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1. Introduction

Roughly speaking, a Lie bialgebroid is a Lie algebroid A whose dual A∗ is
also equipped with a Lie algebroid structure which is compatible in a certain
way with that on A (see [15]). An important example of a Lie bialgebroid is
the associated one with a Poisson structure. More precisely, if M is a Poisson
manifold with Poisson 2-vector Λ and on TM (respectively, T ∗M) we consider
the trivial Lie algebroid structure (resp. the cotangent Lie algebroid structure
associated with Λ) then the pair (TM,T ∗M) is a Lie bialgebroid. Other inte-
resting examples of Lie bialgebroids are Lie bialgebras in the sense of Drinfeld
[2] and the Lie bialgebroids associated with Poisson-Nijenhuis structures (see
[11]).

On the other hand, as it is well known, a Jacobi structure on a manifold
M is a 2-vector Λ and a vector field E on M such that [Λ,Λ] = 2E ∧ Λ and
[E,Λ] = 0, where [ , ] is the Schouten-Nijenhuis bracket [13]. If (M,Λ, E) is
a Jacobi manifold one can define a bracket of functions, the Jacobi bracket,
in such a way that the space C∞(M,R) endowed with the Jacobi bracket is
a local Lie algebra in the sense of Kirillov [9]. Conversely, a local Lie algebra
structure on C∞(M,R) induces a Jacobi structure on M [5, 9]. Jacobi mani-
folds are natural generalizations of Poisson manifolds and of other interesting
manifolds: contact and locally conformal symplectic (l.c.s.) manifolds. If M
is an arbitrary manifold, the vector bundle TM ×R →M possesses a natural
Lie algebroid structure. Moreover, if M is a Jacobi manifold then the 1-jet
bundle T ∗M × R → M admits a Lie algebroid structure [8]. Since the pair
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(TM ×R, T ∗M ×R) is not a Lie bialgebroid, we introduced in [6] the notion
of a generalized Lie bialgebroid (a natural generalization of the notion of a Lie
bialgebroid) in such a way that a Jacobi manifold has associated a canonical
generalized Lie bialgebroid (see Definition 2.2 and Examples 2.3). Recently,
an interesting characterization of generalized Lie bialgebroids was obtained
by Grabowski and Marmo [4] (see Theorem 2.4).

In [7], we studied generalized Lie bialgebras, that is, generalized Lie bial-
gebroids over a single point. In particular, we proved that the last ones can be
considered as the infinitesimal invariants of Lie groups endowed with a certain
type of Jacobi structures.

The aim of this Note is to obtain new examples of generalized Lie bial-
gebroids associated with strong Jacobi-Nijenhuis structures. Strong Jacobi-
Nijenhuis structures may be considered as a possible Jacobi counterpart of
Poisson-Nijenhuis structures (for the different definitions of Jacobi-Nijenhuis
structures, we remit to [16, 19, 21]).

The paper is organized as follows. In Section 2, we recall several definitions
and results about Lie algebroids and generalized Lie bialgebroids which will
be used in the sequel. Using these results we describe, in Section 3, a new
family of generalized Lie bialgebroids associated with strong Jacobi-Nijenhuis
structures and we deduce some consequences.

2. Lie algebroids and generalized Lie bialgebroids

2.1. Lie algebroids. A Lie algebroid A over a manifold M is a vector
bundle A over M together with a Lie algebra structure [[ , ]] on the space
Γ(A) of the global cross sections of A → M and a bundle map ρ : A → TM ,
called the anchor map, such that, if we also denote by ρ : Γ(A) → X(M) the
homomorphism of C∞(M,R)-modules induced by the anchor map, then:

(i) ρ : (Γ(A), [[ , ]])→ (X(M), [ , ]) is a Lie algebra homomorphism and

(ii) for all f ∈ C∞(M,R) and for all X,Y ∈ Γ(A), one has

[[X, fY ]] = f [[X,Y ]] + (ρ(X)(f))Y.

The triple (A, [[ , ]], ρ) is called a Lie algebroid over M (see [14]).

