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Abstract: Breast cancer is the most common type of cancer in women. It is a heterogeneous disease
that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative
breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically
store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and
the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or
epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role
of the molecular components of SOCE. This review focuses on the functional role and remodeling
of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding
of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific
therapeutic strategies.
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1. Molecular Basis of SOCE

Store-operated calcium entry (SOCE) is a major mechanism in non-excitable cells that, upon
stimulation, finely modulates calcium (Ca2+) influx from the extracellular medium, leading to increases
in cytosolic Ca2+ concentration ([Ca2+]i) required for the activation of a plethora of physiological
functions, such as proliferation, exocytosis and gene transcription [1]. The main characters that
modulate SOCE are the members of the STIM (stromal interaction molecule), Orai and TRPC (canonical
transient receptor potential channel) protein families.

1.1. STIM, Orai and TRPC Proteins

STIM 1 is a 685-amino acid (aa) single-spamming membrane protein located both in internal
vesicles, mainly the endoplasmic reticulum (ER), and the plasma membrane. The intraluminal region
of STIM1 comprises a canonical and a hidden EF hand, which senses the ER Ca2+ concentration
(Kd ~ 200–600 µM), and a sterile-α-motif (SAM), required by STIM1 dimerization [2]. Following the
transmembrane (TM) domain, STIM1 cytosolic C-terminus contains several domains that will activate
and regulate Orai (STIM1-Orai1 activation region, SOAR) and TRPC (STIM1 carboxyl terminus)
proteins in the plasma membrane. The role of STIM1 as the Ca2+ sensor of the ER (and probably other
agonist-sensitive Ca2+ stores [3]) and as the transient activator of the plasma membrane channels
Orai and TRPC upon massive depletion of intracellular Ca2+ stores is well characterized (see [4–6]
for more detailed review). In the same line, STIM2, more sensitive to low variations of intraluminal
calcium levels, was proposed to mediate a lesser and prolonged SOCE activated to replenish marginally
depleted Ca2+ stores [7]. However, the discovery of STIM2 variants, STIM2.1 (754 aa), STIM2.2 (746 aa)
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and STIM2.3 (599 aa), has introduced a new layer of complexity in the regulation of SOCE [8,9]. While
STIM2.2 is responsible for the mechanism described above, STIM2.1 acts as an inhibitor of STIM1 and,
subsequently, SOCE (see [8–10] for specific reviews).

The three members of the Orai family, Orai1 (301 aa), Orai2 (254 aa) and Orai3 (295 aa),
are highly Ca2+-selective ion channels that mediate Ca2+ influx from the extracellular medium upon
cell stimulation [11,12]. All of them express 4 TM domains, connected via one loop on the intracellular
and two on the extracellular side with the N- and C-terminus located in the cytosol [13]. Both
N- a C-terminus of Orai channel contain key domains for the association with and activation by
STIM proteins [14–16]. Although Orai channels have been described to act in non-STIM1-activated
mechanisms, such as the Kv10.1-Orai1 complex discussed in Section 3 [17], their main role is that of
regulating Ca2+ influx upon intracellular Ca2+ store depletion and activation by STIM proteins. Thus,
a homohexameric Orai1 [18], Orai2 or Orai3 channel, activated by STIM1 or STIM2, mediates both the
highly selective Ca2+ released-activated Ca2+ (CRAC) channels with characteristic robust inwardly
rectifying current [19], and, together with TRPC proteins, the less selective store-operated Ca2+ (SOC)
channels [20–23]. It is still not clear how SOC channels operate; therefore, two models have been
proposed: (a) both Orai and TRPC proteins form independent channels that are activated by STIM
proteins [21,24], or (b) Orai and TRPC subunits form a heterochannel triggered by STIM1 or STIM2 [25].
Furthermore, 3 subunits of Orai1 and 2 subunits of Orai3 may form a store-independent pentameric
channel activated by arachidonic acid (ARC) and regulated by the plasma membrane resident STIM1
and the store-operated Ca2+ entry-associated regulatory factor (SARAF) [26–28]. SARAF is an ER
and plasma membrane resident STIM1 regulator that modulates resting [Ca2+]i, and participates in
slow Ca2+ -dependent inactivation of SOCE, thus preventing Ca2+ overload [29–33]. Finally, the recent
identification of two different forms of Orai1, Orai1α (301 aa) and Orai1β (237 aa), has opened new
ways of understanding the complexity of SOCE. Due to alternative translation initiation [34], the two
forms present distinct properties and capabilities to form different channels. Both Orai1α and Orai1β
support CRAC and SOC channels, whereas only Orai1α is able to form ARC channels [35].

