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1. INTRODUCTION

In this paper we deal with those concepts and results generated around the
Banach-Mazur “rotation” problem if every transitive separable Banach space
is a Hilbert space. Basic references in this field are the book of S. Rolewicz
[65] and the survey paper of F. Cabello [23]. We recall that a Banach space
is called transitive whenever, given two points in its unit sphere, there exists
a surjective linear isometry on the space mapping one of such points into the
other. As far as we know, the Banach-Mazur rotation problem remains open
to date. However, the literature dealing with transitivity of (possibly non sep-
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arable) Banach spaces seemed to us very attractive and interesting. Therefore,
in recent years we have revisited such a literature with the aim of refining some
previously known results, as well as of developing some previously unexplored
aspects. Most results got in this purpose apear in the papers [8], [9], [10], [11],
[12], and [13]. In the present paper we review the main results obtained in the
papers just quoted, and prove some new facts. In reviewing known facts, we
even provide the reader with new proofs whenever such proofs are available.

In Section 2 we formally introduce the notion of transitivity, as well as the
successive weak forms of such a notion appearing in the literature, namely
almost-transitivity, convex transitivity, and maximality of the norm. Most
classical results involving these concepts are also included, and some facts
easily deducible from such results are proved. For instance, we show that the
dual of a transitive separable Banach space is almost transitive (Corollary
2.9), and that a Banach space is a 1-complemented subspace of some trans-
itive Banach space whenever it is a 1-complemented subspace of its bidual
(Proposition 2.22). This last result depends on a folklore non-separable ver-
sion of a theorem, due to W. Lusky [55] in the separable case, asserting that
every Banach space is a 1-complemented subspace of some almost transitive
Banach space (see Theorem 2.14). We provide the reader with a proof of
Theorem 2.14 (most part courtesy of F. Cabello) because we have not found
such a proof in the literature. By the sake of pleasantness, we introduce a
new concept between convex transitivity and maximality of the norm, namely
strong maximality of the norm (Definition 2.37). Indeed, /; has maximal but
not strongly maximal norm (Corollary 2.40), and ¢y has strongly maximal
norm but is not convex-transitive (Proposition 2.41).

Section 3 is devoted to review the results in [9] and [10] concerning char-
acterizations of Hilbert spaces in terms of the “abundance” of isometric one-
dimensional perturbations of the identity (see Theorems 3.1 and 3.10). Such
characterizations refine previous ones of N. J. Kalton and G. V. Wood [48],
A. Skorik and M. Zaidenberg [70], and F. Cabello [21], which are collected in
Theorems 2.33, 2.16, and 2.17, respectively. As a newness, we prove a charac-
terization of real Hilbert spaces involving strong maximality of the norm and
and some kind of abundance of isometric one-dimensional perturbations of
the identity (Theorem 3.7). For a characterization of Hilbert spaces in terms
of the abundance of isometric finite-dimensional perturbations of the identity
the reader is referred to [25].

In Section 4 we review the result in [9] characterizing real Hilbert spaces
(among real Banach spaces) by the existence of a non rare subset in the unit
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sphere consisting of points which “act as units” (Theorem 4.1). A point of
a Banach space acts as a unit whenever the geometry of the space at such a
point is quite similar to that of a norm-unital Banach algebra at is unit. For
a complex Banach space, the existence of a non rare subset in the unit sphere
consisting of points which act as units is a too strong condition. Indeed, such a
condition is characteristic of the complex field. Then we introduce the notion
of point “which acts weakly as a unit”, and prove that a real or complex
Banach space is a Hilbert space if and only if there is a dense subset in its
unit sphere consisting of points which act weakly as units (Theorem 4.4). This
leads to the fact that a Banach space X is a Hilbert space if and only if there
exists a Banach space Y and a symmetric bilinear mapping f: X x X —» Y
satisfying || f(x, z)|| = ||z||||z|| for all z,z in X.

Section 5 deals with natural generalizations of Wood’s conjecture [75]
that almost transitive complex Cy(L)-spaces (for some locally compact Haus-
dorff topological space L) are one-dimensional, and of the Grein-Rajalopagan
theorem [41] that almost transitive real Cy(L)-spaces actually are one-di-
mensional. In our opinion, the strongest form of Wood’s conjecture is the
one that almost transitive JB*-triples coincide with complex Hilbert spaces
(Problem 5.1). Concerning the Grein-Rajalopagan theorem, we proved in [11]
a wide generalization by showing that almost transitive JB-algebras are one-
dimensional (Corollary 5.20). In fact Corollary 5.20 follows straightforwardly
from the Grein-Rajalopagan theorem and the fact shown in [11] that convex-
transitive J B-algebras are Cy(L)-spaces (Theorem 5.19). In Theorem 5.25 we
refine Theorem 5.19, providing as well a completely new proof of this last the-
orem. Concerning Problem 5.1 and the closely related question if transitive
preduals of JBW™*-triples are Hilbert spaces (which in general answers neg-
atively), we gave in [11] several partial affirmative answers, collected here in
Propositions 5.3 and 5.6. As a newness, we prove that, if X is the predual of
a purely atomic JBW *-triple, and if the norm of X is strongly maximal, then
X is a Hilbert space (Theorem 5.4). This generalizes the result previously
obtained in [11] that convex-transitive preduals of atomic JBW *-triples are
Hilbert spaces (Corollary 5.5).

The last section of the paper, Section 6, is devoted to the study of the geo-
metry of convex-transitive Banach spaces. We begin by proving a minor new
result, namely that proper faces of the closed unit ball of a convex-transitive
Banach space have empty interior relative to the unit sphere (Corollary 6.3).
In the remaining part of the section we collect the results obtained in [12]
and [13] under the philosophy that a convex-transitive Banach space fulfilling
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some “minor” isometric or isomorphic condition actually is almost transitive
and superreflexive (see Theorem 6.8 and Corollary 6.9). Among the “minor”
conditions suggested above, we emphasize the Radon-Nikodym property, to
be an Asplund space, or merely the Fréchet differentiability of the norm at
some point of the unit sphere. Keeping in mind these results, the difference
between convex transitivity and maximality of the norm becomes very big.
Indeed, ¢y has strongly maximal norm but has no convex-transitive equival-
ent renorming. When it has been possible, we have revisited the main tools in
the proof of Theorem 6.8 quoted above. For instance, this has been the case
of [12, Lemma 2.7], which in the present formulation appear greatly refined
(see Proposition 6.7). Finally, let us note that the class of almost transitive
superreflexive Banach spaces has been fully discussed by C. Finet [36] and F.
Cabello [24].

2. BASIC NOTIONS AND RESULTS ON TRANSITIVITY OF THE NORM

In this section we introduce the basic concepts and results related to the
transitivity (of the norm) of a Banach space. We also present some new facts
which are easily derived from previously known results.

TRANSITIVITY

Throughout this paper K will mean the field of real or complex numbers.
Given a normed space X over K, Sy, Bx, and X* will denote the unit sphere,
the closed unit ball, and the (topological) dual, respectively, of X, and G :=
G(X) will stand for the group of all surjective linear isometries from X to X.
The fundamental concept we are dealing with is the following.

DEFINITION 2.1. A normed space X is said to be transitive if for every
x,y in Sy there exists T in G such that T'(z) = v.

It is well-known and easy to see that pre-Hilbert spaces are transitive. On
the other hand, it is apparent that S. Banach knew about the existence of
transitive, non separable, and non Hilbert Banach spaces. Therefore, in his
book [4] he raises the following question, called the Banach-Mazur rotation
problem.

PROBLEM 2.2. Is every transitive separable Banach space a Hilbert space?
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As well as we know, the above problem remains open to date. As we have
just commented, the answer is negative if the assumption of separability is
removed. We collect here the first published counter-example, which is due to
A. Pelczynski and S. Rolewicz [60] (see also [65, Propositions 9.6.7 and 9.6.8]).

EXAMPLE 2.3. Let I' be the disjoint union of an uncountable family of
copies of the closed real interval [0, 1], and p the measure on I' whose measur-
able sets are those subsets A of I' whose intersection with each of such copies
is measurable relative to the Lebesgue measure, with p(A) equal to the sum of
the measures of those intersections. Then, for 1 < p < oo, the Banach space
L,(T', p) is transitive.

It is worth mentioning that the Banach-Mazur rotation problem has an
affirmative answer whenever the assumption of separability is strengthened
to that of finite dimensionality. In such a case, as we will see later, even the
assumption of transitivity can be drastically relaxed.

It is clear that a transitive Banach space is smooth whenever it is smooth
at some point of its unit sphere. In this way, thanks to a well-known theorem
of S. Mazur, the transitive separable Banach space in Problem 2.2 must be
smooth. Therefore Problem 2.2 has an affirmative answer into every class of
Banach spaces whose smooth members are Hilbert spaces. For instance, this is
the case for the class of spaces Cgf(L), where L is a locally compact Hausdorff
topological space, and ng(L) stands for the Banach space of all K-valued
continuous functions on L vanishing at infinity. Actually it is easily seen that
the unique smooth CX(L)-space is K (= CX(L), with L reduced to a single
point). Now that we know that the locally compact Hausdorff topological
space L is reduced to a point whenever C{ (L) is separable and transitive, we
can wonder if the result remains true when the assumption of separability is
removed. The answer is affirmative if K = R, even with a slight relaxing of the
assumption of transitivity [41] (to be more precise, see Theorem 2.11 below).
It is a conjecture that the answer is also affirmative if K = C. In any case,
the next characterization of the transitivity of CJ (L) seems to be interesting.

THEOREM 2.4. ([41]) Let X := C§(L). Then X is transitive if and only
if for xz,y in Sx with x,y > 0 there exists a homeomorphism o : L — L such
that x(l) = y(o(l)) for every | in L, and every element z in X has a “polar
decomposition” z = ut with t > 0 in X and u a continuous function from L
into the unit sphere of C.
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In relation to Problem 2.2, the class of C’Sj (L)-spaces is not too instructive
because of the enormous scarcity of Hilbert spaces in that class. In this dir-
ection, the largest class of the so-called JB*-triples becomes more suggestive.
In Section 5 we will provide the reader with the definition of JB*-triples, and
will comment about the importance of these Banach spaces in connection with
complex Analysis. For the moment, let us limit ourselves to say that complex
Hilbert spaces are JB*-triples, and that, according to the main result in [71],
every smooth JB*-triple is a Hilbert space. Therefore we have the following
partial answer to Problem 2.2.

COROLLARY 2.5. ([71]) Every transitive separable JB*-triple is a Hilbert
space.

We do not know if the above corollary remains true without the assump-
tion of separability. If this were the case, then we would be provided with
a nice characterization of complex Hilbert spaces involving transitivity. Be-
fore to pass to study some weak forms of transitivity, let us give a useful
characterization of this property.

PROPOSITION 2.6. A normed space X is transitive if and only if there
exists © in Sx such that G(z) := {T'(z) : T € G} has nonempty interior
relative to Sx.

Proof. We may assume that the dimension of X over R is > 2. Let
be in Sx such that there exists ¢ > 0 satisfying {y € Sx : |ly —z| < e} C
G(z). Given z in Sx, there are yp,...,y, in Sx with yo = z, y, = 2z, and
llyi — yi—1]| < e for every i = 1,...,n. Clearly y; € G(z). Let 0 < k < n with
Y € G(z). Choosing T in G such that T'(y;) = x, we have

1T (yr+1) = 2l = [T (k41 —yr) || <,

and hence yi11 belongs to G(x). Therefore z = y,, belongs to G(x). 1

ALMOST-TRANSITIVITY

Now let us introduce the first weakening of the transitivity which appears
in the literature.

DEFINITION 2.7. A normed space X is said to be almost transitive if there
exists a dense subset D of Sx such that the equality G(u) = D holds for every
uin D.
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Obviously, every transitive normed space is almost transitive. Almost-
transitivity has several useful re-formulations which are collected in the next
proposition. We refer the reader to either [10, Proposition 2.1] or [12, Pro-
position 3.1] for a proof. We recall that a subset R of a topological space FE
is said to be rare in E if the interior of the closure of R in E is empty.

PROPOSITION 2.8. For a normed space X, the following assertions are
equivalent:

1. X is almost transitive.

There exists x in Sx such that G(x) is dense in Sx.
For every = in Sx, G(x) is dense in Sx.

For every = in Sx, G(x) is non rare in Sx.

oL

There exists x in Sx such that G(z) is non rare in Sx.

The notion of almost-transitivity just introduced allows us to obtain some
nontrivial information about the transitive separable Banach space in the
Banach-Mazur rotation problem.

COROLLARY 2.9. If X is a transitive separable Banach space, then X* is
almost transitive.

Actually we have the following more general result.

ProproSITION 2.10. Let X be a transitive smooth Banach space. Then
X* is almost transitive.

Proof. Let f be a norm-one linear functional on X attaining its norm.
Since X is smooth and transitive, the set {T™(f) : T' € G} contains the set of
all norm-one linear functionals on X which attain their norms. But, by the
Bishop-Phelps theorem, this last set is dense in Sx=. It follows that G(X™*)(f)
is dense in Sx=«. |

The question of almost-transitivity of C(%Q(L)—spaces is definitively settled
by the theorem of P. Greim and M. Rajalopagan which follows (see also [21]).

THEOREM 2.11. ([41]) Let L be a locally compact Hausdorff topological
space. If CX(L) is almost transitive, then L reduces to a singleton.

Transitivity and almost-transitivity of the norm on L,(u)-spaces, for 1 <
p < 00, has been fully studied in [40]. Among the results in that paper, we
cite for convenience the following.



8 J. BECERRA GUERRERO, A. RODRIGUEZ-PALACIOS

PRrROPOSITION 2.12. ([40, Proposition 1.1]) If 1 < p < oo, if p # 2, if
L]E(u) is almost transitive, and if p has some atom, then L]}I,f(u) =K.

Now let us deal with nontrivial examples of almost transitive Banach
spaces.

EXAMPLE 2.13. For 1 < p < oo with p # 2, L,[0,1] is almost transitive
[65, Theorems 9.6.3 and 9.6.4] but not transitive [40, Theorem 1.3]. V.I. Gur-
arij [42] builds a separable Banach space G with a “nice extension property”
which we do not specify here. Later W. Lusky [54] shows that all separable
Banach spaces enjoying such an extension property coincide up to isomet-
ric isomorphisms, and proves that Gurarij’s space is almost transitive. We
can realize that GG is not transitive by arguing as follows. We know that
G* = Li(u) [74] for some measure p which, obviously, has some atom. By
Proposition 2.12, G* is not almost transitive, and therefore, by Corollary 2.9,
G is not transitive.