The Schouten bracket of A is defined as the unique extension [[ , ]] of the
Lie bracket on Γ(A) such that
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[[X, f ]] = ρ(X)(f),

[[P, P ′]] = (−1)kk
′
[[P ′, P ]],

[[P, P ′ ∧ P ′′]] = [[P, P ′]] ∧ P ′′ + (−1)k
′(k+1)P ′ ∧ [[P, P ′′]],

(−1)kk
′′
[[[[P, P ′]], P ′′]] + (−1)k

′k′′ [[[[P ′′, P ]], P ′]] + (−1)kk
′
[[[[P ′, P ′′]], P ]] = 0

(1)

for f ∈ C∞(M,R), X ∈ Γ(A), P ∈ Γ(∧kA), P ′ ∈ Γ(∧k
′
A) and P ′′ ∈ Γ(∧k

′′
A).

Moreover, imitating the usual exterior derivative δ on the space Ω∗(M),
we define the differential of the Lie algebroid A, d : Γ(∧kA∗) → Γ(∧k+1A∗),
as follows. For ω ∈ Γ(∧kA∗) and X0, . . . , Xk ∈ Γ(A),

dω(X0, . . . , Xk) =
k∑

i=0

(−1)iρ(Xi)
(
ω(X0, . . . , X̂i, . . . , Xk)

)

+
∑

i<j

(−1)i+jω
(
[[Xi, Xj ]], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

Furthermore, since d2 = 0, we have the corresponding cohomology spaces.
This cohomology is the Lie algebroid cohomology with trivial coefficients (see
[14]). Using the above definitions, it follows that a 1-cochain φ0 ∈ Γ(A∗) is a
1-cocycle if and only if

φ0[[X,Y ]] = ρ(X)(φ0(Y ))− ρ(Y )(φ0(X)) (2)

for all X,Y ∈ Γ(A).

Example 2.1. (i) A real Lie algebra of finite dimension is a Lie algebroid
over a point. Another trivial example of a Lie algebroid is the triple (TM, [ , ],
Id), where M is a differentiable manifold and Id : TM → TM is the identity
map.

(ii) If M is a differentiable manifold, then the triple (TM ×R, [ , ], π) is a
Lie algebroid over M , where π : TM × R → TM is the canonical projection
over the first factor and [ , ] is the bracket given by (see [14, 17])

[(X, f), (Y, g)] = ([X,Y ], X(g)− Y (f)) (3)

for (X, f), (Y, g) ∈ X(M)⊕C∞(M,R) ∼= Γ(TM×R). The space Γ(∧k(T ∗M×
R)) may be identified with the direct sum Ωk(M)⊕Ωk−1(M) and, under this
identification, the differential δ̃ of TM × R is

δ̃(β, γ) = (δβ,−δγ) (4)
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for (β, γ) ∈ Ωk(M) ⊕ Ωk−1(M). Note that the pair φ0=(0, 1) ∈ Ω1(M) ⊕
C∞(M,R) is a 1-cocycle of TM × R (see [6]).

(iii) The Lie algebroid (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) of a Jacobi manifold :
A Jacobi structure on a manifold M is a 2-vector Λ and a vector field E on
M such that (see [13])

[Λ,Λ] = 2E ∧ Λ, [E,Λ] = 0. (5)

Here [ , ] denotes the Schouten-Nijenhuis bracket.
The manifold M endowed with a Jacobi structure is called a Jacobi man-

ifold . If (M,Λ, E) is a Jacobi manifold, we can define a bracket of functions
(the Jacobi bracket) by

{f, g} = Λ(δf, δg) + fE(g)− gE(f) (6)

for all f, g ∈ C∞(M,R). The space C∞(M,R) endowed with the Jacobi
bracket is a local Lie algebra in the sense of Kirillov (see [9]). Conversely,
a structure of local Lie algebra on C∞(M,R) defines a Jacobi structure on M
(see [5, 9]).

