕ ∈ Hom(C∞(M)). The
same can be said for N .

Now assume that T : C∞(N) → C∞(M) is an algebra isomorphism. Then
the map h : Hom(C∞(M)) → Hom(C∞(N)) defined by h(ϕ) = T ◦ ϕ is a
bijection, and in fact h is a homeomorphism since πg ◦ h = πT (g), for each
g ∈ C∞(N) (where π denotes the corresponding projection on the product
space). Next we are going to see that h(M) = N . This will be a consequence
of the following:

Claim. A point ϕ ∈ Hom(C∞(M)) has a countable neighborhood basis
in Hom(C∞(M)) if, and only if, ϕ ∈ M .

In order to prove the Claim, first note that every paracompact Banach
manifold is completely metrizable (see Palais [55], Theorem 3), so there exists
a complete metric d on M which gives the topology.

Assume first that ϕ ∈ Hom(C∞(M)) \M has a countable neighborhood
basis. Since M is dense in Hom(C∞(M)), we can choose a sequence (xn) in
M converging to ϕ. The completeness of the metric d implies that (xn) has
no d-Cauchy subsequence, and therefore there exist ε > 0 and a subsequence
(xnk

) such that d(xnk
, xnj ) ≥ ε for k 6= j. For each k, consider the d-ball

Bk = B(xnk
, ε

4), and a function fk ∈ C∞(M) such that the support of fk

is contained in Bk and fk(xnk
) = 1. Note that for every x ∈ M the d-ball

B(x, ε
4) meets at most one Bk. Thus the sum f =

∑∞
k=0 f2k is locally finite

and f ∈ C∞(M). In addition, f(xn2k
) = 1 and f(xn2k+1

) = 0 for every k. But
this is a contradiction since f extends continuously to Hom(C∞(M)) and ϕ
is in the closure of the sets A = {xn2k

} and B = {xn2k+1
}.

Conversely, given x ∈ M , consider for each n the open d-ball Bn = B(x, 1
n),

and let Wn be the closure of Bn in Hom(C∞(M)). It is easy to check that the
family {Wn} is a countable neighborhood basis of x in Hom(C∞(M)). This
completes the Claim.

In this way we obtain that h : M → N is a homeomorphism and T (g) =
g ◦ h ∈ C∞(M), for every g ∈ C∞(N). This implies that h is C∞−smooth.
Indeed, let x0 ∈ M and consider φ : U → E and ψ : V → F charts around
x0 and h(x0), respectively. Using that F is a C∞−smooth space, we can find
open neighborhoods U0 ⊂ U and V0 ⊂ V , of x0 and h(x0) respectively, and
θ ∈ C∞(N) such that h(U0) ⊂ V0, θ = 1 on V0, and the support of θ is
contained in V . In order to see that ψ ◦ h ◦ φ−1 is C∞ on φ(U0), it is enough
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to check that v∗ ◦ ψ ◦ h ◦ φ−1 is C∞ for every functional v∗ ∈ F ∗ (see [35],
Corollary 3.8). Now, given v∗ ∈ F , define g : V → R by

g(y) =

{
θ(y) · v∗(ψ(y)) if y ∈ V

0 otherwise.

Then g ∈ C∞(N), g ◦ h ∈ C∞(M) and v∗ ◦ψ ◦ h ◦ φ−1 = g ◦ h ◦ φ−1 is C∞ on
φ(U0).

Working with h−1 we obtain that h : M → N is a C∞−diffeomorphism.

In the real-analytic setting, we restrict ourselves to submanifolds of certain
Banach spaces. In this context we give the following two results whose proofs
can be seen in [32].

Theorem 32. (Garrido, Jaramillo and Prieto 2000) Let E and F be Ba-
nach spaces which admit a continuous linear injection into `p(Γ), for some
1 < p < ∞ and some index set Γ with nonmeasurable cardinal. Let M and
N be real-analytic submanifolds of E and F , respectively. The following are
equivalent:

(a) The algebras Cω(M) and Cω(N) are isomorphic.

(b) M and N are real-analytically isomorphic.

Next proposition reveals that Theorem 32 does not hold for arbitrary Ba-
nach manifolds. In particular, this shows that there is no general real-analytic
Banach–Stone theorem.

