On the p-Drop Theorem, $1 \leq p \leq \infty$

Abdelhakim Maaden

Université Cadi Ayyad, Faculté des Sciences et Techniques, Département de Mathématiques, B.P. 523, Beni-Mellal, Maroc

(Research paper presented by P.L. Papini)

AMS Subject Class. (2000): 46B20, 46B10, 49J50

Received May 21, 2001

1. INTRODUCTION

Let $(X, \|\cdot\|)$ be a Banach space and B be the closed unit ball of X. By a drop D(x, B) determined by a point $x \in X \setminus B$ we shall mean the convex hull of the set $\{x\} \cup B$. If a nonvoid closed set S of a Banach space $(X, \|\cdot\|)$ having a positive distance from the unit ball B is given, then there exists a point $a \in S$ such that $D(a, B) \cap S = \{a\}$, which is the so-called Daneš drop theorem [1].

In [4] these notions were considered in the context of quasi-Banach spaces. More precisely: Let X be a p-Banach space, 0 . Let A be a nonempty, closed subset of X; and let B be a closed, bounded and p-convexsubset of X so that <math>d(A, B) > 0. Then, there exists a point $a \in A$ such that $D_p(a, B) \cap A = \{a\}$.

In this paper, we shall consider the notion of p-drop for $1 \le p \le \infty$. Let C be a closed convex subset of X, and $a \in X$. The set

$$D_p(a,C) := \{ \alpha a + \beta y : \alpha, \beta \in [0,1] \text{ with } \alpha^p + \beta^p = 1, y \in C \}$$

is called the *p*-drop of center *a* defined by *C*. For $p = \infty$ we put $D_{\infty}(a, C) = conv(C \cup \{a + C\})$. We give some properties of *p*-convex sets (for $1 \le p \le \infty$). We study also the *p*-drop theorem for $1 \le p \le \infty$.

It is clear that a drop D(x, B) is never smooth. A smooth drop theorem of Daneš type for spaces with smooth norms was shown in [7] (see also [3]). A closed convex set D is called a smooth drop if 0 is in the interior of D and the Minkowski functional of D, $\rho(x) = \inf \{\lambda > 0 : x\lambda^{-1} \in D\}$, is smooth.

We show that the p-drop is Fréchet-smooth (resp. Gâteaux-smooth) whenever the dual norm is locally uniformly convex (resp. strictly convex).

141

A. MAADEN

2. Preliminaries

DEFINITION 2.1. Let $(X, \|\cdot\|)$ be a Banach space. Let C be a closed and convex subset of X and let $p \ge 1$. For $x \in X$, the set

$$D_p(x,C) := \left\{ tx + (1-t^p)^{\frac{1}{p}} y : y \in C, t \in [0,1] \right\}$$

is called the *p*-drop of center *x* defined by *C*. For $p = \infty$, $D_{\infty}(x, C)$ is the set $conv(\{x + C\} \cup C)$.

PROPOSITION 2.2. Let $(X, \|\cdot\|)$ be a Banach space, $a \in X \setminus \{0\}$ and 1 . Then we have the following:

(i)
$$||x|| \le \left(||a||^{\frac{p}{p-1}} + 1 \right)^{\frac{p-1}{p}}$$
 for all $x \in D_p(a, B)$,
(ii) $D_p(a, B) \subset conv (B \cup \{a + B\})$.

Proof. Let $x \in D_p(a, B)$. By the definition of the *p*-drop, there exist $\alpha \in [0, 1]$ and $y \in B$ such that $x = \alpha a + (1 - \alpha^p)^{\frac{1}{p}} y$. Therefore,

$$||x|| \le \alpha ||a|| + (1 - \alpha^p)^{\frac{1}{p}}.$$

Let $g : [0,1] \to \mathbb{R}$ be such that $g(t) = t ||a|| + (1-t^p)^{\frac{1}{p}}$. Then, $g'(t) = ||a|| - t^{p-1}(1-t^p)^{\frac{1-p}{p}}$, and there is a unique $t_0 \in [0,1]$ such that $g'(t_0) = 0$. Which means that

$$t_0 = \left(\frac{\|a\|^{\frac{p}{p-1}}}{1+\|a\|^{\frac{p}{p-1}}}\right)^{\frac{1}{p}}$$

Moreover, g attains its maximum at t_0 . Therefore, we deduce that

$$||x|| \le g(t_0) = \left[||a||^{\frac{p}{p-1}} + 1 \right]^{\frac{p-1}{p}}$$

and the first property is proved.