If (M,Λ, E) is a Jacobi manifold, the 1-jet bundle T ∗M ×R →M admits
a Lie algebroid structure ([[ , ]](Λ,E), #̃(Λ,E)), where [[ , ]](Λ,E) and #̃(Λ,E) are
defined by

[[(α, f), (β, g)]](Λ,E)

=
(
L#Λ(α)β − L#Λ(β)α− δ(Λ(α, β)) + fLEβ − gLEα− i(E)(α ∧ β),

Λ(β, α) + #Λ(α)(g)−#Λ(β)(f) + fE(g)− gE(f)
)
,

#̃(Λ,E)(α, f) = #Λ(α) + fE

(7)

for (α, f), (β, g) ∈ Ω1(M) ⊕ C∞(M,R) (see [8]). Here, L denotes the Lie de-
rivative operator and #Λ : Ω1(M)→ X(M) the homomorphism of C∞(M,R)-
modules given by #Λ(α) = i(α)Λ.

In the particular case when (M,Λ) is a Poisson manifold (i.e., E = 0) we
recover, by projection, the Lie algebroid (T ∗M, [[ , ]]Λ,#Λ), where [[ , ]]Λ is the
bracket of 1-forms defined by (see [3]):

[[α, β]]Λ = L#Λ(α)β − L#Λ(β)α− δ(Λ(α, β)). (8)

On the other hand, if Vr(M) is the space of r-vectors on M , then the space
Γ(∧k(TM×R)) may be identified with the direct sum Vk(M)⊕Vk−1(M) and,



generalized lie bialgebroids 263

under this identification, the differential d(Λ,E) of the Lie algebroid (T ∗M ×

R, [[ , ]](Λ,E), #̃(Λ,E)) is given by

d(Λ,E)(P,Q) =
(
− [Λ, P ] + kE ∧ P + Λ ∧Q,

[Λ, Q]− (k − 1)E ∧Q+ [E,P ]
) (9)

for (P,Q) ∈ Vk(M) ⊕ Vk−1(M) (see [12]). Note that the pair X0=(−E, 0) is
a 1-cocycle of T ∗M × R.

(iv) Let N : X(M) ⊕ C∞(M,R) → X(M) ⊕ C∞(M,R) be a C∞(M,R)-
linear map. We say that N is a Nijenhuis operator on TM × R if it has
vanishing Nijenhuis torsion T (N ), where T (N ) is defined by

T (N )((X, f), (Y, g)) = [N (X, f),N (Y, g)]−N [N (X, f), (Y, g)]

−N [(X, f),N (Y, g)]+N 2[(X, f), (Y, g)]

for (X, f), (Y, g) ∈ X(M)⊕C∞(M,R). In this case, N defines a deformed Lie
algebroid structure ([ , ]N , π ◦ N ) on TM × R, where π : TM × R → TM is
the canonical projection over the first factor and [ , ]N is given by

[(X, f), (Y, g)]N = [N (X, f), (Y, g)]+ [(X, f),N (Y, g)]−N [(X, f), (Y, g)].

The differential dN of the Lie algebroid (TM × R, [ , ]N , π ◦ N ) is

dN = iN ◦ δ̃ − δ̃ ◦ iN , (10)

iN : Ωk(M) ⊕ Ωk−1(M) → Ωk(M) ⊕ Ωk−1(M) being the contraction by N
defined by

(
iN (β, γ)

)(
(X1, f1), . . . , (Xk, fk)

)

=
k∑

i=1

(β, γ)
(
(X1, f1), . . . ,N (Xi, fi), . . . , (Xk, fk)

) (11)

for (β, γ) ∈ Ωk(M)⊕Ωk−1(M) and (X1, f1), . . . , (Xk, fk) ∈ X(M)⊕C∞(M,R).
Note that φ0=N

∗(0, 1) ∈ Ω1(M)⊕C∞(M,R) ∼= Γ(T ∗M ×R) is a 1-cocycle of
the Lie algebroid (TM ×R, [ , ]N , π ◦N ), where N ∗ : Ω1(M)⊕C∞(M,R)→
Ω1(M)⊕C∞(M,R) is the adjoint homomorphism ofN : X(M)⊕C∞(M,R)→
X(M)⊕ C∞(M,R).
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2.2. Generalized Lie bialgebroids. In this Section, we will recall
the definition of a generalized Lie bialgebroid (see [6]) and we will give a new
characterization of this notion which has been recently obtained in [4].

First, we will exhibit some results about the differential calculus on Lie
algebroids in the presence of a 1-cocycle (see [6]).