Banach spaces in the above example show that, if we relax, in the Banach-
Magzur problem, the assumption of transitivity to that of almost-transitivity,
then the answer is negative. Although examples of almost transitive classical
Banach spaces are scarce, the abundance of almost transitive (non classical)
Banach spaces is guaranteed by the result of W. Lusky which follows.

THEOREM 2.14. ([55]) Every Banach space X can be isometrically re-
garded as a 1-complemented subspace of an almost transitive Banach space
having the same density character as X.

In Lusky’s paper the reader can find only a particular version of the
above theorem, namely every separable Banach space can be regarded as a
1-complemented subspace of some almost transitive separable Banach space.
However, as remarked by several authors, minor changes in Lusky’s proof al-
low to arrive in the most general result given in Theorem 2.14. Since no author
specifies the changes needed to achieve this goal, we include here a complete
proof of Theorem 2.14, most part of which is courtesy of F. Cabello.

LEMMA 2.15. Let X be a Banach space with density character X, { Ey }qer
a family of subspaces of X, and for « in I let T, : E, — X be an isometry,
and Py : X — E4 and Qq : X — T,(E,) contractive projections. Then

there exists a Banach space X containing X isometrically and whose density
character is X, together with a contractive projection P : X — X, and for
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« in I' there is an isometric_extension of Ty, Ta X - X , together with a
contractive projection Qn : X — T, (X).

Proof. Let us consider the Banach space Y := X&% (& acrX ), whose ele-
ments will be written in the form (z; (za)aer), and the closed subspace V' of
Y generated by the set

{(_ T(e); (5’yae)aer> yel,ec E,y},

where 0, means Dirac’s function. Put X = Y/V. Then the mapping x —

(2;(0)aer) + V from X to X becomes a linear isometry, so that, up to such
an isometry, we will see X as a subspace of X. We note that, for v in I and
e in E,, we have

(Ty(€); (0)aer) + V = (0; (6ya€)acr) + V.

Now, for v in I', we consider the contractive linear extension T X - X
of T, : E, — X given by T { (0ya)aer) + V} Actually, for v in
T, T7 is an isometry. Indeed, for every x in X and every quasi-null family

(ea) € [Iper Eo we have
+le—ell+ > lleal

|5 ne
€l a€l\{y}

> Ty (el + e —esll+ > (lleall = ITalea)ll)

acl\{~}

= llesll + [l = ey [l = |l

and hence
1T ()] = [1(0; (3ya)acr) + V|

:inf{HZTa(ea)H+||m—ev||—|— 3 lleall: (ea) as above}ZH:nH.
a€l acl\{~}

Finally, the proof is concluded by considering the contractive projection P :
X — X given by

P{(w: (za)aer) + V} = {(#: (Pa(za))aer) + V},

and for v in T the contractive projection Q'y (X TW(X ) defined by

Qv’y{ (13; (xa)ael‘) + V} = {(Q'y(x + Z TaPaI'a); (5704557)046‘) + V}-
ael\{~} 1



10 J. BECERRA GUERRERO, A. RODRIGUEZ-PALACIOS

Proof of Theorem 2.14. Let X be a Banach space over K with density
character N. For X, := X, choose a dense subset Dy := {xg}Aer of Sx, with
cardinal equal to X. Put T'g := Ag X Ag and, for a := (A, ) in Ty, consider
the subspace E := K9 of X, and the unique (automatically isometric)
linear mapping 79 : E — X satisfying T2(2) = mg. By the Hahn-Banach
theorem, for a in T'g we can choose contractive projections P and Q2 from X
onto EY and T (E?), respectively. Let R denote the identity mapping on X,
which, by methodological reasons, should be seen as a contractive projection
from Xg onto X. Applying the above lemma, we obtain:

1. A Banach space X; containing X and having N as density character.
2. An isometric linear extension fg : Xo — Xj of T? for each a € Ty.

3. A contractive projection @g X1 — TS(XO) for each o € T'y.

4. A contractive projection P?: X7 — Xj.

Now we write R := R% o P, which is a contractive projection from X onto
X, and for a in I'g we define:

1. EL :=T%(X,)
2. T :=joo (TY)™' : EL — Xy, where jo denotes the inclusion of X into

Xi.
3. (11 .= PY.
4. P .= QY.

A new application of Lemma 2.15 gives the existence of:

1. A Banach space X5 containing X; and having density character equal
to N.

2. An isometric linear extension Tval : X1 — Xy of T! for each a € Ty.
3. A contractive projection Q, : Xo — T1(X1) for each a € Tg.
4. A contractive projection P! : Xy — X.

Let Dy := {az?\} AcA, Dbe a dense subset of Sy, of cardinality N, and let I'y
denote the disjoint union of I’y and As X As. For « in I'y we consider:

1. The subspace E2 of X, given by E2 := K3 whenever a = (), u1) belongs
to Ay x Ay, and E? := Xj otherwise.

2. The linear isometry T : Ej — Xa determined by T7(x3) = 2, whenever
a = (), ) belongs to Ay x Ay, and given by T2 := fao otherwise.

3. The contractive projection P2 from Xs onto E2 given by P2 := P%o P!
if a belongs to I'y, and arbitrarily chosen otherwise.
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4. The contractive projection Q? from X, onto T2(E2) given by Q% :=
QY o P if a belongs to I'g, and arbitrarily chosen otherwise.

Moreover, we write R? := R? o P!, which is a contractive projection from Xo
onto X. Now the sextuple

(X27 {Eg}aem, {To%}aél—‘27 {P(z}CXGFQv {Q(Qj[}CXEFQv R2)

is in the same situation as the one

(XOv {Eg}aeFm {Tg}ael“oa {Pg}aef‘ov {Qg}aef‘oa Ro)v

and therefore we can continue the process, obtaining in this way a sequence

(Xn7 {Eg}ael“m {Tg}ael“nv {Po’r}}ozel_‘na {QZ}O&EFTN Rn)nZO

whose properties can be easily guessed by the reader. We remark that, in the
inductive definition of the above sequence, the passing from the n-th term to
the subsequent one must be made in a way similar to that followed in passing
from the O-th term to the 1-th whenever n is even, whereas otherwise we must
follow a process similar to that applied in obtaining the 2-th term from the
1-th. Finally, the almost transitive Banach space we are searching is nothing
but Z := U,enXn, and the contractive projection from Z onto X is the one
R determined by R(z) = R"(z), whenever z is in X,, for some n in N. 1

One of the classical topics in the matter we are developing is that of char-
acterizing Hilbert spaces by means of some type of transitivity together with
a suitable added natural property. In what follows we review some results in
this direction. A linear operator F' on a Banach space X is said to be a reflec-
tion if there is a maximal subspace M of X, together with a nonzero element
e in X such that F' fixes the elements of M and satisfies F'(e) = —e. We note
that every reflection is a (linear) one-dimensional perturbation of the identity.
If X is a Hilbert space, then isometric reflections on X are abundant. Indeed,
for each norm-one element e in X consider the mapping x — x —2(z|e)e from
X into Sx.

THEOREM 2.16. ([70]) A real Banach space is a Hilbert space if (and only
if) it is almost transitive and has an isometric reflection

In his Thesis, F. Cabello observes that, given a real Banach space X, there
are no one-dimensional isometric perturbations of the identity on X other than
the isometric reflections on X. Moreover, he proves the following result, which
becomes a complex version of Theorem 2.16.
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THEOREM 2.17. ([21]) A complex Banach space is a Hilbert space if (and
only if) it is almost transitive and has an isometric one-dimensional perturb-
ation of the identity

TRANSITIVITY VERSUS ALMOST-TRANSITIVITY

Theorem 2.14, together with ultraproduct techniques [44], will allow us to
realize that transitive Banach spaces are quite more abundant than what one
could suspect. To this end, we recall some simple ideas from the theory of
ultraproducts. Let U be an ultrafilter on a nonempty set I, and {X;}icr a
family of Banach spaces. We can consider the Banach space EBfg’IXi, together
with its closed subspace

Ny = {{xi}iel € @fg}Xi : hén |3l = 0}'

The ultraproduct (X;)y of the family {X;}ies relative to the ultrafilter U is
defined as the quotient space @fg}Xi /Ny Denoting by (x;) the element of
(Xi)u containing {z;}, it is easily seen that the equality |[(x;)|| = limy ||2;]]
holds. If, for each i in I, Y; is a closed subspace of X;, then we can apply the
above formula to naturally identify (Y;);; with a closed subspace of (X;)y. In
the particular case that X; = X for every 7 in I, where X is a prefixed Banach
space, the ultraproduct (X;);; will be called the ultrapower of X relative to
the ultrafilter U, and will be denoted by Xy. In such a case, the mapping
x — T from X to Xy, where = (x;) with x; = x for every 7 in I, is a linear
isometry. An ultrafilter & on a set [ is called trivial if there exists ig in [
such that {ig} € Y. If this is the case, then a subset U of I belongs to U if
and only if ig belongs to U. Clearly, nontrivial ultrafilters on a set I contain
the filter of all co-finite subsets of I. The ultrafilter ¢/ is called countably
incomplete if there is a sequence {Up}n>1 in U such that J := N5, U, does
not belong to Y. If this is the case, then it is enough to inductively define
L =11,41=1,nU,N(I\J), to have in fact a sequence {I,,} in U such that
I=11 21,2132 ... D) ﬂneNIn = (). It is clear that countably incomplete
ultrafilters are non trivial. Is is also clear that, on countable sets, nontrivial
ultrafilters and countably incomplete ultrafilters coincide. The following result
is folklore in the theory (see [22, Lemma 1.4] or [40, Remark p. 479]).

ProroSITION 2.18. If I is a countable set, if U is a nontrivial ultrafilter
on I, and if {X;}ier is a family of almost transitive Banach spaces, then the
Banach space (X;)y Is transitive.
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A reasonable extension of the above result is the following

PRroPOSITION 2.19. Let U be a countably incomplete ultrafilter on a set
I, and {X,;}icr a family of almost transitive Banach spaces. Then (X;)y is
transitive.

Proof. Take a decreasing sequence {I,}nen in U such that I; = I and
Mpendn = 0. Consider the mapping o : I — N given by

o(i) :=max{n e N:ie [,}.

We are showing that, for (z;) and (y;) in S(x,),, there exists T in G((X;)y)
satisfying T'((z;)) = (y;). Without loss of generality we may assume that z;
and y; belong to Sx, for every i in I. Given i € I, there is T; in G(X;) with
lyi — Ti(z)|| < ﬁ Now, the mapping 7' from (X;)y into (X;)y defined by
T((z)) = (Ti(z;)) is a surjective linear isometry satisfying T'((z;)) = (yi)-
To verify this last equality, note that it is equivalent to the fact that, for
every ¢ > 0, the set {i € I : ||y; —Ti(z;)|]| < €} belongs to U. But this
is true because, given £ > 0, the set {i € I : [|y; — T3(x;)| < €} contains
{ieI:o(i)>p} for pin N with % < ¢, and this last set contains I,,. Il

A first consequence of Proposition 2.18 is that, if a class of Banach spaces
is closed under ultrapowers, and if some of its members is almost transitive but
non Hilbert, then there exists a member in the class which is transitive and
non Hilbert. As a bi-product of the commutative Gelfand-Naimark theorem
[66, Corollary 1.2.2], the class of C§ (L)-spaces is closed under ultraproducts.
Therefore the conjecture early commented, that an almost transitive C§ (L)-
space must be equal to C, is equivalent to the apparently stronger which
follows. Such a conjecture is called Wood’s conjecture.

CONJECTURE 2.20. ([75]) If L is a locally compact Hausdorff topological
space, and if the Banach space C(()C(L) is almost transitive, then L reduces to
a singleton.

It is well-known (see [75, Section 3]) that the answer to the above con-
jecture is affirmative whenever L is in fact compact. A straightforward con-
sequence of Theorem 2.14 and Proposition 2.18 is the following.

COROLLARY 2.21. Every Banach space can be isometrically regarded as
a subspace of a suitable transitive Banach space.
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The next result becomes a useful variant of Corollary 2.21.

PROPOSITION 2.22. If the Banach space X is l-complemented in its
bidual, then also X is 1-complemented in some transitive Banach space.

Proof. Since the relation “to be 1-complemented in” is transitive, it is
enough to show that every dual Banach space is 1-complemented in some
transitive Banach space. (By the way, this is also necessary because every
dual Banach space is 1-complemented in its bidual.) Let X be a dual Banach
space. Take a nontrivial ultrafilter ¢4 on N. By Theorem 2.14, there exist an
almost transitive Banach space Z and a contractive projection @1 : Z — X.
Then the mapping Q; (z;) — (Q1(x;)) is a contractive projection from Z,
onto Xz;. On the other hand, regarding naturally X as a subspace of Xy,
the mapping Q2 : (x,) — w* — limy{x,} becomes a contractive projection
from X7, onto X. Now Z; is transitive (by Proposition 2.18) and Q2 o @\1 is
a contractive projection from Zz; onto X. 1

We recall that a Banach space X has the approximation property if for
every compact subset K of X and every € > 0 there exista a finite rank
bounded linear operator 7" on X such that ||T'(z) — x| < ¢, for all z in K. In
[55] W. Lusky observes how Theorem 2.14 can be applied to obtain the exist-
ence of almost transitive separable Banach spaces failing to the approximation
property. Since today we know about the existence of reflexive Banach spaces
without the approximation property (see for instance [53, Theorem 2.d.6]),
the next result follows from Proposition 2.22.

COROLLARY 2.23. There exist transitive Banach spaces failing to the ap-
proximation property.

The assertion in the above corollary can be found in [21, p. 57], where
a proof is missing. Now that we know how almost transitive Banach spaces
give rise to transitive Banach spaces, let us consider the converse question. Of
course, such a question becomes interesting only whenever the almost trans-
itive Banach space built from a transitive one is drastically “smaller”. A rel-
evant result in this line is the one of F. Cabello [22] that, if X is a transitive
Banach space, and if M is a closed separable subspace of X, then there exists
an almost transitive closed subspace of X containing M. Actually the result
just quoted is a particular case of Theorem 2.24 below, which has shown very
useful in the applications. Let J be a subcategory of the category of Banach
spaces (see [68, p. 161, Definition 9.13]). By a J-space we mean an object of
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J, and by a J-subspace of a given J-space X we mean a closed subspace Y
of X such that Y is a J-space and the inclusion Y «— X is a J-morphism.
The subcategory J is said to be admissible whenever the following conditions
are fulfilled:

1. For every J-space X and every separable subspace Z of X, there exists
a J-subspace Y of X which is separable and contains Z.