Let $x \in D_p(a, B)$. Then there exist $t \in [0, 1]$ and $y \in B$ such that $x = ta + (1 - t^p)^{\frac{1}{p}} y$. Let $z = (1 - t^p)^{\frac{1}{p}} y$. Then $z \in B$. Moreover, we have $x = t(a + z) + (1 - t)z \in conv(\{a + B\} \cup B)$. And thus we have the second property.

Let $a \in X$ and let

$$b = \frac{\|a\|^{\frac{1}{p-1}}}{(1+\|a\|^{\frac{p}{p-1}})^{\frac{1}{p}}}a + \left(1 - \frac{\|a\|^{\frac{p}{p-1}}}{1+\|a\|^{\frac{p}{p-1}}}\right)^{\frac{1}{p}}\frac{a}{\|a\|}.$$

It is clear that $b \in D_p(a, B)$. Moreover, we have

$$b = \left(1 + \|a\|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \|a\|^{-1}a \text{ and } \|b\| = \left(\|a\|^{\frac{p}{p-1}} + 1\right)^{\frac{p-1}{p}}$$

The element b is called the vertex of $D_p(a, B)$.

It is clear that the drop $D(x, B) := \{tx + (1 - t)b : t \in [0, 1], b \in B\}$ is a closed subset. The following proposition shows that a *p*-drop is also a closed subset.

PROPOSITION 2.3. Let $(X, \|\cdot\|)$ be a Banach space. Let C be a convex, closed, and bounded subset of X, $1 \leq p \leq \infty$ and $x \in X$, $x \neq 0$. Then $D_p(x, C)$ is closed.

Proof. In the case $p = \infty$ see Proposition 3-2 of [3]. Assume now $1 \le p < \infty$. Let (y_n) be a sequence in $D_p(x, C)$ such that $y_n \to y$. Then there is a sequence (t_n) in [0, 1] and a sequence (c_n) in C such that:

$$y_n = t_n x + (1 - t_n^p)^{\frac{1}{p}} c_n \longrightarrow y.$$

Without loss of generality, we assume that $t_n \to t_0$.

Case 1. $t_0 = 1$. Since C is bounded, then $y_n \to x$. Therefore $y = x \in D_p(x, C)$.

Case 2. $t_0 \in [0, 1)$. For *n* large enough, we can assume that $(1 - t_n^p)^{\frac{1}{p}} \neq 0$. Therefore we can write:

$$c_n = \frac{t_n x + (1 - t_n^p)^{\frac{1}{p}} c_n}{(1 - t_n^p)^{\frac{1}{p}}} - \frac{t_n x}{(1 - t_n^p)^{\frac{1}{p}}} \longrightarrow \frac{y}{(1 - t_0^p)^{\frac{1}{p}}} - \frac{t_0 x}{(1 - t_0^p)^{\frac{1}{p}}}$$

Since $(c_n) \subset C$ and C is closed, then $c := (y - t_0 x)/(1 - t_0^p)^{\frac{1}{p}} \in C$. Thus, $y = (1 - t_0^p)^{\frac{1}{p}} c + t_0 x \in D_p(x, C)$, and the proof for $1 \le p < \infty$ is complete.

The drop D(x, B) is by definition a convex subset. The following lemma shows that the *p*-drop is also a convex subset.

LEMMA 2.4. Let $(X, \|\cdot\|)$ be a Banach space and let $a \in X$ and $1 \leq p \leq \infty$. Then $D_p(a, B)$ is a convex subset.

Proof. By definition $D_{\infty}(a, B) = conv(a \cup \{a + B\})$, then $D_{\infty}(a, B)$ is a convex subset. Moreover, if p = 1, $D_1(a, B) = D(a, B) = conv(\{a\} \cup B)$, which is a convex subset. Assume now that 1 .

If a = 0, then $D_p(a, B) = B$. In this case there is nothing to prove. Then assume that $a \neq 0$.

Let $x, y \in D_p(a, B)$ and $\lambda \in [0, 1]$. Hence we can write:

$$x = ta + (1 - t^p)^{\frac{1}{p}} b$$
 and $y = \alpha a + (1 - \alpha^p)^{\frac{1}{p}} c$,

for some $b, c \in B$ and $t, \alpha \in [0, 1]$. Without loss of generality we assume that $\alpha \leq t$.