If (A, [[ , ]], ρ) is a Lie algebroid overM and, in addition, we have a 1-cocycle
φ0 ∈ Γ(A∗) then, using (2), we can define a representation of the Lie algebra
(Γ(A), [[ , ]]) on the space C∞(M,R) given by ρφ0(X)(f) = ρ(X)(f)+φ0(X)f ,
for X ∈ Γ(A) and f ∈ C∞(M,R). The resultant cohomology operator dφ0
associated with this representation is called the φ0-differential of A and its
expression, in terms of the differential d of A, is

dφ0ω = dω + φ0 ∧ ω, for ω ∈ Γ(∧kA∗). (12)

The φ0-differential of A allows us to define, in a natural way, the φ0-Lie

derivative by a section X ∈ Γ(A), (Lφ0)X : Γ(∧kA∗) → Γ(∧kA∗), as the
commutator of dφ0 and the contraction by X, that is,

(Lφ0)X = dφ0 ◦ i(X) + i(X) ◦ dφ0 . (13)

Note that if φ0 = 0 then we obtain the usual Lie derivative of A.

On the other hand, imitating the definition of the Schouten bracket of two
multilinear first-order differential operators on the space of C∞ real-valued
functions on a manifold N (see [1]), we may introduce the φ0-Schouten bracket
of a k-section P and a k′-section P ′ as the (k + k′ − 1)-section given by

[[P, P ′]]φ0 = [[P, P ′]]+(−1)k+1(k−1)P ∧(i(φ0)P
′)−(k′−1)(i(φ0)P )∧P

′, (14)

where [[ , ]] is the usual Schouten bracket of A. We remark that [[ , ]]φ0 is skew-
symmetric and that [[ , ]]φ0 satisfies the graded Jacobi identity. In particular,
we have that

[[P, f ]]φ0 = i(dφ0f)P (15)

for f ∈ C∞(M,R) and P ∈ Γ(∧A) (for more details, see [6]) .

Now, suppose that (A, [[ , ]], ρ) is a Lie algebroid and that φ0 ∈ Γ(A∗) is
a 1-cocycle. Assume also that the dual bundle A∗ admits a Lie algebroid
structure ([[ , ]]∗, ρ∗) and that X0 ∈ Γ(A) is a 1-cocycle. Then,
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Definition 2.2. ([6]) The pair ((A, φ0), (A
∗, X0)) is said to be a gener-

alized Lie bialgebroid if

d∗X0 [[X,Y ]] = [[X, d∗X0Y ]]φ0 − [[Y, d∗X0X]]φ0 , (16)

(L∗X0)φ0P + (Lφ0)X0P = 0 (17)

for X,Y ∈ Γ(A) and P ∈ Γ(∧kA), where d∗X0 (respectively, L∗X0) is the
X0-differential (respectively, the X0-Lie derivative) of A

∗.

Example 2.3. (i) In the particular case when φ0 = 0 and X0 = 0, (16)
and (17) are equivalent to the single condition

d∗[[X,Y ]] = [[X, d∗Y ]]− [[Y, d∗X]].

Thus, the pair ((A, 0), (A∗, 0)) is a generalized Lie bialgebroid if and only if
the pair (A,A∗) is a Lie bialgebroid in the sense of Mackenzie-Xu [15].

(ii) Let (M,Λ, E) be a Jacobi manifold. In [6] we proved that the pair
((TM ×R, φ0),(T ∗M ×R, X0)) is a generalized Lie bialgebroid, where φ0 and
X0 are the 1-cocycles on TM × R and T ∗M × R given by

φ0 = (0, 1) ∈ Ω1(M)⊕ C∞(M,R) ∼= Γ(T ∗M × R),

X0 = (−E, 0) ∈ X(M)⊕ C∞(M,R) ∼= Γ(TM × R).

In [10], it was given an alternative definition of Lie bialgebroids. Suggested
by this result, Grabowski and Marmo obtained in [4] a new characterization
of generalized Lie bialgebroids as follows. Consider the bracket [[ , ]]′φ0 of a
k-section P and a k′-section P ′ as the (k + k′ − 1)-section given by

[[P, P ′]]′φ0 = (−1)k+1[[P, P ′]]φ0 .

