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Abstract: Since dysregulation of intracellular calcium (Ca2+) levels is a common occurrence in
neurodegenerative diseases, including Alzheimer’s disease (AD), the study of proteins that can
correct neuronal Ca2+ dysregulation is of great interest. In previous work, we have shown that
plasma membrane Ca2+-ATPase (PMCA), a high-affinity Ca2+ pump, is functionally impaired in
AD and is inhibited by amyloid-β peptide (Aβ) and tau, two key components of pathological AD
hallmarks. On the other hand, sorcin is a Ca2+-binding protein highly expressed in the brain, although
its mechanism of action is far from being clear. Sorcin has been shown to interact with the intracellular
sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and other modulators of intracellular Ca2+

signaling, such as the ryanodine receptor or presenilin 2, which is closely associated with AD. The
present work focuses on sorcin in search of new regulators of PMCA and antagonists of Aβ and tau
toxicity. Results show sorcin as an activator of PMCA, which also prevents the inhibitory effects of
Aβ and tau on the pump, and counteracts the neurotoxicity of Aβ and tau by interacting with them.

Keywords: sorcin; plasma membrane Ca2+-ATPase (PMCA); amyloid-β peptide; tau; functional
modulation; neurodegeneration

1. Introduction

The soluble resistance-related calcium-binding protein (sorcin) is a member of the
penta EF-hand family. There are two main isoforms, the 22 kDa isoform which is the most
abundant one and is found in the cytosol, and the 18 kDa isoform, which is localized in
the mitochondria [1]. Mass spectrometry analysis and database searching have revealed
that sorcin is widely expressed in most human tissues, such as skeletal muscle, kidney,
brain, cardiac muscle, breast and skin [2,3], and it is overexpressed in a variety of human
tumors and human cancer cell lines [4–6]. Binding of calcium ions (Ca2+) is essential to
translocate sorcin from the cytoplasm to the cell membrane, and there it can interact with
other membrane proteins involved in Ca2+ homeostasis [2,7]. Through the binding of Ca2+

to sorcin, this protein plays a significant role in cancer cells [8], and in the regulation of
angiogenesis [9], mitosis [10] and endoplasmic reticulum (ER) stress [11], as revised in
Colotti et al. [2] and Mao et al. [3]. The involvement of sorcin in apoptosis [12] and in
metastasis of several cancer types has also been described [13,14].

Sorcin interacts and inhibits the ryanodine receptor [15] and activates the sarco(endo)
plasmic reticulum Ca2+ ATPase isoform SERCA2a [16], thereby promoting Ca2+ accumula-
tion in the ER. In the plasma membrane, sorcin modulates the L-type Ca2+ channels [17]
and activates the Na+–Ca2+ exchangers [18]. Sorcin is also able to increase mitochondrial
Ca2+ concentration [19].

Increasing evidences highlight the association of sorcin with neurodegeneration. In
fact, it has been shown that sorcin interacts with presenilin 2, a component of the γ-secretase,
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which is involved in the generation of 39–42 amino acid amyloid-β peptides (Aβ) from
cleavage of the Aβ protein precursor in Alzheimer’s disease (AD) [20]. Presenilins 1 and
2 have been found to form passive ER Ca2+ leak channels, but this function is altered
by mutations associated with familial AD, independently of its γ-secretase activities [21].
Recently, it has been shown that sorcin is downregulated in the hippocampus of mice with
a partial repression of AMP-activated protein kinase, a protein that seems to be hyperactive
in neurodegenerative disorders [22]. These studies point to a growing interest in sorcin
research concentrated on the role it may play in neurodegeneration by regulating the
function of other proteins involved in Ca2+ signaling. Most studies have focused on the
association of sorcin with ER proteins, and a recent work highlights the involvement of
sorcin in ER stress in neurodegeneration [23].

In the present work, we have identified sorcin as a novel activator of the plasma
membrane Ca2+-ATPase (PMCA), which is a crucial component of the mechanisms of Ca2+

efflux. This high-affinity Ca2+ pump plays a major role in the regulation and fine-tuning
of cytosolic Ca2+ concentrations, by extruding Ca2+ out of the cell at the expense of ATP
hydrolysis. Sorcin can also prevent PMCA inhibition by Aβ and tau, two key components
of the pathological hallmarks of AD. Besides, sorcin is shown as a potent blocking agent
of toxicity induced by Aβ and tau in human neuroblastoma cells, also counteracting their
inhibitory effects on the endogenous PMCA.

