On the p-Drop Theorem, $1 \leq p \leq \infty$

Abdelhakim Maaden
Université Cadi Ayyad, Faculté des Sciences et Techniques, Département de Mathématiques, B.P. 523, Beni-Mellal, Maroc

(Research paper presented by P.L. Papini)

AMS Subject Class. (2000): 46B20, 46B10, 49J50
Received May 21, 2001

1. Introduction

Let $(X,\|\cdot\|)$ be a Banach space and B be the closed unit ball of X. By a drop $D(x, B)$ determined by a point $x \in X \backslash B$ we shall mean the convex hull of the set $\{x\} \cup B$. If a nonvoid closed set S of a Banach space $(X,\|\cdot\|)$ having a positive distance from the unit ball B is given, then there exists a point $a \in S$ such that $D(a, B) \cap S=\{a\}$, which is the so-called Daneš drop theorem [1].

In [4] these notions were considered in the context of quasi-Banach spaces. More precisely: Let X be a p-Banach space, $0<p<1$. Let A be a nonempty, closed subset of X; and let B be a closed, bounded and p-convex subset of X so that $d(A, B)>0$. Then, there exists a point $a \in A$ such that $D_{p}(a, B) \cap A=\{a\}$.

In this paper, we shall consider the notion of p-drop for $1 \leq p \leq \infty$. Let C be a closed convex subset of X, and $a \in X$. The set

$$
D_{p}(a, C):=\left\{\alpha a+\beta y: \alpha, \beta \in[0,1] \text { with } \alpha^{p}+\beta^{p}=1, y \in C\right\}
$$

is called the p-drop of center a defined by C. For $p=\infty$ we put $D_{\infty}(a, C)=$ conv ($C \cup\{a+C\}$). We give some properties of p-convex sets (for $1 \leq p \leq$ $\infty)$. We study also the p-drop theorem for $1 \leq p \leq \infty$.

It is clear that a drop $D(x, B)$ is never smooth. A smooth drop theorem of Daneš type for spaces with smooth norms was shown in [7] (see also [3]). A closed convex set D is called a smooth drop if 0 is in the interior of D and the Minkowski functional of $D, \rho(x)=\inf \left\{\lambda>0: x \lambda^{-1} \in D\right\}$, is smooth.

We show that the p-drop is Fréchet-smooth (resp. Gâteaux-smooth) whenever the dual norm is locally uniformly convex (resp. strictly convex).

2. Preliminaries

Definition 2.1. Let $(X,\|\cdot\|)$ be a Banach space. Let C be a closed and convex subset of X and let $p \geq 1$. For $x \in X$, the set

$$
D_{p}(x, C):=\left\{t x+\left(1-t^{p}\right)^{\frac{1}{p}} y: y \in C, t \in[0,1]\right\}
$$

is called the p-drop of center x defined by C. For $p=\infty, D_{\infty}(x, C)$ is the set conv $(\{x+C\} \cup C)$.

Proposition 2.2. Let $(X,\|\cdot\|)$ be a Banach space, $a \in X \backslash\{0\}$ and $1<$ $p<\infty$. Then we have the following:
(i) $\|x\| \leq\left(\|a\|^{\frac{p}{p-1}}+1\right)^{\frac{p-1}{p}}$ for all $x \in D_{p}(a, B)$,
(ii) $D_{p}(a, B) \subset \operatorname{conv}(B \cup\{a+B\})$.

Proof. Let $x \in D_{p}(a, B)$. By the definition of the p-drop, there exist $\alpha \in$ $[0,1]$ and $y \in B$ such that $x=\alpha a+\left(1-\alpha^{p}\right)^{\frac{1}{p}} y$. Therefore,

$$
\|x\| \leq \alpha\|a\|+\left(1-\alpha^{p}\right)^{\frac{1}{p}}
$$

Let $g:[0,1] \rightarrow \mathbb{R}$ be such that $g(t)=t\|a\|+\left(1-t^{p}\right)^{\frac{1}{p}}$. Then, $g^{\prime}(t)=$ $\|a\|-t^{p-1}\left(1-t^{p}\right)^{\frac{1-p}{p}}$, and there is a unique $t_{0} \in[0,1]$ such that $g^{\prime}\left(t_{0}\right)=0$. Which means that

$$
t_{0}=\left(\frac{\|a\|^{\frac{p}{p-1}}}{1+\|a\|^{\frac{p}{p-1}}}\right)^{\frac{1}{p}}
$$