All the 28 members of the human TRP protein superfamily are non-selective cation channels
permeable to both monovalent and divalent ions, such as Na+ and Ca2+, and all of them present a
similar architecture: six TM domains, with the pore-forming region between the 5th and 6th, connected
by intracellular and extracellular loops, and with cytosolic N- and C-terminus domains. The channel is
comprised by 4 subunits that may form a homo- or hetero-tetramer [36,37]. The N-terminus region
contains a varying number of ankyrin-repeat domains which are essential for channel assembly and
modulation [38]. The C-terminus encloses important domains for the interaction with regulators, such
as IP3 receptor [39] and calmodulin [40,41], or allosteric activation [42]. Among all TRP proteins just
those belonging to the canonical TRP (TRPC) family, TRPC1-7, have been described to be involved in
the formation of SOC channels, which are activated by STIM1 and STIM2 carboxyl-terminus upon Ca2+

store depletion and triggering, subsequently, Ca2+ influx from the extracellular medium [21,23,35,43,44].
It is well established that the participation of different TRPC subunits in the formation of SOC channels
is highly dependent on the cell type and the pattern of expression of those TRPC subunits within the
cells [37,43].

1.2. Activation of SOCE in Healthy Cells

Under resting conditions, [Ca2+]i is maintained low (in the range of 100–200 nM) by the cells.
However, the concentration within the ER and other intracellular Ca2+ stores reaches values of mM
(0.4–1 mM), which serve as a limited source of Ca2+. Furthermore, the concentration in the extracellular
medium is even higher (1.8–2 mM) and provides an unlimited supply of Ca2+. Such huge differences
in Ca2+ concentration establish an enormous gradient that should be finely regulated by the cells [45].
As described above, small variations in the intraluminal Ca2+ store concentration are regulated by
STIM2.2. However, upon cell stimulation, there is an increase in [Ca2+]i that triggers the physiological
response. This increase begins with the depletion of intracellular Ca2+ stores, thus, the dissociation



Int. J. Mol. Sci. 2018, 19, 4053 3 of 14

of Ca2+ from the EF hand domain of STIM1 [2]. Next, STIM1 undergoes a conformational change,
starting with the SAM domains dimerization in the intraluminal N-terminal region [2]. The energy
is then transferred through the TM domains to the cytosolic region of STIM1 [46], which unbends
and exposes the Orai- and TRPC-activating regions of STIM1 [14–16]. Simultaneously, the recently
described modulator of SOCE, EF-hand domain family member B (EFHB), displaces SARAF from
STIM1, promoting the association of the latter with Orai1 and TRPC, and therefore the activation of
the channels [47]. Finally, the influx of Ca2+ through CRAC and/or SOC channels will trigger the
physiological responses. Later on, the stores are refilled and STIM1 is inactivated by Ca2+ re-association
to its free EF-hand domain, which, in turn, triggers the dissociation from Orai1 and TRPC channels,
and, subsequently, the bending of STIM1 to resting condition. Both processes are supported by
SARAF, which displaces EFHB from STIM1 and maintains the latter in an idle position. Finally, STIM1
dissociation leads to channel closure at the plasma membrane, [Ca2+]i returns to resting conditions
and the cell becomes ready for further stimuli [1,13].

