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Abstract: Tumors are composed by a heterogeneous population of cells. Among them, a sub-
population of cells, termed cancer stem cells, exhibit stemness features, such as self-renewal ca-
pabilities, disposition to differentiate to a more proliferative state, and chemotherapy resistance,
processes that are all mediated by Ca2+. Ca2+ homeostasis is vital for several physiological processes,
and alterations in the patterns of expressions of the proteins and molecules that modulate it have
recently become a cancer hallmark. Store-operated Ca2+ entry is a major mechanism for Ca2+ entry
from the extracellular medium in non-excitable cells that leads to increases in the cytosolic Ca2+

concentration required for several processes, including cancer stem cell properties. Here, we focus on
the participation of STIM, Orai, and TRPC proteins, the store-operated Ca2+ entry key components,
in cancer stem cell biology and tumorigenesis.

Keywords: store-operated calcium entry; Orai1; cancer stem cells

1. Introduction

Normal stem cells are undifferentiated or partially differentiated cells that are charac-
terized by their ability to self-renew, the process of bringing about indefinitely more cells of
the same type, as well as to differentiate in more specialized mature cells. The term “stem
cell” was coined by Ernst Haeckel in 1868 to describe the ancestor unicellular organism
from which all multicellular organisms were supposed to evolve [1]. Normal stem cells
can be found from the early embryos to the mature subject, where they can be present in
different tissues, including the bone marrow, skin and hair follicles, muscle, brain, and
epithelia, among others [2].

Cancer stem cells (CSC), also known as tumor-initiating cells, share features of both
cancer and stem cells. These cells constitute a sub-population of tumor-resident malignant
cells responsible for recurrence, metastasis formation, and chemoresistance. Experimental
evidence indicates that CSC exhibit “stemness” properties, that is, the ability of cells to per-
petuate their lineage, to bring about differentiated cells and to interact with their microen-
vironment to maintain a balance between quiescence, proliferation, and regeneration [3].
According to this, CSC exhibit low proliferative rates, self-renewing capacity, propensity to
differentiate into proliferating tumor cells, resistance to apoptosis and senescence, as well
as to chemo- and radio-therapy, evasion of immune attack, and are responsible for invasion
and metastases [4,5].

CSC have been reported to derive from “normal” tissue resident stem cells or from
differentiated cells undergoing transformation [6]. Furthermore, during cancer evolution,
secondary self-renewing cell populations might arise, which supports the notion that
the CSC phenotype might not be exclusively defined by the intrinsic characteristics of a
cell but might also be determined by other phenomena, such as the microenvironment
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interaction [7]. The existence of CSC has been demonstrated in a variety of tumors, from
leukemia [8] to solid tumors, such as colon [9], breast [10], brain [11], pancreatic [12],
oral [13], esophageal [14], and liver [15] cancers as well as melanoma [16], among others.
The functional role of CSC in tumor initiation is complex and not completely resolved. In
contrast to the stochastic model that hypothesizes that most tumor cells can act as tumor
initiating cells [17], the hierarchical or CSC hypothesis assumes that only a sub-population
of cells, the CSC, have the ability for tumor initiation [18]. According to this hypothesis,
CSC are responsible for the initiation, metastasis, chemotherapy resistance, and recurrence
of the tumor [19]. Nevertheless, the CSC hypothesis applies to a limited number of cases.
For instance, in certain tumors, such as testicular cancer, CSC are more sensitive to cisplatin
than the differentiated tumor cells. Furthermore, in glioblastoma multiforme, a large
number of differentiated tumor cells survive after anti-tumoral therapy, not just a small
sub-population of CSC, and many of the surviving cells exhibit the ability of re-initiating
the tumor. Therefore, the analysis of the complexity of the functional role of CSC in the
context of neoplasia deserves further studies.