Remarking that $0 \leq \lambda t + (1 - \lambda)\alpha \leq 1$. Let $\beta := \lambda t + (1 - \lambda)\alpha$.

Case 1. If $0 < \lambda < 1$, then t = 1 and $\alpha = 1$. Consequently, x = a and y = a. This implies that $\lambda x + (1 - \lambda)y = a$, which is in $D_p(a, B)$.

Case 2. If $\lambda = 0$ or $\lambda = 1$, then it is direct since x, y are in the drop.

Case 3. $\beta \in [0, 1)$. We can write:

$$\begin{split} \lambda x + (1-\lambda)y &= \lambda \left[ta + (1-t^p)^{\frac{1}{p}} b \right] + (1-\lambda) \left[\alpha a + (1-\alpha^p)^{\frac{1}{p}} c \right] \\ &= a \left[\lambda t + (1-\lambda)\alpha \right] + \lambda (1-t^p)^{\frac{1}{p}} b + (1-\lambda)(1-\alpha^p)^{\frac{1}{p}} c \\ &= \left[1 - (\lambda t + (1-\lambda)\alpha)^p \right]^{\frac{1}{p}} \frac{\lambda (1-t^p)^{\frac{1}{p}} b + (1-\lambda)(1-\alpha^p)^{\frac{1}{p}} c}{\left[1 - (\lambda t + (1-\lambda)\alpha)^p \right]^{\frac{1}{p}}} \\ &+ a \left[\lambda t + (1-\lambda)\alpha \right]. \end{split}$$

Put:

$$Y = \frac{\lambda (1 - t^p)^{\frac{1}{p}} b + (1 - \lambda)(1 - \alpha^p)^{\frac{1}{p}} c}{(1 - \beta^p)^{\frac{1}{p}}}.$$

Then we have $\lambda x + (1 - \lambda)y = \beta a + (1 - \beta^p)^{1/p} Y$. We affirm that $Y \in B$. Indeed,

$$||Y|| \le \frac{\lambda \left(1 - t^p\right)^{\frac{1}{p}}}{\left(1 - \beta^p\right)^{\frac{1}{p}}} + \frac{\left(1 - \lambda\right) \left(1 - \alpha^p\right)^{\frac{1}{p}}}{\left(1 - \beta^p\right)^{\frac{1}{p}}}.$$

Let
$$h(\lambda) := \lambda (1 - t^p)^{\frac{1}{p}} + (1 - \lambda)(1 - \alpha^p)^{\frac{1}{p}} - (1 - \beta^p)^{\frac{1}{p}}$$
. Therefore:
 $h'(\lambda) = (1 - t^p)^{\frac{1}{p}} - (1 - \alpha^p)^{\frac{1}{p}}$
 $+ [1 - (\lambda t + (1 - \lambda)\alpha)^p]^{\frac{1 - p}{p}} (\lambda t + (1 - \lambda)\alpha)^{p - 1} (t - \alpha),$
 $h''(\lambda) = [1 - (\lambda t + (1 - \lambda)\alpha)^p]^{\frac{1 - p}{p}} (p - 1)(\lambda t + (1 - \lambda)\alpha)^{p - 2} (t - \alpha)$
 $+ (p - 1)[1 - (\lambda t + (1 - \lambda)\alpha)^p]^{\frac{1 - 2p}{p}} (\lambda t + (1 - \lambda)\alpha)^{2(p - 1)} (t - \alpha)^2.$

Since we have assumed that $t \ge \alpha$, then $h''(\lambda) \ge 0$, for all $\lambda \in [0, 1]$. Which implies that the function h is convex in [0, 1], and we have h(0) = h(1) = 0. Thus $h(\lambda) \le 0$ for all $\lambda \in [0, 1]$. This implies that $||Y|| \le 1$. Then $D_p(a, B)$ is a convex subset.

The following lemma shows that the p-drop $D_p(a, B)$ can give a nice equivalent norm.

LEMMA 2.5. Let $(X, \|\cdot\|)$ be a Banach space. Let $0 \neq a \in X$ and p > 1. Then $D := D_p(a, B) \cup D_p(-a, B)$ is a convex subset.