2. Results

2.1. Sorcin Activates the Plasma Membrane Ca2+-ATPase

Previous studies by other authors have shown that sorcin activates the intracellular
SERCA2a in cardiomyocites [16]. Since PMCA plays an essential role in maintaining Ca2+

homeostasis by removing the excess of intracellular Ca2+ out of the cell and is a highly
regulated pump, in this work, we have analyzed the effect of sorcin on PMCA, using
purified pig brain protein, which has been extensively characterized in our laboratory, as
the simplest system.

It is known that PMCA activity and its regulation depend on the ionic nature of its
lipid environment. In fact, all PMCA isoforms are partially active when they are recon-
stituted in phosphatidylcholine (PC) and are stimulated by calmodulin (CaM), whereas
they show maximal activity in phosphatidylserine (PS) and therefore are not stimulated
by CaM [24,25]. Bearing this in mind, we analyzed the effect of sorcin on purified PMCA,
which contains all 4 isoforms [25,26], in the presence of each lipid. The protein was in-
cubated with increasing concentrations of sorcin (from 0.5 to 2 µM) in 25 µL, and then
diluted to 1 mL in the assay medium. Therefore, the concentrations of sorcin used in the
activity measurements were in the range 12.5–50 nM. Figure 1 (open circles) shows that
sorcin significantly increased (about 1.8-fold) the activity of PMCA reconstituted in PC.
The maximal effective concentration (EC50) was 12.5 nM sorcin (in the assay medium).
However, the PMCA reconstituted in PS (open triangles) was already fully active and then
it was not further activated by sorcin.
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Figure 1. Sorcin activates the plasma membrane Ca2+-ATPase (PMCA) activity and prevents the
inhibition of the pump by amyloid-β peptide (Aβ1-42) and tau. Purified PMCA (2.5 µg) was
reconstituted with phosphatidylcholine (PC) (#) or phosphatidylserine (PS) (∆), and incubated for
2 min at 37 ◦C, with Ca2+ and increasing concentrations of sorcin, in the absence or presence of
30 µM Aβ1-42 (•�) or 300 nM tau (N) in 25 µL. Afterward, samples were further diluted up to 1 mL
in assay medium (final concentrations of Aβ and tau were 0.75 µM and 7.5 nM, respectively). The
Ca2+-ATPase activity was measured as described in the Methods Section. Data are mean ± SE of
eight experiments performed with three preparations.

2.2. Sorcin Blocks the Inhibitory Effects of Aβ and Tau on PMCA Activity

We have previously reported that Aβ and tau, which are widely involved in AD
pathology, inhibit the PMCA but not the SERCA pump, with the Aβ effect being indepen-
dent of the ionic nature of the phospholipid, while tau only inhibited the PMCA activity
in the presence of acidic lipids, such as PS [25]. Furthermore, we have also shown that
CaM, the endogenous PMCA activator, and the phenothiazine methylene blue activated
the PMCA and also prevented the inhibitory effects of both Aβ and tau on PMCA activ-
ity [25–28]. In line with those findings, we have questioned if sorcin, besides activating the
PMCA, could also exert similar protective effects. Then, we have carried out kinetic assays
with the purified PMCA reconstituted in neutral phospholipid PC or in acidic PS and
preincubated with 30 µM Aβ or 0.3 µM tau, in the presence of increasing concentrations of
sorcin and 50 µM Ca2+ in 25 µL. Samples were further diluted up to 1 mL in assay medium
(final concentrations of Aβ and tau were 0.75 µM and 7.5 nM, respectively). As shown
in Figure 1, sorcin activated the partially active PMCA, reconstituted in PC, up to the
Vmax. Furthermore, sorcin decreased the inhibition produced by Aβ on pump activity in a
concentration-dependent manner. As mentioned above, tau does not inhibit PMCA activity
in PC and therefore the effect of sorcin on PMCA in the presence of tau is not shown. When
PMCA was reconstituted in PS, it showed maximal activity, and thus it was not further
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activated by sorcin, although it was inhibited by Aβ and tau. Again, sorcin counteracted
the inhibitory effects of Aβ or tau and blocked them completely at concentrations above
25 nM, even in the presence of both of them (result not shown). However, in the absence of
Ca2+, 25 nM sorcin neither activated PMCA nor prevented its inhibition by Aβ and tau
(Figure 2).

Figure 2. Sorcin does not to protect PMCA activity from its inhibition by Aβ and tau in the presence
of EGTA. Purified pig brain PMCA (2.5 µg) reconstituted in PC or PS was treated for 2 min at 37 ◦C,
with 2 mM EGTA, in the absence (plain bars) or presence of 1 µM sorcin (stripped bars) and 30
µM Aβ or 300 nM tau (grey bars) in 25 µL. The mixture was further diluted up to 1 mL in the
assay medium (without Ca2+) and the reaction was started by addition of 1 mM ATP and 100 µM
CaCl2. Data represent mean ± SE from three experiments performed in duplicate and with three
different preparations.