CSC show similar surface markers as normal stem cells in a given tissue, but a number
of cell surface and intracellular biomarkers are commonly used to identify CSC among
differentiated tumor cells and to isolate them. These markers include the clusters of differ-
entiation (CD) CD44, CD24, or CD133, among others, the epithelial cell adhesion molecule
(EpCAM) or the intracellular markers aldehyde dehydrogenase-1 (ALDH1) and the Notch,
Wnt/β-catenin, Nanog, Sox2 pathways (for a more extensive review of CSC biomarkers in
different tumors please see [20]). CD44 is expressed in CSC, as well as in a variety of normal
stem cells, and plays an important role in CSC self-renewal and proliferation, leading to
tumor growth, tumor metastasis, the activation of stemness transcription factors such as
Nanog, Sox2, and Oct4, and chemotherapy resistance [21]. CD44 is a highly conserved
surface glycoprotein encoded by the CD44 gene. The pre-mRNA contains 20 exons, where
exons 1–5 and 16–20 are constant exons that lead to the standard form of 85 kDa while the
remaining 10 exons (exons 6–15) are variant exons subjected to alternative splicing to pro-
duce the different CD44 variant forms [22]. The CD44v isoform is predominantly expressed
in CSC over normal stem cells [23]. CD24 is a cell surface protein, heavily glycosylated,
that plays an important role in cell-cell and cell-matrix interactions [24]. The expression
of CD24 has commonly been investigated in combination with CD44 and other markers.
For instance, high expression of CD44 and low expression of CD24 (CD44+/CD24−/low)
together with expression of ALDH1 is a feature of breast cancer stem cells as compared
to non-stem breast cancer cells [25]. Nevertheless, the expression of CD24 is variable
among cancer cells [26]. ALDH1 has been reported as a CSC marker in adult tumors and,
specially, is a bona fide marker of breast normal and cancer stem cells [27]. Interestingly,
the ALDH1A3 isoform is predominantly expressed in CSC over normal stem cells [28].
The function of ALDH1 in CSC differentiation has been associated to its function in the
oxidation of retinol to retinoic acid [29]; furthermore, positive ALDH1 expression has been
reported to be correlated with chemotherapy resistance and poor prognosis [30].

Different signaling pathways and transcription factors have been reported to play
an essential role in the state of cell stemness. Among them, developmental signaling
pathways such as Notch, Wnt/β-catenin or Hedgehog play important roles in normal stem
cell function. Notch signaling pathway is activated by the interaction of ligands of the
DSL family with the receptor protein Notch, a single-pass transmembrane protein. The
interaction of the ligand with the Notch extracellular domain (NECD) leads to the cleavage
and release of the Notch intracellular domain (NICD) that acts as a transcription factor
and interacts with the transcription factors of the CSL family and Mastermind [31]. The
CSL-Notch-Mastermind transcription factor complex up-regulates transcription of Notch-
responsive genes leading to cell proliferation and promoting the formation of CSC colonies
in different cancer types, including glioma and colon and breast cancer [32] (Figure 1).
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Notch intracellular domain; Mam, Mastermind; Dvl, Dishevelled; TCF/LEF, T-cell factor/lymphoid 
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elled associated activator of morphogenesis; RhoK, Rho-kinase; CN, calcineurin; NFAT, nuclear fac-
tor of activated T-cells. 

  

Figure 1. Notch, Wnt, and Hedgehog pathways in CSC. NECD, Notch extracellular domain; NICD,
Notch intracellular domain; Mam, Mastermind; Dvl, Dishevelled; TCF/LEF, T-cell factor/lymphoid
enhancer factor; Hh, hedgehog; Smo, Smoothened; Gli, glioma-associated oncogene; Daam, Dishev-
elled associated activator of morphogenesis; RhoK, Rho-kinase; CN, calcineurin; NFAT, nuclear factor
of activated T-cells.

The Hedgehog (Hh) pathway also plays a major role in normal stem cell and CSC
biology and tumorigenesis. Hh signaling begins with the interaction of Hh ligands (Sonic
Hedgehog, Indian Hedgehog, and Desert Hedgehog) with Patched-1, and to a lesser extent
Patched-2, a twelve-pass transmembrane protein receptor. This process internalizes the
Patched receptor and relieves the constitutive repression of the G-protein-coupled receptor
Smoothened, which, in turn, leads to the nuclear translocation or the transcription factor
Glioma-associated oncogene (Gli) resulting in the transcription of Hh target genes [33]
(Figure 1). The Hh pathway has been associated to chemotherapy resistance and disease
relapse [33].