Moreover, g attains its maximum at t_{0}. Therefore, we deduce that

$$
\|x\| \leq g\left(t_{0}\right)=\left[\|a\|^{\frac{p}{p-1}}+1\right]^{\frac{p-1}{p}}
$$

and the first property is proved.
Let $x \in D_{p}(a, B)$. Then there exist $t \in[0,1]$ and $y \in B$ such that $x=$ $t a+\left(1-t^{p}\right)^{\frac{1}{p}} y$. Let $z=\left(1-t^{p}\right)^{\frac{1}{p}} y$. Then $z \in B$. Moreover, we have $x=$ $t(a+z)+(1-t) z \in \operatorname{conv}(\{a+B\} \cup B)$. And thus we have the second property.

Let $a \in X$ and let

$$
b=\frac{\|a\|^{\frac{1}{p-1}}}{\left(1+\|a\|^{\frac{p}{p-1}}\right)^{\frac{1}{p}}} a+\left(1-\frac{\|a\|^{\frac{p}{p-1}}}{1+\|a\|^{\frac{p}{p-1}}}\right)^{\frac{1}{p}} \frac{a}{\|a\|} .
$$

It is clear that $b \in D_{p}(a, B)$. Moreover, we have

$$
b=\left(1+\|a\|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}\|a\|^{-1} a \quad \text { and } \quad\|b\|=\left(\|a\|^{\frac{p}{p-1}}+1\right)^{\frac{p-1}{p}}
$$

The element b is called the vertex of $D_{p}(a, B)$.
It is clear that the drop $D(x, B):=\{t x+(1-t) b: t \in[0,1], b \in B\}$ is a closed subset. The following proposition shows that a p-drop is also a closed subset.

Proposition 2.3. Let $(X,\|\cdot\|)$ be a Banach space. Let C be a convex, closed, and bounded subset of $X, 1 \leq p \leq \infty$ and $x \in X, x \neq 0$. Then $D_{p}(x, C)$ is closed.

Proof. In the case $p=\infty$ see Proposition 3-2 of [3]. Assume now $1 \leq p<$ ∞. Let $\left(y_{n}\right)$ be a sequence in $D_{p}(x, C)$ such that $y_{n} \rightarrow y$. Then there is a sequence $\left(t_{n}\right)$ in $[0,1]$ and a sequence $\left(c_{n}\right)$ in C such that:

$$
y_{n}=t_{n} x+\left(1-t_{n}^{p}\right)^{\frac{1}{p}} c_{n} \longrightarrow y .
$$

Without loss of generality, we assume that $t_{n} \rightarrow t_{0}$.
Case 1. $t_{0}=1$. Since C is bounded, then $y_{n} \rightarrow x$. Therefore $y=x \in$ $D_{p}(x, C)$.

Case 2. $t_{0} \in[0,1)$. For n large enough, we can assume that $\left(1-t_{n}^{p}\right)^{\frac{1}{p}} \neq 0$. Therefore we can write:

$$
c_{n}=\frac{t_{n} x+\left(1-t_{n}^{p}\right)^{\frac{1}{p}} c_{n}}{\left(1-t_{n}^{p}\right)^{\frac{1}{p}}}-\frac{t_{n} x}{\left(1-t_{n}^{p}\right)^{\frac{1}{p}}} \longrightarrow \frac{y}{\left(1-t_{0}^{p}\right)^{\frac{1}{p}}}-\frac{t_{0} x}{\left(1-t_{0}^{p}\right)^{\frac{1}{p}}} .
$$

Since $\left(c_{n}\right) \subset C$ and C is closed, then $c:=\left(y-t_{0} x\right) /\left(1-t_{0}^{p}\right)^{\frac{1}{p}} \in C$. Thus, $y=\left(1-t_{0}^{p}\right)^{\frac{1}{p}} c+t_{0} x \in D_{p}(x, C)$, and the proof for $1 \leq p<\infty$ is complete.

The drop $D(x, B)$ is by definition a convex subset. The following lemma shows that the p-drop is also a convex subset.

Lemma 2.4. Let $(X,\|\cdot\|)$ be a Banach space and let $a \in X$ and $1 \leq p \leq \infty$. Then $D_{p}(a, B)$ is a convex subset.

