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In [7, 6] using the non-abelian tensor product of groups (see [1]) and its non-
abelian derived functors the non-abelian homology of groups is constructed
and studied, generalizing the classical Eilenberg-MacLane homology of groups
and extending the non-abelian homology introduced in [4]. Now simmilar the-
ory for Lie algebras will be provided. In [3] Ellis introduced and investigated
the non-abelian tensor product of Lie algebras. Applying this tensor product,
in [5] Guin defined the low-dimensional H0 and H1 non-abelian homologies of
Lie algebras with coefficients in crossed modules and gave applications to cyc-
lic homology and Milnor’s additive K-theory for non-commutative associative
algebras. The main goal of this note is to construct non-abelian homology
of Lie algebras with coefficients in any Lie algebra in any dimensions as the
non-abelian derived functors of the tensor product of Lie algebras, generaliz-
ing the classical homology of Lie algebras and extending Guin’s non-abelian
homology of Lie algebras. Some properties of the non-abelian tensor product
and the non-abelian homology of Lie algebras are established.

Let Λ be a commutative ring with identity. We shall use the term Lie
algebra to mean a Lie algebra over Λ and [ , ] to denote the Lie bracket. We
denote the category of Lie algebras over Λ by Lie.

Let P and M be two Lie algebras. By an action of P on M we mean a
Λ-bilinear map P ×M →M , (p,m) 7→ pm satisfying the following conditions:

[p,p′]m = p(p
′

m)− p′(pm), p[m,m′] = [pm,m′] + [m, pm′]
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for all m, m′ ∈ M and p, p′ ∈ P . For example, if P is a subalgebra of some
Lie algebra Q, and if M is an ideal in Q, then Lie multiplication in Q yields
an action of P on M .
LetM and N be two Lie algebras acting on each other. The tensor product

M⊗N of the Lie algebrasM andN is the Lie algebra generated by the symbols
m⊗ n (m ∈M , n ∈ N) subject to the following relations:

(i) λ(m⊗ n) = λm⊗ n = m⊗ λn,

(ii) (m+m′)⊗ n = m⊗ n+m′ ⊗ n,

m⊗ (n+ n′) = m⊗ n+m⊗ n′,

(iii) [m,m′]⊗ n = m⊗ (m
′
n)−m′ ⊗ (mn),

m⊗ [n, n′] = (n
′

m)⊗ n− (nm)⊗ n′,

(iv) [(m⊗ n), (m′ ⊗ n′)] = −(nm)⊗ (m
′

n′)

for all λ ∈ Λ, m,m′ ∈M , n, n′ ∈ N .
Suppose φ : M → A, ψ : N → B are Lie homomorphisms, A, B act on

each other, and φ, ψ preserve the actions in the following sense:

φ(nm) = ψ(n)φ(m) , ψ(mn) = φ(m)ψ(n)

for all m ∈ M and n ∈ N . Then by [3] there is a unique homomorphism
φ ⊗ ψ : M ⊗ N → A ⊗ B such that (φ ⊗ ψ)(m ⊗ n) = φ(m) ⊗ ψ(n) for
all m ∈ M , n ∈ N . Furthermore, if φ, ψ are onto, so also is φ ⊗ ψ. The
tensor product of Lie algebras is symmetric in the sense of the isomorphism
M ⊗N → N ⊗M given by m⊗ n 7→ −n⊗m [3].
A crossed P -module (M,f) is a Lie homomorphism f : M → P together

with an action of P on M satisfying: f(pm) = [p, f(m)] and f(m)m′ = [m,m′]
for all m,m′ ∈ M , p ∈ P . Note that the image of f is necessarily an ideal in
P and the kernel of f is a P -invariant ideal in the center of M . Moreover the
action of P on Ker f induces an action of P/ Im f on Ker f , making Ker f a
P/ Im f -module.
The following property from [2] (see also [5]) plays a crucial role for intro-

ducing non-abelian homology of Lie algebras. Let M be free as a Λ-module
and N a crossed M -module with the trivial homomorphism, then there is a
canonical isomorphismM⊗N ≈ I(M)⊗U(M)N , where U(M) is the universal
enveloping algebra and I(M) is the augmentation ideal.
In [3] the results on the tensor product M ⊗N are obtained assuming the

actions of M and N on each other compatible, i.e.