The Wnt/β-catenin signaling pathway promotes CSC self-renewal while reducing the
differentiation of CSC to proliferating tumor cells [32]. The Wnt ligands, a large family of
secreted glycoproteins, interact with a Frizzled receptor in the plasma membrane, which
signaling through the protein Dishevelled (Dvl) leads to inhibition of phosphorylation
and proteasomal degradation of the protein β-catenin. Then, β-catenin accumulates in the
cytosol and translocates into the nucleus, thus promoting the transcript of Wnt target genes
by a mechanism involving the T-cell factor and lymphoid enhancer factor-1 (TCF/LEF1)
transcription factors [34] (Figure 1). In addition to the activation of the β-catenin/TCF/LEF1
transcriptional pathway, Wnt proteins can induce alternative or non-canonical signaling
pathways. In this pathway, Dvl is linked through Daam1 (Dishevelled associated activator
of morphogenesis 1) to allow activation of the small GTPases Rho and Rac, which, in
turn, activate Rho-kinase and JNK, respectively. Another non-canonical Wnt process is
the Wnt/Ca2+ pathway. The interaction of Wnts with Frizzled, a family of G-protein
coupled receptors, leads to the activation of phospholipase C and, thus, IP3 (inositol
1,4,5-triphosphate)-dependent Ca2+ release from the intracellular stores and subsequent
Ca2+ influx across the plasma membrane [35]. The intracellular calcium fluxes induce
the activation of downstream effects, such as PKC, CaMKII or calcineurin, thus leading
to the nuclear translocation and activation of NFAT (nuclear factor of activated T-cells;
Figure 1) [36]. A reciprocal interaction between Wnt signaling and NF-κB has been reported
to play a key role in the progression of inflammation and cancer [37].
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2. Calcium Signaling in Cancer Stem Cells and Cancer Hallmarks

Calcium ion modulates a myriad of physiological processes, such as muscle con-
traction, secretion or gene transcription, through a sophisticated and well-orchestrated
machinery that deftly tunes cytosolic Ca2+ concentration [38]. In addition, Ca2+ participates
in several pathological conditions, including cancer. Resistance to apoptosis and chemother-
apy, high proliferation rate or the ability to migrate and to invade different tissues, have
been considered key features in all cancer types for years [39]. As stated above, CSCs
share some of these properties, but they also exhibit unique abilities such as capability for
self-renewal [4,5]. All those processes are modulated by Ca2+ [40], thus, in recent years,
aberrant expression of the proteins that control Ca2+ homeostasis has been included as a
cancer hallmark.

Increases in intracellular Ca2+ concentration are required to trigger several Ca2+-
dependent downstream effectors that modulate cellular pathways, such as calmodulin,
which is essential for cell cycle and proliferation [41], NFAT proteins, with a role in cell cycle,
differentiation or tumorigenesis [42], or the mitogen-activated protein kinase/extracellular
signal-regulated (MAPK/ERK) pathway, involved in cancer cell survival, metastasis and
chemotherapy resistance [43,44]. Increments of cytosolic Ca2+ concentration is achieved
by the cells either by releasing Ca2+ from intracellular reservoirs, or by the opening of
Ca2+-permeable channels in the plasma membrane (PM), which ensures an unlimited
source of Ca2+ influx from the extracellular medium. Recent reports have demonstrated
that CSC exhibit altered function in those mechanism (Table 1). Furthermore, it has been
demonstrated that different signaling pathways that contribute to CSC pluripotency, such
as the Wnt, TGF-β or FGF2, actively tune cytoplasmic Ca2+ concentration [45–47].

Concerning the Ca2+ release from intracellular stores, two calcium channels located
in the endoplasmic reticulum (ER) membrane, IP3- and ryanodine (Ry)- receptors, are
vital for CSC stemness, proliferation, and metastasis in different cancer types, such as
glioblastoma [48], melanoma [49], and breast cancer [50].

Regarding Ca2+ entry, CSC present channels in the plasma membrane that are perme-
able to Ca2+ and could be gated by a variety of stimuli, such as voltage, second messengers
or depletion of intracellular Ca2+ stores. For instance, over-expression of L- and T-type
voltage-dependent Ca2+ channels is involved in tumorigenesis, proliferation, migration,
and resistance to drugs in ovarian and glioblastoma CSC [51–54]. Moreover, abnormal
expression of the voltage-dependent Ca2+ channel α2δ1 subunit, which modulates Ca2+

oscillation amplitude and the expression of different genes by keeping transcription factors
in the nucleus, has started to be considered a tumoral marker in many cancers, such as
lung [55,56], breast [57], and liver cancer [58] or laryngeal squamous [59], with a major
role in CSC expansion. Different members of the transient receptor potential (TRP) chan-
nels, which are activated by several stimuli, such as temperature, pressure, and second
messengers, participate in Ca2+ entry and have a key role in the CSC physiopathology of
different cancers. For instance, TRPC3, which is over-expressed in triple-negative breast
cancer cells, is activated by lysophosphatidic acid, promoting the process of self-renewal
in CSC [60]. Enhanced expression or activation of TRPM7 has also been characterized in
lung [61], glioblastoma [62], or neuroblastoma [63] and linked with several features of CSC.
Similar findings have been found for TRPV2 channels-gated, among others, by the lipid
ligand lysophosphatidylcholine [64] in the stemness of esophageal CSC [65]. Conversely,
TRPV2 activation and expression promotes loss of stemness and apoptotic cell death in
glioma [64,66,67] and hepatocellular carcinoma CSC [68]. This inverse correlation has also
been observed for TRPA1 and TRPV1 channels in glioblastoma CSC [69].