Proof. By definition $D_{\infty}(a, B)=\operatorname{conv}(a \cup\{a+B\})$, then $D_{\infty}(a, B)$ is a convex subset. Moreover, if $p=1, D_{1}(a, B)=D(a, B)=\operatorname{conv}(\{a\} \cup B)$, which is a convex subset. Assume now that $1<p<\infty$.

If $a=0$, then $D_{p}(a, B)=B$. In this case there is nothing to prove. Then assume that $a \neq 0$.

Let $x, y \in D_{p}(a, B)$ and $\lambda \in[0,1]$. Hence we can write:

$$
x=t a+\left(1-t^{p}\right)^{\frac{1}{p}} b \quad \text { and } \quad y=\alpha a+\left(1-\alpha^{p}\right)^{\frac{1}{p}} c
$$

for some $b, c \in B$ and $t, \alpha \in[0,1]$. Without loss of generality we assume that $\alpha \leq t$.

Remarking that $0 \leq \lambda t+(1-\lambda) \alpha \leq 1$. Let $\beta:=\lambda t+(1-\lambda) \alpha$.
Case 1. If $0<\lambda<1$, then $t=1$ and $\alpha=1$. Consequently, $x=a$ and $y=a$. This implies that $\lambda x+(1-\lambda) y=a$, which is in $D_{p}(a, B)$.

Case 2. If $\lambda=0$ or $\lambda=1$, then it is direct since x, y are in the drop.
Case 3. $\beta \in[0,1)$. We can write:

$$
\begin{aligned}
\lambda x+(1-\lambda) y= & \lambda\left[t a+\left(1-t^{p}\right)^{\frac{1}{p}} b\right]+(1-\lambda)\left[\alpha a+\left(1-\alpha^{p}\right)^{\frac{1}{p}} c\right] \\
= & a[\lambda t+(1-\lambda) \alpha]+\lambda\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\lambda)\left(1-\alpha^{p}\right)^{\frac{1}{p}} c \\
= & {\left[1-(\lambda t+(1-\lambda) \alpha)^{p}\right]^{\frac{1}{p}} \frac{\lambda\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\lambda)\left(1-\alpha^{p}\right)^{\frac{1}{p}} c}{\left[1-(\lambda t+(1-\lambda) \alpha)^{p}\right]^{\frac{1}{p}}} } \\
& +a[\lambda t+(1-\lambda) \alpha] .
\end{aligned}
$$

Put:

$$
Y=\frac{\lambda\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\lambda)\left(1-\alpha^{p}\right)^{\frac{1}{p}} c}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}
$$

Then we have $\lambda x+(1-\lambda) y=\beta a+\left(1-\beta^{p}\right)^{1 / p} Y$. We affirm that $Y \in B$. Indeed,

$$
\|Y\| \leq \frac{\lambda\left(1-t^{p}\right)^{\frac{1}{p}}}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}+\frac{(1-\lambda)\left(1-\alpha^{p}\right)^{\frac{1}{p}}}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}
$$

Let $h(\lambda):=\lambda\left(1-t^{p}\right)^{\frac{1}{p}}+(1-\lambda)\left(1-\alpha^{p}\right)^{\frac{1}{p}}-\left(1-\beta^{p}\right)^{\frac{1}{p}}$. Therefore:

$$
\begin{aligned}
h^{\prime}(\lambda)= & \left(1-t^{p}\right)^{\frac{1}{p}}-\left(1-\alpha^{p}\right)^{\frac{1}{p}} \\
& +\left[1-(\lambda t+(1-\lambda) \alpha)^{p}\right]^{\frac{1-p}{p}}(\lambda t+(1-\lambda) \alpha)^{p-1}(t-\alpha), \\
h^{\prime \prime}(\lambda)= & {\left[1-(\lambda t+(1-\lambda) \alpha)^{p}\right]^{\frac{1-p}{p}}(p-1)(\lambda t+(1-\lambda) \alpha)^{p-2}(t-\alpha) } \\
& +(p-1)\left[1-(\lambda t+(1-\lambda) \alpha)^{p}\right]^{\frac{1-2 p}{p}}(\lambda t+(1-\lambda) \alpha)^{2(p-1)}(t-\alpha)^{2} .
\end{aligned}
$$

Since we have assumed that $t \geq \alpha$, then $h^{\prime \prime}(\lambda) \geq 0$, for all $\lambda \in[0,1]$. Which implies that the function h is convex in $[0,1]$, and we have $h(0)=h(1)=0$. Thus $h(\lambda) \leq 0$ for all $\lambda \in[0,1]$. This implies that $\|Y\| \leq 1$. Then $D_{p}(a, B)$ is a convex subset.

