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1. Introduction

As usual, the family of continuous real-valued functions on a topological
space X, is denoted by C(X). The family of lower semicontinuous real-valued
functions on X will be denoted by SC(X).

In [14] S. Naimpally proved that for a metric space (X, d), the Hausdorff
metric topology induced by the product metric on X×R agrees with the topol-
ogy of uniform convergence on the family of uniformly continuous real-valued
functions, where functions are identified with their graphs. Later on, G. Beer
([2]) improved Naimpally’s theorem as follows: Given a metric space (X, d),
the Hausdorff metric topology induced by the product metric on X×R agrees
with the topology of uniform convergence on C(X) if and only if every mem-
ber of C(X) is uniformly continuous. In [3] Beer proved the following variant
of the above theorem, which reconciles proximal convergence with uniform
convergence: Given a metric space (X, d), the proximal topology induced by
the product metric on X×R agrees with the topology of uniform convergence
on C(X) if and only if every member of C(X) is uniformly continuous.

Motivated by the recent applications of hyperspaces and function spaces on
quasi-uniform and quasi-pseudo-metric spaces to theoretical computer science
(see, for instance, [16, 17, 18, 19, 20]) Rodŕıguez-López and Romaguera [15]
have recently extended Naimpally’s theorem and Beer’s theorems cited above
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to quasi-pseudo-metric spaces. In particular, it was proved that if (X, d) is
a quasi-pseudo-metric space then every function in SC(X) is quasi-uniformly
continuous if and only if the upper Hausdorff quasi-pseudo-metric topology
induced by d−1×` agrees with the topology of uniform convergence on SC(X),
where ` denotes the lower quasi-pseudo-metric.

On the other hand, it is well known that every continuous function from a
topological space X to a topological space Y is quasi-uniformly continuous if
both X and Y are endowed with the Pervin quasi-uniformity (resp. the fine
quasi-uniformity, the semi-continuous quasi-uniformity, etc.). This interesting
fact suggests the question of generalizing the results of [15] to the quasi-
uniform setting. In this paper, we obtain such generalizations not only for
real-valued functions but for the more general case of functions with values in
a Scott quasi-uniform semigroup (see Section 3 for definitions).

In fact, when one tries to obtain these generalizations for SC(X), notices
that the partial order on R which induces the topology T (`), plays a crucial
role. Hence, it seems natural to think that the techniques that one can use
in the real case also work on certain suitable structures of partial order, i.e.
lattices. Furthermore, the theory of lattices and quasi-uniform (topological)
spaces is very interconnected, because under some assumptions (see [9, Chap-
ter II, Theorem 3.8]) a topological space is a complete lattice considering the
specialization order (see Corollary 1 below).

On the other hand, the theory of lattices arises in several contexts. One
of them is the theory of computation. A useful tool in this area is to apply
an algorithm successively to obtaining better approximations to the desired
result. We can assign to each stage of the process a subset where the result
lies. The smaller set, the better the approximation. These facts suggest the
use of an order relation.

Our basic references for quasi-uniform and quasi-pseudo-metric spaces are
[8] and [10]. Terms and undefined concepts may be found in such references.

A quasi-uniformity on a set X is a filter U on X × X which satisfies: i)
∆ ⊆ U for all U ∈ U and ii) given U ∈ U there exists V ∈ U such that V 2 ⊆ U ,
where ∆ = {(x, x) : x ∈ X} and V 2 = {(x, z) ∈ X × X : there exists y ∈
X such that (x, y) ∈ V, (y, z) ∈ V }. The elements of the filter U are called
entourages.

The filter U−1, formed by all sets of the form U−1 = {(x, y) ∈ X × X :
(y, x) ∈ U} where U ∈ U , is a quasi-uniformity on X called the conjugate
of U .

If U is a quasi-uniformity on X, then U s = U ∨ U−1 is a uniformity.
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Every quasi-uniformity U on X generates a topology T (U). A neigh-
borhood base for each point x ∈ X is given by {U(x) : U ∈ U} where
U(x) = {y ∈ X : (x, y) ∈ U}.