(nm)n′ = [n′,mn] and (mn)m′ = [m′, nm] (1)
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for all m,m′ ∈M and n, n′ ∈ N . This is the case, for example, if (M,f) and
(N, g) are crossed P -modules, M and M ′ act on each other via the action of
P , then these actions are compatible. These compatibility conditions are not
assumed to hold.

Now we establish for the tensor product of Lie algebras the properties of
compatibility with the direct limits of Lie algebras and the right exactness.

Proposition 1. Let {Mα, φ
β
α, α ≤ β} be a direct system of Lie algebras.

Let N be a Lie algebra and for every α the Lie algebras Mα, N act on each

other and the homomorphisms φβα preserve the actions. Then there is a natural

isomorphism of Lie algebras

(
lim
→
α

{Mα}

)
⊗N ≈ lim

→
α

{Mα ⊗N} .

Proposition 2. Suppose 0 → M ′ φ
−→ M

ψ
−→ M ′′ → 0 is a short exact

sequence of Lie algebras, N is an arbitrary Lie algebra acting on M ′, M and

M ′′; the Lie algebras M ′, M , M ′′ act on N and φ, ψ preserve these actions.

Then there is an exact sequence of Lie algebras

M ′ ⊗N
φ⊗1N−−−−→ M ⊗N

ψ⊗1N−−−−→ M ′′ ⊗N −→ 0 .

Now we define non-abelian derived functors of the tensor product of Lie
algebras.

Let Q be a Λ-module. LetA1(Q) = Q, Ak(Q) =
∑
0<i<kAi(Q)⊗ΛAk−i(Q)

and A(Q) =
∑
0<kAk(Q). The inclusion maps Ai(Q) ⊗Λ Ak(Q) → Ai+k(Q)

give rise to a non-associative multiplication on A(Q) turning it into an algebra
over Λ.

Let B(Q) be the two-sided ideal of A(Q) generated by the elements

xx and x(yz) + y(zx) + z(xy) ,

for all x, y, z ∈ A(Q).

We obtain the Lie algebra F(Q) = A(Q)ÁB(Q), which is the free Lie
algebra on the Λ-module Q satisfying the following universal property: there
is a natural Λ-module homomorphism i : Q → F(Q) such that for any Lie
algebra L and a Λ-module homomorphism α : Q → L there exists a unique
Lie homomorphism κ : F(Q)→ L such that κi = α.
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LetN be a Lie algebra and α : Q→ Der(N) be a Λ-module homomorphism
then there exists a unique Lie homomorphism κ : F(Q)→ Der(N) such that
κi = α, i.e. the action of the Lie algebra F(Q) on the Lie algebra N .
Now if in addition Q is an N -module, then the module action of N on Q

yields an N -module stucture on Ak(Q): if x ⊗ y ∈ Ai(Q) ⊗Λ Ak−i(Q) and
n ∈ N then, inductively, we define

n(x⊗ y) = nx⊗ y + x⊗ ny ,

and this extends linearly to an action of n on an arbitrary element of Ak(Q).
The action of N on Ak(Q) extends linearly to an action of N on A(Q), making
A(Q) into an N -module. Since B(Q) is N -invariant, the action of N on A(Q)
induces a Lie action of N on F(Q).
Let AN denote, for a fixed Lie algebra N , the category whose objects are

all Lie algebras M together with an action of M on N by derivations of N
and an action of N on M by derivations of M . Morphisms in the category
AN are all Lie homomorphisms φ : M → M ′ preserving the actions, namely
φ(nm) = nφ(m) and mn = φ(m)n for all m ∈M , n ∈ N .
Let F : AN → AN be the endofunctor defined as follows: for an object