Proposition 33. (Garrido, Jaramillo and Prieto 2000) Consider the Ba-
nach space c0(Γ), where Γ is an uncountable set. Let M = c0(Γ) and
N = c0(Γ) \ {0}. Then,

(i) The algebras Cω(M) and Cω(N) are isomorphic.

(ii) M and N are not real-analytically isomorphic.

Biseparating maps. Some of the results of Banach-Stone type for algebra
isomorphisms, which we have seen at the beginning of this Section, can be
extended to the more general context of biseparating maps between function
spaces. Recall that a map T : C(Y ) → C(X) is said to be separating if it
is additive and f · g = 0 implies that (Tf) · (Tg) = 0. Then T is said to be
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biseparating if it is bijective and both T and T−1 are separating. Of course,
every algebra isomorphism is biseparating, but the converse is not true. For
example, every map T : C(Y ) → C(X) of the form (Tf)(x) = a(x) ·(f ◦h)(x),
where h : X → Y is a homeomorphism and a : X → R is continuous with
a(x) 6= 0 for every x ∈ X, is biseparating. Now we can state the following
result of Araujo, Beckenstein and Narici [4].

Theorem 34. (Araujo, Beckenstein and Narici 1995) Let X and Y be
realcompact spaces. If there exists a biseparating map T : C(Y ) → C(X),
then X and Y are homeomorphic.

If, in addition, we assume that the biseparating map is linear, something
stronger is obtained in [4].

Theorem 35. (Araujo, Beckenstein and Narici 1995) Let X and Y be
realcompact spaces, and assume that there exists a linear biseparating map
T : C(Y ) → C(X). Then X and Y are homeomorphic and T is of the form

(Tf)(x) = a(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a homeomorphism and a : X → R is a continuous
function with a(x) 6= 0 for every x ∈ X.

These results have been recently extended by Araujo in [2] and [3] to the
case of spaces of vector-valued functions. First, it is necessary to extend the
concept of biseparating map to this case. Thus, for a function f ∈ C(X, E),
where X is a topological space and E is a Banach space, we denote by coz(f)
the cozero-set of f , that is, coz(f) = {x ∈ X : f(x) 6= 0}. Now if Y is also a
topological space and F a Banach space, we say that a map T : C(Y, F ) →
C(X, E) is separating if it is additive and coz(f) ∩ coz(g) = ∅ implies that
coz(Tf)∩coz(Tg) = ∅. As before, we say that T is biseparating if it is bijective
and both T and T−1 are separating. Then the following is obtained in [2].

Theorem 36. (Araujo 2002) Let X, Y be realcompact spaces, and let
E, F be Banach spaces. If there exists a biseparating map T : C(Y, F ) →
C(X, E), then X and Y are homeomorphic.

In order to obtain, as before, a representation of biseparating linear maps,
we have to consider the set b(F, E) of all (not necessarily continuous) bijective
linear maps from F to E. Then the following is proved in [3].
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Theorem 37. (Araujo 2002) Let X, Y be realcompact spaces, let E, F
be Banach spaces, and assume that there exists a linear biseparating map
T : C(Y, F ) → C(X, E). Then X and Y are homeomorphic and T is of the
form

(Tf)(x) = a(x) · (f ◦ h)(x), x ∈ X

where h : X → Y is a homeomorphism, and a is a map from X into b(F, E).

5. Vector lattice isomorphisms

Following the line which connects algebraic properties of C(X) with the
topology of X, different algebraic structures on C(X) have been considered,
such as the lattice structure. The first result in this context was given by
Kaplansky [44] who proved that the topology of a compact space X is deter-
mined by the lattice structure of C(X). This was extended by Shirota [59] to
the class of realcompact spaces.

In this Section, we shall be interested in the vector lattice structure. Our
motivation is to characterize the uniform and the Lipschitz structure of a met-
ric space X in terms of the families U(X) and Lip(X) of uniformly continuous
functions and Lipschitz functions on X. For that reason we start with an ar-
bitrary vector sublattice L ⊂ C(X), where X is a completely regular space,
and we define its associated structure space. On the other hand, we point out
that a general study for this kind of sublattices can be carried out much in
the same way as in the case of subalgebras, and we refer to [30] and [31] for
details.