The following lemma shows that the p-drop $D_{p}(a, B)$ can give a nice equivalent norm.

Lemma 2.5. Let $(X,\|\cdot\|)$ be a Banach space. Let $0 \neq a \in X$ and $p>1$. Then $D:=D_{p}(a, B) \cup D_{p}(-a, B)$ is a convex subset.

Proof. Let $x, y \in D$ and $\alpha \in[0,1]$. By Lemma 2.4, it suffices to show the case $x \in D_{p}(a, B)$ and $y \in D_{p}(-a, B)$. By the definition of p-drop, there exist $t, \lambda \in[0,1]$ and $b, c \in B$ such that:

$$
x=t a+\left(1-t^{p}\right)^{\frac{1}{p}} b \quad \text { and } \quad y=-\lambda a+\left(1-\lambda^{p}\right)^{\frac{1}{p}} c .
$$

Let $\alpha \in[0,1]$. Consider $\alpha x+(1-\alpha) y$ and we like to prove that it is in $D_{p}(a, B)$, or in $D_{p}(-a, B)$.

$$
\begin{aligned}
\alpha x+(1-\alpha) y & =\alpha\left[t a+\left(1-t^{p}\right)^{\frac{1}{p}} b\right]+(1-\alpha)\left[\left(1-\lambda^{p}\right)^{\frac{1}{p}} c-\lambda a\right] \\
& =a[\alpha t-\lambda(1-\alpha)]+\alpha\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\alpha)\left(1-\lambda^{p}\right)^{\frac{1}{p}} c .
\end{aligned}
$$

For t, λ fixed in $[0,1]$, we consider the function f defined in $[0,1]$ by $f(\alpha):=$ $\alpha t-\lambda(1-\alpha)$. Therefore $f^{\prime}(\alpha)=t+\lambda \geq 0$. Then, the function f is increasing and we have,

$$
-1 \leq-\lambda=f(0) \leq f(\alpha) \leq f(1)=t \leq 1,
$$

for all α in $[0,1]$. Put $\beta:=\alpha t-\lambda(1-\alpha)$, then $\beta \in[-1,1]$.
Case 1. $\beta=1$. In this case, it is easy to show that $\alpha=1$ and $t=1$. Then, $\alpha x+(1-\alpha) y=a \in D_{p}(a, B) \subset D$.

Case 2. $\beta=-1$. In this case, necessarily $\alpha=0$ and $\lambda=1$. Then, $\alpha x+(1-\alpha) y=-a \in D_{p}(-a, B) \subset D$.

Case 3. $\beta \in[0,1)$. In this case we can write:

$$
\alpha x+(1-\alpha) y=\beta a+\left(1-\beta^{p}\right)^{\frac{1}{p}}\left[\frac{\alpha\left(1-t^{p}\right)^{\frac{1}{p}} b}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}+\frac{(1-\alpha)\left(1-\lambda^{p}\right)^{\frac{1}{p}} c}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}\right]
$$

Put

$$
Y:=\frac{\alpha\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\alpha)\left(1-\lambda^{p}\right)^{\frac{1}{p}} c}{\left(1-\beta^{p}\right)^{\frac{1}{p}}}
$$

The same techniques used in the proof of Lemma 2.4, show that $\|Y\| \leq 1$. Then, $\alpha x+(1-\alpha) y \in D_{p}(a, B)$.

Case 4. $\beta \in(-1,0]$. This is equivalent to $-\beta \in[0,1)$ and we have:
$\alpha x+(1-\alpha) y=-a(-\beta)+\left(1-(-\beta)^{p}\right)^{\frac{1}{p}}\left[\frac{\alpha\left(1-t^{p}\right)^{\frac{1}{p}} b}{\left(1-(-\beta)^{p}\right)^{\frac{1}{p}}}+\frac{(1-\alpha)\left(1-\lambda^{p}\right)^{\frac{1}{p}} c}{\left(1-(-\beta)^{p}\right)^{\frac{1}{p}}}\right]$.
Let

$$
Y_{1}:=\frac{\alpha\left(1-t^{p}\right)^{\frac{1}{p}} b+(1-\alpha)\left(1-\lambda^{p}\right)^{\frac{1}{p}} c}{\left(1-(-\beta)^{p}\right)^{\frac{1}{p}}}
$$

By the same techniques we prove that $\left\|Y_{1}\right\| \leq 1$. Then $\alpha x+(1-\alpha) y \in$ $D_{p}(-a, B)$.