2. SOCE Remodeling in Breast Cancer

2.1. SOCE in Breast Cancer

In breast cancer cells, the regulation of [Ca2+]i has been presented as crucial for tumorigenesis and
the development of cancer hallmarks, including cell growth and proliferation, migration, metastasis
and apoptosis resistance [48]. Consistent with this, the expression of a variety of Ca2+ channels is
up-regulated in breast cancer cell lines and cancerous tissue, including Orai1, Orai3 and different TRP
channels, such as TRPC6, TRPV6 and TRPM8, among others [49–53] (Table 1). In addition, intracellular
Ca2+ mobilization and, more precisely, Ca2+ entry play important roles in angiogenesis. Consistent
with this, in endothelial cells derived from human breast carcinomas, arachidonic acid (AA) has been
reported to enhance Ca2+ influx and attenuate SOCE, which has been associated with the progression
of the early phases of angiogenesis, including endothelial cell proliferation and tubulogenesis [54].

The role of Ca2+ influx in breast cancer cell biology has long been investigated. Initial in vitro
studies by Yeh and coworkers in 1995 reported that the flavonoid quercetin and the Ca2+ channel
blocker carboxyamidotriazole attenuate Ca2+ influx in the human MDA-MB-435 cell line, which, in
turn, significantly impairs cell growth [55]. It is noteworthy to mention that despite MDA-MB-435
cells long having been used as a model for human breast cancer, several genetic studies, including
gene expression analysis, CpG island promoter hypermethylation and miRNA expression, have
revealed that the MDA-MB-435 cell line is a melanoma cell type [56]. More recently, it was reported
that tranilast, an anti-allergic agent, attenuates Ca2+ influx and cytosolic Ca2+ oscillations evoked by
insulin-like growth factor-1 (IGF-1) in the ER+ (estrogen receptor positive) breast cancer MCF7 cell
line. Impairment of Ca2+ entry in MCF7 cells results in cell cycle arrest in the G1 phase [57], which
supports the role of Ca2+ influx in cell proliferation. Calcium entry was also investigated in the human
ER- (estrogen receptor negative) BT-20 cell line by Sergeev and Rhoten [58], who reported the presence
of a thapsigargin-sensitive intracellular Ca2+ store in these cells and a relevant receptor-operated and
voltage-insensitive Ca2+ entry mechanism, which was found to be sensitive to La3+ and Ni2+ and
permeable to Mn2+. Further studies performed in primary cultures of human normal and cancerous
breast cells obtained from patients reported that angiotensin II is able to induce intracellular Ca2+

mobilization from TG-sensitive compartments, although store-operated or voltage-gated Ca2+ entry
mechanisms were not detected [59].

Compelling evidence for the activation of SOCE in breast cancer cells was initially shown by Rossi
and coworkers in the MCF7 cell line in response to ATP and TG [60]. In addition to Ca2+, SOCE in
MCF7 cells was found to be permeable to Mn2+ and Sr2+. Interestingly, ATP-evoked Ca2+ influx, but
not SOCE, was attenuated by cell treatment with 17β-estradiol [60]. The same group also reported
functional activation of SOCE in the human HER2 overexpressing breast cancer SK-BR-3 cell line
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and the non-tumoral epithelial HBL100 cell line. In these cells, SOCE was mediated by two different
pathways, sensitive and insensitive to low micromolar Gd3+ concentration [61].

