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1. Introduction

In [9], König and Wittstock considered non-equivalent norms on Banach
spaces making continuous some prescribed linear functional. Our purpose is
to relate their results with the theory of extensions of Banach spaces, and
then to extend the constructions to quasi-Banach spaces. To this end, we
define the general form of what we shall call a König-Wittstock quasi-norm
and to obtain a characterization of when such quasi-norms are equivalent,
isomorphic or isometric. We then consider what occurs when one wants to
make continuous a prescribed functional but keeping continuous all the already
continuous functionals. We show that the completion of these norms are all
isometric to a minimal extension of X, although most of these norms are not
even isomorphic.

If X is a Banach space we denote by X ′ the space of all linear functional
and by X∗ the space of all linear continuous functionals on X. Let f ∈ X ′

and let p ∈ X such that f(p) = 1. After [9] we call

‖x‖f = |f(x)|+ infλ∈R‖x− λp‖

the König-Wittstock norm induced by f . In [9] it is shown that ‖ · ‖f is
a complete norm on X that makes f continuous. Nevertheless, since two
nonequivalent complete norms cannot have a common set of continuous func-
tionals that separates points, some ‖·‖-continuous functional has ceased to be
‖ · ‖f -continuous: precisely the ‖ · ‖-continuous projection onto < p >. Let us
observe this from a different point of view: since X =< p > ×Kerf as vector
spaces, although not as normed spaces, we can endow Kerf with the quotient
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norm and obtain the necessarily non-equivalent norm on X:

‖x‖f = |f(x)|+ dist(x,< p >),

which is precisely the König-Wittstock norm. We setX ' Z to mean thatX is
isomorphic to Z. The norm ‖·‖f is complete since (X, ‖·‖f ) ' R⊕(X/ < p >).
Moreover, since all closed hyperplanes of a Banach space are isomorphic (if
H and G are two such closed hyperplanes then H ' R⊕ (H ∩G) ' G) then
all the quotients X/ < p > are isomorphic and thus all the norms ‖ · ‖f are
isomorphic for all choices of functionals f ∈ X ′; and, of course, isomorphic to
the original norm.

Let us briefly recall the basic facts about the theory of twisted sums of
quasi-Banach spaces as developed by Kalton and Peck [6, 7]. A comprehensive
description can be found in the monograph [2]. Exact sequences 0 → Y →
X → Z → 0 of quasi-Banach spaces correspond to homogeneous (usually
non-linear and non-continuous) maps F : Z → Y with the property that here
exists a constant K such that for each two points x, y ∈ Z

‖F (x+ y)− F (x)− F (y)‖ ≤ K(‖x‖+ ‖y‖).

Such maps are called quasi-linear. This correspondence associates to an exact
sequence 0 → Y → X → Z → 0 a quasi-linear map F : Z → Y obtained
by taking a homogeneous bounded selection b : Z → X for the quotient map
and a linear (non-necessarily continuous) selection l : Z → X for the quotient
map, and making their difference F = b − l. Conversely, given a quasi-linear
map F : Z → Y then endowing the product space Y ×Z with the quasi-norm

‖(y, z)‖ = ‖y − Fz‖+ ‖z‖,

one obtains a quasi-Banach space denoted Y ⊕F Z for which there exists an
exact sequence 0→ Y → Y ⊕F Z → Z → 0. The quasi-Banach space Y ⊕F Z
is called a twisted sum of Y and Z or an extension of Z by Y. Recall that two
exact sequences 0 → Y → X → Z → 0 and 0 → Y → X1 → Z → 0 are said
to be equivalent if there exists an arrow T : X → X1 making commutative
the diagram

0 → Y → X → Z → 0
‖ ↓ T ‖

0 → Y → X1 → Z → 0

On the other hand, two quasi-linear maps F and G, defined between the
same spaces Z → Y , are said to be equivalent if F = G + B + L, where



könig-wittstock quasi-norms 275

B : Z → Y is a bounded (homogeneous) map B : Z → Y and L : Z → Y
is a linear (not necessarily continuous) map. It turns out that equivalent
sequences correspond to equivalent quasi-linear maps. An exact sequence is
said to be trivial (or that it splits) if it is equivalent to the trivial sequence
0→ Y → Y ⊕ Z → Z → 0; a quasi-linear map Z → Y is therefore said to be
trivial if it is equivalent to the 0 map.

2. Twisted König-Wittstock quasi-norms

Some of the arguments used by König and Wittstock do no longer work
on nonlocally convex quasi-Banach spaces since the (implicit) argument that
copies of R are complemented fails for quasi-Banach spaces. For instance, no
copy of R is complemented in Lp(0, 1) for 0 < p < 1. Thus, it may happen
that the quotients X/ < p > and X/ < p′ > are not isomorphic for different
p, p′. Such is the case in Ribe’s example [10] of a nontrivial exact sequence

0→< p >→ E → l1 → 0

in which the space E is not locally convex although the quotient E/ < p >
is a Banach space. Nevertheless, a different line < p′ >⊂ E produces a
non-locally convex quotient E/ < q >. Therefore, given f ∈ E ′ − E∗, it
may happen that the König-Wittstock quasi-norms corresponding to different
points and functionals are no longer isomorphic.