Ca2+ reuptake, and the proteins involved, such as Ca2+-ATPases, Ca2+ exchangers or
mitochondrial uniporter [70–72] might also play a role in CSC biology. A recent study has
demonstrated that the sarco/endoplasmic Ca2+ ATPase (SERCA) presents an important
antiapoptotic function in breast CSC, by reducing Ca2+-dependent apoptosis during glucose
deprivation. This process is mediated by CaMK2α, which triggers the activation of NF-κB,
and, in turn, SERCA over-expression [73]. Another report has shown that the mitochondrial
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Ca2+ uniporter and the Na+/Ca2+ exchanger, located in mitochondria and in the plasma
membrane, respectively, are highly expressed in glioblastoma CSCs [74]; however, the
relevance of such an aberrant protein expression remains yet unclear.

3. Store-Operated Calcium Entry in Cancer Stem Cells and Cancer Hallmarks

Store-Operated Calcium Entry (SOCE), a major mechanism for Ca2+ influx from the
extracellular medium into excitable and non-excitable cells, is physiologically triggered by
the activation of phospholipase C (PLC) and the production of IP3, which subsequently
leads to the release of Ca2+ from intracellular stores, mainly the ER, resulting in the activa-
tion of store-operated calcium channels in the plasma membrane and a rapid increase in
cytosolic Ca2+ concentration [75,76]. SOCE is an extremely complex biological mechanism,
with high dependency on the pattern of expression of its components-STIMs, Orai, and
TRPC proteins- and its modulators in each cell type. Since the last decades of the 20th
century, several studies, both in vivo and in vitro, have reported that an altered expression
pattern of the proteins that mediate SOCE leads to unbalanced Ca2+ homeostasis, which
might contribute to tumor development, poor prognosis, and chemotherapeutic drug
resistance [77].

The proteins of the STromal Interaction Molecule (STIM) family, STIM1 and STIM2,
and their splice variants, possess a single transmembrane domain, with the N-region located
either in the ER lumen or the extracellular medium, and a long cytosolic C-region [78,79].
Both, N- and C-terminal regions, present several key domains that enact STIM proteins’
double function upon a diminishment of the luminal Ca2+ concentration in the intra-
cellular stores: (1) as the Ca2+ sensors of intracellular organelles, mediated by EF-hand
Ca2+-binding domains in the N-terminus; and (2) as the transmitters of the filling state of
intracellular Ca2+ stores to, and the activators of, Ca2+ channels in the plasma membrane.
The latter is achieved by direct interaction between different domains within the STIM cy-
tosolic C-region and the store-operated Ca2+ channels (STIM proteins structure is reviewed
in [80–82]).

SOCE could be mediated by two types of channels with different biophysical proper-
ties: (1) the Ca2+ Release-Activated Ca2+ (CRAC) channels that exhibit high Ca2+ selectivity
and an inwardly rectifying current, termed ICRAC, which its exclusively conducted by mem-
bers of the Orai family [83]; and (2) the Store-Operated Ca2+ (SOC) channels, responsible
to mediate a non-selective cation current denominated ISOC, formed by both, Orai1 and
TRPC1, the first identified member of the canonical Transient Receptor Potential (TRPC)
channel subfamily [84,85].

Orai1 was initially characterized as the main component of CRAC channel during a
RNAi screening in 2006, when it was found that the Orai1 R91W mutation was responsible
for abrogated CRAC channel function, critical for T-cell activation, in immunodeficient
patients [86]. Orai1 and its paralogues, Orai2 and Orai3, present a unique structure among
other Ca2+ channels, with four transmembrane domains spanning the PM and both, N- and
C-terminus, facing the cytoplasm [87]. Originally, it was thought that Orai channels were
formed by a homo-tetramer [88]; however, the crystal structure from Drosophila melanogaster
Orai1 (dOrai1) presented a hexamer configuration, with the ion pore formed by the first
transmembrane domain of the Orai subunits and located in the center of the complex
surrounded by the remaining Orai plasma membrane domains [89]. The three members
of the Orai family are capable to mediate store dependent Ca2+ influx, each of them with
different biophysical properties that are extensively discussed here [90,91]. Some years
ago, a shorter splicing variant for Orai1, Orai1β, lacking 64 aa in the N-terminus but
able to generate functional Orai1 channels, was identified. Orai1β can be fully activated
by STIM1 in a store-dependent manner but exhibits differential inactivation patterns as
compared with the long variant, Orai1α [85]. In addition, recent studies have shown that
Orai proteins might have a role in non-capacitative Ca2+ influx forming heteromers, such as
the arachidonate-regulated Ca2+ channels (ARC), where three Orai1 and two Orai3 subunits
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form a pentamer [92], or interacting with other proteins to mediate store-independent Ca2+