There is a growing body of evidence linking SOCE with a variety of breast cancer cell hallmarks,
including cell survival, proliferation, migration and invasion. Evidence for the relevant role of SOCE
in breast cancer cell biology comes from studies exploring the involvement of protein glycosylation
in breast cancer cell progression and metastasis. STIM1 and Orai1 are two N-glycosylated proteins.
A recent study by Gueder and coworkers revealed that treatment of the breast cancer MCF7 and
MDA-MB-231 cell lines with the pseudo-C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives
(CO-OCS), inhibitors of α-glycosidase, significantly decreased the expression of STIM1 at the protein
level and attenuated SOCE. CO-OCS did not alter the expression of Orai1. Treatment of MCF7 and
MDA-MB-231 cells with CO-OCS reduced the expression of β1-integrin, as well as the phosphorylation
rates of the focal adhesion kinase (FAK) and ERK1/2, which results in the inhibition of cell migration
without having any detectable effect in cell proliferation (Figure 1). In contrast, in the non-tumoral
MCF10A cell line, treatment with CO-OCS was unable to alter the expression of STIM1 or Orai1, which
indicates that protein glycosylation plays a relevant role in STIM1 expression and breast cancer cell
migration [62].
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Figure 1. Functional role of SOCE in breast cancer cells. Left panel, in breast cancer cells,
SOCE is involved in the phosphorylation status of the focal adhesion kinase (FAK) and ERK1/2,
which is required for focal adhesion turnover and migration. Right panel, cell stimulation with
TGFβ1, a potent inductor of epithelial to mesenchymal transition (EMT), leads to attenuated
Oct4 expression, which, in turn, is associated with increased expression of STIM1 and Orai1 and
enhanced SOCE. ER, endoplasmic reticulum; PM, plasma membrane; FAK, focal adhesion kinase;
ERK, extracellular signal–regulated kinase; TGFβ, transforming growth factor-β; EMT, epithelial to
mesenchymal transition.

SOCE has also been reported to play a role in breast cancer cell metabolism. In vitro studies
performed by Tang and coworkers have reported that the mitochondrial Ca2+ uniporter (MCU) plays
a critical role in SOCE and energy metabolism, which, in turn, are essential for breast cancer cell
migration [63]. MCU silencing using siRNA or inhibition by ruthenium red has been reported to result
in impairment of SOCE as well as migration in triple negative MDA-MB-231 breast cancer cells [63].

Soon after the identification of STIM1 and Orai1 as the key elements of SOCE, Yang et al. reported
that these proteins are essential for in vitro MDA-MB-231 cell migration and invasion, as well as
for in vivo MDA-MB-231 cell metastasis in immunodeficient NOD/SCID mice [64]. In vitro studies
have reported that SOCE inhibition leads to MDA-MB-231 breast cancer cells with slower focal
adhesion turnover rates, which indicates that Ca2+ influx through STIM1 and Orai1 is essential for focal
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adhesion assembly and disassembly in breast cancer cells [64,65]. Consistent with this, transforming
growth factor (TGF)-β induces cell cycle arrest at the G0/G1 phase and impair cell proliferation in
MDA-MB-231 and MCF7 breast cancer cells by a mechanism that involves decreased STIM1 expression
and, subsequently, SOCE [66]. Interestingly, a recent in vitro study by Emeriau et al. revealed that
those tyrosine kinase inhibitors that were able to decrease SOCE, such as lapatinib and CP-724714,
exhibit greater anti-proliferative activity than those inhibitors that had no effect on SOCE [67]. Further
in vitro studies have revealed that pharmacological inhibition of SOCE by Synta66 and YM58483
(also known as BTP2) in MDA-MB-468 cells significantly impairs migration and proliferation induced
by a number of agonists, such as ATP, trypsin or EGF [68]. Conversely, both in vitro and in vivo studies
have revealed that high Na+ concentration in the breast tumor microenvironment, which has been
demonstrated by non-invasive magnetic resonance imaging [69] and induces inflammatory and cell
proliferative responses [70], results in the activation of SOCE by a mechanism involving salt inducible
kinase-3 up-regulation [71]. Enhanced SOCE results in overexpression of P-glycoprotein [71], which is
one of the well-known mechanisms by which breast cancer cells develop resistance to chemotherapeutic
drugs [72].