Conclusion, D is a convex subset.

3. $p-$ DROP THEOREM

Recall that the norm $\|\cdot\|$ has the Kadeč-Klee property if for all $\|x\|=$ $\left\|x_{n}\right\|=1$ such that the sequence $\left(x_{n}\right)$ converges weakly to x, then the sequence $\left(\left\|x_{n}-x\right\|\right)$ converges to 0 .

Recall that the norm $\|\cdot\|$ is said to be strictly convex (s.c. for short), if, for all $\|x\|=\|y\|=1$ such that $\|x+y\|=2$, we have $x=y$.

Theorem 3.1. Let $(X,\|\cdot\|)$ be a reflexive Banach space. Assume that the norm is strictly convex and has the Kadeč-Klee property. Let S be a closed subset at positive distance to B. Let $1<p<\infty$. Then, there exist $a, a^{\prime} \in X$, $\delta>0$, such that:
(i) $D_{\infty}(a, B) \cap S$ is a singleton.
(ii) $B \subset B[a, 1+\delta]$ and $D_{p}\left(a^{\prime}, B[a, 1+\delta]\right) \cap S$ is a singleton.

Proof. Let $\varepsilon:=\operatorname{dist}(S, B)>0$. By hypothesis the space X is reflexive and the norm is strictly convex and has the Kadeč-Klee property. By Lau theorem [5], [6], there is a \mathcal{G}_{δ} dense subset Γ of $X \backslash S$ such that for all $x \in \Gamma$, there is an unique $s \in S$ such that $\|x-s\|=\operatorname{dist}(x, S)$. Therefore we choose a in $\partial \delta B$, where $0<\delta<\varepsilon / 2$, such that there exists z_{0} in ∂S, satisfying that $\left\|a-z_{0}\right\|=$ $\operatorname{dist}(a, S)$. We have:

$$
\left\|a-z_{0}\right\|=\operatorname{dist}(a, S) \geq 1+\varepsilon-\delta>1+\frac{\varepsilon}{2}>1
$$

Then there exists a^{\prime} in the segment $\left[a, z_{0}\right]$ such that $\left\|a^{\prime}-z_{0}\right\|=1$. Consequently:

$$
\left\{z_{0}\right\} \subset \operatorname{conv}\left(B\left[a^{\prime}, 1\right] \cup B\right) \cap S \subset B\left(a,\left\|a-z_{0}\right\|\right) \cap S=\left\{z_{0}\right\}
$$

then we have (i).
Let $x \in B$. Then, $\|x-a\| \leq\|x\|+\|a\| \leq 1+\delta$. Which means that $B \subset B[a, 1+\delta]$. Let x in $D_{p}\left[a^{\prime}, B[a, K]\right]$ with $K=1+\delta$. Then,

$$
x=t a^{\prime}+\left(1-t^{p}\right)^{\frac{1}{p}} b \quad \text { for some } t \in[0,1] \quad \text { and } \quad b \in B[a, K] .
$$

Therefore,

$$
x-a=t\left(a^{\prime}-a\right)+\alpha(t)(b-a)+a(\alpha(t)+t-1),
$$

with $\alpha(t)=\left(1-t^{p}\right)^{\frac{1}{p}}$. Hence,

$$
\|x-a\| \leq t\left\|a^{\prime}-a\right\|+\alpha(t) K+\|a\|[\alpha(t)+t-1]=: h(t) .
$$

The maximum of $h(t)$ is attained at

$$
t_{0}=[1+D]^{\frac{-1}{p}}, \quad \text { where } \quad D:=\left[\frac{\left\|a^{\prime}-a\right\|+\|a\|}{K+\|a\|}\right]^{\frac{p}{1-p}}
$$

and we have,

$$
h\left(t_{0}\right)=\frac{1}{(1+D)^{\frac{1}{p}}}\left[\left\|a^{\prime}-a\right\|+D^{\frac{1}{p}} K+\|a\|\left(1+D^{\frac{1}{p}}-(1+D)^{\frac{1}{p}}\right)\right] .
$$