As mentioned above, the purified synaptosomal PMCA preparation is a mixture of
all isoforms. In order to learn whether PMCA activation by sorcin varies with the class
of isoform, we analyzed the effects of 25 nM sorcin in COS membranes overexpressing
each of them. As shown in Figure 3A, sorcin activated all PMCA isoforms, between 1.5-
and 1.8-fold. This activation was also observed in COS membranes overexpressing the
3 major SERCA isoforms (Figure 3B). These results indicate that sorcin is able to activate all
isoforms of intracellular (SERCA) and plasma membrane (PMCA) Ca2+ pumps.
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Figure 3. Sorcin activates all PMCA (A) and SERCA (B) isoforms. Twenty µg of membranes from COS
cells overexpressing PMCA or SERCA isoforms were treated in the absence (plain bars) or presence
of 1 µM sorcin, and 50 µM CaCl2 (stripped bars) in 25 µL, and then diluted up to 1 mL with the
assay medium plus 0.01% saponin. Activity was measured as indicated in the Methods Section after
addition of 1 mM ATP. The 100% activities correspond to 0.124 ± 0.003, 0.107 ± 0.004, 0.093 ± 0.006
and 0.102± 0.01 µmol.min−1.mg−1 for hPMCA1b, hPMCA2b, rPMCA3b and hPMCA4b respectively,
and to 2.57 ± 0.018, 0.086 ± 0.015 and 0.216 ± 0.01 µmol.min−1.mg−1 for SERCA1, SERCA2b and
SERCA3, respectively. Data are mean ± SE of three experiments performed in triplicate with three
preparations. p ≤ 0.001 vs. control.

We have shown in previous work that hPMCA4b is the isoform most sensitive to
inhibition by Aβ [29] and tau [27]. On the other hand, SERCA2b is ubiquitously expressed
and is the predominant isoform in the brain [30,31]. Therefore, we examined the effects of
sorcin in the presence of Aβ and tau, on Ca2+-ATPase activity of COS membranes overex-
pressing the native hPMCA4b, truncated variants hPMCA4b-L1086* (L1086*) lacking the
calmodulin binding domain (CaMBD) and hPMCA4b-R1052* (R1052*), and the SERCA2b
isoform. R1052* is the PMCA variant that most closely resembles SERCA, since it lacks
the whole C-terminal domain. The reason for using truncated forms of PMCA was to
determine whether the binding of sorcin to PMCA occurred in the C-terminal regulatory
domain of PMCA, which does not contain SERCA, or in other domains. As shown in
Figure 4, the activity of native hPMCA4b measured in the absence of sorcin was inhibited
by Aβ and tau, whereas the activity of L1086* was inhibited only by tau. In contrast, neither
Aβ nor tau affected the activities of the shortest R1052* variant and SERCA2b, confirming
our previous findings [25,26].
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Figure 4. Sorcin activates Ca2+-ATPase activities of overexpressed full hPMCA4b, their truncated variants and SERCA2b
isoforms in a concentration-dependent manner and prevents their inhibition by Aβ and tau. Twenty µg of COS cells’
membranes overexpressing full hPMCA4b, or truncated hPMCA4b-L1086* and hPMCA4b-R1052* and SERCA2b isoforms
were treated with increasing concentrations of sorcin, without (#) or with 30 µM Aβ1-42 (•) or 300 nM tau (N), in 25 µL,
and then diluted up to 1 mL with the assay medium plus 0.01% saponin, resulting in the indicated final concentrations
of sorcin. Activities were measured as indicated in the Methods Section, after addition of 1 mM ATP. The 100% activities
correspond to 0.226 ± 0.02, 0.235 ± 0.03, 0.242 ± 0.02 and 0.190 ± 0.003 µmol. min−1. mg−1 for hPMCA4b, hPMCA-
L1086*, hPMCA-L1052* and SERCA2b, respectively. Data represent mean ± SE of three experiments performed with
three preparations.

However, all Ca2+-ATPases were activated by sorcin in a concentration-dependent
manner, regardless of the presence of Aβ or tau in the incubation medium. A sorcin
concentration of 25 nM completely prevented the inhibition of native PMCA by 0.75 µM
Aβ or 7.5 nM tau and of the truncated L1086* by 7.5 nM tau. Above that concentration,
sorcin activated both native and truncated PMCAs to the same levels as those achieved in
the absence of Aβ and tau. The highest percentages of Ca2+-ATPase activation achieved
with 50 nM of sorcin were as follows: 83%± 5% for native hPMCA4b, 63%± 3% for L1086*
and 75% for R1052*.