Similarly, the topology generated on a set X by a quasi-pseudo-metric d,
is denoted by T (d).

In the sequel, we shall denote by ` the quasi-pseudo-metric on R defined
by `(x, y) = (x− y) ∨ 0 for all x, y ∈ R.

For any nonempty set X, we denote by P0(X) the family of all nonempty
subsets of X.

2. Preliminaries

Given two quasi-uniform spaces (X,U) and (Y,V), a function f from X

to Y is said to be quasi-uniformly continuous if for every V ∈ V we can find
U ∈ U such that if (x, y) ∈ U then (f(x), f(y)) ∈ V .

The set of all quasi-uniformly continuous functions from X to Y is denoted
by UC(X,Y ).

Definition 1. Let (X,U) be a quasi-uniform space. Following [5] and
[11], we define

U+
H = {(A,B) ∈ P0(X)× P0(X) : B ⊆ U(A)}

U−
H = {(A,B) ∈ P0(X)× P0(X) : A ⊆ U−1(B)}

for all U ∈ U . Then {U+
H : U ∈ U} is a base for the upper Hausdorff quasi-

uniformity H+
U of U and {U−

H : U ∈ U} is a base for the lower Hausdorff
quasi-uniformity H−

U of U . The quasi-uniformity HU defined as the supremum
of the lower and upper Hausdorff quasi-uniformities is called the Hausdorff
quasi-uniformity of U .

Given two quasi-uniform spaces (X,U) and (Y,V) we denote by C(X,Y )
the family of continuous functions from (X, T (U)) to (Y, T (V)). If f ∈
C(X,Y ) we denote the graph of f by Gr f , i.e. Gr f = {(x, f(x)) : x ∈ X}.

On the set C(X,Y ) we consider the upper Hausdorff quasi-uniformity
H+

U−1×V
induced by the product quasi-uniformity U−1 × V when we iden-

tify each continuous function with its graph. Then, each basic entourage
of H+

U−1×V
is of the form (U−1 × V )+H = {(f, g) ∈ C(X,Y ) × C(X,Y ) :

(U × V −1)(x, g(x)) ∩Gr f 6= ∅ for all x ∈ X}, where U ∈ U and V ∈ V.
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Similarly, the lower Hausdorff quasi-uniformity H−
U−1×V

on C(X,Y ) has

basic entourages of the form (U−1 × V )−H = {(f, g) ∈ C(X,Y ) × C(X,Y ) :
(U−1 × V )(x, f(x)) ∩Gr g 6= ∅ for all x ∈ X}, where U ∈ U and V ∈ V.

The Hausdorff quasi-uniformity HU−1×V induced on C(X,Y ) by the prod-
uct quasi-uniformity U−1 × V is the supremum of H+

U−1×V
and H−

U−1×V
.

Definition 2. Let (X,U) and (Y,V) be two quasi-uniform spaces. The
topology generated on C(X,Y ) by the sets of the form G− = {f ∈ C(X,Y ) :
Gr f ∩G 6= ∅} where G is a T (U−1×V)-open set is called the lower proximal
topology and is denoted by T −(δU−1×V).

The topology generated on C(X,Y ) by all sets of the form G++ = {f ∈
C(X,Y ) : there exists U ∈ U and V ∈ V such that (U−1 × V )(Gr f) ⊆ G}
where G is a T (U−1 × V)-open set is called the upper proximal topology and
is denoted by T +(δU−1×V).

The topology T (δU−1×V) = T
+(δU−1×V) ∨ T

−(δU−1×V) is called the prox-
imal topology.

Let us recall that the proximal topology was essentially introduced in [13],
although the term “proximal (hit-and-miss) topology” was firstly used in [4],
[6] and [12], where the relationship between the proximal topology and other
known hyperspace topologies was studied. In particular, the proximal topol-
ogy is compatible with Fisher convergence [7] of sequences of sets, as consid-
ered in [1].

3. The results

Proposition 1. Let (X,U) and (Y,V) be two quasi-uniform spaces. Then

T (δU−1×V) = T (H
+
U−1×V

) on C(X,Y ).