2. For every J-space X and every increasing sequence {Y,,} of J-subspaces
of X, the space |J,,cnYn is a J-space.

THEOREM 2.24. ([22]) Let J be an admissible subcategory of Banach
spaces, X a transitive [J-space, and M a separable subspace of X. Then
there exists an almost transitive separable [J-subspace of X containing M.

Actually, replacing the density character Ny of separable Banach spaces
with an arbitrary cardinal number X, a reasonable concept of R-admissible
subcategory of Banach spaces can be given, and the corresponding general-
ization of Theorem 2.24 can be proved (see [7, pp. 19-22]). As a relevant
application of Theorem 2.24, F. Cabello observes that the subcategory of
Cg:(L)—spaces, with morphisms equal to algebra homomorphisms, is admiss-
ible, and consequently reduces Wood‘s conjecture (Conjecture 2.20) to the
bleeding one which follows.

CONJECTURE 2.25. ([22]) If L is a locally compact Hausdorff topological
space whose one-point compactification is metrizable, and if Cf)c (L) is almost
transitive, then L reduces to a point.

CONVEX TRANSITIVITY

After the almost-transitivity, the subsequent weakening of the transitiv-
ity arising in the literature is the so-called convex transitivity, given in the
following definition.

DEFINITION 2.26. A normed space X is said to be convex-transitive if for
every = in Sx we have ¢o(G(z)) = Bx, where ¢o means closed convex hull.

By Proposition 2.8, almost transitivity implies convex-transitivity. In the
next Theorem we collect a very useful characterization of convex transitivity,
due to E. R. Cowie.
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THEOREM 2.27. ([28]) For a normed space X, the following assertions
are equivalent:

1. X is convex-transitive.

2. Every continuous norm on X enlarging the group of surjective linear
isometries of X is a positive multiple of the norm of X.

3. Every equivalent norm on X enlarging the group of surjective linear
isometries of X is a positive multiple of the norm of X.

In Cowie’s original formulation of Theorem 2.27, only the equivalence of
Conditions 1 and 3 above is stated. On the other hand, the implication 2 = 3
is clear. Let us realize that 3 implies 2. Let || - || be a continuous norm on X
enlarging G. Then the norm |-| on X given by |z| := ||z|| + ||z| is equivalent
to the natural norm of X and enlarges G. Now, if we assume Condition 3,
then |-| is a positive multiple of || - ||, and hence || - || is also a positive multiple
of ||-||. A standard application of the Hahn-Banach theorem provides us with
the following folklore but useful characterization of convex transitivity.

PROPOSITION 2.28. A Banach space X is convex-transitive if and only if,
for every f in Sx=, the convex hull of {T*(f):T € G} is w*-dense in Bx~.

Convex transitivity in C&(L)-spaces has been studied in some detail by G.
V. Wood [75]. The main results in this line are collected in the two theorem
which follow.

THEOREM 2.29. ([75]) Let L be a locally compact Hausdorff topological
space. Then C§(L) is convex-transitive If and only if, for every probability
measure p on L and every t in L, there exists a net {4} of homeomorphisms
of L such that the net {u o 7,} is w*-convergent to the Dirac mesure d;.

In the above theorem (as well as in what follows), for a measure p on L
and a homeomorphism + of L, oy denotes the measure on L defined by

[xd(uoy) = [(zo7)d(n), for every x in CL(L).

THEOREM 2.30. ([75]) Let L be a locally compact Hausdorff topological
space. Then CX(L) is convex-transitive if and only if L is totally disconnected
and, for every probability measure p on L and every t in L, there exists a net
{Ya} of homeomorphisms of L such that the net {j 0~,} is w*-convergent to
Ot

The next result follows straightforwardly from the two above theorems.
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COROLLARY 2.31. C§(L) is convex-transitive whenever C& (L) is.

In our opinion, Theorems 2.29 and 2.30 are theoretically nice, but not too
useful to provide us with examples of convex-transitive Banach spaces. The
interest of those theorems actually relies in Corollary 2.31 above, and the
fact noticed in [21] that Theorem 2.11 can be easily derived from Theorem
2.30. As far as we know, before our work (see Corollary 5.15 below), all known
examples of convex-transitive non almost transitive Banach spaces are O (L)-
spaces. All these examples were discovered by A. Pelczynski and S. Rolewicz
[60] (see also [65] and [75]), and are collected in what follows.

ExaMpPLE 2.32. The following Banach spaces are convex-transitive:

. C§(L), with L = (0,1).
K(K), where K denotes Cantor’s set.
CYK), with K = {z € C: |z| = 1}.

L% ([0, 1],7), where « stands for Lebesgue’s measure.

Q

= W N =

We note that, since LS ([0, 1],7) is a unital commutative C*-algebra, we have
LX ([0,1],7) = C¥(K), for some compact Hausdorff topological space K. As
shown in [75, pag. 180], C&X(L) cannot be almost transitive if L is not reduced
to a point and either L is compact or L has a compact connected subset with
nonempty interior. It follows that all Banach spaces enumerated above are
not almost transitive.

Let us now review a nice characterization of complex Hilbert spaces in
terms of convex transitivity, due to N. J. Kalton y G. V. Wood. We recall
that a bounded linear operator F' on a complex Banach space X is said to be
hermitian if, for every A in R, the operator exp(i\F) is an isometry. If X is
a Hilbert space, then orthogonal projections onto the closed subspaces of X
become examples of hermitian projections.

THEOREM 2.33. ([48, Theorem 6.4]) Let X be a convex-transitive com-
plex Banach space having a one-dimensional hermitian projection. Then X is
a Hilbert space

To close our review on convex transitivity, let us notice some mistaken
results in [65], which can produce confusion to an inexpert reader. Indeed, in
[65, Theorems 9.7.3 and 9.7.7] (referring to a forerunner of [75]), Assertions 1
and 2 which follow are formulated.
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1. C&(L) is convex-transitive if and only if, for every s in L, the set {7(s) :
~ homeomorphism of L} is dense in L.

2. CR(L) is convex-transitive if and only if L is totally disconnected and,
for every s in L, the set {(s) : ¥ homeomorphism of L} is dense in L.

Clearly, both assertions are not true. Indeed, if those assertions were correct,
then the real or complex Banach spaces (%, (n € N\ {1}) and ¢y would
be convex-transitive (note that, by Theorem 2.33, this would imply in the
complex case that those spaces are Hilbert spaces). The mistake in the proof
of Assertions 1 and 2 above is very elemental: a simple erroneous change of
direction in an inequality. It seems to us that Assertions 1 and 2 above are
nothing but non corrected preliminary versions of Theorems 2.29 and 2.30,
respectively. In any case, as we show in the next proposition, a little true can
be found in such assertions.

PROPOSITION 2.34. Let L be a locally compact Hausdorff topological
space. Put X := C§(L), and denote by T' the group of all homeomorphisms
of L. Then the following assertions are equivalent:

1. For every x in Sx, the linear hull of G(x) is dense in X.
2. For every s in L, the set I'(s) := {vy(s) : v € I'} is dense in L.

Proof. 1 = 2.- Assume that for some s in L we have I'(s) # L. Then
I :={z € X : z(I'(s)) = 0} is a nonzero proper closed subspace of X.
Moreover it follows from the well-known theorem of M. H. Stone, describing
the surjective linear isometries of C§ (L), that I is G-invariant. Now, for x in
I'N Sx, the linear hull of G(x) is not dense in X.

2 = 1.- Let x be in Sx. Let I denote the closed linear hull of G(x). We
claim that I is an ideal of X. Indeed, for @ in R\ {0} and z in X with
x(L) C R, the operator of multiplication by exp(iaz) on X belongs to G.
Therefore, since I is G-invariant, for y in I we have

exp(iaz)y —y
(6%

el,

and hence, letting a — 0, we obtain zy € I. Now that we know that [ is an
ideal of X, we can find a closed subset E of L such that
I={ye X:y(F)=0}

Then a new application of Stone’s theorem, together with the G-invariance of
I, leads that E is I'-invariant. Now, if Assertion 2 holds, then F is empty
(since I # 0), and hence I = X. 1
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For future discussions, se recall that Stone’s theorem just applied asserts
that, given a surjective linear isometry 7" on ng(L), there exist a continuous
unimodular K-valued function 6 on L and a homeomorphism ~ of L satisfying
T(x)(s) = 0(s)z(v(s)) for all z in X and s in L.

MAXIMALITY OF NORM

Now, let us introduce the weakest form of transitivity arising in the liter-
ature.

DEFINITION 2.35. Given a normed space X, we say that the norm of X is
maximal whenever there is no equivalent norm on X whose group of surjective
linear isometries strictly enlarges G.

In relation to the philosophy of transitivity, the notion of maximality of
norm is somewhat less intuitive than the ones previously given. In any case,
maximality of the norm is implied by convex transitivity (in view of the im-
plication 1 = 3 in Theorem 2.27). Summarizing, we are provided with the
following chain of implications between transitivity conditions on a Banach
space:

‘ Hilbert ‘ = ‘ Transitive ‘ = ‘ Almost transitive ‘

= ‘ Convex-transitive ‘ = ‘ Maximal norm ‘

We already know that none of the first three implications in the above
chain is reversible. As we see immediately below, also the last implication
cannot be reversed.

EXAMPLE 2.36. We recall that a Schauder basis {e,}nen of a Banach
space X is said to be (1-)simmetric whenever, for every bijection o : N — N
and every couple of finite sequences ay,...,an, B1,...,0, with 31| = -+ =

|Bn| = 1, we have
H ;Biaiea(i) = H ;aiei

Let X be a Banach space with a symmetric basis {e, }nen. Given a bijection
o : N — N and a sequence {0, }nen of unimodular numbers, for each z =
Yol Qnen in X the series Y 2| Braneq(n is convergent, and the mapping
Ty 0 Bnan€s(n) is a surjective linear isometry on X. A. Pelczinski and

S. Rolewicz show that, on a Banach space X # /5 with a symmetric basis,
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there are no surjective linear isometries other than the ones described above
(see [65, Chapter 9, Section 8]). As a consequence, the norm of every Banach
space non isomorphic to fo and having a symmetric basis is maximal. For
instance, this is the case of the spaces co y ¢, (1 < p < oo,p # 2), which of
course are not convex-transitive.

J.R. Partington [57, Theorem 1] shows that the natural norm of C®([0, 1])
is not maximal. On the other hand, N. J. Kalton and G. V. Wood [48,
Theorem 8.2] prove that, if L locally compact Hausdorff topological space,
then the norm of C§ (L) is maximal whenever one of the following conditions
is fulfilled:

1. L is infinite and contains a dense subset consisting of isolated points.

2. There exists a dense subset of L consisting of points admitting a neigh-
bourhood homeomorphic to an open subset of an Euclidean space.

Consequently, although C®([0,1]) is not convex-transitive [28, Example 3],
the norm of C®([0,1]) is maximal. For recent advances about maximality of
the norm in Cy(L)-spaces, the reader is referred to [52].

Now, we are introducing an intermediate notion between convex transitiv-
ity and maximality of norm, which, as far as we know, has been not previously
considered in the literature.

DEFINITION 2.37. Given a normed space X, we say that the norm of X
is strongly maximal whenever there is no continuous norm on X whose group
of surjective linear isometries strictly enlarges G.

By the implication 1 = 2 in Theorem 2.27, convex transitivity implies
strong maximality of norm, and, clearly, strong maximality of norm implies
maximality of norm. The notion just introduced will become specially useful
when it is put together with the following one.

DEFINITION 2.38. By an invariant inner product on a normed space X
we mean a continuous inner product (-|-) on X satisfying (F(x)|F(x)) = (z|x)
for every x in X and every F'in G.

Now, keeping in mind that pre-Hilbert spaces are transitive, the proof of
the following result becomes an exercise, which is left to the reader.

PROPOSITION 2.39. Let X be a normed space. Assume that the norm of
X is strongly maximal and that there exists an invariant inner product on X.
Then X is a pre-Hilbert space.
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As a first application of the above proposition, we find examples of Banach

spaces whose norm is maximal but not strongly maximal (compare Example
2.36).

COROLLARY 2.40. Let 1 < p < 2. Then the norm of ¢, is not strongly
maximal.

Proof. For z = {ay}, y = {Bn} in £, put (z|y) :== >0, anfBy. Then (|
is an invariant inner product on £,. If the norm of ¢, were strongly maximal,
then, by Proposition 2.39, ¢, would be a Hilbert space. 1

Now, it seems reasonable to exhibit a Banach space failing to convex trans-
itivity but having strongly maximal norms. The example cannot be easier.

PROPOSITION 2.41. The norm of ¢y is strongly maximal.

Proof. Since the norm of ¢y is maximal, it is enough to show that every
continuous norm on ¢y whose group of linear surjective isometries enlarges
G(cp) is in fact equivalent to the natural norm. Actually we will prove some-
thing better, namely that every norm on cg enlarging the group of surjective
linear isometries generates a topology stronger than that of the natural norm.
Let || - || be a norm on ¢y such that G(cy) € G(co, || - ||). Let us denote by
U := {u, : n € N} the canonical basis of ¢y, and by V := {v, : n € N} the
canonical basis of ¢; regarded as a subset of ¢j. Since U C G(co)(u1), we have
U C G(co, || - )(u1), and therefore there is no loss of generality in assuming
that ||u,| = 1 for every n in N. On the other hand, for n in N, the mapping
x — x — 2vp,(x)uy, from ¢y to ¢y belongs to G(cp), and hence it also belongs to
G(co, || - ) It follows that, for every n in N, v,, belongs to (co, || - ||)* and the
equality ||v,| = 1 holds. Let f := {\,} be in ¢;. Then we have

e’} 00
D IAneall <7 1l
n=1 n=1

and therefore the series > A\, v, converges in (co, || - ||)*. But, regarded as an
element of the algebraic dual of ¢y, the sum of that series both in (cq, || - ||)*
and ¢ must coincide because both || - [|-convergence in (co, || - ||)* and || - |-
convergence in ¢ imply point-wise convergence. Now we have shown that
¢y € (co, || - |I)* and that for f in ¢ we have

A< IAwvall < 1]
n=1
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Finally, for z in cg, we can choose f in S with f(z) = ||z|| to obtain

[zl = f () < 1Al < 1A=l = Tl .