2.3. The Ca2+-ATPase of Human Membranes Is also Modulated by Sorcin

The effects of sorcin on PMCA were also investigated in membranes prepared from
human undiagnosed (HC) and diagnosed AD (HAD) brains. Samples were treated, as
described above, with 1 µM sorcin and 30 µM Aβ or 0.3 µM tau, in 25 µL, and then
diluted to 1 mL in assay medium. PMCA activity was measured as indicated in the
Methods Section and the resulting values are depicted in Figure 5A. It was observed that
in HC, the addition of sorcin increased PMCA activity by 1.75-fold, while Aβ or tau, at
the concentrations assayed, produced about 50% inhibition, as expected from the results
of previous work. However, the activities of membranes co-treated with sorcin and Aβ

or tau were similar to those of untreated samples. These results are in agreement with
those observed in purified pig brain PMCA (see Figure 1). In HAD membranes, the
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PMCA showed higher activity than in HC membranes, as already reported in previous
studies [26,29], and it was not significantly activated by sorcin. On the other hand, Aβ did
not affect the activity of HAD membranes, whereas tau inhibited PMCA by 50%, as already
reported in previous studies [26,29,32], but this inhibition was prevented by co-treatment
of membranes with sorcin and tau. In order to determine the expression of endogenous
sorcin in human brain samples, we performed Western blots of human membranes at
different Braak stages (Figure 5B). An increase in sorcin expression was observed in the
later Braak stages, associated with disease progression.

Figure 5. (A) Sorcin prevents the inhibition of PMCA activity by Aβ and/or tau in membranes from human control (HC)
and AD (HAD) brain samples. Ten µg of membranes from HC (Braak stages I and II) and from HAD (Braak stages V and
VI) were incubated without (plain bars) or with (stripped bars) 1 µM sorcin and 30 µM Aβ1-42 or 300 nM tau (grey bars) in
25 µL, and then diluted up to 1 mL with assay medium plus 0.01% saponin. PMCA activity was assayed after triggering
the reaction with 1 mM ATP, as indicated in the Methods Section. Data represent mean ± SE values of three experiments
performed with four preparations of each Braak stage. * p ≤ 0.001 vs. MV without sorcin. (B) Expression levels of sorcin in
human brain samples at increasing Braak stages of AD. Twenty µg of human brain samples (SN1) of Braak stages I, II, III,
IV, V and VI, were electrophoresed into 12% SDS-PAGE gel, electro-transferred to PVDF and immuno-stained with the
anti-sorcin antibody, as indicated in the Methods Section. The immunoblot is representative of three assays with at least
three samples from each stage. Relative expression of sorcin vs. GAPDH is shown as mean ± SE values (arbitrary units).
* p ≤ 0.001 vs. Braak stage I.

2.4. Sorcin Prevents the Toxicity of SH-SY5Y Cells Caused by Exogenous Aβ and Tau and
Preserves the Endogenous Ca2+-ATPase Activity

The protective effects of sorcin against the toxic effects of Aβ and tau were also studied
in the human neuroblastoma SH-SY5Y cell line (Figure 6). Ca2+-ATPase activity assays
(Figure 6A) showed 50% inhibition in membranes prepared from cells treated with 5 µM
Aβ or 10 nM tau.
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Figure 6. Protective effects of sorcin on Ca2+-ATPase activity (A,B), cell viability (C), ROS production (D) and apoptosis
(E,F), in human neuroblastoma cells. SH-SY5Y cells were treated without or with 5 µM Aβ1-42 or 10 nM tau in the absence
and presence of 1 µM sorcin for 24 h, as detailed in the Methods Section. (A) Ca2+-ATPase activity was assayed in 10 µg of
membranes, previously treated as indicated above. (B) Ca2+-ATPase activity was measured by incubating non-treated cells
with 30 µM Aβ1-42 or 300 nM tau in the absence and presence of 1 µM sorcin, in 25 µL, and then diluted up to 1 mL with
assay medium plus 0.01% saponin. Activity data are mean ± SE of three independent experiments. Cells treated with Aβ