Further in vitro and in vivo studies supporting a relevant role for SOCE in breast
cancer tumorigenesis have revealed that up-regulation of the angiotensin-converting enzyme-2/
angiotensin-(1-7)/Mas axis, an important component of the tumor microenvironment, inhibits SOCE
and the PAK1/NF-κB/Snail1 pathways and results in attenuated breast cancer cell migration and
metastasis [73]. More recently, Chakraborty and coworkers have reported that phemindole, a synthetic
di-indole derivative with anti-carcinogenic activity in triple negative breast cancer cells, reduces SOCE
by down-regulation of STIM1 expression [74]. In vitro experiments have revealed that phemindole
attenuates STIM1-Orai1 co-immunoprecipitation and co-localization in MDA-MB-231 cells, thus
resulting in attenuated SOCE, ER stress and cell death. Phemindole-induced triple negative breast
cancer cell death was reverted by restoration of STIM1 expression, which strongly supports a role for
SOCE in triple negative cell survival [74].

Increased Ca2+ influx through SOCE has been associated with the activation of epithelial to
mesenchymal transition (EMT). Davis and coworkers have reported that STIM1 and Orai1-mediated
SOCE is involved in EMT of breast cancer cells, an essential step in cancer metastasis [75]. More recent
studies by Zhang et al. have revealed that STIM1 and STIM2 differentially mediate TGFβ-induced Ca2+

entry and EMT in the breast cancer MCF7 and MDA-MB-231 cell lines. Both STIM1 and STIM2 mediate
SOCE in response to TGFβ, but STIM2 is also involved in the activation of a receptor-operated,
store-independent, Ca2+ influx mechanism upon stimulation with TGFβ [76]. The mechanism
underlying EMT in breast cancer cells includes the expression of the stem cell-related transcription
factor Oct4, which is highly expressed in the less invasive and metastatic MCF7 cancer cell line, while
the triple negative MDA-MB-231 cell line exhibits undetectable expression. Cell treatment with TGFβ1,
a potent EMT inductor, resulted in attenuated Oct4 expression, which is associated with up-regulated
expression of STIM1 and Orai1 and, thus, enhanced SOCE [77] (Figure 1). More recent in vitro studies
have also provided evidence for a role of TRPC1 and STIM1 in the activation of EMT by TGFβ in
murine mammary epithelial NMuMG cells [78]. A role for TRPC1 in EMT has also been reported
in airway remodeling mediated by house dust mites via up-regulation of the signal transducer and
activator of transcription 3 (STAT3) expression [79].

Orai1-mediated SOCE has also been found to be essential for hypoxia-induced migration, invasion
and angiogenesis in triple negative breast cancer cell lines. Hypoxia up-regulates Orai1 through the
activation of Notch1 signaling, which, in turn, is responsible for the conduction of SOCE that activates
calcineurin-nuclear factor of activated T-cell 4 (NFAT4) [80].

Recent studies have reported that Orai channels are involved in resistance to chemotherapeutic
drugs in breast cancer cells. Through a combination of bioinformatic analysis and in vitro experiments,
Hasna and coworkers have found a correlation between Orai3 overexpression and chemoresistance
in several breast cancer data sets. The authors have reported that Ca2+ influx via Orai3, which
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is overexpressed in breast cancer tissue from patients, induces down-regulation of the p53 tumor
suppressor protein via the pro-survival PI3K/Sgk-1/Sek-1 pathway [81].

Table 1. SOCE constituents and remodeling in different breast cancer cell subtypes.

Breast Cancer Subtype Cell Line SOCE Constituents References

Estrogen receptor positive MCF7 STIM1, STIM2, Orai3 and TRPC6 [50,53,82–84]
Triple Negative/Basal MDA-MB-231 STIM1, Orai1 and TRPC6 [53,82–84]

Breast Cancer Subtype Cell Line SOCE Remodeling References

Estrogen receptor positive

MCF7 ↓STIM1, ↔STIM2, ↑Orai3 and
↑TRPC6 [50,53,82–84]

HCC 1500 ↔STIM1 [83]
ZR751 ↔STIM1 [83]
T47D ↓STIM1 [83]
BT474 ↓STIM1 [83]

HER2 HCC1569 ↑TRPC1 [85]

Triple Negative/Basal

MDA-MB-231 ↔STIM1, ↑Orai1, ↑TRPC1 and
↑TRPC6 [53,82–84,86]

MDA-MB-468 ↑TRPC1 [86]
BT20 ↑STIM1 [83]

HCC 1937 ↔STIM1 [83]
Patients ↑STIM1, ↓STIM2 and ↑TRPC6 [49]

↔ Similar levels in cancer and non-tumoral cells. ↑ Increased levels in cancer cells. ↓ Decreased levels in cancer cells.