To conclude our review on maximality of the norm, let us realize that, as
we commented early, the Banach-Mazur theorem has an affirmative answer in
a finite-dimensional setting. Actually the better result which follows holds.

COROLLARY 2.42. ([65, PROPOSITION 9.6.1]) Every finite-dimensional
space over K with a maximal norm is a Hilbert space.

The above corollary follows straightforwardly from Proposition 2.39 and
the celebrated theorem of H. Auerbach ([2], [3]) which follows.

THEOREM 2.43. On every finite-dimensional Banach space there exists an
invariant inner product.

For a collection of elegant proofs of Auerbach’s theorem the reader is re-
ferred to [23].

TRANSITIVITY AND ISOMORPHIC CONDITIONS

We devote the last part of this section to consider one of the most open
aspects of the matter we are dealing with, namely that of the relationship
between transitivity conditions previously introduced and the most familiar
isomorphic conditions on Banach spaces. In Diagrams I and IT which follow
we recall the first and second ones, respectively. By the sake of shortness, we
write “hilbertizable” instead of “isomorphic to a Hilbert space”.

Diagram I Diagram II
‘ Finite-dimensional ‘
U J
Y U
Almost transitive Superreflexive
| | | |
Y J
‘ Convex-transitive ’ ‘ Reflexive ’
Y 4

‘ Maximal norm ‘ ‘ Asplund ‘ ‘ Radon-Nikodym ’
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It is quite natural to raise the following two questions:

1. If a Banach space satisfies some of the properties in Diagram I, does it
satisfy someone of those in Diagram II7

2. If the Banach space X satisfies some of the properties in Diagram II,
must some of the conditions in Diagram I be fulfilled by a suitable
equivalent renorming of X7

With the unique exception of the obvious fact that Hilbert spaces are hilbert-
izable, the answer to Question 1 above is a total disaster because of Corollary
2.21 and the fact that all conditions in Diagram II are hereditary. Such a dis-
aster led some authors (see [75], [57], and [24]) to conjecture that the weakest
condition in Diagram I could be isomorphically innocuous. In other words,
the following problem remains open.

PROBLEM 2.44. Can every Banach space be equivalently renormed in such
a way that the new norm is maximal?

The above problem can be re-formulated as follows. Has every Banach
space X a maximal bounded subgroup of the group of all automorphisms of X ?
The equivalence of this new question with Problem 2.44 follows from the fact
that, if G is a bounded group of automorphisms of a Banach space X, then, for
the equivalent new norm || - |5 on X given by ||z|| := sup{||F(z)| : F' € G},
we have G C G(X,| -||5)- Concerning Question 2, things behave no much
better. For instance, it seems to be unknown if every superreflexive Banach
space has an equivalent maximal renorming. However, in the opinion of some
authors (see [36] and [30]), the possibility that superreflexive Banach spaces
could be almost transitively renormed must not be discarded. Now that we
know that the answers to Question 1 and 2 are negative and essentially un-
known, respectively, a reasonable way to leave the “impase” consists in put-
ting together some of the properties in Diagram I and someone of those in
Diagram II, hoping to obtain some nontrivial additional information. With
some chance, a successful work in the direction just mentioned could at least
show the isomorphic non-innocuousness of transitivity, almost-transitivity,
and convex-transitivity. One of the pioneering paper in this line is that of
V. P. Odinec [56], where it is proven that the dual of a transitive reflexive
Banach space is transitive. Other interesting contribution is that of C. Finet
[36] (see also [30]), who shows that superreflexive almost transitive Banach
spaces are uniformly convex and uniformly smooth. Later, F. Cabello [24]
proves that almost transitive Banach spaces which either are Asplund or have
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the Radon-Nikodym property actually are superreflexive (graphically, they as-
cend two steps in Diagram II). As a consequence, almost-transitivity is not an
isomorphically innocuous property. It is shown also in [24] that superreflex-
ive convex-transitive Banach spaces are in fact almost transitive (graphically,
they ascend one step in Diagram I). As a consequence of our results (see Co-
rollary 6.9 below), convex-transitive Banach spaces which either are Asplund
or have the Radon-Nikodym property are in fact superreflexive (they ascend
two steps in Diagram II) and almost transitive (they ascend one step in Dia-
gram I). Consequently, convex-transitivity is not an isomorphically innocuous

property.

3. ISOMETRIC ONE-DIMENSIONAL PERTURBATIONS OF THE IDENTITY

In this section we review some results in [9] and [10] characterizing Hilbert
spaces among Banach spaces in terms of the abundance of isometric one-
dimensional perturbations of the identity. Let us say that an element e in
a Banach space X is an isometric reflection vector (respectively, a vector
of isometric one-dimensional perturbation of the identity) if |le| = 1 and
there exists an isometric reflection (respectively, an isometric one-dimensional
perturbation of the identity) F' on X such that e belongs to the range of 1 —F.

We recall that, for real Banach spaces, isometric one-dimensional per-
turbations of the identity are nothing but isometric reflections. Therefore
Theorems 2.16 and 2.17 can be unified by saying that a Banach space over
K is a Hilbert space if (and only if) it is almost transitive and has an iso-
metric one-dimensional perturbation of the identity. Now, putting together
[9, Theorem 2.2] and [10, Theorem 2.1], we are provided with the following
reasonable generalization of the result just quoted.

THEOREM 3.1. A Banach space X over K is a Hilbert space if (and only
if) there exists a non rare set in Sx consisting of vectors of isometric one-
dimensional perturbation of the identity.

In [9] we proved the real version of the above theorem by applying some
results on isometric reflections taken from [70]. Now we are giving an altern-
ative proof of such a real version, which is nothing but a simplification of the
argument used in [10] to cover the complex case. For later discussion, we put
some emphasis in the following lemma.

LeEMMA 3.2. Let H be a real Hilbert space, and e be in Sg. Let 2 denote
the open subset of Sy given by Q :={y € Sy : (e|ly) > 0}. Then there exists
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a continuous function x from Q to Sy satisfying z(e) = e and

e —2(elz(y))x(y) = —y
for all y in €.

Proof. Define z(y) := ||21§|| for y in Q. 1

Proof of Theorem 3.1 in the case K = R. Assume that, for the real Banach
space X, there exists a non rare set in Sx consisting of isometric reflection
vectors. Since the set of all isometric reflection vectors of X is closed in X (see
[9, Lemma 2.1] for details), it follows that actually there is a non-empty open
subset w of Sx consisting of isometric reflection vectors. Now, fixing e in w, it
is enough to show that every finite-dimensional subspace of X containing € is a
Hilbert space. Let Y be such a subspace of X, take an invariant inner product
(]-) on Y (Theorem 2.42) satisfying (e|e) = 1, denote by || - || the Hilbertian
norm on Y deriving from (-|-), and consider the Hilbert space H := (Y, | - [|)
together with the homeomorphism h : y — [ly|| 'y from Sy onto Sy. For
the Hilbert space H and the element e in Sy arising above, let 2 be the non
empty open subset of Sy, and x be the continuous function from €2 to Sy,
given by Lemma 3.2. Then the set

L:={yeSy: h(y) € Land b~ (z(h(y))) € w}

is open in Sy and non empty (since e € L). Let y be in L. Then there exists
an isometric reflection on X having x(h(y)) as an eigenvector corresponding to
the eigenvalue —1, and such an isometric reflection can be seen as an isometric
reflection (say F,) on Y. Since F, is also an isometric reflection on H and
z(h(y)) is in Sy, it follows that F), is nothing but the mapping

z— z— 2(z|:p(h(y))):c(h(y))

from Y to Y. By the properties of the function  in Lemma 3.2, we have
Fy(e) = —h(y), so h(y) = y (since F is an isometry on Y'), and so —Fy(e) =
y. Since y is arbitrary in L, we have L C G(Y)(e), so G(Y)(e) has non-
empty interior in Sy, and so the norm of Y is transitive (by Proposition 2.6).
Therefore, the norm of H coincides with that of Y on S(Y), hence both norms
are equal, and Y is a Hilbert space, as required. [

The proof of the real case of Theorem 3.1 just given can be useful to
illustrate that of the complex case. One of the key tools in the proof of such a
complex case is the following (more complicated) variant of Lemma 3.2 above.
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LEMMA 3.3. ([10, Lemma 2.4]) Let H be a complex Hilbert space, « in
Sc \ {1}, and e in Sg. Let Q) denote the non-empty open subset of Sy given

Y Re(a) + 1 /2
Q= {y € S |(ely)| > (f) }

Then there exist continuous functions v and x from €2 to S¢ and Sy, respect-
ively, satisfying x(e) = e and

e+ (o= )(elz()z(y) =1(v)y

for all y in €.

Sketch of proof of Theorem 3.1 in the case K = C. For each point e of
isometric one-dimensional perturbation of the identity in the complex Banach
space X, denote by V, the set of those (uni-modular) complex numbers « such
that there exists an isometric one-dimensional perturbation of the identity F'
having « as an eigen-value and satisfying e € (1 —F')(X). As a consequence of
[10, Lemma 2.2], V% is a closed subgroup of S¢ different from {1}. This remark
is useful to show that the set I of all points of isometric one-dimensional
perturbation of the identity of X is closed in X [10, Lemma 2.3], and implies
that V. = Sc whenever there is some « in V., whose argument is irrational
modulo 7. Put

Q:={p € S(C)\{1} : the argument of 3 is rational modulo 7},
and for #in Sc \ {1} consider the closed subset of X given by
Ig:={ecl: peV.}

It follows that I = Ugeglg. Now assume that there exists a non rare set in Sx
contained in /. Then actually I has non-empty interior in Sx, so that Bair’s
theorem provides us with some « in ) such that I, contains a non-empty
open subset w of Sx. Finally, applying Lemma 3.3 instead of Lemma 3.2, we
can repeat with minor changes the proof of Theorem 3.1 in the case K = R
to obtain that X is a Hilbert space. 1

Let X be a complex Banach space. It is easy to see that, with the notation
in the above proof, the elements e in [ satisfying V., = S¢ are nothing but
those elements e in Sx such that Ce is the range of a hermitian projection on
X (compare Theorem 2.33). Now, for e in Sy, consider the following three
conditions:
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(a) Ce is the range of a hermitian projection on X.
(b) e is an isometric reflection vector in X.

(c) e is a vector of isometric one-dimensional perturbation of the identity
in X.

Then we have the chain of implications (a) = (b) = (c¢), but no implication
in such a chain is reversible (see for instance [10, p. 150]). We note that
Theorem 3.1 contains the result of E. Berkson [15] that a complez Banach
space is a Hilbert space if (and only if), for every element e in Sx, Ce is the
range of a hermitian projection on X.

Now let X be a Banach space over K. A subspace M of X is said to be
an L?-summand of X if M is the range of a linear projection 7 satisfying

l]]* = llm (@)1 + l|l= — = (2)]*

for every x in X. If e is in Sx and if Ke is an L?-summand of X, then e is an
isometric reflection vector. Therefore the next corollary follows directly from
Theorem 3.1.

COROLLARY 3.4. A Banach space over K is a Hilbert space if (and only
if) there exists a non rare subset of Sx consisting of elements e such that Ke
is an L%-summand of X.

The above corollary contains the actually elemental result in [27] that a
real Banach space is a Hilbert space if (and only if), for every element e in
Sx, Re is an L?*-summand of X .

Now we deal with the question of obtaining the appropriate version for
real spaces of Kalton-Wood’s Theorem 2.33 (see Corollary 3.8 below). Such
a version will become an “almost” affirmative answer to the natural ques-
tion if almost-transitivity can be relaxed to convex transitivity in Theorem
2.16. Given a nonzero Banach space X over K, we denote by Gy = Gp(X)
the connected component of the identity in G relative to the strong operator
topology. We say that Gy is trivial if Gy = {1} (a situation that only can
happen if K = R). Our argument relies on some of the main results of the
Skorik-Zaidenberg paper [70], which are collected in the theorem and lemma
which follow.

THEOREM 3.5. ([70, Theorem 1]) If e is an isometric reflection vector in
a real Banach space X and if Gy(e) # {e}, then the closed linear hull of
Go(e) (say H) is a Hilbert space, Sg coincides with Go(e), and there exists a
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unique projection p from X onto H such that 1 —2p is an isometry. Moreover,
putting N := Ker(p), every element of G(H) can be extended to an element
of G whose restriction to N is the identity, and every element of G leaving H
invariant also leaves N invariant.

The uniqueness of the projection p : X — H under the condition that
1 — 2p is an isometry is not explicitly stated in [70], but can be proved as
follows. Let p,q be linear projections on a Banach space X with the same
range and such that 1 — 2p and 1 — 2q are isometries. Then T := 2(q¢ — p)
satisfies T2 = 0 and 1 + 7T = (1 — 2p)(1 — 2q). It follows that, for every
natural number n, 1 +nT = (1 + 7)™ is an isometry, and therefore we have
T = 0. As a consequence of the above fact, for an isometric reflection vector
e in a Banach space X, there exists a unique element f in Sx~ such that the
mapping x — x — 2f(z)e is an isometric reflection on X. Elements f as above
will be called isometric reflection functionals on X.

We recall that a family F of linear functionals on a vector space X is said
to be total if for every x in X \ {0} there exists f in F satisfying f(x) # 0.

LEMMA 3.6. ([70, Lemma 5.4]) Let X be a real Banach space having a
total family of isometric reflection functionals. Let e1, ea be vectors of iso-
metric reflection vectors in X satisfying Go(e;) # {e;} for i = 1,2 and

Go(e1) NGo(ez) = 0.

Then the linear projections p; from X onto H; := LinGo(e;) such that
1—2p; € G (i =1,2) are orthogonal.

Now we can prove the following theorem.

THEOREM 3.7. A real Banach space X of dimension > 2 is a Hilbert space
if (and only if) the following conditions are fulfilled:

Go is non trivial.
The norm of X is strongly maximal.
X has no non trivial G-invariant closed subspace.

e

There exists an isometric reflection vector e in X such that co(G(e)) is
non rare in X.