Structure space. Let X be a completely regular space, and let L be a unital
vector sublattice of C(X) that separates points and closed subsets of X. We
say that ξ : L → R is a lattice homomorphism whenever it satisfies:

(i) ξ(λf + µg) = λξ(f) + µξ(g), for all f , g ∈ L and λ, µ ∈ R.

(ii) ξ(|f |) = |ξ(f)|, for all f ∈ L.

(iii) ξ(1) = 1.

Thus, we define the structure space of L as the set H(L) of all lattice homo-
morphisms on L, considered as a topological subspace of RL endowed with
the product topology. Now we have the following result which is analogous to
Theorem 30.
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Theorem 38. (Garrido and Jaramillo 2000) Let X be a completely regu-
lar space, and let L ⊂ C(X) a unital vector sublattice which separates points
and closed sets of X. Then the map δ : x ∈ X Ã δx ∈ H(L) is a topo-
logical embedding from X into a dense subspace of H(L). Moreover, each
function f ∈ L admits a (unique) continuous extension f̂ to H(L), given by
f̂(ξ) = ξ(f).

Uniformly continuous functions. Let (X, d) be a metric space and let
L ⊂ C(X) be a unital vector lattice. We say that L is uniformly separating
if for every pair of subsets A and B of X with d(A,B) > 0 there exists some
f ∈ L such that f(A)∩f(B) = ∅. Typical examples are L = U(X), the lattice
of all uniformly continuous real functions on X, as well as L = U∗(X) the
lattice of bounded elements in U(X).

Theorem 39. (Garrido and Jaramillo 2000) Let (X, dX) and (Y, dY ) be
complete metric spaces. Let LX ⊂ U(X) and LY ⊂ U(Y ) be unital vector
lattices which are uniformly separating. If LX is isomorphic to LY as unital
vector lattices, then X is uniformly homeomorphic to Y .

Proof. Assume that T : LY → LX is an isomorphism of unital vector
lattices. As usual, we define h : H(LX) → H(LY ) by h(ξ) = ξ ◦ T , and it is
clear that h is a homeomorphism. In a similar way as in the Claim of Theorem
31 (see also [29], Lemma 1), it is easy to see that a point ξ ∈ H(LX) has a
countable neighborhood basis in H(LX) if, and only if, ξ ∈ X. The same is
true for the points in H(LY ), and therefore we obtain that h(X) = Y .

We are going to see that h|X : X → Y is uniformly continuous. First note
that

dX(A,B) = 0 ⇒ dY (h|X(A), h|X(B)) = 0.

Otherwise, there exist A,B ⊂ X such that dX(A,B) = 0 and dY (h|X(A),
h|X(B)) > 0. Since LY is uniformly separating, there exists g ∈ LY with
g(h|X(A))∩g(h|X(B)) = ∅. But this is impossible because g◦h|X = T (g) ∈ LX

is a uniformly continuous function, and dX(A,B) = 0.
Now applying a classical result due to Efremovich [25] (see also Engelking

[26], pg. 573), it follows that h|X is uniformly continuous. The same holds for
(h|X)−1, and the proof is completed.

From the above Theorem, it follows at once a Banach-Stone type result for
uniformly continuous functions. An analogous result for the lattice U∗(X)+,
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of nonnegative bounded uniformly continuous functions, was given by Nagata
in [54].

Theorem 40. (Garrido and Jaramillo 2000) Let X and Y be complete
metric spaces. The following are equivalent:

(i) U(X) is isomorphic to U(Y ) as unital vector lattices.

(ii) U∗(X) is isomorphic to U∗(Y ) as unital vector lattices.

(iii) X is uniformly homeomorphic to Y .