Proof. Let $x, y \in D$ and $\alpha \in [0, 1]$. By Lemma 2.4, it suffices to show the case $x \in D_p(a, B)$ and $y \in D_p(-a, B)$. By the definition of *p*-drop, there exist $t, \lambda \in [0, 1]$ and $b, c \in B$ such that:

$$x = ta + (1 - t^p)^{\frac{1}{p}} b$$
 and $y = -\lambda a + (1 - \lambda^p)^{\frac{1}{p}} c.$

Let $\alpha \in [0,1]$. Consider $\alpha x + (1-\alpha)y$ and we like to prove that it is in $D_p(a, B)$, or in $D_p(-a, B)$.

$$\alpha x + (1 - \alpha) y = \alpha \left[ta + (1 - t^p)^{\frac{1}{p}} b \right] + (1 - \alpha) \left[(1 - \lambda^p)^{\frac{1}{p}} c - \lambda a \right]$$
$$= a \left[\alpha t - \lambda (1 - \alpha) \right] + \alpha (1 - t^p)^{\frac{1}{p}} b + (1 - \alpha) (1 - \lambda^p)^{\frac{1}{p}} c.$$

For t, λ fixed in [0, 1], we consider the function f defined in [0, 1] by $f(\alpha) := \alpha t - \lambda (1 - \alpha)$. Therefore $f'(\alpha) = t + \lambda \ge 0$. Then, the function f is increasing and we have,

$$-1 \le -\lambda = f(0) \le f(\alpha) \le f(1) = t \le 1,$$

for all α in [0, 1]. Put $\beta := \alpha t - \lambda(1 - \alpha)$, then $\beta \in [-1, 1]$.

Case 1. $\beta = 1$. In this case, it is easy to show that $\alpha = 1$ and t = 1. Then, $\alpha x + (1 - \alpha)y = a \in D_p(a, B) \subset D$.

Case 2. $\beta = -1$. In this case, necessarily $\alpha = 0$ and $\lambda = 1$. Then, $\alpha x + (1 - \alpha)y = -a \in D_p(-a, B) \subset D$.

Case 3. $\beta \in [0, 1)$. In this case we can write:

$$\alpha x + (1-\alpha)y = \beta a + (1-\beta^p)^{\frac{1}{p}} \left[\frac{\alpha \left(1-t^p\right)^{\frac{1}{p}}b}{\left(1-\beta^p\right)^{\frac{1}{p}}} + \frac{\left(1-\alpha\right)\left(1-\lambda^p\right)^{\frac{1}{p}}c}{\left(1-\beta^p\right)^{\frac{1}{p}}} \right].$$

Put

$$Y := \frac{\alpha \left(1 - t^p\right)^{\frac{1}{p}} b + (1 - \alpha) \left(1 - \lambda^p\right)^{\frac{1}{p}} c}{\left(1 - \beta^p\right)^{\frac{1}{p}}}.$$

The same techniques used in the proof of Lemma 2.4, show that $||Y|| \leq 1$. Then, $\alpha x + (1 - \alpha)y \in D_p(a, B)$.

Case 4. $\beta \in (-1, 0]$. This is equivalent to $-\beta \in [0, 1)$ and we have:

$$\alpha x + (1-\alpha)y = -a(-\beta) + (1-(-\beta)^p)^{\frac{1}{p}} \left[\frac{\alpha (1-t^p)^{\frac{1}{p}} b}{(1-(-\beta)^p)^{\frac{1}{p}}} + \frac{(1-\alpha) (1-\lambda^p)^{\frac{1}{p}} c}{(1-(-\beta)^p)^{\frac{1}{p}}} \right].$$

Let

$$Y_1 := \frac{\alpha \left(1 - t^p\right)^{\frac{1}{p}} b + (1 - \alpha) \left(1 - \lambda^p\right)^{\frac{1}{p}} c}{\left(1 - (-\beta)^p\right)^{\frac{1}{p}}}.$$

By the same techniques we prove that $||Y_1|| \leq 1$. Then $\alpha x + (1 - \alpha)y \in D_p(-a, B)$.

Conclusion, D is a convex subset.

3. p-drop theorem

Recall that the norm $\|\cdot\|$ has the Kadeč-Klee property if for all $\|x\| = \|x_n\| = 1$ such that the sequence (x_n) converges weakly to x, then the sequence $(\|x_n - x\|)$ converges to 0.

Recall that the norm $\|\cdot\|$ is said to be strictly convex (s.c. for short), if, for all $\|x\| = \|y\| = 1$ such that $\|x + y\| = 2$, we have x = y.