To clarify this situation the natural way to proceed is to replace the direct
sum implicit in the definition by a twisted sum. Let X be a quasi-Banach
space and let 0 6= p ∈ X. Given a linear functional f ∈ X ′ such that f(p) = 1
we also understand that f : X →< p > is a linear (not necessarily continuous)
projection. By X/ < p > we understand the quotient space endowed with the
quotient quasi-norm; the quotient map shall be denoted q : X → X/ < p >
and F shall denote a quasi-linear map F : X/ < p >→ R. We define the
quasi-norm

‖x‖f,F = |f(x)− Fqx|+ ‖qx‖.

The original König-Wittstock quasi-norms are ‖·‖f,0. It may also be worth
to remark that the functional f does not have to be ‖ · ‖f,F -continuous.

We introduce some notation. An isomorphism (resp. isometry) T : X →
Y is said to be a p-isomorphism (resp. p-isometry) if Tp ∈< p >. Given
two quasi-norms on X, the symbol = means they are equal; ∼ means they
are equivalent (the formal identity is an isomorphism) while 'p shall mean
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that they are p-isomorphic (there exists a p-isomorphism, not necessarily the
identity). We shall write ≡p to indicate they are p-isometric. Observe that
while ‘equivalent’ and ‘p-equivalent’ are the same notion, the example [3, Prop.
3.2] shows that ‘isomorphic’ and ‘p-isomorphic’ are not the same. The main
result of this section determines when the quasi-norms ‖ · ‖f,F and ‖ · ‖g,G are
equivalent, p-isomorphic or p-isometric.

Theorem. Let us say that two functions A and B are proportional if for

some constants a and b one has aA(t) ≤ B(t) ≤ bA(t). Let p ∈ X be a point

and let f, g ∈ X ′ be functionals with f(p) = g(p) = 1. One has

1. The quasi-norms ‖ ·‖f,F and ‖ ·‖g,G are p-isomorphic if and only if there

exists an isomorphism S of X/ < p > such that FS −G is trivial.

2. The quasi-norms ‖·‖f,F and ‖·‖g,G are equivalent if and only if F and G
are equivalent and the functions |f − g| and |Fq−Gq| are proportional.

3. The quasi-norms ‖ · ‖f,F and ‖ · ‖g,G are p-isometric if and only if there

exists an isometry S of X/ < p > such that FS −G is linear.

Proof. Observe first that f and q provide the algebraic representation of
X as R × X/ < p > in the form x → (fx, qx). This correspondence is an
isometry between (X, ‖ · ‖)f,F and R⊕F X/ < p > that we shall call If .

Proof of 1. If ‖ · ‖f,F 'p ‖ · ‖g,G then there exist isomorphisms T and S
making commutative the diagram

0 → < p > → < p > ⊕FX/ < p > → X/ < p > → 0
| T ↓ S ↓

0 → < p > → < p > ⊕GX/ < p > → X/ < p > → 0,

Hence, also the diagram

0 → R → R⊕F X/ < p > → X/ < p > → 0
f ↑ If ↑ ‖

0 → < p > → (X, ‖ · ‖f,F ) → X/ < p > → 0
| T ↓ S ↓

0 → < p > → (X, ‖ · ‖g,G) → X/ < p > → 0
g ↑ Ig ↓ ‖

0 → R → R⊕F X/ < p > → X/ < p > → 0

is commutative. Applying [3, Prop. 3.1] GTq and F are equivalent.
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Proof of 2. If in the above proof., T = idX then S = idX/<p> and one
easily gets that F and G are equivalent. Since ‖ · ‖f,F ∼ ‖ · ‖g,G then for all
x ∈ X the values |fx − Fqx| and |gx − Gqx| are proportional. Replacing x
by x− (fx−Gqx)p one gets that also the functions |Gq−Fq| and |g− f | are
proportional. For the converse implication, we observe that

‖ · ‖g,F+B+L = ‖ · ‖g−Lq,F+B ∼ ‖ · ‖g−Lq,F .

Also, observe that the functions |Gq − Fq| and |g − f | are proportional and
thus the hypothesis that F − G is trivial yields that the functions |Lq| =
|Bq + Lq| = |Gq − Fq| and |g − f | are proportional, and hence f − g = ±Lq.
Therefore, if F and G = F + B + L are equivalent quasi-linear maps and f
and g are linear functionals such that the functions |Gq− Fq| and |g− f | are
proportional then

‖ · ‖g,G = ‖ · ‖g,F+B+L = ‖ · ‖g−Lq,F+B = ‖ · ‖f,F+B ∼ ‖ · ‖f,F .