M of AN , let F(G) denote the free Lie algebra on the underlying Λ-module
M with the above-mentioned actions of N on F(M) and F(M) on N ; for a
morphism φ : M → M ′ of AN , let F(φ) be the canonical Lie homomorphism
from F(M) to F(M ′) induced by φ.
Let τ : F → 1AN be the obvious natural transformation and let δ : F → F 2

be the natural transformation induced for every M ∈ obAN by the natural
Λ-module inclusion M → F(M). We obtain a cotriple F = (F , τ, δ). Let us

consider the cotriple resolution F∗(M)
d00−→M of an object M of the category

AN , where

F∗(M) ≡ · · ·
−→...
−→

Fk(M)

dk0−→...
−→
dk
k

· · ·

d20−→
−→
−→
d22

F1(M)
d10−→
−→
d11

F0(M) ,

Fk(M) = F
k+1(M) = F(Fk(M)), dki = F

iτFk−i, ski = F
iδFk−i, 0 ≤ i ≤ k .

Let T : AN → Lie be any functor. Applying T dimension-wise to the
simplicial Lie algebra F∗(M) yields a simplicial Lie algebra T F∗(M). Define
k-th derived functor LF

kT : AN → Lie, k ≥ 0, of the functor T relative to the
cotriple F as the k-th homotopy of T F∗(−) (see also [3]). Note that LF

kT (M),
k ≥ 1 is an abelian Lie algebra, i.e. only a Λ-module.
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The non-abelian tensor product of Lie algebras defines a covariant functor
−⊗N : AN → Lie. Let us denote by LF

k(−⊗N), k ≥ 0, the derived functors
of the functor −⊗N relative to the cotriple F. Using Proposition 2 one can
easily show that there is a natural isomorphism LF

0(−⊗N) ≈ −⊗N .

Theorem 3. Let M be a Lie algebra free as a Λ-module and N a module

over the Lie algebra G, then there are natural isomorphisms

LF
k(−⊗N)(M) ≈ Hk+1(M,N) , k ≥ 1 ,

Ker ν ≈ H1(M,N) ,

Coker ν ≈ H0(M,N) ,

where N is thought as an abelian Lie algebra acting trivially on M and ν :
M ⊗N → N , ν(m⊗ n) = mn for all m ∈M , n ∈ N .

This assertion gives us the possibility to state the following

Definition 4. Let M and N be Lie algebras acting on each other. The
non-abelian homology of M with coefficients in N is defined by

Hk(M,N) = LF
k−1(−⊗N)(M) , k ≥ 2 ,

H1(M,N) = Ker ν ,

H0(M,N) = Coker ν ,

where ν :M ⊗N → NÁH, ν(m⊗n) = |mn| (here | | denotes the coset of the
quotient Lie algebra), and H is the ideal of the Lie algebra N generated by
the elements (

nm)n′ − [n′,mn] for all m ∈M , n, n′ ∈ N .

Finally we give some properties of non-abelian homology of Lie algebras.

Theorem 5. There is a natural isomorphism

Hk(−, N) ≈ L
F
k−1(H1(−, N)) , k ≥ 1 ,

where LF
k−1(H1(−, N)) is the k−1-th derived functor of the functorH1(−, N) :

AN → Lie relative to the cotriple F.

Proposition 6. Let {Mα, φ
β
α, α ≤ β} and {Nα, ψ

β
α, α ≤ β} be direct

systems of Lie algebras. Let M and N be Lie algebras and for every α the
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Lie algebras Mα, N and M , Nα act on each other and the homomorphisms

φβα, ψβα preserve the actions. Then there are natural isomorphism

Hk

(
lim
→
α

{Mα}, N

)
≈ lim

→
α

{Hk(Mα, N)} , k ≥ 0 ,

Hk

(
M, lim

→
α

{Nα}

)
≈ lim

→
α

{Hk(M,Nα)} , k ≥ 0 .