THEOREM 3.1. Let $(X, \|\cdot\|)$ be a reflexive Banach space. Assume that the norm is strictly convex and has the Kadeč-Klee property. Let S be a closed subset at positive distance to B. Let $1 . Then, there exist <math>a, a' \in X$, $\delta > 0$, such that:

(i) $D_{\infty}(a, B) \cap S$ is a singleton.

146

(ii) $B \subset B[a, 1+\delta]$ and $D_p(a', B[a, 1+\delta]) \cap S$ is a singleton.

Proof. Let $\varepsilon := \operatorname{dist}(S, B) > 0$. By hypothesis the space X is reflexive and the norm is strictly convex and has the Kadeč-Klee property. By Lau theorem [5], [6], there is a \mathcal{G}_{δ} dense subset Γ of $X \setminus S$ such that for all $x \in \Gamma$, there is an unique $s \in S$ such that $||x - s|| = \operatorname{dist}(x, S)$. Therefore we choose a in $\partial \delta B$, where $0 < \delta < \varepsilon/2$, such that there exists z_0 in ∂S , satisfying that $||a - z_0|| = \operatorname{dist}(a, S)$. We have:

$$||a - z_0|| = \operatorname{dist}(a, S) \ge 1 + \varepsilon - \delta > 1 + \frac{\varepsilon}{2} > 1.$$

Then there exists a' in the segment $[a, z_0]$ such that $||a' - z_0|| = 1$. Consequently:

$$\{z_0\} \subset \operatorname{conv} (B[a', 1] \cup B) \cap S \subset B(a, ||a - z_0||) \cap S = \{z_0\},\$$

then we have (i).

Let $x \in B$. Then, $||x - a|| \leq ||x|| + ||a|| \leq 1 + \delta$. Which means that $B \subset B[a, 1 + \delta]$. Let x in $D_p[a', B[a, K]]$ with $K = 1 + \delta$. Then,

$$x = ta' + (1 - t^p)^{\frac{1}{p}} b$$
 for some $t \in [0, 1]$ and $b \in B[a, K]$.

Therefore,

$$x-a = t\left(a'-a\right) + \alpha(t)(b-a) + a\left(\alpha(t) + t - 1\right),$$

with $\alpha(t) = (1 - t^p)^{\frac{1}{p}}$. Hence,

$$||x - a|| \le t ||a' - a|| + \alpha(t)K + ||a|| [\alpha(t) + t - 1] =: h(t).$$

The maximum of h(t) is attained at

$$t_0 = [1+D]^{\frac{-1}{p}}$$
, where $D := \left[\frac{\|a'-a\| + \|a\|}{K+\|a\|}\right]^{\frac{p}{1-p}}$,

and we have,

$$h(t_0) = \frac{1}{(1+D)^{\frac{1}{p}}} \left[\|a'-a\| + D^{\frac{1}{p}}K + \|a\| \left(1 + D^{\frac{1}{p}} - (1+D)^{\frac{1}{p}}\right) \right].$$

An easy calculation shows that,

$$h(t_0) \le ||a'-a|| + 1.$$

We know that $\operatorname{dist}(S, B) = ||a' - a|| + 1$. Then, we have the *p*-drop $D_p(a', B[a, 1+\delta])$ defined by $B[a, 1+\delta]$ and of vertex z_0 is contained in $B[a, \operatorname{dist}(a, S)]$. Then

$$D_p(a', B[a, 1+\delta]) \cap S = \{z_0\}$$

The proof of our theorem is complete.

Recall that, the norm $\|\cdot\|$ is said to be *locally uniformly convex* (l.u.c. in short), if for all $\|x\| = \|x_n\| = 1$, such that $\|x+x_n\| \to 2$, we have $\|x-x_n\| \to 0$.

LEMMA 3.2. Let $(X, \|\cdot\|)$ be a Banach space. Let $a \in X$ and p > 1. Assume that the dual norm $\|\cdot\|_*$ is locally uniformly convex (resp. strictly convex). Then, the norm $\|\cdot\|_1$ whose unit ball is $D := \operatorname{conv}(D_p(a, B) \cup D_p(-a, B))$, is an equivalent norm in X such that its dual norm is also locally uniformly convex (resp. strictly convex).