2.2. SOCE Remodeling in Breast Cancer Cells

Ca2+ channel remodeling is a feature of breast tissue, as illustrated by the enhanced Orai1
expression during lactation [49]. There is a growing body of evidence supporting the hypothesis
that remodeling of the Ca2+ toolkit, schematized in Figure 2 and summarized in Table 1, represents
a common signature of breast cancer cells underlying the development of breast cancer hallmarks.
Changes in the expression of different Ca2+ channels might greatly alter the nature of the cellular
responses to a variety of stimuli (reviewed in [65]), including growth factors. In the context of SOCE,
Orai1 channels have mostly been reported to be overexpressed in a variety of breast cancer cell
lines, including the widely studied cell lines ER+ MCF7 and the triple negative MDA-MB-231 breast
cancer cells [49,82]. Concerning other Orai isoforms, different studies have demonstrated that the
expression of Orai3 is elevated at the transcript and/or protein level in ER+ breast cancer cell lines
and human clinical samples [50,82,83,87]. Analysis of the gene expression profile of TRPC1 in breast
cancer-derived cell lines has reported that TRPC1 is modestly up-regulated in basal cell lines (including
the representative MDA-MB-231 cells) compared with breast cancer cell lines of different subtypes or
non-tumoral breast cell lines [86]. More recently, we have reported that TRPC6, which has also been
found associated with SOCE [20,88,89], is overexpressed in MCF7 and MDA-MB-231 cells [82]. In these
cells, TRPC6 plays a relevant role in the expression of Orai1 (in MDA-MB-231 cells) and Orai3 (in MCF7
cells) in the plasma membrane, an event that is required for the activation of SOCE and cell function.
SOCE in MDA-MB-231 and MCF7 cells was drastically reduced after transfection with specific siRNA
TRPC6 or expression plasmids for a pore-dead dominant-negative mutant of TRPC6 [82].

The expression level of STIM1 differs among the members of different breast cancer cell line
subtypes. Among the triple negative cell lines, BT20 cells show STIM1 overexpression, while
MDA-MB-231 or HCC 1937 cells appear to exhibit a normal expression level [83]. Similarly, ER+

breast cancer cell lines show either a normal (HCC 1500 or ZR751) or reduced (MCF7, T47D and
BT474) expression of STIM1 [83]. Analysis of the relative expression of STIM1 and STIM2 revealed a
STIM1:STIM2 expression ratio of between 2 and 5 in most breast cancer-derived cell lines investigated,
except for the HER2 overexpressing cell line SK-BR-3, which exhibits an expression of STIM1 more
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than 10 times higher than that of STIM2 [49]. Similarly, breast cancerous clinical samples of the basal
molecular subtype exhibit a high STIM1 and low STIM2 expression [49].

Remodeling of the expression profile of the different SOCE key elements in breast cancer cells
has been demonstrated to play an important functional role. Motiani and coworkers confirmed that
SOCE in triple negative MDA-MB-231 breast cancer cells is entirely dependent on STIM1 and Orai1,
while in MCF7, SOCE is mediated by STIM1, STIM2 and Orai3 (overexpressed in this cell line), thus
reporting important phenotypic differences between both cell lines [83]. Later on, the same group
extended their observations, reporting that up-regulation of Orai3 in MCF7 cells depends on the
expression of ERα and, consequently, Orai3 mediates ERα+ cell tumorigenesis in immunodeficient
mice [84]. Down-regulation of Orai3 channels has been reported to arrest cell-cycle progression and
to induce apoptosis in MCF7 cells but not in the non-tumoral MCF10A cell line cells with smaller
Orai3 expression [50]. Orai3-dependent cell cycle progression has been associated with the activation
of c-myc expression in tumor tissues and in the MCF7 cancer cell line through the MAP kinase
pathway [90].
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Figure 2. Overview of the remodeling of STIM, Orai and TRPC expression in breast cancer cells. Breast
cancer cells (right panel) have been shown to overexpress Orai1 channels as compared to non-tumoral
breast epithelial cells (left panel). Orai3 has been reported to be highly expressed in estrogen receptor
positive (ER+) breast cancer cells. Concerning TRPC proteins, TRPC1 has been found to be modestly
up-regulated in basal breast cancer cells, while TRPC6 is overexpressed both in ER+ and triple negative
breast cancer cell lines. STIM1 mostly exhibits either high or normal expression in breast cancer cell
lines as compared to non-tumoral cells; thus, the STIM1:STIM2 expression ratio has been found to be
elevated in breast cancer cell lines and cancerous clinical samples. ER: endoplasmic reticulum.