Proof. Let X be a real Banach space satisfying Conditions 1 to 4 above.
Conditions 1 and 3 imply that Go(z) # {z} for every x in Sx [9, Lemma 3.1],
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whereas Condition 3 and the existence of isometric reflections on X assured
by Condition 4 imply the existence of a total family of isometric reflection
functionals on X [9, Lemma 3.3]. Put B := {Gy(x) : = € G(e)}. Since Gy is a
group acting on G(e), B is a partition of G(e). By Theorem 3.5, for 5 in B,
Hpg := Lin(p) is a Hilbert space, and there exists a unique linear projection
pp from X onto Hg such that I — 2pg is an isometry. Moreover, by Lemma
3.6, we have pgop, = 0 whenever a and 3 are in B with 3 # . On the other
hand, the non rarity of co(G(e)) in X assumed in Condition 4 provides us with
a positive number d satisfying co(G(e)) 2 dBx. It follows that X = Pz Hp.
If F'isin G, then F'(e) belongs to H, for some vy in B (take v := Go(F(e))), and
hence we have } s slps(F(e))|| = [[F(e)|| = 1. Now, for every finite subset I
of B, the set {x € X : } 5 llps(x)[| < 1} is closed and convex, and contains
G(e). Since co{G(e)} O dByx, it follows that, for every = in X, the family
{llps(2) ||} pep is sumable in R and the inequality 6> 5. 5llps(z)|| < [|lz[| holds.
Now, for z in X with |z|| < 4, the family {|lps(2)|?}ses is sumable with
Z,BGBHP[%(CU)\P < 1. Therefore, for z,y in X, the family {(pg(z)|ps(v))}sen
is sumable with 52’Zg63(1’ﬁ($) Ips(y))| < ||lz|/[ly]|. In this way, the mapping
(z,y) = > pen(Ps(x)[ps(y)) becomes a continuous inner product on X. But,
actually, such an inner product is invariant because, for F in G and [ in B,
we have F(3) = v for some ~ in B (use that Gg is a normal subgroup of G),
and hence F(Hg) = H,. Finally, by Condition 2 and Proposition 2.39, X is
a Hilbert space. 1

Recalling the definition of convex transitivity, and the fact that convex
transitivity implies strong maximality of norm, the next corollary follows
straightforwardly from Theorem 3.7 above.

COROLLARY 3.8. ([9, Corollary 3.7]) Let X be a convex transitive real
Banach space having an isometric reflection and such that Gy is non trivial.
Then X is a Hilbert space.

Let X be a nonzero complex Banach space, and let us denote by Xg the
real Banach space underlying X. We remark that Go(Xr) 2 Go(X), and
therefore Go(Xr) is automatically non trivial. Moreover convex transitivity of
X implies that of Xr. Keeping in mind these facts, Kalton-Wood’s Theorem
2.33 follows from Corollary 3.8 above and the following proposition.

PROPOSITION 3.9. ([9, Proposition 4.2]) Let X be a complex Banach
space. Then there is a hermitian projection on X with one-dimensional range
if and only if there is an isometric reflection on Xg. More precisely, for e
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in Sx, Ce is the range of a hermitian projection on X if and only if e is an
isometric reflection vector in Xg.

In fact, partially, the proof of Theorem 3.7 is strongly inspired in that of
Kalton-Wood’s Theorem 2.33. With a similar philosophy, we proved in [9] the
following variant of Theorem 3.7.

THEOREM 3.10. ([9, Theorem 3.4]) Let X be a real Banach space. As-
sume that there is an isometric reflection on X, that G is non trivial, and
that the exists 0 > 0 such that co{G(z)} D dBx for every x in Sx. Then
X is isomorphic to a Hilbert space. More precisely, there exists a natural

number n < 872, together with pair-wise isomorphic Hilbertian subspaces
Hy,H,,...,H, of X, satisfying:

1. X = H,.
2. Fori=1,2,...,nand F in G, thereis j =1,2,...,n with F'(H;) = Hj.
3. Fori=1,2,...,n, H; is Gy-invariant.

Now, let X be a real Banach space having an isometric reflection and
such that Gy is non trivial. If follows from Theorem 3.10 that, if there exists
§ > 1/+/2 such that §Bx C ¢o(G(x)) for every x in Sx, then X is a Hilbert
space [9, Corollary 3.5]. Moreover, the constant 1/4/2 above is sharp [9,
Proposition 3.10], and the assumption that Gy is non trivial cannot be removed
(see [9] for details). With some additional effort, it can be also derived from
Theorem 3.10 that, if the norm of X is maximal and there is § > 0 such that
dBx C co(G(x)) for every x in Sx, then X is a Hilbert space [9, Corollary
3.6].

Either from [9, Corollary 3.5] or [9, Corollary 3.6], just reviewed, Corollary
3.8 follows again. We do not know if the assumption in [9, Corollary 3.6] and
Corollary 3.8 that Gg is non trivial can be removed.

Thanks to Proposition 3.9 and the comments preceding it, the following
result follows from Theorem 3.10.

COROLLARY 3.11. ([9, Corollary 4.4]) Let X be a complex Banach space.
Assume that there exists a hermitian projection on X with one-dimensional
range, and that there is § > 0 such that co{G(x)} O dBx for every x in
Sx. Then X is isomorphic to a Hilbert space. More precisely, there exists
a natural number n < §72, together with pair-wise isomorphic Hilbertian
subspaces Hy, Ho, ..., H, of X, satisfying:
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1. X =@ H.
2. Fori=1,2,...,nand F in G, there is j = 1,2,...,n with F(H;) = H;.
3. Fori=1,2,...,n, H; is Gy-invariant.

Let X be a complex Banach space having a hermitian projection with
one-dimensional range. It can be derived from the above corollary that, if
either there exists § > 1/+/2 such that 6By C ¢o(G(x)) for every x in Sx, or
there is 0 > 0 such that 6By C c¢o(G(z)) for every x in Sx and the norm of
X is maximal, then X is a Hilbert space [9, Corollary 4.5].

To conclude this section, let us mention that, from [9, Corollary 4.5] just
reviewed, we re-encounter again Kalton-Wood’s Theorem 2.33.

4. MULTIPLICATIVE CHARACTERIZATIONS OF HILBERT SPACES

The geometry of norm-unital (possibly non associative) Banach algebras
at their units is very peculiar (see for instance [17], [18], and [64]). Therefore
it must be expected that Banach spaces possessing “many” points in their
unit spheres enjoying such a peculiarity (for instance, almost transitive norm-
unital Banach algebras) have to be very “special”. We devote the present
section to this topic.

Since most properties of the geometry of a norm-unital Banach algebra at
its unit are inherited by subspaces containing the unit, we in fact consider the
following chain of conditions on a norm-one element e of a Banach space X
over K:

(o) There exists a norm-one bounded bilinear mapping f : X x X — X
satisfying f(e,xz) = f(x,e) = x for every x in X.

(6) m(X,e) =1, where m(X, e) means the infimum of the set of numbers of
the form || f|| when f runs over the set of all bounded bilinear mappings
f: X x X — X satisfying f(e,z) = f(z,e) = z for every z in X.

(7) sm(X,e) = 1, where sm(X,e) stands for the infimum of the set of
numbers of the form max{||f||,1+ ||L{ — 1|, 1+ |R — 1||} when f runs
over the set of all bounded bilinear mappings from X x X to X. (Here,

for u in X, quj and R!j denote the operators on X given by x — f(u,x)
and z — f(x,u), respectively.)

(6) There exists a Banach space Y over K containing X isometrically, to-
gether with a norm-one bounded bilinear mapping f : Y xY — Y, such
that the equality f(e,y) = f(y,e) = y holds for every y in Y.
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We actually have (o) = (8) = (v) = () (for the last implication see the
proof of [64, Proposition 2.4]).

Every norm-one element e in a real Hilbert space X satisfies Condition «
above (with f(x,y) := (zle)y + (yle)z — (z|y)e) [64, Observation 1.3]. Con-
versely, if a real Banach space X is smooth at some norm-one element e
satisfying Condition v, then X is a Hilbert space [64, Theorem 2.5]. How-
ever, the fact just reviewed does not remains true if Condition ~ is relaxed to
Condition ¢ (see [9]).

Let us say that an element e of a Banach space over K acts as a unit on X
if e belongs to Sx and fulfills Condition 4. It follows from the above comments
that a characterization of real Hilbert spaces in terms of elements which act
as units seems to require some kind of “abundance” of such points. To achieve
such a characterization, we argued in [9] as follows. Let X be a real Hilbert
space having a non rare subset of Sx consisting of elements acting as units
on X. Since the set of all elements of X which act as units is closed in X [9,
Lemma 2.3], we are provided in fact with a nonempty open subset w of Sx
consisting of elements which act as units. On the other hand, the theory of
the geometry of norm-unital Banach algebras at their units gives easily that
Re is an L2-summand of X whenever e is in w and X is smooth at e [9, Lemma
2.4], and that the norm of X is uniformly strongly subdifferentiable on w (in
the sense of [37]). By means of an adaptation of the proof of [37, Proposition
4.1], this last fact shows that X is smooth at every point of w, and hence Re
is an L?-summand of X whenever e is in w. In this way, it is enough to apply
Corollary 3.4 to obtain the following result.

THEOREM 4.1. ([9, Theorem 2.5]) A real Banach space X is a Hilbert
space if and only if there is a non rare subset of Sx consisting of elements
which act as units on X.

It follows from the above theorem that if X is an almost transitive closed
subspace of a norm-unital real Banach algebra A containing the unit of A,
then X is a Hilbert space [9, Corollary 2.6]. We note that, in the result
just reviewed, almost-transitivity cannot be relaxed to convex transitivity
(compare Example 2.32). Now let A be an almost transitive norm-unital real
Banach algebra. Then, since the norm of A derives from an inner product
(+|-), the structure of A is given by [61, Theorem 27] (see also [62, Section 2]).
As a consequence, for z,y in A, we have

(o + ) = (ale)y + (wle)e — (aly)e,
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where e denotes the unit of A. Therefore A is a quadratic algebra, and every
element x of A has an inverse in the (associative) subalgebra of A generated
by x. It follows from the Frobenius-Zorn theorem [34, p. 262] that, if A is
alternative, then A is equal to either R, C, H (the absolute-valued algebra
of Hamiltons’s quaternions), or @ (the absolute-valued algebra of Cayley’s
octonions). This extends results of L. Ingelstam in [45] and [46].

Now, let X be a complex Banach space. Because of the non-associative
Bohnenblust-Karlin theorem ([16], [64, Theorem 1.5]), if X is smooth at some
element e acting as a unit on X, then X = Ce. Moreover, if there is a non rare
subset of X consisting of elements which act as units, then we arrive again in
the equality X = Ce (see [9] or [7, Theorem III.2.2] for independent proofs).
Despite the above facts, as the following example shows, elements acting as
units on X need not fulfill Condition v above. Let us fix e in Sx. For z in
X, the numerical range, V (X, e,x), of z relative to (X,e) is defined by the
equality

V(X,e,x):={f(x): fe€ Sx«, fle) =1}

The numerical index of X relative to e, n(X,e), is given by
n(X,e) := Inf{Sup{|A|: A e V(X,e,x)}: z € Sx}.
We put H(X,e) :={x € X : V(X,e,z) CR}.

ExaMPLE 4.2. First we show the existence of x-invariant closed subspaces
X of C(K), for a suitable choice of the Hausdorff compact topological space
K, which contain the unit e of C* (K) and such that, regarded as a pointed
Banach space, (X,e) cannot be of the form (CC(K’),e), for any Hausdorff
compact K’. Such a pathology occurs for instance for the subspace

X := Lin{(1,1,1,1),(1,—1,0,0),(0,0,1,—1)}

of the complex space ¢4 . Indeed, if (X, e) were of the form (CC(K'),e), then
we would have (X, (1,1,1,1)) = (¢3_,(1,1,1)) as pointed Banach spaces. But
this is not possible because V' (X, (1,1,1,1), (1,—1,4,—1)) is a square, whereas
V(3,,(1,1,1),y) is a (possibly degenerated) triangle for every y in £3..

Now let K be a Hausdorff compact topological space such that CC(K)
contains a closed subspace X with the pathology explained above. Clearly e
acts as a unit in X. Since X is #-invariant in CC(K), we have X = H(X,e) +
iH(X,e). On the other hand, since n(C®(K),e) = 1, we have also n(X, e) = 1.
Then the equality sm(X,e) = 1 is not possible since, otherwise, it would follow
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from [64, Corollary 4.6] that (X, e) would be of the form (CC(K’), e) for some
Hausdorff compact topological space K.

We already know that a complex Hilbert space of dimension > 2 has
no element acting as a unit. In order to provide us with a multiplicative
characterization of Hilbert spaces covering the complex ones, we introduce
the following weakening of the concept of element acting as a unit. We say
that an element e of a Banach space X over K acts weakly as a unit on X
whenever e belongs to Sx and fulfills Condition € which follows:

(e) There exists a Banach space Y over K containing X isometrically, to-
gether with a norm-one bounded bilinear mapping f : X x X — Y, such
that the equality f(e,z) = f(x,e) = x holds for every z in X.

LEMMA 4.3. For a norm-one element e of a Banach space X over K, the
following assertions are equivalent:

1. e acts weakly as a unit on X.

2. The equality |le® z + z ® e||r = 2||z|| holds for every x in X, where ||.||»
means projective tensor norm.

3. There exists a Banach space Y over K, together with a norm-one boun-
ded symmetric bilinear mapping f : X x X — Y, such that the equality
Il f(e,x)|| = ||z|| holds for every x in X.

Proof. 1 = 2. Let Y be a Banach space over K containing X isometrically
and such that there exists a norm-one bounded bilinear mapping f : X x X —
Y satisfying f(e,z) = f(z,e) = x for every x in X. Then there is a norm-one
bounded linear mapping h from the projective tensor product X ®, X into Y
such that f(z1,22) = h(z1 ® x2) for all 21,22 in X. Therefore, for z in X we
obtain

20zll = [[f(e,;2) + [z, )] = [Me @z +z@e)| < [le@z + 2@ e

2 = 3. If 2 is true, then 3 follows with Y equal to the complete projective
tensor product X®,X, and f(z1,x2) := %(:L‘l ® x9 + T2 @ x1).