Proof. Assume that the norm $\|\cdot\|$ is such that its dual norm is locally uniformly convex. Let

$$D := \operatorname{conv}(D_p(a, B) \cup D_p(-a, B)).$$

By Lemma 2.5 and Proposition 2.3, D is convex, symmetric, closed and containing the unit ball. Hence, D is a ball for an equivalent norm $\|\cdot\|_1$. Let D^0 be the polar of D,

$$D^{0} := \{ x^{*} \in X : x^{*}(x) \le 1 \text{ for all } x \in D \}.$$

Let $\|\cdot\|_1^*$ the Minkowski functional associated to D^0 . We claim that

$$||x^*||_1^* = \left[||x^*||_*^q + |x^*(a)|^q \right]^{\frac{1}{q}},$$

where q is such that 1/p+1/q = 1. For this, let x^* in D^0 . By definition, $x^*(x) \le 1$ for all x in D. This implies that $x^*(\pm ta+(1-t^p)^{1/p}b) \le 1$ for all $t \in [0,1]$ and $b \in B$. Since x^* is linear, $tx^*(\pm a) + (1-t^p)^{1/p}x^*(b) \le 1$ for all $t \in [0,1]$ and $b \in B$. We deduce that $t|x^*(a)|+(1-t^p)^{1/p}||x^*||_* \le 1$ for all t in [0,1]. Letting $f(t) := t|x^*(a)|+(1-t^p)^{1/p}||x^*||_*$. A simple verification shows that $\sup\{f(t): t \in [0,1]\} = (||x^*||^q + |x^*(a)|^q)^{1/q}$. Thus we have $(||x^*||^q + |x^*(a)|^q)^{1/q} \le 1$ for all $x^* \in D^0$.

Conversely, let $x^* \in X^*$ such that $(||x^*||^q + |x^*(a)|^q)^{1/q} \leq 1$. Let $x \in D$. Assume $x \in D_p(a, B)$. Therefore, there exist $t \in [0, 1]$ and $b \in B$ such that $x = ta + (1 - t^p)^{1/p} b$. Then, we have:

$$\begin{aligned} x^*(x) &= x^* \left(ta + (1 - t^p)^{\frac{1}{p}} b \right) = tx^*(a) + (1 - t^p)^{\frac{1}{p}} x^*(b) \\ &\leq t |x^*(a)| + (1 - t^p)^{\frac{1}{p}} ||x^*||_* = f(t) \\ &\leq \sup\{f(t): t \in [0, 1]\} = \left(||x^*||_*^q + |x^*(a)|^q \right)^{\frac{1}{q}} \leq 1. \end{aligned}$$

Thus, x^* is in D^0 .

We have proved that $D^0 = \{x^* \in X^* : (||x^*||^q + |x^*(a)|^q)^{1/q} \le 1\}.$

We affirm that $||x^*||_1^* = (||x^*||_*^q + |x^*(a)|^q)^{1/q}$ is locally uniformly convex in X^* . Indeed, let $x^* \in X^*$ and $(x_n^*) \subset X^*$ be such that $||x^*||_1^* = ||x_n^*||_1^* = 1$ and $||x^* + x_n^*||_1^* \to 2$. Put $s := (||x^*||_*, |x^*(a)|) \in \mathbb{R}^2$ and $s_n := (||x_n^*||_*, |x_n^*(a)|) \in \mathbb{R}^2$. We know that the norm $||\cdot||_q$ defined by $||(x, y)||_q = (|x|^q + |y|^q)^{1/q}$ is locally uniformly convex in \mathbb{R}^2 for $1 < q < \infty$. Moreover, $||x^*||_1^* = ||x_n^*||_1^* = 1$, which is the same as to say that $||s||_q = ||s_n||_q = 1$. First we prove that $||x_n^*||_* \to ||x^*||_*$. We have:

$$\begin{aligned} \|x^* + x_n^*\|_1^* &= \left[\|x^* + x_n^*\|_*^q + |(x^* + x_n^*)(a)|^q \right]^{\frac{1}{q}} \\ &\leq \left[(\|x^*\|_* + \|x_n^*\|_*)^q + (|x^*(a)| + |x_n^*(a)|)^q \right]^{\frac{1}{q}} \\ &= \|s + s_n\|_q \le \|s\|_q + \|s_n\|_q = 2. \end{aligned}$$

So we deduce that $||s + s_n||_q \to 2$. Since $||\cdot||_q$ is locally uniformly convex in \mathbb{R}^2 , $||s - s_n||_q \to 0$. Then, we conclude that $||x_n^*||_* \to ||x^*||_*$ and $|x_n^*(a)| \to |x^*(a)|$.