An easy calculation shows that,

$$
h\left(t_{0}\right) \leq\left\|a^{\prime}-a\right\|+1 .
$$

We know that $\operatorname{dist}(S, B)=\left\|a^{\prime}-a\right\|+1$. Then, we have the p-drop $D_{p}\left(a^{\prime}, B[a, 1+\delta]\right)$ defined by $B[a, 1+\delta]$ and of vertex z_{0} is contained in $B[a, \operatorname{dist}(a, S)]$. Then

$$
D_{p}\left(a^{\prime}, B[a, 1+\delta]\right) \cap S=\left\{z_{0}\right\}
$$

The proof of our theorem is complete.
Recall that, the norm $\|\cdot\|$ is said to be locally uniformly convex (l.u.c. in short), if for all $\|x\|=\left\|x_{n}\right\|=1$, such that $\left\|x+x_{n}\right\| \rightarrow 2$, we have $\left\|x-x_{n}\right\| \rightarrow 0$.

Lemma 3.2. Let $(X,\|\cdot\|)$ be a Banach space. Let $a \in X$ and $p>1$. Assume that the dual norm $\|\cdot\|_{*}$ is locally uniformly convex (resp. strictly convex). Then, the norm $\|\cdot\|_{1}$ whose unit ball is $D:=\operatorname{conv}\left(D_{p}(a, B) \cup\right.$ $D_{p}(-a, B)$), is an equivalent norm in X such that its dual norm is also locally uniformly convex (resp. strictly convex).

Proof. Assume that the norm $\|\cdot\|$ is such that its dual norm is locally uniformly convex. Let

$$
D:=\operatorname{conv}\left(D_{p}(a, B) \cup D_{p}(-a, B)\right) .
$$

By Lemma 2.5 and Proposition 2.3, D is convex, symmetric, closed and containing the unit ball. Hence, D is a ball for an equivalent norm $\|\cdot\|_{1}$. Let D^{0} be the polar of D,

$$
D^{0}:=\left\{x^{*} \in X: x^{*}(x) \leq 1 \text { for all } x \in D\right\}
$$

Let $\|\cdot\|_{1}^{*}$ the Minkowski functional associated to D^{0}. We claim that

$$
\left\|x^{*}\right\|_{1}^{*}=\left[\left\|x^{*}\right\|_{*}^{q}+\left|x^{*}(a)\right|^{q}\right]^{\frac{1}{q}},
$$

where q is such that $1 / p+1 / q=1$. For this, let x^{*} in D^{0}. By definition, $x^{*}(x) \leq$ 1 for all x in D. This implies that $x^{*}\left(\pm t a+\left(1-t^{p}\right)^{1 / p} b\right) \leq 1$ for all $t \in[0,1]$ and $b \in B$. Since x^{*} is linear, $t x^{*}(\pm a)+\left(1-t^{p}\right)^{1 / p} x^{*}(b) \leq 1$ for all $t \in[0,1]$ and $b \in B$. We deduce that $t\left|x^{*}(a)\right|+\left(1-t^{p}\right)^{1 / p}\left\|x^{*}\right\|_{*} \leq 1$ for all t in $[0,1]$. Letting $f(t):=t\left|x^{*}(a)\right|+\left(1-t^{p}\right)^{1 / p}\left\|x^{*}\right\|_{*}$. A simple verification shows that $\sup \{f(t):$ $t \in[0,1]\}=\left(\left\|x^{*}\right\|^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q}$. Thus we have $\left(\left\|x^{*}\right\|^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q} \leq 1$ for all $x^{*} \in D^{0}$.