3 = 1. Assume that 3 holds. Then the mapping x — Z := f(x,e) from
X to Y is a linear isometry, and the mapping f : X x X — Y defined by

~

f(#1,4%) == f(x1,22) is bilinear and bounded with ||f|| = 1, and satisfies

f(é,z) = f(z,é) = & for every Z in X. 1

Now we can prove the announced multiplicative characterization of real or
complex Hilbert spaces.



TRANSITIVITY OF THE NORM ON BANACH SPACES 35

THEOREM 4.4. For a Banach space X over K, the following assertions are
equivalent:

1. X is a Hilbert space.

2. Every element of Sx acts weakly as a unit on X.

3. There is a dense subset of Sx consisting of elements which act weakly
as unit on X.

4. The equality |1 ® x2 + x2 @ x1||x = 2||x1]| ||z2]| holds for all x1,xs in
X, where ||.|| means projective tensor norm.

5. There exists a Banach space Y over K, together with a symmetric bi-
linear mapping f : X x X — Y, such that the equality ||f(x1,z2)| =
l|z1]|| ||x2|| holds for all x1,x2 in X.

Proof. Keeping in mind Lemma 4.3, in the chain of implications 1 = 2 =
3 =4 =5 =1 only the first and last ones merit a proof.

1 = 2. Assume that 1 holds. If K = R, then we know that every element
of Sx actually fulfills Condition « in the top of this section, and hence 2 is
true. Assume additionally that K = C. Take a conjugation (i.e., a conjugate-
linear involutive isometry) x — T on the complex Hilbert space X, for z, z in
X denote by = ® z the operator on X defined by (z ® 2)(t) := (t|z)z, write
(Y, ||.|l+) for the complex Banach space of all trace class operators on X [67],
and consider the mapping f : X x X — Y given by f(z, z) := %(x®§+z®f).
In view of the implication 3 = 1 of Lemma 4.3, to realize that Assertion 2
in the theorem is true it is enough to show that the equality || f(x,2)|; = 1
holds for every x,z in Sx. Let x, z be linearly independent elements of Sx.
Let T stand for the two-dimensional operator z ©® Z + z ® Z. Then we have

TT* = HyHQ:L‘ Oz+ (zlr)rOz+ (z)2)z0x + Htzz O z,

and hence the eigen-values of TT* are (1 & |(x|2)|)?. Since ||T||, is nothing
but the sum of the eigen-values of (TT*)%, we obtain ||T'||; = 2.
5 = 1. Assume that 5 holds. Then, for z, z in Sx, we have

d=A|f(z,2) = 1f(@+z0+2) = fle—z0=2)| < o+ 2]+ |lz - 2|
Therefore, by Schoenberg’s theorem [69], X is a Hilbert space. 1

We do not know if Theorem 4.4 remains true with Assertion 3 replaced
by the one that there exists a non rare subset of Sx consisting of elements
which act weakly as units. To conclude this section, we note that, if a Banach
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space X over K satisfies Condition 5 in Theorem 4.4 with Y = X, then, by
the commutative Urbanik-Wright theorem [73, Theorem 3], X has dimension
< 2 over R.

5. TRANSITIVITY OF BANACH SPACES HAVING A JORDAN STRUCTURE

As we have seen in Section 2, a big part of the literature dealing with
transitivity conditions of the norm centers its attention in the study of such
conditions on the Banach spaces of the form Ci (L) for some locally com-
pact Hausdorff topological space L, and L¥(T, i) for some localizable measure
space (T', ). Today such classical Banach spaces have a wider understanding
in the setting of C*-algebras (or even their non associative generalizations,
the JB*-triples) and .J B-algebras. Indeed, the C§(L)-spaces are nothing but
the commutative C*-algebras, and the LT(T, u1)-spaces are precisely the pre-
duals of commutative W*-algebras. Analogously, the Ci(L)-spaces and the
LIF(F, w)-spaces coincide with the associative J B-algebras and the preduals of
associative JBW -algebras, respectively.

Motivated by the ideas in the above comment, we studied in [11] trans-
itivity conditions on the norm of JB*-triples, JB-algebras, and their predu-
als. Sometimes, in this wider setting, questions and results attain a better
formulation. For instance, Wood’s conjecture (Conjecture 2.20) becomes a
particular case of the more ambitious one that complex Hilbert spaces are the
unique almost transitive JB*-triples (see Problem 5.1 below), and Theorem
2.11 follows from the more general fact that R is the unique almost trans-
itive J B-algebra (see Corollary 5.20 below). All material we are dealt with
in the present section will flow between Problem 5.1 and Corollary 5.20 just
mentioned.

We recall that a complex Banach space X is said to be a JB*-triple if it is
equipped with a continuous triple product {---} which is conjugate-linear in
the middle variable, linear and symmetric in the outer variables, and satisfies
the following two conditions:

L. D(av b)D(:Ea y) - D(l‘, y)D(a7 b) = D(D(a7 b)(l‘), y) - D($7 D(ba a)(y))
for all a,b, x,y in X, where the operator D(a,b) : X — X is defined by
D(a,b)(x) := {abz} for all x in X.

2. For every z in X, D(z,x) is hermitian with non negative spectrum and
satisfies || D(z,2) ||=]| = ||*.
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J B*-triples, introduced by W. Kaup [49], are of capital importance in com-
plex Analysis because their open unit balls are bounded symmetric domains,
and every bounded symmetric domain in a complex Banach space is biho-
lomorphically equivalent to the open unit ball of a suitable JB*-triple [50].
Every complex Hilbert space is a JB*-triple under the triple product defined
by {zyz} = 3((z | y)z + (2 | y)z). Now, it seems reasonable to raise the
following problem.

PROBLEM 5.1. If X is an almost transitive JB*-triple, is X a Hilbert
space?

Let J denote the category of JB*-triples (with morphisms equal to those
linear mappings which preserve triple products). It is known that J is closed
under ultraproducts [32], and it is easily seen that it is an admissible subcat-
egory of the category of Banach spaces. It follows from Proposition 2.18 and
Cabello’s Theorem 2.24 that, if the answer to Problem 5.1 is negative, then in
fact there exist transitive non Hilbert JB*-triples, as well as almost transitive
separable non Hilbert JB*-triples.

A JBW*-triple is a JB*-triple having a (complete) predual. Such a pre-
dual is unique [6] in the strongest sense of the word: two preduals of a JBW*-
triple X coincide when they are canonically regarded as subspaces of the dual
X* of X. JBW*-triples are very abundant: the bidual of every JB*-triple X
is a JBW™-triple under a suitable triple product which extends the one of X
[32]. The fact that every complex Hilbert space is the predual of a JBW*-
triple could invite us to consider the question whether all transitive preduals
of JBW*-triples are Hilbert spaces. Contrarily to what happens in relation to
Problem 5.1 (which, as far as we know, remains unanswered), it is known that,
without additional assumptions, the answer to the question just raised can be
negative. To explain our assertion by an example, let us recall that every
C*-algebra is a J B*-triple under the triple product {zyz} := %(:By*z + zy*z),
and therefore C§ (L)-spaces and LS (T, u)-spaces are J B*-triples and JBW*-
triples, respectively. Then it is enough to invoke Example 2.3 (respectively,
2.13) to provide us with a transitive (respectively, almost transitive separable)
non Hilbert predual of a JBW *-triple.

The following lemma (which can be verified arguing as in the proof of [63,
Lemma 1]) becomes a common tool to provide partial affirmative answers to
both Problem 5.1 and the question above raised whether transitive preduals
of JBW*-triples are Hilbert spaces.
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LeMMA 5.2. ([11, Lemma 2.3]) Let X be a JB*-triple such that for all x
in X the equality {xzx} =| x ||* z holds. Then X is a Hilbert space.

With the aide of the above lemma and some basic results in the theory of
J B*-triples taken from [49] and [38], we obtained in [11] several characteriz-
ations of complex Hilbert spaces, which are collected in the next proposition.
We recall that an element e in a JB*-triple is called a tripotent if the equality
{eee} = e holds.

PROPOSITION 5.3. For a complex Banach space X the following assertions
are equivalent:

X is a Hilbert space.
X is a smooth JB*-triple.

X is a smooth predual of a JBW *-triple.
X is an almost transitive J B*-triple and has a non-zero tripotent.

St o=

X is an almost transitive J BW *-triple.

We note that the implication 2 = 1 in the above proposition is nothing
but Tarasov’s theorem [71] already quoted in Section 2. It is also worth
mentioning that, as a bi-product of the implication 3 = 1 in Proposition
5.3, we obtain that transitive separable preduals of JBW *-triples are Hilbert
spaces [11, Corollary 2.5], thus answering affirmatively Problem 2.2 in the
class of preduals of JBW *-triples.

Now we are dealing with deeper characterizations of complex Hilbert spaces
in terms of JB*-triples. Let Y be a JBW *-triple Y (with predual denoted by
Y.). Each element x in Y, has an associated tripotent s(z) in Y, called the
“support” of z, which is determined by rather technical conditions (see [38, p.
75] for details). In any case, since the definition of the support depends only
on the norm and the triple product, and surjective linear isometries between
J B*-triples preserve triple products [49], for z in Y, and F in G(Y.) we have
s(F(z)) = (F*)~(s(z)). We recall that Y is said to be atomic (respectively,
purely atomic) if By, has some extreme point (respectively, Y; is the closed
linear hull of the set of all extreme points of By, ).

THEOREM 5.4. Let X be the predual of a purely atomic JBW *-triple. If
the norm of X is strongly maximal, then X is a Hilbert space.

Proof. By [38, Lemma 2.11], there exists a contractive conjugate-linear
mapping 7 : X — X* sending each extreme point e of Bx to its support s(e).
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Moreover, the mapping (z,y) — (x|y) := 7(y)(x) from X x X to C becomes
a (continuous) inner product on X [5, Pag. 270]. On the other hand, for F' in
G, the equality s(F(x)) = (F*)"'(s(z)) (x € X) pointed out above leads to
7o F = (F*)~! om. Therefore (-|-) actually is an invariant inner product on
X. Finally, if the norm of X is strongly maximal, then, by Proposition 2.39,
X is a Hilbert space.

Recalling that convex transitivity implies strong maximality of the norm,
we straightforwardly deduce from Theorem 5.4 the following corollary.

COROLLARY 5.5. ([11, Theorem 3.1]) Let X be a convex—transitive pre-
dual of an atomic JBW *-triple. Then X is a Hilbert space.

The characterizations of complex Hilbert spaces collected in the next pro-
position are more or less difficult consequences of Corollary 5.5 above. For
their proofs the reader is referred to [11, Theorem 3.2 and Corollaries 3.4, 3.5,
and 3.9].

PROPOSITION 5.6. For a complex Banach space X the following assertions
are equivalent:

1. X is a Hilbert space.

2. X is the predual of a JBW™*-triple and there is some non rare set in Sx
consisting only of extreme points of Bx.

3. X is a convex-transitive atomic JBW *-triple.

4. X is smooth and X** is a JB*-triple.

5. X is transitive, X** is a JB*-triple, and every element in Bx«« is the
w*-limit of a sequence of elements of Bx.

The implication 4 =- 1 in the above proposition refines Tarasov’s theorem
[71], and provides us with a new partial affirmative answer to the Banach-
Magzur rotation problem, namely transitive separable complex Banach spaces
whose biduals are JB*-triples are in fact Hilbert spaces [11, Corollary 3.6].
This generalizes Corollary 2.5 because the class of complex Banach spaces
whose biduals are JB*-triples is strictly larger than that of JB*-triples [11,
Example 3.10].

Now we prove some new characterizations of complex Hilbert spaces among
JB*-triples in terms of some kind of transitivity. Let X be a Banach space
over K, and u an element in X. We say that u is a big point of X if u € Sx
and ¢o(G(u)) = Bx. When u lies in Sx, we consider the set D(X, u) of states
of X relative to u, given by D(X,u) :={f € Bx«: f(u) = 1}.
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LEMMA 5.7. Let X be a Banach space, and u an element of Sx. Then
the following assertions are equivalent:

1. w is a big point of X.
2. For every positive number §, the set

As(u) :={T*(f): fe D(X,z),z € Sx, ||lz—u||<d,T€G}

is dense in Sx+.

Proof. 1 = 2. We fix § > 0 and g € Sx+, and take 0 < ¢ < 1. By
the assumption 1, there exists T in G such that |g(T~(u)) — 1] < %, where
¢’ := min{e, ¢}. By the Bishop-Phelps-Bollobds theorem [18, Theorem 16.1],
thereis z in Sx and f in D(X, z) satisfying [[u—=x| < &’ < § and ||goT 1~ f|| <
¢/ < e. This shows that g € As(u).

2 = 1. Assume that 1 is not true, so that there is z in Bx \ co(G(u)).
Then, by the Hahn-Banach theorem, there exists f in Sx- such that 1 >
f(z) > sup{f(a) : a € c0(G(u))}. By the assumption 2, for n in N, the set
A1 (u) is dense in Sx+, and hence there are z,, in Sx with ||[u — z,| < 1/n,
gnnin D(X,z,), and T,, in G such that ||f — g, o T,,|| < 1/n. In this way we
obtain

AT () = 1] < [F(TH (w) = gn(w)] + [gn(u) = gn(@n)] < %,

which implies sup{f(a) : a € G(u)} = 1, contrarily to the choice of f. I

Let X be a Banach space over K. An element f in X* is said to be a
w*-superbig point of X* if f belongs to Sx+ and the convex hull of {F*(f) :
F € G} is w*-dense in Bx+. Minor changes in the proof of Lemma 5.7 allows
us to establish the following result.

LEMMA 5.8. Let X be a Banach space, and f an element of Sx+. Then
the following assertions are equivalent:

1. f is a w*-superbig point of X*.
2. For every positive number ¢, the set

A5(f) ={T(x): z€e D(X",g)N X g€ Sx+, [|[f —gll <. T€G}

is dense in Sx.
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Since by Definition 2.26 (respectively, by Proposition 2.28), a Banach space
X is convex-transitive if and only if every element of Sx is a big point of X
(respectively, every element of Sx+« is a w*-superbig point of X*), the following
corollary follows from Lemma 5.7 (respectively, 5.8).

COROLLARY 5.9. For a Banach space X the following assertions are equi-
valent:

1. X is convex-transitive.
2. For every u in Sx and every § > 0, the set As(u) is dense in Sx+.
3. For every f in Sx- and every § > 0, the set A5(f) is dense in Sx.