Proof. Let us consider the set G++ where G is a T (U−1 × V)-open set
and A ∈ G++. Therefore, we can find U ∈ U and V ∈ V such that (U−1 ×
V )(A) ⊆ G. Let us consider the set (U−1 × V )+H(A). It is evident that
A ∈ (U−1 × V )+H(A) ⊆ G++.

Furthermore, if we have that Gr f ∈ G− where G is a T (U−1 × V)-open
set and f ∈ C(X,Y ), let (x, f(x)) ∈ Gr f ∩ G. Since (x, f(x)) ∈ G we can
find U ∈ U and V ∈ V verifying (U−1 × V )((x, f(x))) ⊆ G. Let W ∈ V such
that W 2 ⊆ V . Since f ∈ C(X,Y ) we can find U ′ ∈ U such that (f(x), f(y)) ∈
W whenever (x, y) ∈ U ′. We claim that (U ′−1 × W )+H(Gr f) ⊆ G−. Let
Gr g ∈ (U ′−1 ×W )+H(Gr f). Therefore, we can find (y, f(y)) ∈ Gr f such that
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(x, y) ∈ U ′ and (f(y), g(x)) ∈ W . Furthermore, by the above observation
we obtain that (f(x), f(y)) ∈ W , so (f(x), g(x)) ∈ W 2 ⊆ V . Consequently,
(x, g(x)) ∈ (U−1 × V )(x, f(x)) ⊆ G, i.e. Gr g ∩G 6= ∅.

For the other inclusion, let us consider the set (U−1 × V )+H(A) where
U ∈ U and V ∈ V. It is easy to prove that (intT (U−1×V)((U

−1×V )(A)))++ ⊆

(U−1 × V )+H(A).

If (X,U) and (Y,V) are two quasi-uniform spaces, the quasi-uniformity of
uniform convergence on C(X,Y ) induced by V is the quasi-uniformity VX on
C(X,Y ) whose elements VX are defined by

VX = {(f, g) ∈ C(X,Y )× C(X,Y ) : (f(x), g(x)) ∈ V for all x ∈ X}.

The topology generated by VX is called, simply, the topology of uniform

convergence on C(X,Y ) and is denoted by T (VX).

Proposition 2. Let (X,U) and (Y,V) be two quasi-uniform spaces. Then

T (HU−1×V) ⊆ T (VX) on C(X,Y ).

Proof. Let us suppose that {fλ}λ∈Λ is a net in C(X,Y ) which is T (VX)-
convergent to f ∈ C(X,Y ). Consider the set (U−1×V )H(Gr f) where U ∈ U
and V ∈ V. Therefore, we can find λ0 ∈ Λ such that fλ ∈ VX(f) for all
λ ≥ λ0. It is evident that Gr fλ ∈ (U−1 × V )H(Gr f) for all λ ≥ λ0.

The following proposition extends Naimpally’s theorem to the quasi-
uniform setting.

Proposition 3. Let (X,U) and (Y,V) be two quasi-uniform spaces. Then

T (δU−1×V) = T (H
+
U−1×V

) = T (HU−1×V) = T (VX) on UC(X,Y ).

Proof. By the above results, we only have to show that T (VX) ⊆
T (H+

U−1×V
).

Let {fλ}λ∈Λ be a net in UC(X,Y ) such that it is T (H+
U−1×V

)-convergent
to a function f ∈ UC(X,Y ). Fix W ∈ V. Therefore, we can find U ∈ U
such that if (x, y) ∈ U then (f(x), f(y)) ∈ W ′ where W ′ ∈ V and W ′2 ⊆ W .
Furthermore, there exists λ0 ∈ Λ such that Gr fλ ∈ (U−1 ×W ′)+H(Gr f) for
all λ ≥ λ0.

Given x ∈ X and λ ≥ λ0 we can find y ∈ X such that (x, y) ∈ U and
(f(y), fλ(x)) ∈ W ′. Therefore, (f(x), fλ(x)) ∈ W ′2 ⊆ W , i.e. f ∈ WX(fλ) for
all λ ≥ λ0.
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Now, we present some examples where we can apply this result.