Note that if X is a metric space and X̃ denotes its completion, then both
metric spaces have the same uniformly continuous real functions. Therefore,
completeness cannot be avoided in the above results. On the other hand, note
that Theorem 40 do not extend to the general class of uniform spaces. Indeed,
let (X, d) be an uncountable discrete metric space, and let µ be the weak
uniformity on X generated by the set of all real functions on X. It is easy to see
that µ is not metrizable. On the other hand, if X has non-measurable cardinal
then (X,µ) is complete (see e.g. Gillman-Jerison [34]). In this case, (X, d) and
(X,µ) are complete uniform spaces which are not uniformly homeomorphic,
but nevertheless they have the same uniformly continuous real functions.

Lipschitz functions. Recall that for a Lipschitz function between metric
spaces h : (X, dX) → (Y, dY ) its Lipschitz constant L(h) is defined by

L(h) = sup
x 6=y

dY (h(x), h(y))
dX(x, y)

< ∞.

If we now fix a point x0 ∈ X, it is easy to see that Lip (X) is a Banach space
when endowed with the Lipschitz norm defined by

‖f‖Lip = sup{|f(x0)|, L(f)},
for every f ∈ Lip (X). Note that, if we change the base-point x0 ∈ X we
obtain a different, but equivalent, norm in Lip (X). In general, this norm is
not compatible with the lattice structure, that is, |f | ≤ |g| does not imply
that ‖f‖Lip ≤ ‖g‖Lip. Nevertheless, we are going to see how the continuity
properties of lattice homomorphisms with respect to the Lipschitz norm are
the key to obtain a Banach-Stone type theorem for Lip (X).

Theorem 41. (Garrido and Jaramillo 2001) Let (X, dX) and (Y, dY ) be
metric spaces. Then, every unital vector lattice homomorphism T : Lip (Y ) →
Lip (X) is automatically continuous for the respective Lipschitz norms.
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As a consequence of last Theorem, whose proof can be seen in [31], we
obtain the following result concerning composition of Lipschitz maps, which
is reminiscent of analogous results by Efremovich [25] or Lacruz and Llavona
[46], for uniformly continuous functions. In the case of compact metric spaces,
this was obtained by Sherbert in [27].

Theorem 42. (Garrido and Jaramillo 2001) Let (X, dX) and (Y, dY ) be
metric spaces, and let h : X → Y . Assume that f ◦ h ∈ Lip (X) for each
f ∈ Lip (Y ). Then, h is Lipschitz.

Proof. First fix x0 ∈ X and y0 ∈ Y to define the Lipschitz norms on
Lip (X) and Lip (Y ), respectively. The map h induces, by composition, the
unital vector lattice homomorphism T : Lip (Y ) → Lip (X) given by T (f) =
f ◦ h, for every f ∈ Lip (Y ). Note that, by Theorem above, T is continuous.
We shall see that h is K-Lipschitz, where K = ‖T‖.

For y1, y2 ∈ Y , we have

dY (y1, y2) = sup
{ |f(y1)− f(y2)|

L(f)
: f ∈ Lip (Y ), L(f) 6= 0, f(y0) = 0

}
.

Indeed, if we choose f = dY (·, y1)− dY (y0, y1), then f ∈ Lip (Y ), L(f) = 1 (if
Y is not a singleton), f(y0) = 0 and |f(y1)− f(y2)| = dY (y1, y2). This shows
that dY (y1, y2) is not greater that the supremum on the right hand side. The
converse inequality is clear.

Thus, for each f ∈ Lip (Y ) with f(y0) = 0, we have ‖f‖Lip = L(f). Now,
if we denote g = T (f) = f ◦ h then, by the continuity of T , it follows that

L(g) ≤ ‖g‖Lip ≤ K · ‖f‖Lip = K · L(f).

In this way, for x1, x2 ∈ X we obtain

dY (h(x1), h(x2)) = sup
{ |f(h(x1))− f(h(x2))|

L(f)
: f ∈ Lip (Y ),

L(f) 6= 0, f(y0) = 0
}

≤ sup
{

K · |g(x1)− g(x2)|
L(g)

: g = f ◦ h, f ∈ Lip (Y ), L(g) 6= 0
}

≤ K · dX(x1, x2).
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Next we show that the vector lattice structure of Lip (X) determines the
Lipschitzian structure of a complete metric space X. Again, completeness
is necessary here, since every metric space has the same Lipschitz functions
as its completion. We say that two metric spaces X and Y are Lipschitz
homeomorphic if there exists a bi-Lipschitz bijection h : X → Y , that is,
both h and h−1 are Lipschitz.