or tau. (C) Cell viability was assayed in control and treated cells after 1 h incubation with 150 µg/mL MTT (white bars)
or stained with 0.4% trypan blue (black bars). Data are expressed as percentage of untreated cells, as mean ± SE of five
independent experiments. (D) The production of ROS was determined by incubating non-treated and treated cells with
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40 µM H2DCFDA, as indicated in the Methods Section. Data are expressed as mean ± SE of fluorescence intensity of three
independent experiments. (E) DAPI staining in non-treated and treated cells. Representative fluorescent microscopy images
show apoptotic cells with condensed and fragmented nuclei (white arrows). Scale bar: 10 µm. Apoptotic nuclei were
quantified with respect to the total number of seeded cells. Values are mean ± SE of ten images per coverslip, obtained
from three cell cultures. (F) Caspase-3 activity was measured in non-treated and treated cell lysates by detecting cleavage
of the caspase substrate for 1 h at 37 ◦C. Data are represented as a percentage relative to non-treated cells (0.206 ± 0.005
fluorescence intensity/µg protein). Values are mean ± SE of three experiments. * p ≤ 0.001 vs. cells treated with Aβ or tau.

However, inhibitory effects were blocked when cells were co-treated with sorcin and
Aβ or sorcin and tau, confirming the protective effect of sorcin against the inhibitory effects
of Aβ and tau on PMCA activity. The Ca2+-ATPase activity of membranes from cells treated
only with sorcin was similar to that of untreated cells (results not shown). The fact that
exogenous sorcin does not stimulate Ca2+-ATPase activity in cells is probably due to its
inability to cross the cell membrane. The same protective effects by sorcin were found
when untreated cells were incubated with sorcin and Aβ or tau just before measuring the
activity, indicating a direct modulation of PMCA by sorcin (Figure 6B).

In addition to kinetic assays, we evaluated the effects that co-treatments of cells with
sorcin and Aβ or tau exert on cell viability. For this purpose, two cell staining methods, MTT
and trypan blue (Figure 6C), were performed. Both showed that the presence of exogenous
Aβ or tau in the culture medium produced a 50% decrease in cell viability, whereas co-
treatments of cells with sorcin and Aβ (molar ratio 0.2:1) or sorcin and tau (molar ratio 1:1)
fully protected cells from loss of viability. We also estimated the generation of intracellular
reactive oxygen species (ROS) elicited by Aβ or tau in the absence and presence of sorcin
using the fluorescent probe H2DCFDA. As shown in Figure 6D, the total ROS levels of
cells treated with Aβ or tau were about 1.6–2-fold higher than those of untreated or sorcin-
treated cells. However, this increase was not observed when cells were co-incubated with
sorcin and Aβ or sorcin and tau. Additionally, the influence of the different treatments
on the apoptosis levels of the cells was analyzed by DAPI staining (Figure 6E), showing
that the number of apoptotic cells increased by 45–53% after treatments with Aβ or tau
with respect to the 5–7% increase found in untreated cells or in cells treated with sorcin
without or with Aβ or tau. Alternatively, apoptosis was detected by measuring caspase-3
activation (Figure 6F). As shown, Aβ and tau increased the activation of caspase-3 by 50%,
while sorcin inhibited Aβ and tau effects. The protection of sorcin against the toxic effects
of Aβ or tau on cell survival, ROS generation and apoptosis were also observed when the
three compounds were added to the same culture (result not shown).

2.5. Sorcin Interacts with PMCA and also with Aβ and Tau

The activity results obtained with purified PMCA suggest that the protective effect of
sorcin against Aβ or tau may result from its direct interaction with PMCA, thus blocking
the binding of Aβ or tau to the pump. However, it is possible that sorcin also interacts with
both AD markers, thus preventing them from binding to PMCA. Furthermore, sorcin is
unable to diffuse across the cell membrane, while extracellular Aβ or tau can be internalized
in cell cultures by endocytosis [33–38], producing toxic effects [25,39]. Therefore, the results
shown so far strongly suggest that the protective effect of sorcin against PMCA inhibition
by Aβ and tau and also against their cytotoxicities could be due to its interaction with
exogenous Aβ and tau, preventing their entries into the cells and thus their toxic effects.
To analyze these possibilities in detail, we carried out overlay tests. First, we analyzed
the possible sorcin–PMCA interaction, and for this, they were loaded on a 10% SDS gel,
transferred to a PVDF membrane (Figure 7A) and incubated with PMCA. After several
washes to remove unbound protein, the membrane was stained with the 5F10 PMCA-
antibody. A representative blot showed clear binding of 5F10 antibody to the 22 kDa sorcin
on the first membrane, indicating that PMCA interacts with sorcin.
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Figure 7. Blot overlay assays of the interaction between sorcin and PMCA, Aβ and tau. (A) PMCA
(0.5 µg) and sorcin (1 µg) were run in 10% SDS gel, transferred to PVDF membranes and incubated
sequentially with 0.5 µg PMCA and the a-PMCA antibody 5F10. The panel shows binding of
PMCA to sorcin. (B) Sorcin (1 ug), Aβ (3 µg) and tau (3 µg) were run in three gradient 10–20% gels,
transferred to PVDF and incubated sequentially with 3 µg Aβ or 3 µg tau, and with a-Aβ1-42 or
a-tau antibodies, as indicated. The panel shows binding of both Aβ and tau to sorcin. It also shows a
Western blot of pure sorcin with the a-sorcin antibody, as control. Immunoblots are representatives
from three different assays.