influx [93].
TRPC1 belongs to the TRP channel superfamily, whose members ubiquitously mediate

ion fluxes across the whole animal kingdom in a cell type-dependent manner [94]. All TRPs
possess a similar structure with six transmembrane domains and the pore located between
the 5th and 6th transmembrane regions. TRPs exhibit N- and C-terminus of variable length,
containing the TRP box and different functional domains, subfamily-dependent, which
participate in the functions of TRP channels and their relationship with other molecules
and proteins. A functional TRP channel is composed by four TRP subunits forming either
a homo- or hetero-tetramer [95,96]. Prior to Orai1 characterization, TRPC1 was a suggested
candidate as the channel responsible for SOCE as STIM1 is able to interact and activate
TRPC1 channels [97,98]. The current hypothesis suggests that TRPC1, together with Orai1,
is involved in the generation of ISOC currents [85,99–101]. TRPC1 channels, permeable to
Na+, Ca2+, and Cs+ [102], are less selective for Ca2+ than Orai1 and allow a massive ion
influx from the extracellular medium, required for the maintenance of SOCE and store
replenishment [103].

Several stimuli might trigger intracellular Ca2+ stores depletion that will be sensed by
STIM proteins (Figure 2). Minor reductions in luminal Ca2+ concentration will be detected
by STIM2, which in turn, would momentarily trigger the opening of CRAC channels,
allowing Ca2+ influx from the extracellular medium that will quickly be reintroduced into
the stores by Ca2+-ATPase pumps to revert to resting conditions (Figure 2b) [80]. More
extensive discharge of intracellular Ca2+ stores would trigger the activation of STIM1, in
addition to STIM2, which will fully generate the opening of CRAC channels, subsequently
followed by a rapid and transient Ca2+ entry [83,104–106]. Ca2+ entry conducted by Orai1
will be severely inhibited after few milliseconds by Ca2+ itself [107,108] as well as after a
longer period of time by the interaction of Orai1 N- and C-terminus with different proteins,
such as SARAF [109–111] or by Orai1 serine phosphorylation at the N-terminus by kinases
such as PKC or PKA [112,113]. Ca2+ influx through Orai1 leads to the recruitment of
TRPC1 at the plasma membrane, which conducts further Ca2+ influx to reach the critical
cytosolic Ca2+ concentration required for the physiological response evoked by the stimulus
(Figure 2c) [103,114]. Next, the excess of intracellular Ca2+ is speedily removed, either by
reintroducing the ion into the ER or by its extrusion to the extracellular medium via Ca2+-
ATPases [70,71]. When agonist stimulation ceases, replenishment of the Ca2+ stores leads
to the incorporation of Ca2+ to STIM1/2 EF-hand domains, which return these proteins to
their quiescent conformation, leading to the deactivation of SOCE [79,104].

The number of studies linking SOCE proteins with cancer stem cell properties is
growing at an amazingly fast pace; however, our knowledge is still extremely limited.
Regarding STIM proteins, it is known that STIM1 associates with the hypoxia-inducible
factor-1 alpha (HIF-1α) modulating each other, in a reciprocal dependency, in hypoxic
hepatocarcinoma cells (HCCs). HIF-1α up-regulates STIM1 transcription, which in turn,
induces higher SOCE, activating the CaMKII and P300 pathways, which are required for
the accumulation of HIF-1α in HCCs [115].

Even less is known about the role of TRPC1 in CSC, since some of the inhibitors used
to block SOCE, act over both Orai1 and TRPC1 channels. For instance, treatment with
SKF96365, a SOCE inhibitor, impairs CSC proliferation in the glioblastoma stem-like cell
line, TG1, triggering these cells to adopt a quiescent state by up-regulation of CDKN1A
and G0S2 and the down-regulation of CCNB1 genes [116]. Similarly, SOCE impairment by
SKF96365 in liver cancer stem cells (LCSCs) resulted in a drastic reduction in their ability
to form spheroids, suppressing at the same time the expression of stemness-related genes.
SOCE is activated in LCSC via the fibroblast growth factor 19 (FGF19), promoting the
nuclear translocation of NFATc2 and self-renewal [117]. Even when the expression of Orai
and STIM proteins was checked in both studies, TRPC1 was not considered and might be a
possible candidate for future approaches.
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Figure 2. Store-operated Ca2+ in cancer stem cells. Cartoon depicting a hypothetical mechanism of
SOCE in CSC, based on our current knowledge in non-tumoral cells: (a) when intracellular Ca2+ stores
are filled, STIM proteins remain in their quiescent conformation; (b) small changes in luminal Ca2+