Then, we have that

Theorem 2.4. ([4]) Let (A, [[ , ]], ρ) be a Lie algebroid and φ0 ∈ Γ(A∗) be
a 1-cocycle. Assume also that the dual bundle A∗ admits a Lie algebroid struc-
ture ([[ , ]]∗, ρ∗) and that X0 ∈ Γ(A) is a 1-cocycle. Then, ((A, φ0), (A

∗, X0))
is a generalized Lie bialgebroid if and only if d∗X0 is a derivation with respect
to (⊕kΓ(∧

kA), [[ , ]]′φ0), that is,

d∗X0 [[P, P
′]]′φ0 = [[d∗X0P, P

′]]′φ0 + (−1)k+1[[P, d∗X0P
′]]′φ0 (18)

for P ∈ Γ(∧kA) and P ′ ∈ Γ(∧∗A).
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3. Generalized Lie bialgebroids and strong
Jacobi-Nijenhuis structures

We shall now show another class of examples of generalized Lie bialgebroids
which comes from Jacobi structures and Nijenhuis operators.

Let (M,Λ, E) be a Jacobi manifold. The pair (Λ, E) may be viewed
as a section of the vector bundle ∧2(TM × R) → M and thus it induces
a homomorphism of C∞(M,R)-modules #(Λ,E) : Ω1(M) ⊕ C∞(M,R) →
X(M)⊕ C∞(M,R) given by

#(Λ,E)(α, h) = (i(α)Λ + hE,−α(E)) (19)

for (α, h) ∈ Ω1(M) ⊕ C∞(M,R). In addition, we may consider the Lie al-
gebroid (T ∗M × R, [[ , ]](Λ,E), #̃(Λ,E)) and the pair X0=(−E, 0) is a 1-cocycle
of this Lie algebroid (see Example 2.1 (iii)). On the other hand, the pair
φ0=(0, 1) ∈ Ω1(M) ⊕ C∞(M,R) is a 1-cocycle of the Lie algebroid (TM ×
R, [ , ], π) and the φ0-differential δ̃(0,1) of TM × R is given by

δ̃(0,1)(β, γ) = (δβ, β − δγ) (20)

for (β, γ) ∈ Ωk(M)⊕ Ωk−1(M) (see Example 2.1 (ii)).
Thus, using (7), (14), (19) and (20), it follows that the X0-Schouten

bracket ([[ , ]](Λ,E))X0 satisfies the following relations:

([[δ̃(0,1)f, g]](Λ,E))X0 = δ̃(0,1)g · (#(Λ,E)(δ̃(0,1)f)), (21)

([[(α, h), δ̃(0,1)f ]](Λ,E))X0 = ([[δ̃(0,1)(α, h), f ]](Λ,E))X0

+ δ̃(0,1)([[(α, h), f ]](Λ,E))X0 ,
(22)

([[δ̃(0,1)(α, h), δ̃(0,1)f ]](Λ,E))X0 = −δ̃(0,1)([[δ̃(0,1)(α, h), f ]](Λ,E))X0 , (23)

for (α, h) ∈ Ω1(M)⊕ C∞(M,R) and f, g ∈ C∞(M,R).
Now, we consider a Nijenhuis operatorN on TM×R and the corresponding

Lie algebroid (TM × R, [ , ]N , π ◦ N ) (see Example 2.1 (iv)). As we know,
φ0=N

∗(0, 1) is a 1-cocycle. Furthermore, if (dN )φ0 is the φ0-differential of
(TM × R, [ , ]N , π ◦ N ), then, using (10), (11) and (20), we have that

(dN )φ0f = N ∗δ̃(0,1)f, (24)

(dN )φ0(α, h) = iN (δ̃(0,1)(α, h))− δ̃(0,1)N
∗(α, h), (25)
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(dN )φ0 δ̃(0,1)f = −δ̃(0,1)(N
∗δ̃(0,1)f), (26)

for (α, h) ∈ Ω1(M)⊕C∞(M,R) and f ∈ C∞(M,R), iN : Ωk(M)⊕Ωk−1(M)→
Ωk(M)⊕ Ωk−1(M) being the contraction by N .