The same approach was performed to study the potential interaction of sorcin with
Aβ and tau (Figure 7B). In this case, sorcin and Aβ or sorcin and tau were loaded onto
10–20% SDS gels and subsequently transferred to PVDF membranes. One of them was
incubated with Aβ and the other with tau, and after extensive washing, each membrane
was subsequently incubated with the corresponding primary antibody, with the HRP-
conjugated secondary antibody and with the chemiluminescent substrate. These blots
showed that a-Aβ antibody detected a band corresponding to Aβ1-42 at the expected
height of sorcin, and a-tau antibody also detected tau at the expected height of sorcin.
These results indicate that sorcin interacts with both Aβ and tau. Positive controls were
used to show the binding of PMCA, sorcin, Aβ and tau to their corresponding antibodies.

Additional experiments were carried out by exploring changes of the intrinsic fluo-
rescence following excitation at 280 nm, in response to conformational changes associated
with protein–protein interactions (see supplementary method). The fluorescence spectra of
sorcin, PMCA, Aβ and tau were monitored before and after pre-mixing these proteins, and
fluorescence values at 310 nm were obtained (Supplementary Figure S1). A quenching of
fluorescence by the premixed PMCA–sorcin was observed with respect to the combined
fluorescence (calculated as the sum of fluorescence peak values of PMCA and sorcin),
indicating that aromatic residues on sorcin and PMCA were perturbed by the close in-
teraction when both proteins were incubated together. Besides, the sum of individual
fluorescence values of both sorcin and Aβ was higher than the fluorescence intensity of
premixed sorcin–Aβ. Similarly, the sum of individual values of sorcin and tau was higher
than the fluorescence intensity of the premixed sorcin–tau.

3. Discussion

As mentioned above, sorcin is widely distributed in human tissues. Several studies
propose its involvement in Ca2+ homeostasis, cell cycle regulation and vesicle trafficking,
diabetes, infertility and nervous system pathologies (reviewed in [40]), although most stud-
ies on sorcin are related to its overexpression in tumor cells [2,40,41] and to its regulatory
role in excitation–contraction coupling in the heart through its interaction with several
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proteins, such as the SERCA pump [16], the ryanodine receptor intracellular Ca2+ chan-
nel [15,42], the Na+-Ca2+ exchanger [18] and L-type Ca2+ channels [43]. Mass spectrometric
and database analyses have shown that sorcin is highly expressed in the brain [44–46].
However, its role is far from being known.

It has been shown that sorcin co-localizes with several isoforms such as the ryanodine
receptor in rat and mouse brain [23,47] and with a region of presenilin-2 (a protein which is
mostly associated to familial AD) in human brain tissues [20]. Few studies have identified
the connection of sorcin to several proteins involved in Parkinson’s Disease and other
Lewy body diseases, such as α-synuclein and synplilin-1, using phage display [48] and
gene co-expression analysis [49]. Besides, a recent work [23] reported an increase in sorcin
expression in neuroblastoma cells treated with a neurotoxin widely used in animal models
of Parkinson’s Disease, and also in a mouse model of Huntington’s disease and in Down
Syndrome human brain without or with diagnosis of AD (at ages under and over 40,
respectively). The study was focused on the interaction of sorcin with ER proteins involved
in Ca2+ signaling, such as ryanodine and Sigma-1 receptors. In the present work, we
have identified sorcin as a novel activator of the high-affinity PMCA pump. Another
interesting finding is that sorcin counteracts the inhibitory effects that two key components
of Alzheimer’s pathology, such as Aβ and tau, exert on PMCA. Furthermore, sorcin is
shown to be a potent blocker of Aβ- and tau-induced toxicity in human neuroblastoma
cells, also preventing their inhibitory effects on the endogenous PMCA activity.