Conversely, let $x^{*} \in X^{*}$ such that $\left(\left\|x^{*}\right\|^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q} \leq 1$. Let $x \in D$. Assume $x \in D_{p}(a, B)$. Therefore, there exist $t \in[0,1]$ and $b \in B$ such that $x=t a+\left(1-t^{p}\right)^{1 / p} b$. Then, we have:

$$
\begin{aligned}
x^{*}(x) & =x^{*}\left(t a+\left(1-t^{p}\right)^{\frac{1}{p}} b\right)=t x^{*}(a)+\left(1-t^{p}\right)^{\frac{1}{p}} x^{*}(b) \\
& \leq t\left|x^{*}(a)\right|+\left(1-t^{p}\right)^{\frac{1}{p}}\left\|x^{*}\right\|_{*}=f(t) \\
& \leq \sup \{f(t): t \in[0,1]\}=\left(\left\|x^{*}\right\|_{*}^{q}+\left|x^{*}(a)\right|^{q}\right)^{\frac{1}{q}} \leq 1 .
\end{aligned}
$$

Thus, x^{*} is in D^{0}.
We have proved that $D^{0}=\left\{x^{*} \in X^{*}:\left(\left\|x^{*}\right\|^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q} \leq 1\right\}$.
We affirm that $\left\|x^{*}\right\|_{1}^{*}=\left(\left\|x^{*}\right\|_{*}^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q}$ is locally uniformly convex in X^{*}. Indeed, let $x^{*} \in X^{*}$ and $\left(x_{n}^{*}\right) \subset X^{*}$ be such that $\left\|x^{*}\right\|_{1}^{*}=\left\|x_{n}^{*}\right\|_{1}^{*}=1$ and $\left\|x^{*}+x_{n}^{*}\right\|_{1}^{*} \rightarrow 2$. Put $s:=\left(\left\|x^{*}\right\|_{*},\left|x^{*}(a)\right|\right) \in \mathbb{R}^{2}$ and $s_{n}:=\left(\left\|x_{n}^{*}\right\|_{*},\left|x_{n}^{*}(a)\right|\right) \in$ \mathbb{R}^{2}. We know that the norm $\|\cdot\|_{q}$ defined by $\|(x, y)\|_{q}=\left(|x|^{q}+|y|^{q}\right)^{1 / q}$ is locally uniformly convex in \mathbb{R}^{2} for $1<q<\infty$. Moreover, $\left\|x^{*}\right\|_{1}^{*}=\left\|x_{n}^{*}\right\|_{1}^{*}=1$, which is the same as to say that $\|s\|_{q}=\left\|s_{n}\right\|_{q}=1$. First we prove that $\left\|x_{n}^{*}\right\|_{*} \rightarrow\left\|x^{*}\right\|_{*}$. We have:

$$
\begin{aligned}
\left\|x^{*}+x_{n}^{*}\right\|_{1}^{*} & =\left[\left\|x^{*}+x_{n}^{*}\right\|_{*}^{q}+\left|\left(x^{*}+x_{n}^{*}\right)(a)\right|^{q}\right]^{\frac{1}{q}} \\
& \leq\left[\left(\left\|x^{*}\right\|_{*}+\left\|x_{n}^{*}\right\|_{*}\right)^{q}+\left(\left|x^{*}(a)\right|+\left|x_{n}^{*}(a)\right|\right)^{q}\right]^{\frac{1}{q}} \\
& =\left\|s+s_{n}\right\|_{q} \leq\|s\|_{q}+\left\|s_{n}\right\|_{q}=2 .
\end{aligned}
$$

So we deduce that $\left\|s+s_{n}\right\|_{q} \rightarrow 2$. Since $\|\cdot\|_{q}$ is locally uniformly convex in $\mathbb{R}^{2},\left\|s-s_{n}\right\|_{q} \rightarrow 0$. Then, we conclude that $\left\|x_{n}^{*}\right\|_{*} \rightarrow\left\|x^{*}\right\|_{*}$ and $\left|x_{n}^{*}(a)\right| \rightarrow$ $\left|x^{*}(a)\right|$.

Finally, we prove that $\left\|x^{*}+x_{n}^{*}\right\|_{*} \rightarrow 2\left\|x^{*}\right\|_{*}$. We have:

$$
\begin{aligned}
\left\|x^{*}+x_{n}^{*}\right\|_{1}^{*} & =\left[\left\|x^{*}+x_{n}^{*}\right\|_{*}^{q}+\left|\left(x^{*}+x_{n}^{*}\right)(a)\right|^{q}\right]^{\frac{1}{q}} \\
& \leq\left[\left(\left\|x^{*}\right\|_{*}+\left\|x_{n}^{*}\right\|_{*}\right)^{q}+\left(\left|x^{*}(a)\right|+\left|x_{n}^{*}(a)\right|\right)^{q}\right]^{\frac{1}{q}} \\
& \rightarrow\left[\left(2\left\|x^{*}\right\|_{*}\right)^{q}+\left(2\left|x^{*}(a)\right|_{*}\right)^{q}\right]^{\frac{1}{q}}=2\left\|x^{*}\right\|_{1}^{*}=2,
\end{aligned}
$$