Theorem 43. (Garrido and Jaramillo 2001) Let (X, dX) and (Y, dY ) be
complete metric spaces. Then, Lip (X) is isomorphic to Lip (Y ) as unital
vector lattices if, and only if, X is Lipschitz homeomorphic to Y . Moreover,
every unital vector lattice isomorphism T : Lip (Y ) → Lip (X) is of the form
T (f) = f ◦ h, where h : X → Y is a Lipschitz homeomorphism.

Proof. As in Theorem 39, if T : Lip (Y ) → Lip (X) is a unital vector
lattice isomorphism we obtain a (uniform) homeomorphism h : X → Y such
that Tf = f ◦ h, for every f ∈ Lip (Y ). Now, by Theorem 42, we have that
in fact h is a Lipschitz homeomorphism.

Note that, from the proofs of Theorems 42 and 43, it follows at once that if
there exists a unital vector lattice isomorphism T : Lip (Y ) → Lip (X) which
is an isometry for the Lipschitz norms (that is, ‖T‖ = ‖T−1‖ = 1), then X
and Y are in fact isometric.

It is well-known (see e.g. Gillman and Jerison [34], 9.8) that two metric
spaces X and Y are homeomorphic if, and only if, C∗(X) and C∗(Y ) are
isomorphic as algebras, or equivalently in this case, as unital vector lattices.
As usual we denote by C∗(X) the set of all bounded and continuous real
functions on X. Moreover, Theorem 40 says that an analogous result works
for the family U∗(X) when X is a complete metric space. Now the question
arises whether, for complete metric spaces, there is a theorem of this kind for
Lip∗. Of course this is true when both X and Y have finite diameter, since in
this case Lip = Lip∗. But the answer is in general negative as simple examples
show. Indeed, consider (X, d) with infinite diameter and let d ′ = min{1, d}.
In this case (X, d) and (X, d ′) are uniformly homeomorphic (hence (X, d ′) is
complete whenever (X, d) is), but they are not Lipschitz homeomorphic. On
the other hand, it is clear that Lip∗(X, d) = Lip∗(X, d ′).

Nevertheless, in [31] we obtain a positive answer to the above question in
the class of length spaces or, more generally, of quasiconvex spaces. Recall
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that the length of a path σ : [a, b] → X in a metric space (X, d) is defined as

`(σ) = sup
n∑

i=1

d(σ(ti), σ(ti−1)),

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b.
Now, (X, d) is said to be a length space if for every x, y ∈ X, the distance
d(x, y) coincides with the infimum of all lengths of continuous paths in X from
x to y. Typical examples are Banach spaces as well as Riemannian manifolds
endowed with its geodesic distance, but the class of length spaces also includes
many other “singular” spaces. We refer to the book by Bridson and Haefliger
[17] and references therein for an account on this topic. On the other hand,
a metric space (X, d) is said to be quasiconvex if there is a constant C > 0
so that every pair of points x, y ∈ X can be joined by a continuous path σ
whose length satisfies `(σ) ≤ Cd(x, y). It is easily seen that a metric space
is quasiconvex if, and only if, it is Lipschitz homeomorphic to some length
space.

As a first step, we prove in [31] the following:

Theorem 44. (Garrido and Jaramillo 2001) Let (X, dX) and (Y, dY ) be
quasiconvex spaces, and let h : X → Y . Assume that f ◦ h ∈ Lip∗(X) for
each f ∈ Lip∗(Y ). Then, h is Lipschitz.

Finally, with a proof similar to that of Theorem 43 we obtain the following
result.

Theorem 45. (Garrido and Jaramillo 2001) Let (X, dX) and (Y, dY ) be
complete quasiconvex metric spaces. Then, Lip∗(X) is isomorphic to Lip∗(Y )
as unital vector lattices if, and only if, X is Lipschitz homeomorphic to Y .
Moreover, every such isomorphism T : Lip∗(Y ) → Lip∗(X) is of the form
T (f) = f ◦ h, where h : X → Y is a Lipschitz homeomorphism.
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