To our knowledge, this is the first study to show the functional effects of sorcin on the
plasma membrane Ca2+ pump from human and pig brain and also from neuroblastoma
cells. This pump is highly regulated, and is the only Ca2+-transport ATPase which is
activated by CaM [50]. The pig brain PMCA purified by CaM-affinity chromatography
is eluted in a delipidated state, and therefore lacks its activity. To activate the pump, it is
necessary to reconstitute it with lipids [24]. The lipid nature is a key factor in the function
of membrane proteins. We and other authors have shown that in the presence of PC, the
protein is partially active and can be fully activated by CaM, whereas in the presence of PS,
the PMCA undergoes a conformational change that renders it fully active, and therefore it
is not further stimulated by CaM [24,50–52]. On the other hand, the surrounding lipids
also affect the distribution of PMCA isoforms in lipid rafts microdomains [53–55] and their
interactions with Aβ [29] and tau [25].

Sorcin activated the PMCA only when it was reconstituted in PC (since in this case it
was partially active), reaching the same Vmax as in PS. Moreover, this activation was not
observed in the absence of Ca2+, which is in agreement with the fact that sorcin interacts
and regulates a variety of proteins in a Ca2+-dependent manner [2,56]. These effects were
similar to those produced by CaM, the endogenous activator of the pump, as described
above. It is well-known that at rest, PMCA is partially autoinhibited by interaction of
its C-terminal CaMBD with two cytosolic loops, and that Ca2+-CaM activates the pump
through its binding to the autoinhibitory CaMBD domain [28,57–59]. Given the similarity
in the ways of PMCA activation by sorcin and CaM, we might think that sorcin would
activate PMCA by binding to the same domain as CaM. However, in this work, we have
shown that sorcin activates PMCA mutants L1086* and R1052*, lacking the CaMBD and the
whole C-terminal tail respectively, and it also activates all intracellular SERCA isoforms,
which do not contain this domain, whereas CaM does not affect either SERCA or the
secretory pathway Ca2+-ATPase SPCA, which does not have the CaMBD either. Therefore,
these results indicate that sorcin does not bind to the CaMBD. Then, sorcin and CaM may
activate PMCA by binding to different sites on the pump. Overlay binding assays for
sorcin–PMCA and PMCA–sorcin have shown interactions between both proteins. The fact
that sorcin activates truncated forms of PMCA, which structurally resemble the SERCA
pump, suggests that its activating effect is exerted by binding to common sites on both
types of Ca2+-ATPases.

Of particular interest is the fact that sorcin counteracts the inhibitory effects of Aβ

and tau on PMCA activity, and even blocks them completely. These results suggest that
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sorcin could also bind to both Aβ and tau. Overlay binding experiments confirmed the
interaction of sorcin with both of them (as antibodies against Aβ and tau detected binding
of the peptide and tau to sorcin transferred to PVDF). Sorcin, again, behaved like CaM
with respect to its blocking effects on both inhibitors of the pump, since CaM was also able
to block and even completely reverse the inhibitory effects of Aβ [28] and tau [25].

Previous studies using native and truncated hPMCA4b isoforms suggested that Aβ

binds to the CaMBD of PMCA [28], while tau binding may be located at a site close
to PMCA transmembrane domain 10 [25]. We have also shown, by using fluorescence
experiments, that CaM has a very high affinity (Kd ~ 1 nM) for Aβ [60].

The fact that sorcin activates all PMCA and SERCA isoforms while CaM only activates
PMCA indicates that sorcin does not bind to the CaMBD (which is lacking in SERCA). This
is corroborated by the ability of sorcin to activate not only the native protein but also the
truncated L1086* and R1052* isoforms, lacking the CaMBD and the whole C-terminal tail,
respectively.

The activating effect of sorcin, at the half maximal effective concentration (EC50),
was also seen in human brain membranes from control cases and to a lesser degree in
AD, most probably because the PMCA activity is already higher in AD than in control
membranes [29]. This observation raises the possibility that sorcin may play a role as an
endogenous activator of the pump. In fact, Western blot assays performed in this work with
membranes from control and AD human tissues revealed an increase in sorcin expression
with AD progression, being more significant in the latest Braak stages, which could be
associated with the higher activation of PMCA in AD samples. In addition, other authors
have shown, by quantitative proteomic analysis and database searching [23,44–46], an
increased expression of sorcin in AD-affected brain samples compared to non-AD controls.

In human tissue membranes, sorcin also prevented the inhibition of PMCA activity
by Aβ and tau. From this point of view, sorcin may play a beneficial role in the function
of PMCA, because, on the one hand, by activating PMCA, sorcin may help to reduce the
increase in the levels of neuronal resting Ca2+ in AD. On the other hand, sorcin counteracts
the toxic effects of Aβ and tau, thus preventing the protein from losing its function as a
high-affinity Ca2+ transporter.