Concerning our present interest of obtaining new characterizations of com-
plex Hilbert spaces among JB*-triples, the above corollary is not needed. By
the contrary, the next result becomes crucial. Given a Banach space X, we
denote by Sm(X) the set of all elements x € Sy such that X is smooth at x.

COROLLARY 5.10. For a Banach space X we have:

1. If there is some big point of X in the interior of Sm(X) relative to Sx,
then the set of all extreme points of Bx+ is dense in Sx+.

2. If there is some w*-superbig point of X* in the interior of Sm(X™)
relative to Sx+, then the set of all extreme points of Bx is dense in Sx.

Proof. Assertion 1 (respectively, 2) follows from Lemma 5.7 (respectively,
5.8) and the standard fact that the unique state relative to a smooth point u
of a Banach space F is an extreme point of Bg«. 1

PROPOSITION 5.11. Let X be a JB*-triple. Then X is a Hilbert space
whenever some of the following conditions are fulfilled:

1. There is some big point of X in the interior of Sm(X) relative to Sx.
2. There is some w*-superbig point of X* in the interior of Sm(X™) relative
to SX* .

Proof. Assume that Condition 1 is fulfilled. Then, by Assertion 1 in Corol-
lary 5.10 and the implication 2 = 1 in Proposition 5.6, X is a Hilbert space.
Now assume that Condition 2 is satisfied. Then, since the extreme points
of Bx are tripotents [51, Proposition 3.5], Assertion 2 in Corollary 5.10 and
Lemma 5.2 apply, giving that X is a Hilbert space. i
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Now we pass to deal with transitivity conditions on the norm of C*-
algebras. First, we notice that all results for JB*-triples collected above
automatically get a stronger form when they are applied to C*-algebras. The
reason lies in the folklore fact that C is the unique C*-algebra whose C*-norm
derives from an inner product. (Indeed, from the continuous functional calcu-
lus for a single self-adjoint element of a C'*-algebra, it follows that, if X is a
smooth C*-algebra, then every norm-one element e in the self-adjoint part X,
of X satisfies either e? = e or €2 = —e, which implies that S(X,,) is disconnec-
ted, and hence the real Banach space X, is one-dimensional.) By the folklore
result just mentioned, an affirmative answer to Problem 5.1 would imply the
verification of Wood’s conjecture (Conjecture 2.20). Actually, if Problem 5.1
had an affirmative answer, then the natural conjecture that C is the unique
(non necessarily commutative) almost transitive C*-algebra would be right.
We note also that the subcategory of Banach spaces consisting of C*-algebras
is admissible and closed under ultraproducts. Let us say that a C*-algebra is
proper whenever it is different from C. It follows from Proposition 2.18 and
Theorem 2.24 that, if there is some almost transitive proper C*-algebra, then
actually there exist transitive proper C*-algebras, as well as almost transitive
separable proper C*-algebras. Accordingly to previously reviewed results on
JB*-triples, a transitive proper C*-algebra must be non separable, and an
almost transitive proper C*-algebra cannot have non-zero self-adjoint idem-
potents. For background about C*-algebras the reader is referred to [33] and
[59].

Let X be a C*-algebra, and let M (X) denote the C*-algebra of multipliers
of X. The so called Jordan x-automorphisms of X, as well as the operators of
left multiplication on X by unitary elements in M (X)), become distinguished
examples of surjective linear isometries on X. Jordan x-automorphisms of X
are defined as those linear bijections from X to X preserving the C*-involution
and the squares. Consequently, if Pos(X) denotes the set of all positive
elements in X, and if F' is a Jordan x-automorphism of X, then we have
F(Sx NPos(X)) = Sx NPos(X). Let us denote by Ux the set of all unitary
elements of M(X), and by G* the group of all Jordan *-automorphisms of
X. The Kadison-Paterson-Sinclair [58] theorem asserts that every surjective
linear isometry on X is the composition of an element of G with the operator
of left multiplication by an element of Ux. The modulus | z | of an element
of X is defined as the unique positive square root of z*x. The next theorem
characterizes transitive C*-algebras in purely algebraic terms, and becomes
the non-commutative generalization of Greim-Rajalopagan Theorem 2.4.
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THEOREM 5.12. ([11, Proposition 4.1]) Let X be a C*-algebra. Then the
following assertions are equivalent:

1. X is transitive.

2. G acts transitively on Sx N Pos(X), and every element z in X has a
“polar decomposition” © = u | x |, where u is in Ux.

In [11] we also obtained a characterization of convex-transitive C*-algebras,
which generalizes Wood’s Theorem 2.29. The precise formulation of such a
characterization reads as follows.

THEOREM 5.13. ([11, Theorem 4.3]) Let X be a C*-algebra. Then X is
convex-transitive if and only if, for every pure state g of X and every norm-

one positive linear functional f on X, g belongs to the w*-closure in X* of
the set {F*(f): F € G"}.

Let H be a complex Hilbert space. We denote by L(H) the C*-algebra
of all bounded linear operators on H, and by K(H) the closed ideal of L(H)
consisting of all compact operators on H. For x in L(H), we put || z ||ess:=
| x + K(H) ||. The next result determines the big points of L(H) in the case
that H is infinite-dimensional and separable.

THEOREM 5.14. ([11, Theorem 4.5]) Let H be an infinite-dimensional
separable complex Hilbert space. Then the big points of L(H) are precisely
those elements x in Sy satisfying || @ [|ess= 1.

We recall that the Calkin algebra [26] is defined as the quotient
L(H)/K(H), where H is an infinite-dimensional separable complex Hilbert
space. The following corollary is an easy consequence of Theorem 5.14 above,
and provides us with the first known example of a convex-transitive non com-
mutative C*-algebra.

COROLLARY 5.15. ([11, Corollary 4.6]) The Calkin algebra is convex-
transitive.

We devote the remaining part of this section to study transitivity condi-
tions on the norm of JB-algebras. JB-algebras are defined as those Jordan-
Banach real algebras X satisfying || « ||?<|| 2% + y? || for all z,y in X. The
basic reference for the the theory of JB-algebras is [43]. A natural example of
a J B-algebra is the Banach space X4, where X is a C*-algebra, whenever we
define the Jordan product x - y of elements x,y in X, as x -y := %(:py + yzx).
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In particular the spaces C’%Q(L), with L a locally compact Hausdorff topo-
logical space, become JB-algebras (actually these are the unique associat-
ive JB-algebras [43, 3.2.2]). JB-algebras are closely related to JB*-triples.
Indeed, if X is a JB-algebra, and if we define a triple product on X by
{zyz} =(x-y)- 24+ (y-2)-x— (x-2) -y, then (X,{---}) can be regarded as
a closed real subtriple of a suitable JB*-triple (cf. [43, 3.3.9], [76], and [20]).
Let X be a JB-algebra with a unit 1. If u is an element in X satisfying
u? = 1, then we say that u is a symmetry in X. Central symmetries in X are
characterized as the isolated points of the set of all extreme points of Bx [47,
Proposition 1.3]. Such a characterization implies the following result.

PROPOSITION 5.16. ([11, Proposition 5.1]) Let X be a JB-algebra with
a unit 1. If the linear hull of G(1) is dense in X (for instance, if X is convex-
transitive), then X is associative.

JBW-algebras (see [43, 4.1.1] for a definition) can actually be character-
ized as those JB-algebras which are Banach dual spaces [43, 4.4.16]. If X
is a JBW-algebra, then X has a unit [43, 4.1.7], and the product of X is
separately w*-continuous [43, 4.4.16 and 4.1.6]. Applying again the geometric
characterization in [47] of central symmetries of unital JB-algebras, the next
result is easily obtained.

PROPOSITION 5.17. ([11, Proposition 5.2]) Let X be the predual of a
JBW -algebra. If X has no non trivial G-invariant closed subspaces (for in-
stance, if X is convex-transitive), then X* is associative.

Another not difficult result in the line of the above proposition is the
following. Note that, if X is a unital JB-algebra, then G(1) coincides with
the set of all central symmetries of X. Indeed, we already know that G(1)
consists of central symmetries of X, and multiplications by central symmetries
of X are elements of G.

PROPOSITION 5.18. Let X be a JBW -algebra. Then the centre of X is
the norm-closed linear hull of G(1). Therefore, the following assertions are
equivalent for X:

1. The linear hull of G(1) is w*-dense in X.
2. X is associative.
3. The linear hull of G(1) is norm-dense in X.
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Proof. Keeping in mind that the centre of X is a w*-closed in X (and
hence, a JBW -algebra) and the comment immediately before the proposition,
the first assertion follows from [43, 4.2.3] and the fact that 1—2e is a symmetry
whenever e is an idempotent in X. Now, the consequence follows from the
first assertion. J

Let X be a JB-algebra. Then the bidual of X is a J BW-algebra containing
X as a subalgebra [43, 4.4.3], and the set

MX)={zeX": 2- X CX}

is a subalgebra of X** [35] called the multiplier algebra of X. According
to the Kadison type theorem in [47], every surjective linear isometry on X
is the composition of an algebra automorphism of X with the operator of
multiplication by a central symmetry in M (X). This result is one of the key
tools in the proof of the theorem which follows. We recall that an element x
in X is said to be positive if there exists y in X such that 3% = x.

THEOREM 5.19. ([11, Theorem 5.3]) Let X be a JB-algebra. If some
positive element in X is a big point of X (for instance, if X is convex-
transitive), then X is associative.

Now the following corollary follows from the above theorem and Greim-
Rajalopagan Theorem 2.11.

COROLLARY 5.20. ([11, Corollary 5.4]) R is the unique almost transitive
JB-algebra.

It follows from Theorem 5.19 and Proposition 5.17 that the question of
convex transitivity for JB-algebras and preduals of JBW -algebras reduces to
the consideration of a similar question on the classical Banach spaces Cg(L)
and L]F(F , 1), respectively. The reader is referred to Wood’s theorem 2.30 for
the CX(L) case. As far as we know, the convex transitivity of the norm for
L]F(F, 1) spaces has not been systematically studied. For the particular case
of the almost transitivity of the norm on such spaces, the reader is referred
to [40]. We note that a C*-algebra X is commutative if and only if the
JB-algebra X, is associative [72]. Therefore Proposition 5.16, Proposition
5.17, and Theorem 5.19 provide us with transitivity conditions implying the
commutativity of unital C*-algebras, W*-algebras, and (possibly non unital)
C*-algebras, respectively.
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We conclude this section by proving a refinement Theorem 5.19. Order
unit spaces (see [43, 1.2.1] for a definition) can be characterized as those real
normed spaces X with a distinguished norm-one element e, called the order
unit of X, satisfying n(X,e) =1 [43, 1.2.2 and 1.2.5]. (The numerical index
n(X,e) of a normed space X relative to an element e in Sx was defined before
Example 4.2 in the case that X is complete and complex, but the definition
works verbatim in the non complete and/or real case.) The following lemma
is folklore in the theory of order unit spaces.

LEMMA 5.21. Let (X,e) be an order unit space, and u an element of Sy
satistying |le — u|| < 2. Then we have D(X,u) C D(X,e).

Proof. Let f be in D(X,u). By [43, 1.2.2 and 1.2.6], there exist g, h in
D(X,e) and 0 < a < 1 such that f = ag — (1 — a)h. Then, to realize that
f lies in D(X,e) it is enough to show that & = 1. But, it this were not the
case, then we would have

1= f(u) = ag(u) — (1 - a)h(u) = aglu) + (1 — a)(h(e — u) — 1)
<a+(1l—-a)(le—ul|-1)<a+(1—-a)(2—-1)=1,
a contradiction. N

The following corollary follows from Lemmas 5.7, 5.8, and 5.21.

COROLLARY 5.22. Let (X, e) be a complete order unit space. Then e is a
big point of X if and only if the set

A0('3) = {T*(f) t fe D(X,e), T e g}

is dense in Sx~. If moreover X is a dual space (with predual X, say), then e
is a w*-superbig point of X if and only if the set

Aple) :={T(y) : ye D(X,e) N X,, T € G(X,) }
is dense in Sy, .

PROPOSITION 5.23. Let (X,e) be a complete (respectively, dual) order
unit space such that there exists some big (respectively, w*-superbig) point u
in X satisfying |le — u|| < 2. Then e is a big (respectively, w*-superbig) point
of X.
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Proof. Take 0 < 6 < 2 — |le — u/|. Then we have || — ¢|| < 2 whenever
x € Sx and ||z — u|| < 0. Therefore, by Lemma 5.21, we have As(u) C Ag(e)
(respectively, Aj(u) € Af(e)). Since u is a big (respectively, w*-superbig)
point of X, it follows from Lemma 5.7 (respectively 5.8) and Corollary 5.22
that e is a big (respectively, w*-superbig) point of X. 1

Now the next variant of Theorem 5.19 follows from Propositions 5.23 and
5.16, and the fact that, if X is a JB-algebra with unit 1, then (X,1) is an
order unit space [43, 3.3.10].

PROPOSITION 5.24. Let X be a J B-algebra with a unit 1. If there is some
big point u of X satisfying |1 — u|| < 2, then X is associative.

To realize that Proposition 5.24 is a variant of Theorem 5.19, note that,
if X is a JB-algebra with unit 1, and if p is a norm-one element in X, then
p is positive if and only if |1 — p|| < 1. We conclude this section with the
refinement of Theorem 5.19 announced above.

THEOREM 5.25. Let X be a JB-algebra such that there are a big point
u of X and a positive element p in 2Bx satistying ||p — u|| < 1. Then X is
associative.

Proof. We know that X™** is a unital JB-algebra containing X as a sub-
algebra, and that, consequently (X** 1) is an order unit space. On the other
hand, since p is a positive element in 2By, we have |1 — p|| < 1, and hence
|1 —ul| <2 (because ||p—ul|| < 1). Moreover, u is a w*-superbig point of X**
(because u is a big point of X). It follows from Proposition 5.23 that 1 is a
w*-superbig point of X**. Finally, by Proposition 5.18, X** (and hence X) is
associative. 1

When we straightforwardly derive Theorem 5.19 from Theorem 5.25, we
are provided with a completely new proof of Theorem 5.25.

6. THE GEOMETRY OF CONVEX-TRANSITIVE BANACH SPACES

The “leit motiv” of this section can be roughly summarized by saying that a
convex-transitive Banach space fulfilling some “minor” isometric or isomorphic
condition is in fact almost transitive and superreflexive. Sometimes, in results
of such a kind, the requirement of convex transitivity can be relaxed to the
mere existence of a big point. In this way the present section could have been
subtitled “the magic of big points”.
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The results in the line of the above comment appear in the papers of the
authors [12] and [13], and will be reviewed in detail a little later. For the
moment, as an aperitive, we prove a new result concerning faces of the closed
unit ball of a convex-transitive Banach space.