and we know that $\left\|x^{*}+x_{n}^{*}\right\|_{1}^{*} / 2 \leq\left[\left\|x^{*}\right\|_{1}^{*}+\left\|x_{n}^{*}\right\|_{1}^{*}\right] / 2 \rightarrow\left\|x^{*}\right\|_{1}^{*}$, and $\| x^{*}+$ $x_{n}^{*} \| / 2 \rightarrow 1=\left(\left\|x^{*}\right\|_{*}^{q}+\left|x^{*}(a)\right|^{q}\right)^{1 / q}$. Since $\left\|x_{n}^{*}+x^{*}\right\|_{*} \leq\left\|x_{n}^{*}\right\|_{*}+\left\|x^{*}\right\|_{*} \rightarrow$ $2\left\|x^{*}\right\|_{*}$ and $\left|x^{*}(a)+x_{n}^{*}(a)\right| \leq\left|x^{*}(a)\right|+\left|x_{n}^{*}(a)\right| \rightarrow 2\left|x^{*}(a)\right|$. We deduce that $\left\|x^{*}+x_{n}^{*}\right\|_{*} \rightarrow 2\left\|x^{*}\right\|_{*}$. By hypothesis, $\|\cdot\|_{*}$ is locally uniformly convex, then, $\left\|x^{*}-x_{n}^{*}\right\|_{*} \rightarrow 0$.

In the case where the norm $\|\cdot\|$ is such that its dual norm is strictly convex, the same proof shows that $\|\cdot\|_{1}$ is an equivalent norm in X such that its dual norm is strictly convex.

Therefore, the proof of our lemma is complete.
It is well known that if the norm $\|\cdot\|$ is such that its dual norm is locally uniformly convex (resp. strictly convex) in X^{*}, then the norm $\|\cdot\|$ is Fréchetdifferentiable (resp. Gâteaux-differentiable) in $X \backslash\{0\}$, (see [2]).

Recall that a convex subset $C(0$ is in the interior of $C)$ is said to be Fréchet-smooth (resp. Gâteaux-smooth) if the Minkowski functional of C is Fréchet-differentiable (resp. Gâteaux-differentiable) in $X \backslash\{0\}$.

In $[7]$, it was shown that: Let $(X,\|\cdot\|)$ be a Banach space such that its dual norm is l.u.c. (resp. s.c.). Let S be a closed subset at positive distance from the unit ball. Then there exist a Fréchet-smooth (resp. Gâteaux-smooth) drop D such that $D \cap S$ is a singleton.

Combining Theorem 3.1 and Lemma 3.2, one can give this version of the smooth drop theorem.

Corollary 3.3. Let $(X,\|\cdot\|)$ be a reflexive Banach space where the norm is strictly convex and have the Kadeč-Klee property. Assume that the dual norm is locally uniformly convex (resp. strictly convex) in X^{*}. Let S be a closed subset at positive distance from the unit ball. Then there exists a Fréchet-smooth (resp. Gâteaux-smooth) drop D such that $D \cap S$ is a singleton.

References

[1] DANEŠ, J., A geometric theorem useful in non-linear functional analysis, Boll. Un. Mat. Ital., 6 (1972), 369-375.
[2] Deville, R., Godefroy, G., Zizler, V., "Smoothness and Renormings in Banach Spaces", Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, 1993.
[3] Georgiev, P., Kutzarova, D., Maaden, A., On the smooth drop property, Nonlinear Anal., 26 (3) (1996), 595-602.
[4] Kutzarova, D., Leránoz, C., On the p-drop property, $0<p<1$, Atti. Sem. Mat. Fis. Univ. Modena., 42 (1994), 89-102.
[5] LaU, K.S., Almost Chebychev subsets in reflexive Banach spaces, Indiana Univ. Math. J., 27 (1978), 791-795.
[6] MaAden, A., C-nearest points and the drop property, Collect. Math., 46 (3) (1995), 289-301.
[7] MaAden, A., Théorème de la goutte lisse, Rocky Mountain J. Math., 25 (3) (1995), 1093-1101.