concentration are controlled by STIM2, briefly activating CRAC channels to replenish the reservoirs;
(c) massive Ca2+ store depletion triggers the activation of STIM proteins and the channels in plasma
membrane, resulting in the critical increase in cytosolic Ca2+ required for tumorigenic responses.

4. Functional Role of Orai in Cancer Stem Cells and Cancer Hallmarks

As described above, native CRAC channels are hexameric structures comprised by
the heteromeric association of Orai1, Orai2, and Orai3. Although all Orai family members
can conform the channel, Orai2 and Orai3 also act as Ca2+ current modulators due to
their lower Ca2+ conductivity and greater fast Ca2+-dependent inactivation as compared to
Orai1 [108,118]. Several studies have demonstrated that the three Orai proteins are overex-
pressed in tumor samples and different human cancer cell lines compared with their non-
tumorigenic counterpart cell lines. Hence, Orai1 is overexpressed in oral/oropharyngeal
squamous cell carcinoma cells (OSCC) [119,120], liver [121], and breast cancer cells [122,123],
Orai2 expression is increased in gastric [124], breast [125], oral [120], and acute myeloid
leukemia cancer cells [126], while Orai3 expression is enhanced in the luminal breast cancer
subtype [123,127], as well as in lung [128], pancreatic [129], and prostate cancer cells [130]
(for a more extensive review see [131–135]). Using pharmacological or gene silencing
approaches, to inhibit protein function or to avoid protein expression, respectively, the
mentioned studies showed that Orai proteins play a crucial role in both tumorigenesis
and the development and maintenance of different cancer hallmarks, including resistance
to apoptosis, proliferation, migration, invasion, and metastasis via SOCE. However, as
mentioned above, Orai1 can also mediate cancer progression by regulating and driving
different Ca2+ influx pathways that are independent of the filling state of intracellular
Ca2+ stores [93]. These pathways include: (1) the arachidonic acid-regulated Ca2+ current
mediated by a Orai1/3 channel [130,136,137], (2) the constitutive Ca2+ influx mediated by
the physical interaction between Orai1 and secretory pathway Ca2+-ATPase-2 [138–140],
and (3) the Ca2+ influx mediated by the physical and functional interaction of Orai1 with
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the small conductance Ca2+-activated K+ channel 3 [141,142] or with the voltage-dependent
Kv10.1 channel in the plasma membrane [143,144]. In the latter, a reciprocal positive
feedback loop promotes the activation of both K+ channels by Orai1-mediated Ca2+ entry,
which in turn leads to plasma membrane hyperpolarization, thus maintaining the driving
force for Ca2+ influx and Ca2+ entry through Orai1 channels [141,145,146].

Table 1. Implications of calcium-related proteins in cancer stem cells. ND: not determined. VGCC:
voltage-gated calcium channels.

Ca2+ Pumps and Exchangers

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

SERCA Overexpression Breast cancer stem cells
Cell survival in

glucose-deprived
conditions

Decrease [Ca2+]c and avoid
Ca2+-dependent apoptosis
during glucose deprivation

[73]

ER Ca2+ channels

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

RyR1 HIF-depended
activation Breast cancer stem cells Chemoresistance PYK2/SRC/STAT3 signaling

pathway [50]

IP3R Channel activation Melanoma stem cells Stemness maintenance ND [49]

Channel activation Glioblastoma stem cell Cell self-renewal
Chemoresistance ND [48]

Non-SOCE channels

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

VGCC

L- and T-type Overexpression Ovarian cancer stem cells

Tumor spheres
formation

Apoptosis resistance
Stemness maintenance

Increase the transcription of
Oct, Nanog, and Sox2 via

ERK1/2 and AKT signaling
pathways

[53]

T-type calcium channel

Overexpression
(Cav3.2) Glioblastoma stem cells

Apoptosis resistance
Chemoresistance

Stemness maintenance

Increase cell survival via
AKT/mTOR pathways [52]

Overexpression Glioblastoma stem cells Apoptosis resistance Stimulate Na+-dependent
nutrient transport [54]