Specific remodeling of TRPC1 expression is also a feature of breast cancer cells. In vitro studies
have revealed that TRPC1 expression is up-regulated during hypoxia-associated EMT in breast cancer
cells. TRPC1 is required for the expression of the hypoxia-inducible factor 1α (HIF1α) in MDA-Mb-468
cells through the regulation of its translation and degradation rather than via transcriptional
modulation. This mechanism involves an Akt phosphorylation-dependent pathway [86]. TRPC1
has also been reported to be involved in very specific aspects of EMT remodeling and induction [86].
The role of TRPC1 in the modulation of Akt phosphorylation has been confirmed by Kaemmerer
et al. in the ER-/HER2+ epithelial breast cancer HCC1569 cell line [85]. Consistent with a role for
TRPC1 in EMT induction, silencing TRPC1 expression has been reported to impair the activation of
EMT stimulated by TGFβ in the murine mammary epithelial NMuMG cell line; meanwhile, TRPC1
overexpression increased TGFβ-induced EMT in these cells [78], which strongly supports a role for
TRPC1 in the induction of EMT in breast cells.

We have recently reported that TRPC6 overexpression in MCF7 and MDA-MB-231 breast cancer
cell lines is essential for full activation of SOCE, as well as cell proliferation, migration and invasion [82].
Furthermore, our results indicate that TRPC6 is required for MCF7 and MDA-MB-231 cell survival.
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In vitro studies have revealed that treatment of MCF7 and MDA-MB-231 cells with the olive oil derived
phenolic compound oleocanthal induces an initial activation of TRPC6 channels, and thus, Ca2+ influx,
followed by down-regulation of TPRC6 expression, which, in turn, drastically attenuates cell viability.
By contrast, olecanthal has no effect in non-tumoral MCF10A cells, which is consistent with the low
TRPC6 expression and dependency in these cells [53].

3. Overview of Other Orai and TRPC-Dependent Ca2+ Influx in Breast Cancer Cells

In addition to SOCE, other mechanisms for Ca2+ influx through Orai and TRPC channels have been
reported to play a functional role in breast cancer cells. It is well known that membrane depolarization,
as a result of Ca2+ influx itself, reduces the driving force and limit Ca2+ entry [91,92]. Ca2+-activated
K+ channels (KCa) have been reported to contribute to sustain Ca2+ entry by inducing membrane
repolarization/hyperpolarization upon Ca2+ entry [93]. For the fine regulation of Ca2+ signaling, KCa
and Ca2+ channels have been reported to associate in complexes both in excitable and non-excitable
cells [94]. Interestingly, current evidence has demonstrated that KCa–Ca2+ channel complexes
contribute to the development of cancer hallmarks, including cell proliferation, cell migration and
metastasis. Through a combination of in vitro and in vivo studies, Chantome and coworkers have
revealed a functional interaction between the KCa channel SK3 and Orai1 in human breast and prostate
cancer cells that is required for cell migration and bone metastasis. SK3 expression was detected in
cancer cells but not in non-tumoral breast or prostate epithelial cells. In cancer cells, SK3 co-localizes
with Orai1 in plasma membrane lipid rafts where the complex operates independently of STIM1 as
a constitutive Ca2+ entry pathway [95]. In the breast cancer cell line MDA-MB-435s, the SK3-Orai1
channel complex has been reported to be regulated by cAMP, as activation of the cAMP-protein kinase
A (PKA) pathway significantly attenuates both SK3 and SK3-Orai1 complex activity, which, in turn,
results in a decrease in Ca2+ influx and cancer cell migration [96]. In contrast to the constitutive
Orai1-mediated Ca2+ entry observed in these cells, a functional SK3-Orai1-TRPC1 channel complex
has been reported to mediate SOCE and cell migration in colon cancer cells [97]. In the colon cancer
cell HCT-116 line, activation of STIM1 by Ca2+ store depletion, using TG, results in the recruitment
of Orai1 and TRPC1 into lipid raft domains containing SK3 channels. In this context, SOCE through
Orai1 and TRPC1 channels has been found to be amplified by the SK3 channel activity [97].