On the other hand, suppose that (Λ, E) and N satisfy that

N ◦#(Λ,E) = #(Λ,E) ◦ N
∗. (27)

In this case, we can define the pair (Λ1, E1) formed by the 2-vector Λ1 and
the vector field E1 characterized by

#(Λ1,E1) = #(Λ,E) ◦ N
∗. (28)

We say that the pair ((Λ, E),N ) is a strong Jacobi-Nijenhuis structure if
and only if (27) holds and the concomitant of (Λ, E) and N , C((Λ, E),N ),
identically vanishes, where C((Λ, E),N ) is given by

C((Λ, E),N )((α, f), (β, g)) = [[(α, f), (β, g)]](Λ1,E1) − [[N ∗(α, f), (β, g)]](Λ,E)

− [[(α, f),N ∗(β, g)]](Λ,E)+N
∗[[(α, f), (β, g)]](Λ,E),

for (α, f), (β, g) ∈ Ω1(M)⊕ C∞(M,R).

Remark 3.1. In [16] is introduced the notion of a Jacobi-Nijenhuis struc-
ture imposing weaker conditions than we have adopted here. Moreover, in
[19, 20] are established some local models of Jacobi-Nijenhuis manifolds and a
reduction theorem is obtained. In a different direction, in [21] is given another
relation between Jacobi structures and Nijenhuis operators. In addition, the
author compares both approaches (see [21]).

Example 3.2. Let M be a 2n + 1-dimensional manifold and η a 1-form
on M . We say that (M,η) is a contact manifold if η ∧ (δη)n 6= 0 at every
point (see, for instance [13]). A contact manifold (M,η) is a Jacobi manifold
whose associated Jacobi structure (Λ, E) is given by

Λ(α, β) = δη([−1η (α), [−1η (β)), E = [−1η (η)

for α, β ∈ Ω1(M), [η : X(M)→ Ω1(M) being the isomorphism of C∞(M,R)-
modules defined by [η(X) = i(X)(δη) + η(X)η. In this particular case, we
have that the homomorphism #(Λ,E) given by (19) is an isomorphism.

Suppose that (M,η) is a contact manifold with associated Jacobi structure
(Λ, E) and that (Λ1, E1) is a Jacobi structure on M compatible with (Λ, E),
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that is, (Λ+Λ1, E+E1) is a Jacobi structure. Let us consider the C
∞(M,R)-

linear map N = #(Λ1,E1)◦(#(Λ,E))
−1. Then, using the results in [16] and since

the homomorphism #(Λ,E) is an isomorphism, we deduce that ((Λ, E),N ) is
a strong Jacobi-Nijenhuis structure.

An explicit example of the precedent construction is the following one.
Let M be the product manifold R × T ∗Q, where Q is a smooth manifold

of dimension m. Denote by λQ the Liouville 1-form of T ∗Q and by ΛQ the
Poisson 2-vector associated with the canonical symplectic structure ΩQ =
−δλQ. If pr1 :M → R and pr2 :M → T ∗Q are the canonical projections onto
the first and second factor, respectively, then a direct computation proves that

η = pr∗1(δt)− pr∗2(λQ)

is a contact 1-form on M . In fact, if (q1, . . . , qm, p1, . . . , pm) are fibred co-
ordinates on T ∗Q, we have that

η = δt−
m∑

i=1

pi δq
i.

Thus, the Jacobi structure (Λ, E) associated with the contact 1-form η is given
by

Λ =
m∑

i=1

( ∂

∂qi
+ pi

∂

∂t

)
∧

∂

∂pi
, E =

∂

∂t
. (29)

On the other hand, the 2-vector ΛQ induces, in a natural way, a Poisson
structure Λ1 on M , whose local expression is

Λ1 =
m∑

i=1

∂

∂qi
∧

∂

∂pi
. (30)

Using (29) and (30), we deduce that the Jacobi structure (Λ, E) and the
Poisson structure Λ1 are compatible. Therefore, the pair ((Λ, E),N ) is a
strong Jacobi-Nijenhuis structure, where N : X(M) ⊕ C∞(M,R) → X(M) ⊕
C∞(M,R) is the map defined by

N = #(Λ1,0) ◦ (#(Λ,E))
−1.