Example 1. As we observed at the introduction, if f : (X, T ) → (Y, T ′)
is a continuous function and U denotes the Pervin (resp. point finite, locally
finite, semi-continuous, fine transitive, fine) quasi-uniformity on X (see [8] for
the corresponding definitions) and V the corresponding quasi-uniformity on
Y then f : (X,U)→ (Y,V) is quasi-uniformly continuous (see [8, Proposition
2.17]). Therefore, we deduce that T (HU−1×V) = T (VX) on C(X,Y ).

Now, we recall some definitions about the theory of lattices. Our main
reference is [9].

A partially ordered set (or a poset) is a nonempty set L with a reflexive,
transitive and antisymmetric relation ≤. A lattice is a poset where every
nonempty finite subset has infimum and supremum.

Given a lattice L and O ⊆ L, we denote ↑ O = {l ∈ L : there exists o ∈
O such that o ≤ l}.

A lattice is said to be complete if every nonempty subset has infimum and
supremum.

Let L be a complete lattice. We say that x is way below y, and we denote
it by x ¿ y, if for all directed subsets D of L the relation y ≤ supD implies
the existence of d ∈ D such that x ≤ d, where D is called directed set if given
p, q ∈ D we can find l ∈ D such that p ≤ l and q ≤ l.

A continuous lattice is a complete lattice L such that it satisfies the axiom
of approximation:

x = sup{u ∈ L : u¿ x}

for all x ∈ L.

Let L be a complete lattice. The Scott topology σ(L) is formed by all
subsets O of L which satisfy:

i) O =↑ O

ii) supD ∈ O implies D ∩O 6= ∅ for all directed sets D ⊆ L.

We recall that a semigroup is a pair (X, ·) such that · is an associative
internal law or operation on X for which exists an identity element e.

Definition 3. If (X, T ) is a topological space and (X, ·) is a semigroup
such that the function ·x : X → X defined by ·x(y) = x · y for all y ∈ X is
continuous for all x ∈ X we say that (X, ·, T ) is a semitopological semigroup.
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Definition 4. A Scott quasi-uniform semigroup is a pair (L,U) where L

is a complete lattice, U is a quasi-uniformity on L such that T (U) is the Scott
topology and (L,∨, T (U)) is a semitopological semigroup.

Now, we prove our main result.

Theorem 1. Let (X,U) be a quasi-uniform space and (L,V) a Scott

quasi-uniform semigroup. The following statements are equivalent:

i) Every continuous function from X to L is quasi-uniformly continuous.

ii) The proximal topology of (X ×L,U−1 ×V) agrees with the topology of
uniform convergence on C(X,L).

iii) The upper Hausdorff quasi-uniform topology induced by U−1×V agrees
with the topology of uniform convergence on C(X,L).

Proof. i) ⇒ ii) This is deduced from Proposition 3.

ii) ⇒ iii) We only have to use Proposition 1.

iii) ⇒ i) Suppose that there is a continuous function f : (X, T (U)) →
(L, σ(L)) which is not quasi-uniformly continuous. Then, we can find
W ∈ V and two nets {aU}U∈U and {bU}U∈U such that (aU , bU ) ∈ U and
(f(aU ), f(bU )) 6∈ W for all U ∈ U . For each U ∈ U we define the following
function fU : X → L:

fU (x) =







f(bU ) if x ∈ {aU}

f(x) ∨ f(bU ) otherwise.

Let us prove that fU is continuous for each U ∈ U . Let us fix U ∈ U and
let x ∈ X and {xλ}λ∈Λ be a T (U)-convergent net to x. We distinguish the
following cases:

Case 1. x ∈ {aU}

We have that fU (x) = f(bU ), and the values of fU (xλ) can be f(bU ) or
f(xλ) ∨ f(bU ) for all λ ∈ Λ. It is evident that in both cases we obtain that
fU (x) ≤ fU (xλ), so fU is a continuous function in x.

Case 2. x ∈ X\{aU}

Since {xλ}λ∈Λ is T (U)-convergent to x, it is eventually in X\{aU}. There-
fore, by continuity of the sup operation, we deduce that fU is continuous in x.