Finally, we prove that $||x^* + x_n^*||_* \to 2||x^*||_*$. We have:

$$\begin{aligned} \|x^* + x_n^*\|_1^* &= \left[\|x^* + x_n^*\|_*^q + |(x^* + x_n^*)(a)|^q \right]^{\frac{1}{q}} \\ &\leq \left[(\|x^*\|_* + \|x_n^*\|_*)^q + (|x^*(a)| + |x_n^*(a)|)^q \right]^{\frac{1}{q}} \\ &\to \left[(2\|x^*\|_*)^q + (2|x^*(a)|_*)^q \right]^{\frac{1}{q}} = 2\|x^*\|_1^* = 2, \end{aligned}$$

and we know that $||x^* + x_n^*||_1^*/2 \leq [||x^*||_1^* + ||x_n^*||_1^*]/2 \rightarrow ||x^*||_1^*$, and $||x^* + x_n^*||/2 \rightarrow 1 = (||x^*||_1^q + |x^*(a)|^q)^{1/q}$. Since $||x_n^* + x^*||_* \leq ||x_n^*||_* + ||x^*||_* \rightarrow 2||x^*||_*$ and $|x^*(a) + x_n^*(a)| \leq |x^*(a)| + |x_n^*(a)| \rightarrow 2|x^*(a)|$. We deduce that $||x^* + x_n^*||_* \rightarrow 2||x^*||_*$. By hypothesis, $||\cdot||_*$ is locally uniformly convex, then, $||x^* - x_n^*||_* \rightarrow 0$.

In the case where the norm $\|\cdot\|$ is such that its dual norm is strictly convex, the same proof shows that $\|\cdot\|_1$ is an equivalent norm in X such that its dual norm is strictly convex.

Therefore, the proof of our lemma is complete.

It is well known that if the norm $\|\cdot\|$ is such that its dual norm is locally uniformly convex (resp. strictly convex) in X^* , then the norm $\|\cdot\|$ is Fréchetdifferentiable (resp. Gâteaux-differentiable) in $X \setminus \{0\}$, (see [2]).

Recall that a convex subset C (0 is in the interior of C) is said to be Fréchet-smooth (resp. Gâteaux-smooth) if the Minkowski functional of C is Fréchet-differentiable (resp. Gâteaux-differentiable) in $X \setminus \{0\}$.

In [7], it was shown that: Let $(X, \|\cdot\|)$ be a Banach space such that its dual norm is l.u.c. (resp. s.c.). Let S be a closed subset at positive distance from the unit ball. Then there exist a Fréchet-smooth (resp. Gâteaux-smooth) drop D such that $D \cap S$ is a singleton.

Combining Theorem 3.1 and Lemma 3.2, one can give this version of the smooth drop theorem.

COROLLARY 3.3. Let $(X, \|\cdot\|)$ be a reflexive Banach space where the norm is strictly convex and have the Kadeč-Klee property. Assume that the dual norm is locally uniformly convex (resp. strictly convex) in X^* . Let S be a closed subset at positive distance from the unit ball. Then there exists a Fréchet-smooth (resp. Gâteaux-smooth) drop D such that $D \cap S$ is a singleton.

References

- DANEŠ, J., A geometric theorem useful in non-linear functional analysis, Boll. Un. Mat. Ital., 6 (1972), 369-375.
- [2] DEVILLE, R., GODEFROY, G., ZIZLER, V., "Smoothness and Renormings in Banach Spaces", Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, 1993.
- [3] GEORGIEV, P., KUTZAROVA, D., MAADEN, A., On the smooth drop property, Nonlinear Anal., 26 (3) (1996), 595–602.
- [4] KUTZAROVA, D., LERÁNOZ, C., On the p-drop property, 0 Sem. Mat. Fis. Univ. Modena., 42 (1994), 89-102.
- [5] LAU, K.S., Almost Chebychev subsets in reflexive Banach spaces, Indiana Univ. Math. J., 27 (1978), 791-795.
- [6] MAADEN, A., C-nearest points and the drop property, Collect. Math., 46 (3) (1995), 289-301.
- [7] MAADEN, A., Théorème de la goutte lisse, Rocky Mountain J. Math., 25 (3) (1995), 1093-1101.