Theorem 7. Let α : N → N ′ be a surjective Lie homomorphism, M an

arbitrary Lie algebra acting on N and N ′, which act on M and α preserve the

actions. Then there is a long exact sequence of non-abelian homology

· · · → H3(M,N ′)→ H2(M,N,N ′)→ H2(M,N)→ H2(M,N ′)

→ H1(M,N,N ′)→ H1(M,N)→ H1(M,N ′)

→ H0(M,N,N ′)→ H0(M,N)→ H0(M,N ′)→ 0 ,

(2)

where

Hk(M,N,N ′) = πk−1(Ker(1F∗(M) ⊗ α)) , k ≥ 2 ,

H1(M,N,N ′) =
{Ker(1F0(M) ⊗ α) ∩ (d

0
0 ⊗ 1A)

−1(Ker(1M ⊗ α) ∩Ker ν)}

(d11 ⊗ 1A)(Ker(1F1(M) ⊗ α) ∩Ker(d
1
0 ⊗ 1A))

,

H0(M,N,N ′) = Ker α̃/ν(Ker(1M ⊗ α)) ,

F∗(M)
d00−→M is the F cotriple resolution of the object M of the category AN

and α̃ : N/H → N ′/H ′ is the natural homomorphism induced by α.

Remarks. (i) If the actions of M and N satisfy the compatibility con-
ditions (1) (in this case M and N ′ act on each other compatibly), then
H0(M,N,N ′) = H0(M,N ′′), where N ′′ = Kerα.
(ii) Let 0 → (N ′′, 0) → (N, f) → (N ′, g) → 0 be an exact sequence of

crossed M -modules. Thanks to the result in [5] there is a six term exact
non-abelian homology sequence

H1(M,N ′′)→ H1(M,N)→ H1(M,N ′)

→ H0(M,N ′′)→ H0(M,N)→ H0(M,N ′)→ 0 .
(3)

The first five terms of the sequence (3) coincide with the first five terms
of the sequense (2) and we have a natural homomorphism H1(M,N ′′) →
H1(M,N,N ′).
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Let us recall the definition of the Milnor’s additive K-functor KM add
2

([9, 10]). For a given associative Λ-algebra A with identity, KM add
2 (A) is

a Λ-module generated by the symbols 〈a, b〉, where a, b ∈ A, subject to the
relations

〈a, b〉+ 〈b, a〉 = 0 ,

λ〈a, b〉+ λ′〈a′, b〉 = 〈λa+ λ′a′, b〉 ,

〈ab, c〉 − 〈a, bc〉+ 〈ca, b〉 = 0 ,

where a, a′, b, c ∈ A, λ, λ′ ∈ Λ.
I f A is commutative than KM add

2 (A) coincides with the first cyclic homo-
logy HC1(A) (for the definition see [10]).
Suppose A is a non-commutative Λ-algebra. We let A be considered with

the usual induced Lie structure ([a, b] = ab− ba, a, b ∈ A). From [5] we know
that there exists a Lie algebra V (A) defined as the quotient of the tensor
product Lie algebra A⊗A by the ideal generated by the elements

a⊗ b+ b⊗ a , ab⊗ c− a⊗ bc+ ca⊗ b

for all a, b, c ∈ A, such that there is a short exact sequence of crossed A-
modules

0→ HC1(A)→ V (A)→ [A,A]→ 0 ,

where [A,A] is the additive commutator of A. It is clear that H0(A, [A,A]) =
[A,A]/[A, [A,A]]. Furthermore, it is shown in [5] that H0(A,HC1(A)) =
HC1(A) and H0(A, V (A)) ≈ KM add

2 (A). Then Theorem 7 and Remarks (i)
yield the following

Theorem 8. Let A be a non-commutative associative Λ-algebra with

identity. Then there is an exact sequnce of Λ-modules

· · · → H2(A, V (A), [A,A])→ H2(A, V (A))→ H2(A, [A,A])

→ H1(A, V (A), [A,A])→ H1(A, V (A))→ H1(A, [A,A])

→ HC1(A)→ KM add
2 (A)→ [A,A]/[A, [A,A]]→ 0 .

Proofs are based on [7], [6], [2], [11], [12] and will be given in [8].
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