Consequently, we have shown that fU is continuous for all U ∈ U .

We now prove that {fU}U∈U converges to f with respect to T (H+
U−1×V

).
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Fix U0 ∈ U and let U, V ∈ U such that V 2 ⊆ U ⊆ U0. If x ∈ {aV },
fV (x) = f(bV ). Furthermore, (x, aV ) ∈ V , so (x, bV ) ∈ V 2 ⊆ U .

On the other hand, if x ∈ X\{aV } then f(x) ≤ fV (x) = f(x) ∨ f(bV ).
Hence {fU}U∈U converges to f with respect to T (H+

U−1×V
). However, this

net does not converge to f with respect to the topology of uniform convergence
because (f(aU ), fU (aU )) = (f(aU ), f(bU )) 6∈W for all U ∈ U .

Remark 1. As a particular case of the above theorem we can consider the
continuous lattice R∗ with the usual order where R∗ = R ∪ {−∞,+∞}. We
can consider the Scott topology σ(R∗) of this continuous lattice and a quasi-
uniformity U on R∗ such that T (U) = σ(R∗). In every continuous lattice the
sup operation is continuous considering the Scott topology (see [9, Chapter I,
Proposition 1.11]). Therefore, we can apply the above theorem to this lattice.

In particular, we can consider the extended lower quasi-pseudo-metric on
R∗ given by

`∗(x, y) =











(x− y) ∨ 0 if x, y ∈ R
0 if x = −∞ or y = +∞

+∞ if x = +∞ or y = −∞ and x 6= y.

The topology generated by this extended quasi-pseudo-metric has as a
base all the sets of the form (a,+∞] = {b ∈ R∗ : a ¿ b} where a ∈ R∗

and the open set {+∞} which coincide with the basic open sets in the Scott
topology (see [9, Chapter I, Proposition 1.10]). Now, the continuous functions
between X and R∗ are the extended lower semicontinuous functions, i.e. lower
semicontinuous functions with values in R∗ (see [3, 9]). Therefore, the above
result asserts that given a quasi-uniform space (X,U) then every extended
lower semicontinuous function on X is quasi-uniformly continuous if and only
if the topology of uniform convergence agrees with the upper Hausdorff quasi-
uniform topology induced by U−1×U`∗ where U`∗ denotes the quasi-uniformity
induced by `∗.

Remark 2. We notice that the above theorem is also true if we consider
functions from a quasi-uniform space to a lattice contained in a Scott quasi-
uniform semigroup. Therefore, we not only can consider the extended real
line R∗ but the real line R. Consequently, given a quasi-uniform space (X,U)
then SC(X) = UC(X,R) if and only if the topology of uniform conver-
gence coincides with the upper Hausdorff quasi-uniform topology induced by
U−1 × U`.
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We recall that a T0-space Z is called injective if every continuous map
f : X → Z extends continuously to any space Y containing X as a subspace.

Corollary 1. Let (X,U) be a quasi-uniform space and (Y, τ) an injective
topological T0-space. Let V be a quasi-uniformity compatible with τ . The

following statements are equivalent:

i) Every continuous function from X to Y is quasi-uniformly continuous.

ii) The proximal topology of (X × Y,U−1 ×V) agrees with the topology of
uniform convergence on C(X,Y ).

iii) The upper Hausdorff quasi-uniform topology induced by U−1×V agrees
with the topology of uniform convergence on C(X,Y ).

Proof. If Y is a T0 space it is evident that the specialization order ≤ given
by

x ≤ y ⇔ x ∈ {y}

is a partial order and it can be proved (see [9, Chapter II, Theorem 3.8]) that
if Y is an injective space then Y with the specialization order is a continu-
ous lattice. Furthermore, in a continuous lattice the sup operation is jointly
continuous with respect to the Scott topology (see [9, Chapter I, Proposition
1.11]), so we can apply the theorem above, but the Scott topology (see [9,
Chapter II, Theorem 3.8]) is homeomorphic to τ so we have completed the
proof.
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