From (29) and (30), it follows that

N = Id−
( ∂
∂t
, 0
)
⊗ (δt, 0)− (−∆, 1)⊗ (0, 1),

∆ being the Liouville vector field of T ∗Q.
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Next, we relate strong Jacobi-Nijenhuis structures and generalized Lie bi-
algebroids in the following result.

Theorem 3.3. Let (Λ, E) be a Jacobi structure on a manifold M and N
a Nijenhuis operator on TM ×R. Consider on TM ×R (resp., T ∗M ×R) the
Lie algebroid structure associated with N (resp., (Λ, E)). Moreover, consider
the 1-cocycle φ0 = N

∗(0, 1) (resp., X0 = (−E, 0)) on TM ×R (resp., T ∗M ×
R). Then, ((Λ, E),N ) is a strong Jacobi-Nijenhuis structure if and only if
((TM × R, φ0), (T ∗M × R, X0)) is a generalized Lie bialgebroid.

Proof. Let us set

A((β, γ), (β′, γ′)) = (dN )φ0([[(β, γ), (β
′, γ′)]](Λ,E))X0

+ ([[(dN )φ0(β, γ), (β
′, γ′)]](Λ,E))X0

+ (−1)k([[(β, γ), (dN )φ0(β
′, γ′)]](Λ,E))X0

(31)

for (β, γ) ∈ Ωk(M)⊕ Ωk−1(M) and (β′, γ′) ∈ Ω∗(M)⊕ Ω∗−1(M).
Using (1), (14) and the properties of the differential dN , we deduce that

A=0 if and only if

A(f, g) = 0, A(δ̃(0,1)f, g) = 0, A(δ̃(0,1)f, δ̃(0,1)g) = 0 (32)

for f, g ∈ C∞(M,R). Note that if (β, γ) ∈ Ωk(M)⊕ Ωk−1(M) then for every
point x of M there exists an open subset U of M , x ∈ U , such that on U

(β, γ) =
∑

i=1,...,r

f i1 δ̃(0,1)f
i
2 ∧ . . . ∧ δ̃(0,1)f

i
k,

with f ij ∈ C∞(U,R), for all i and j.
Now suppose that f and g are real C∞-functions on M . Then, using (21),

(24) and (31), we get that

A(f, g) = δ̃(0,1)g · ((#(Λ,E) ◦ N
∗ −N ◦#(Λ,E))δ̃(0,1)f). (33)

On the other hand, from (21), (22), (24), (26) and (31), we have that

A(δ̃(0,1)f, g) = C((Λ, E),N )(δ̃(0,1)f, δ̃(0,1)g) + δ̃(0,1)A(f, g). (34)

Finally, using (22), (23), (25), (26) and (31), we obtain that

A(δ̃(0,1)f, δ̃(0,1)g) = −δ̃(0,1)(C((Λ, E),N )(δ̃(0,1)f, δ̃(0,1)g)). (35)

Therefore, from (33), (34), (35) and Theorem 2.4, we conclude the result.
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Remark 3.4. After finishing this paper, Nunes da Costa sent to us a recent
preprint [18] where the above theorem was proved by using other techniques.

As a consequence of Theorem 3.3, we recover a result obtained, with weaker
hypotheses, in [16, 19].

Corollary 3.5. Let ((Λ, E),N ) be a strong Jacobi-Nijenhuis structure
on a manifold M . Then the 2-vector Λ1 and the vector field E1 characterized
by (28) define a Jacobi structure on M .

Proof. Since ((TM × R, φ0), (T ∗M × R, X0)) is a generalized Lie bial-
gebroid, we can define a Jacobi bracket { , }1 on M given by

{f, g}1 = (dN )φ0f · d∗X0g

for f, g ∈ C∞(M,R) (see Theorem 3.7 in [6]). Using (21) and (24), we deduce
that

{f, g}1 = ([[N ∗δ̃(0,1)f, g]](Λ,E))X0 = δ̃(0,1)g · ((#(Λ,E) ◦ N
∗)(δ̃(0,1)f))

= Λ1(δf, δg) + fE1(g)− gE1(f).

Therefore, we conclude our result.
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