Let X be a Banach space over K. We recall that proper faces of Bx are
contained in Sx, and that, consequently, if K = C, then no proper face of Bx
has interior points relative to Sx.

PRrROPOSITION 6.1. Let X be a real Banach space such that there exists
a proper face C of By, together with a big point u of X which lies in the
interior of C' relative to Sx. Then X is one-dimensional.

Proof. Take 0 < § < 1 such that ||3I§H lies in C' whenever y is in X with

lyl| < d. Then, for y in X with [|y|| <4, we have
2(lu+yll + flu =yl u=

[[u+ yll uty [l — yll u—y
eC.
lw+yll +llw =yl lu+yll - llu+yl +llu =yl luv -yl

Since C' is contained in Sy, for such an y we obtain [|u — y|| + ||u + y|| = 2.
Now the set

feeX:o—y|+letyl<2 VyeX with |y <o}

is convex, closed, and G-invariante, and contains u. It follows from the bigness
of u that ||z —y||+||x+y| = 2 whenever x is in Sx and y is in X with ||y|| < 0.
Now note that this last condition remains true when X is replaced by any of
its subspaces, and that to prove the proposition it is enough to show that
every non-zero finite-dimensional subspace M of X is one-dimensional. But,
if M is such a subspace, then we can choose an extreme point x of By, so
that, for every y in M with |ly|| < ¢ we have

eyl 2ty z -yl v—y
2 lz+yl 2 lz =yl

and Hx—;y” + M = 1, which implies M = Rz. 1

Recall that a subspace M of a Banach space X is said to be an M-
summand of X if there is a linear projection m from X onto M satisfying
||| = max{||7(x)]|, ||z — 7(z)||}. It follows from Proposition 6.1 above that,
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if X is a real Banach space, and if there is some big point u in X such that
Ru is an M-summand of X, then X is one-dimensional (compare Corollary
6.10 below).

An element f in the dual X* of a Banach space X is said to be a w*-big
point of X* if f belongs to Sx+ and the convex hull of {F(f): F € G(X*)}
is w*-dense in Bx+. Minor changes in the proof of Proposition 6.1 allows us
to establish the following result.

PROPOSITION 6.2. Let X be a real Banach space such that there exists a
proper face C of Bx+, together with a w*-big point of X* which lies in the
interior of C' relative to Sx». Then X is one-dimensional.

Keeping in mind Proposition 2.28, the next corollary follows from Propos-
itions 6.1 and 6.2 above.

COROLLARY 6.3. Let X be a convex-transitive real Banach space of di-
mension > 1. Then all proper faces of Bx and Bx~ have empty interior
relative to Sx and Sx~«, respectively. As a consequence, for f in Sx« (re-
spectively,  in Sx ), D(X*, f) N X (respectively, D(X,z)) has empty interior
relative to Sx (respectively, Sx+ ).

Now recall that a subspace M of a Banach space X is said to be an L-
summand of X if there is a linear projection 7 from X onto M satisfying
|z|| = |x(2)|| + ||z — 7(x)||. It follows from Corollary 6.3 that, if X is a
convex-transitive real Banach space, and if there is some one-dimensional L-
summand of X, then X is one-dimensional (compare Corollary 6.11 below).

Now we retake the fundamental line of this section. From now on J will
denote the class of almost transitive superreflexive Banach spaces. We already
reviewed at the conclusion of Section 2 the result of C. Finet [36] that every
member of J is uniformly smooth and uniformly convex, as well as those
of F. Cabello [24] that for an almost transitive Banach space, superreflexiv-
ity is equivalent to reflexivity (and even to either enjoy the Radon-Nikodym
property or be Asplund), and that for a superreflexive Banach space, almost
transitivity is equivalent to convex transitivity. In [12] and [13] we refined
Cabello’s results in several directions, and now we are surveying such refine-
ments in some detail. The key tools in our argument are Propositions 6.4,
6.5, 6.6 and 6.7 below.

Let X be a Banach space, and u a norm-one element in X. For x in

X, the number lim,_,o+ % (which always exists because the mapping
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a — ||lu+ az|| from R to R is convex) is usually denoted by 7(u,z). We say
that the norm of X is strongly subdifferentiable at wu if

-1
lim lu + ax||

lim, - = 7(u,x) uniformly forz € Bx.

The reader is referred to [1] and [37] for a comprehensive view of the usefulness
of the strong subdifferentiability of the norm in the theory of Banach spaces.
We note that the Fréchet differentiability of the norm of X at u is nothing
but the strong subdifferentiability of the norm of X at u together with the
smoothness of X at u.

PROPOSITION 6.4. ([13, Lemma 3]) Let X be a Banach space, and u a
big point of X such that the norm of X is strongly subdifferentiable at u.
Then the set

{17°(f) : feDX,u), Teg}

is norm-dense in Sx=.

New proof. Let us fix e > 0 and g in Sx=. Since the norm of X is strongly
subdifferentiable at w, by [37, Theorem 1.2], there exists § > 0 such that
D(X,z) € D(X,u)+ §Bx~ whenever x € Sx and |[u—z| < J. But, since u is
a big point of X, Lemma 5.7 applies, giving suitable y in Sx with ||u—y|| <,
hin D(X,y), and T in G satisfying |[g—T"(h)|| < §. By choosing f in D(X,u)
such that [|f — h|| < 5 we finally obtain ||g — T*(f)|| <e. 1

Let X be a Banach space. For u in Sx, we put

(X, ) = imsup LRI+l = hll = 2
a0 7]

We say that X is uniformly non-square if there exists 0 < a < 1 such that
|z — y|| < 2a whenever x,y are in Bx satisfying ||z + y|| > 2a . We remark
that, thanks to a celebrated theorem of R.C. James (see for instance [29,
Theorem VII.4.4]), uniformly non-square Banach spaces are superreflexive.

PROPOSITION 6.5. ([13, Lemma 1]) Let X be a Banach space such that
there exists a big point u in X satisfying n(X,u) < 2. Then X is uniformly
non-square.

Given € > 0, the Banach space X is said to be e-rough if, for every u in
Sx, we have n(X,u) > e. We say that X is rough whenever it is e-rough for
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some € > 0, and extremely rough whenever it is 2-rough. Since, for v in Sx,
the Fréchet differentiability of the norm of X at w can be characterized by
the equality n(X,u) = 0 [30, Lemma I1.1.3], it follows that the roughness of X
can be seen as a uniform non Fréchet-differentiability of the norm, and hence
becomes the extremely opposite situation to that of the uniform smoothness.

PROPOSITION 6.6. ([12, Lemma 2.5]) Let X be a Banach space, and u, v
big points of X. If the norm of X* is non rough, then u belongs to the closure

of G(v) in Sx.

Let X be a Banach space, and u an element in X. We say that v is a
denting (respectively, quasi-denting) point of By if u belongs to Bx and,
for every ¢ > 0, u does not belongs to co(Bx \ (u + eBx)) (respectively,
co(Bx \ (u+eBx)) is not equal to Bx). The next result is a refinement of
[12, Lemma 2.7].

PROPOSITION 6.7. Let X be a Banach space. If u is a quasi-denting point
of Bx, and if v is a big point of X, then u belongs to the closure of G(v).
Therefore, if there are big points of X and quasi-denting points of Bx, then
big points of X and quasi-denting points of Bx coincide. Moreover, if there
are big points of X and denting points of Bx, then the set of all quasi-denting
points of By is the closure of the set of all denting points of Bx.

Proof. Let u be a quasi-denting point of Bx, and v a big point of X. If u

does not belong to G(v), then there exists € > 0 satistying ||lu — T'(v)| > € for
every T in G (i.e., the inclusion G(v) C Bx \ (u + eBy) holds), and hence

Bx = @Q’(v) - @(BX \ (u+€Bx)) C By,

a contradiction. The consequences asserted in the statement follow from the
assertion just proved and the facts that the relation z € G(y) is symmetric,
and that the set of all big points of X, as well as that of all quasi-denting
points of By, is closed (concerning big points, see the proof of [13, Corollary

1). 1

Let X be a Banach space. We say that X™* is w*-convex-transitive if every
element of Sy« is a w*-big point of X*. An element f of X* is called a
w*-denting point of Bx~ if f belongs to Bx~ and, for every ¢ > 0, f does
not belongs to the w*-closure of co(Bx+ \ (f + eBx+)). We say that X has
Mazur’s intersection property whenever every bounded closed convex subset
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of X can be represented as an intersection of closed balls in X. Analogously,
we say that X* has Mazur’s w*-intersection property whenever every bounded
w*-closed convex subset of X* can be expressed as an intersection of closed
balls in X*. According to [39, Theorem 2.1] (respectively, [39, Theorem 3.1]),
X (respectively, X*) has Mazur’s intersection (respectively, w*-intersection)
property if and only if the set of all w*-denting (respectively, denting) points
of Bx~ (respectively, Bx ) is dense in Sx~ (respectively, Sx ).

Now, putting together Propositions 6.4, 6.5, 6.6 and 6.7, as well as the
dual variants of the three last ones (see [13, Lemma 2], [12, Lemma 2.6], and
[12, Lemma 2.8], respectively), the following theorem is easily obtained (see
[12, Theorems 3.2 and 3.4] and [13, Theorem 1 and Remark 2|, for details).

THEOREM 6.8. For a Banach space X, the following assertions are equi-
valent:

1. X is a member of 7.
2. There exists a big point u in X such that the norm of X is Fréchet
differentiable at w.
3. There exists a w*-big point f in X* such that the norm of X* is Fréchet
differentiable at f.
4. X is convex transitive and the norm of X is not extremely rough.
5. X* is convex w*-transitive and the norm of X* is not extremely rough.
6. The set of all big points of X is non-rare in Sx, and the norm of X* is
non rough.
7. The set of all w*-big points of X* is non-rare in Sx+, and the norm of
X is non rough.
8. The set of all denting points of Bx is non rare in Sx, and there exists
a big point in X.
9. The set of all w*-denting points of Bx~ is non rare in Sx«, and there
exists a w*-big point in X*.
10. The norm of X* is Fréchet differentiable at every point of S'x«, and there
exist a big point in X.
11. The norm of X is Fréchet differentiable at every point of Sx, and there
exist a w*-big point in X*.
12. X™* has Mazur’s w*-intersection property, and there is some big point in

X.

13. X has Mazur’s intersection property, and there is some w*-big point in
X,
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The non-roughness of the norm, required in Assertions 4, 5, 6, and 7
of the above theorem, is a condition much weaker than the one of uniform
smoothness enjoyed by the members of 7 and their duals. On the other hand,
the remaining requirements in such assertions also are ostensibly weaker than
the one of almost transitivy (also enjoyed by the members of J and their
duals). Therefore we can obtain many other intermediate characterizations of
almost transitive super-reflexive Banach spaces in terms of convex transitivity
and related conditions. We leave to the taste of the reader the codification of
the more relevant such characterizations involving isometric conditions. As a
hint, we recall that the existence of points in Sx+ where the norm of X* is
Fréchet differentiable implies the existence of strongly exposed points in By,
that strongly exposed points are denting points, and that the existence of
denting points in Bx implies that the norm of X™* is non-rough. Analogously,
the existence of points in Sx of Fréchet differentiability of the norm of X
implies the existence of strongly w*-exposed (and hence w*-denting) points of
Bx+, and this last fact implies that the norm of X is non-rough.

Concerning characterizations of members of 7 in terms of convex transitiv-
ity and isomorphic conditions, we have the next corollary (see [12, Corollary
3.3] and [13, Corollary 1]. The reader is referred to [19], [30], and [31] for
background on Asplund spaces and the Radon-Nikodym property.

COROLLARY 6.9. For a Banach space X, the following assertions are equi-
valent:

X is a member of J.

X is convex-transitive and has the Radon-Nikodym property.
X* is w*-convex-transitive, and X is Asplund.

X is convex-transitive and Asplund.

X* is w*-convex-transitive, and X has the Radon-Nikodym property.

S oL W=

There exists a non rare subset of Sx consisting of big points of X, and
X has the Radon-Nikodym property.

7. There exists a non rare subset of Sx+ consisting of w*-big points of X*,
and X is Asplund.

8. There exists a non rare subset of Sx consisting of big points of X, and
X is Asplund.

9. There exists a non rare subset of Sx» consisting of w*-big points of X*,
and X has the Radon-Nikodym property.
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Now, the difference between convex transitivity and the less restrictive
notion of maximality of the norm becomes very big. Indeed, ¢y has strongly
maximal norm (by Proposition 2.41) but has no convex-transitive equivalent
renorming (by the above corollary). We do not know if the assumption on a
Banach space X that the set of its big points is non rare in S'x is strictly weaker
than that of convex transitivity. Since we know that the set of all big points
X is closed, the actual question is if the requirement that the set of all big
points of X has non-empty interior in Sx implies that X is convex-transitive.
In any case, our results provide us with some non-trivial information about
this question. For instance, thanks to Theorem 6.8 and Corollary 2.42, we
have that if X is a finite-dimensional Banach space, and if the set of all big
points of X has non-empty interior in Sx, then X is a Hilbert space.

To conclude the paper, let us deal with other minor consequences of The-
orem 6.8, whose proofs also involve Theorems 2.16 and 2.33. Given 1 < p < oo,
a subspace M of the Banach space X is said to be an LP-summand of X if
there is a linear projection 7 from X onto M such that, for every z in X, we
have

[P = llw@)[|” + [l = 7 (2) [P (1 <p < o0),
[2]| = max{||w(z)[], [l — m(2)[[} (p = o0).

Note that L'-summands (respectively, L>°-summands) are nothing but L-
summands (respectively, M-summands) previously introduced.

COROLLARY 6.10. ([13, Corollary 2]) Let X be a Banach space over K
such that there exists a big point v in X satisfying that Ku is an LP-summand
of X for some 1 < p < oo. Then X is a Hilbert space. If in addition p # 2,
then X is one-dimensional.

COROLLARY 6.11. ([12, Corollary 3.5]) Let X be a convex-transitive
Banach space having a one-dimensional LP-summand for some 1 < p < oo.
Then X is a Hilbert space. If in addition p # 2, then X is one-dimensional.
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