Proof of 3. If T : (X, ‖ · ‖g,F )→ (X, ‖ · ‖g,G) is a p-isometry, the diagram

0 → R → < p > ⊕FX/ < p > → X/ < p > → 0
| T ↓ S ↓

0 → R → < p > ⊕GX/ < p > → X/ < p > → 0

is commutative and the two sequences are isometrically equivalent. Hence,
using the isometric version of [3, prop. 3.1], GTq−F (and thus G−F (Tq)

−1) is
linear. As for the converse, observe first that it always happens that ‖·‖f,F ≡p

‖ · ‖g,F because the linear map u : X → X such that gu = f given by
ux = x + (fx − gx)p, is a p-isometry acting from ‖ · ‖f,F to ‖ · ‖g,F . Hence,
if ‖ · ‖f,F ∼p ‖ · ‖g,G then ‖ · ‖g,F ∼p ‖ · ‖g,G. Now, if there is some isometry
S : X/ < p >→ X/ < p > such that G − FS−1 = L is linear then the linear
map u : (X, ‖ · ‖g,F )→ (X, ‖ · ‖g,G) given by ux = x+(LSqx)p is a p-isometry
since

‖u(x)‖g,G =‖x+ (LSqx)p‖g,G‖

=‖gx+ LSqx−Gqx‖+ ‖qx‖

=‖gx+ Fqx‖+ ‖qx‖

=‖x‖g,F .
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Let us remark that from 1) it follows, in particular, that F is trivial if
and only if G is trivial. The result [9, Corollaries 4] that if f, g ∈ X ′ with
g(p) = 1 = f(p) then ‖ · ‖f and ‖ · ‖g are equivalent if and only if f − g ∈ X∗

can be deduced from 2) by taking F = 0 = G.

3. Incomplete norms induced by functionals

A different situation appears if one wants to make continuous a new func-
tional f ∈ X ′ − X∗ but keeping continuous all the elements of X∗. In this
case the simplest norm to be put on X is

|x|f = ‖x‖+ |f(x)|.

Being non-equivalent and finer than ‖ · ‖, this norm cannot be complete.
However, one has.

Proposition. The completion of (X, | · |f ) is isometric to the twisted sum

R⊕f X, in turn isometric to R⊕X.

Proof. Extending the formal identity map (X, |·|f )
id
→ X to the completion

one gets an exact sequence

0→ Kerîd→ ̂(X, | · |f )→ X → 0.

On the other hand, the elements of ̂(X, | · |f ) are equivalence classes of | · |f -
Cauchy sequences of elements of X. This means, ‖ · ‖-convergent sequences
(sinceX is complete) that also are |f(·)|-convergent. Thus, an element [(xn)] ∈

̂(X, | · |f ) comes described by a couple (r, x) ∈ R×X where x = limxn while
r = lim f(xn). In this terms,

|(r, x)|f = |[xn]|
f = lim |xn|

f = lim ‖xn‖+ lim |f(xn)|,

hence the map

L([xn]) = (lim f(xn), limxn)

defines a linear isometry between the completion ̂(X, | · |f ) and R × X. The
restriction of L to Ker îd (which is formed by the equivalence classes of ‖·‖-null
sequences that are f(·)-convergent) is L([(xn)]) = (lim f(xn), 0). That L|

Ker îd

is injective is clear, as well as its surjectivity. In conclusion, Ker îd = R.
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But one is not completely satisfied: the isometry we set was, in some
sense, a ‘twist’. Now that we know that the elements of (̂X, | · |f ) are couples
(r, x) ∈ R×X probably one would prefer that the identification would respect
the fact that the points of X have the form (0, x). To do that we need a
norm on R×X so that ‖(0, x)‖ = |f(x)|+ ‖x‖. We only have to untwist the
isometry at the cost of twisting the norm. The twisted norm

L([xn]) = (lim f(xn), limxn)

is a complete norm on R×X that coincides with what we wanted on 0×X:
that is everything one needs since 0×X is dense in R⊕f X.

We show now that a separable normed space admits uncountable non-
isomorphic norms having isometric completions.

Proposition. If X is separable most norms | · |f are not isomorphic.

Proof. The proof is simple after observing that two functionals f and g give
equivalent norms if and only if f−g ∈ X∗. Since X is complete and separable
dimX = c and thus dimX ′ = 2c; while the separability yields dimX∗ = c.
Hence there exist 2c equivalence classes in X ′/X∗. In what follows we assume
that different f and g have been picked from different equivalence classes.

Being | · |f and | · |g nonequivalent, it still remains the question of proving
that they are not isomorphic. But since X is separable, it admits a dense
countable set, and this set determines the values of a possible isomorphism.
Hence there are c possible isomorphisms. That different f and h could be
associated to g by the same isomorphism T is impossible since then id = TT−1

would be an isomorphism between f and h, and they would be equivalent.
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