α2δ1 subunit Overexpression Small cell lung cancer
stem cells Chemoresistance MEK/ERK signal pathway?? [55]

α2δ1 subunit

Overexpression Non-small cell lung cancer
stem cells

Chemoresistance
Cell Survival

Stemness maintenance

Notch3 activation via
Ca2+-Calcineurin/NFATc2

signaling pathway
[56]

Overexpression Breast cancer stem cells Stemness maintenance
Cell self-renewal ND [57]

Overexpression Hepatocellular
cancer stem cells

Cell self-renewal
Cell survival

Stemness maintenance

ERK1/2 MAPK signaling
pathway [58]

Overexpression Laryngeal squamous cancer
stem cells

Tumor spheres
formation

Chemoresistance
Tumorigenesis

Stemness maintenance

ND [59]

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

TRP Channels

TRPC3 Overexpression Breast cancer stem cells Cell self-renewal Increase IL-8 secretion via
LPA/LPAR3/TRPC3 pathway [60]

TRPM7

Overexpression Lung cancer stem cells
Tumor spheres

formation
Stemness maintenance

Hsp90α/uPA/MMP2
signaling pathway [61]

Channel activation Glioblastoma stem cells
Stemness maintenance

Cell proliferation,
migration and invasion

STAT3 and Notch signaling
pathways [62]

Overexpression Neuroblastoma stem cells Stemness maintenance ND [63]
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Table 1. Cont.

Ca2+ Pumps and Exchangers

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

TRPA1 Channel activation
Overexpression Glioma stem cells

Cell differentiation
Apoptotic cell death

Stemness loss
ND [69]

TRPV1 Channel activation
Overexpression Glioma stem cells

Cell differentiation
Apoptotic cell death

Stemness loss
ND [69]

TRPV2

Overexpression Esophageal squamous cancer
stem cells

Stemness maintenance
Cell proliferation ND [65]

Channel activation
Overexpression Glioblastoma stem cells

Stem cell
differentiation

Reduce self-renewal
capacity

Apoptotic cell death

AKT-PI3K/RPS6KBI/PTEN
signaling pathway

[64,66,
67]

Channel activation
Overexpression Liver cancer stem cells

Impair tumor spheres
formation and

self-renewal capacity
Stemness loss

ND [68]

SOCE channels

Protein Expression/Functional
Change in CSC CSC Type Role in CSC Signaling Pathway Activated Ref.

Orai1

Overexpression oral/oropharyngeal squamous
cancer stem cells

Tumor spheres
formation

Cell self-renewal
Stemness maintenance

NFAT signaling pathway [119]

Overexpression Glioblastoma stem cell

Tumor spheres
formation

Cell self-renewal
Stemness maintenance

ND [148]

Orai3 Overexpression Non-small cell lung cancer
stem cells

Chemoresistance
Stemness maintenance PI3K/AKT signaling pathway [147]

SOC Channels

Channel activation Glioblastoma stem cell Cell proliferation
Up-regulation of CDKN1A and
G0S2 and the down-regulation

of CCNB1 genes
[116]

Channel activation Liver cancer stem cells

Stemness maintenance
Tumor spheres

formation
Cell self-renewal

FGF19/SOCE/NFATc2
signaling pathway [117]