A functional interaction between Orai1 channels and Kv10.1 channels has also been reported to be
involved in collagen-1-promoted breast cancer cell survival [17]. The breast cancer microenvironment
is characterized by extensive collagen deposits, which promotes breast cancer initiation and
progression [98]. A recent study has revealed that collagen 1 promotes in vitro breast cancer MCF7 cell
survival through ERK1/2 phosphorylation and the overexpression and colocalization of Kv10.1 and
Orai1 ion channels, an interaction that enhances constitutive Ca2+ influx in these cells [17]. Similarly,
a functional cooperation between TRPC1 and KCa3.1 has been reported to play a relevant role in basal
Ca2+ entry in MCF7 cells suspended in the culture medium supplemented with 5% fetal bovine serum.
The TRPC1-KCa3.1 interaction has been shown to be involved in MCF7 cell proliferation [99].

A store-independent mechanism for Ca2+ influx involving Orai1 and the secretory pathway
Ca2+ ATPase-2 (SPCA2) plays an important role in Ca2+ uptake in mammary epithelial cells during
lactation [100]. Both SPCA1 and SPCA2 are highly expressed in basal and luminal types breast tumors,
respectively [100,101], where they might complex with Orai1 to elicit constitutive Ca2+ entry, which,
in turn, might contribute to tumorigenesis [100,102].

4. Concluding Remarks

SOCE is an important mechanism for Ca2+ influx in breast cancer cells that supports several
cancer hallmarks, including migration, proliferation and EMT. Breast cancer cells from the different
subtypes undergo remodeling of the expression of specific molecular SOCE components, including
Orai1, Orai3, TRPC1 and even TRPC6. Several SOCE inhibitors, including SKF-96365 and 2-APB, have
been reported to attenuate in vitro several breast cancer hallmarks [66,78,103], in agreement with both
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in vivo and in vitro studies concerning other cancer types [104,105]. Impairment of SOCE by other
synthetic compounds, such as phemindole [74], has proved that pharmacological tools addressed
to SOCE inactivation suggest that SOCE constituents might be suitable therapeutic targets in breast
cancer. A major challenge concerning Orai1 or STIM1 as potential therapeutic targets is the ubiquitous
expression of both proteins and their crucial functional role; therefore, the pharmacological strategy
should account with a cell-specific delivery mechanism. Alternatively, on the basis of specific SOCE
features, such as the SOCE dependence on Orai3 in ER+ breast [83] or the up-regulation of TRPC6
and its specific role in Orai1/Orai3 plasma membrane expression in the MCF-7 and MDA-MB-231 cell
lines [82], Orai3 or TRPC6 might be established as potential selective therapeutic targets for breast
cancers. Analysis of the expression and functional role of these channels in breast cancer cells will
undoubtedly provide valuable information about the biology of the different cancer subtypes and
be the basis for the development of anti-cancer strategies. The development of a new generation
of pharmacological tools against channels selectively expressed in different breast cancer subtypes,
such as Orai3, might provide interesting results.
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