The role of Orai family proteins has also been described in the induction of CSC
phenotype in a variety of cancers, such as glioblastoma, lung, and OSCC cancer cells. This
CSC phenotype includes self-renewal capacity, tumor spheres formation, drug resistance,
increased migration ability, and enhanced expression of stemness-related transcription
factors and CSC-related markers [119,147,148]. Lee et al. demonstrated that Orai1, the
predominant Orai family member in OSCC, is overexpressed in OSCC-derived CSC and its
function is required for the maintenance of stemness and CSC phenotype through NFAT
signaling pathway. Hence, Orai1 mediates the enhanced expression of stemness-related
transcription factors, such as Nanog, Oct4 or Sox2, and promotes some CSC-related mark-
ers, including an increased ALDH1 activity and a higher CSC-related gene expression
(Ezh2, Gli1, Hes1, Zeb2, FGF4, and IL4). The inhibition of Orai1 function in human tongue
squamous carcinoma cell lines SCC4 and HOK-16B BapT by a pharmacological approach,
using the Orai1 specific small molecular blocker compound 5D, impaired self-renewal
capacity and reduced migration and invasion abilities in these cancer cells. Comparable
results were also obtained by two different genetic approaches, using a specific siRNA
to reduce Orai1 gene expression and inducing the overexpression of an Orai1 dominant
negative mutant. Furthermore, Orai1 overexpression using viral vectors promoted CSC
phenotype in non-tumorigenic immortalized oral epithelial cells HOK-16B [119]. Using re-
lated approaches, Singh et al. demonstrated that Orai1 and Orai2 overexpression is required
for cell proliferation, migration, and colonization in SAS human tongue carcinoma cell
line, processes that were found to be dependent on Akt/mTOR/NF-κB signaling pathway
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activation [120]. Analogous results were reported in glioblastoma stem cells derived from
different human glioblastoma surgical samples. In these cells, the treatment with YM-58483,
a CRAC current inhibitor, or with GSK-7975A, a more specific inhibitor of Orai1-mediated
Ca2+ current, promoted a decrease in Sox2 expression, effect that was associated with
reduced spheres formation and with the inhibition of their proliferation and self-renewal
capacities [148]. Orai1 has been also related with chemoresistance, event that has been
widely associated with CSC phenotype in cancer cells as previously mentioned. Hence,
it has been demonstrated that ectopic overexpression of Orai1, using a plasmid vector,
inhibited 5-fluorouracil-induced cell death in HepG2 hepatocarcinoma cells; meanwhile,
Orai1 gene expression knockdown promoted the autophagic cell death induced by this
pharmacological compound [121]. Similar findings were observed in cisplatin-resistant
A2780 ovary carcinoma cells, in which Orai1 expression and SOCE are increased compared
to therapy-sensitive parental cells. Pharmacological inhibition of Orai1 in cisplatin-resistant
A2780 cells, using 2-aminoethoxydiphenyl borate (2-APB), promoted cisplatin-induced
apoptotic cell death similarly to those observed in therapy-sensitive A2780 cells [149].
Conversely, an opposite effect has been reported in prostate cancer cells since the down-
regulation of Orai1 expression, caused by steroid-deprived conditions or by using specific
siRNA against Orai1, and the impairment of Orai1 function by the overexpression of two
Orai1 mutants, Orai1 R91W and Orai1 L273S, prevented the apoptotic cell death induced
by different pharmacological compounds, including thapsigargin, TNFα, cisplatin, and
oxaliplatin. Furthermore, the restoration of Orai1 expression in steroid-deprived cells by
transfection with a Orai1 plasmid vector promoted the loss of chemoresistance in these
cells [150].

Regarding the role of Orai3 in the CSC phenotype acquisition in cancer cells, it has
been demonstrated that Orai3 overexpression is correlated with tumoral aggressiveness and
chemoresistance acquisition in breast cancer cells [127,147]. Orai3 stable overexpressing
T47D and MCF7 clones exhibited resistance to apoptotic cell death induced by thapsigargin,
cisplatin, 5-fluorouracil, and paclitaxel compared with their parental cells transfected
with the empty vector. This Orai3-dependent chemoresistance is acquired by ubiquitin
ligase Nedd4-2-mediated p53 ubiquitination via the PI3K/Sgk-1 signaling pathway [127].
Previously, the same group demonstrated that Orai3 expression is also positively correlated
with the oncogene c-myc expression in the ER-positive (luminal-like) breast cancer cell
line MCF7 [151]. Daya et al. revealed that chemotherapy treatment increased Orai3
expression in primary human lung adenocarcinoma cells derived from bronchial biopsy
specimens. Similar findings were reported in lung adenocarcinoma cell lines A549 and
NCI-H23 after treatment with cisplatin. Interestingly, cisplatin treatment increased SOCE
without affecting the expression of other proteins involved in CRAC current activation,
such as STIM1, STIM2, and Orai1, even a slight decrease in the expression of Orai1 was
observed in A549 cells. Orai3 gene expression knockdown using a specific siRNA enhanced
cisplatin-induced apoptotic cell death in both lung adenocarcinoma cell lines, while Orai3
overexpression drastically reduced cisplatin-induced cell death and enhanced stemness
in non-small cell lung cancer cells, as demonstrated by the enhanced expression of the
stemness-related transcription factors Nanog and Sox2 via PI3K/AKT pathway, which
resulted to be dependent on the increase in Orai3 expression [147].

5. Conclusions

Altogether, the presented data support an essential role of SOCE mediators-STIMs,
Orais, and TRPC proteins in the induction of CSC phenotype. However, our current
understanding about the role of these proteins in cancer stemness is incomplete since the
existing studies do not take in consideration their participation in other pathways, such as
the store independent function of STIM1, Orai1, and Orai3, while the possible implications
of Orai2 or TRPC1 in the stemness properties of CSC remain unclear.
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