In human neuroblastoma SH-SY5Y cells, sorcin also protected PMCA from its inhibi-
tion by exogenous Aβ and tau. Sorcin is not able to cross the cell membrane, and therefore,
it cannot activate endogenous PMCA in SH-SY5Y membranes. However, it has been shown
that exogenous Aβ can be internalized in HEK-293 cells overexpressing APP [61,62], in
neurons from cultured hippocampal slices [63,64], in mouse neuroblastoma (N2A) cells [33],
and in human SH-SY5H cells [65], as reviewed in [34]. Extracellular tau has also been
reported to be internalized by neurons in culture [35–38,66]. Through their internalization,
Aβ and tau promote toxic effects [65,66]. Therefore, the inhibition of endogenous PMCA
observed in membranes treated with exogenous Aβ or tau indicates that both of them cross
the plasma membrane and inhibit PMCA. Sorcin, however, prevented those inhibitions,
most likely by its interaction with exogenous Aβ and/or tau, preventing their entry into
the cells. Thus, sorcin binding to Aβ and tau would result in decreased levels of free
Aβ and tau crossing the membrane and inhibiting PMCA. Overlay binding and intrinsic
fluorescence experiments prove that sorcin interacts with Aβ and tau. Other authors have
demonstrated the interaction of sorcin with presenilin 2, a protein directly related to AD as
it is an enzymatic component of the γ-secretase complex that cleaves amyloid β-protein
precursor [20], and also with tau in HEK293 and SH-SY5Y cells [67]. Considering the
key role of PMCA in the control of intracellular Ca2+ levels, and that Ca2+ overload is a
characteristic feature of AD and other neurodegenerative diseases, the interaction of sorcin
with PMCA may be a beneficial mechanism to remove the excess of cytosolic Ca2+ and
then to restore Ca2+ homeostasis.

The interaction of sorcin with exogenous Aβ and with tau also explains the positive
effects of sorcin observed in viability and apoptosis assays, as well as the lack of PMCA
inhibition observed in human neuroblastoma SH-SY5Y cell membranes after co-treatment
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with sorcin and Aβ or sorcin and tau. Furthermore, exposure of cells to Aβ and tau induced
an increase in ROS generation, which in turn could enhance the inhibition of PMCA
activity observed in these cells, as PMCA is particularly susceptible to ROS-mediated
damage [68,69].

Results of this work lead us to propose PMCA as a novel sorcin-binding protein
and also to point out the interplay between sorcin and AD based on its interaction with
Aβ and tau. Functional inhibition of neuronal PMCA by Aβ and tau is most probably a
contributing factor to cytosolic Ca2+ dysregulation associated with AD. It is therefore of
great interest to find compounds that prevent PMCA inhibition and thus contribute to
restoring its central role in the control of cytosolic Ca2+. The interaction of sorcin with Aβ

and tau represents a protective mechanism to prevent dysfunction of PMCA and also to
reduce the severity of neurodegeneration in AD and other neurodegenerative diseases
involving toxicity by Aβ and tau.

Figure 8 summarizes all interactions of sorcin with PMCA, Aβ and tau, and with
SERCA described in this study by using kinetic measurements, intrinsic fluorescence,
overlay binding experiments and cell cultures. Overall, this work highlighted that sorcin (1)
activates the PMCA by its binding to it, and (2) interacts with two key molecular markers
of AD, such as Aβ and tau, blocking their inhibitory effects on PMCA. In vitro assays
suggested that the presence of exogenous sorcin may be relevant to prevent neurotoxicity
of exogenous Aβ and tau with respect to cell viability and to PMCA inhibition.

Figure 8. The scheme summarizes the interactions of sorcin with PMCA (red) and SERCA (blue), in the presence of Ca2+

that lead to Ca2+-ATPase activation. Sorcin also interacts with AD markers, such as tau and Aβ, preventing their binding to
PMCA and their inhibitory effects on PMCA activity.

4. Materials and Methods

Recombinant Human SRI (sorcin) was obtained from Sino Biological US Inc, Es-
chborn, Germany. The Aβ1-42 peptide was supplied by StabVida, Caparica, Portugal as
a lyophilized powder. A 4 mg/mL stock solution was prepared by solubilization of the
peptide in 1% NH4OH and further dilution with 100 mM HEPES/KOH (pH 7.4). All
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experiments were performed with Aβ1-42 previously incubated for 2 h at 37 ◦C [28]. Full-
length tau 441 was obtained from Enzo Life Sciences, Barcelona, Spain. Brains (60–80 g)
from 5-month-old pigs were obtained from a local slaughterhouse, immediately placed
on ice, in 10 mM HEPES/KOH, pH 7.4, 0.32 M sucrose, 0.5 mM MgSO4, 0.1 mM PMSF
and 2 mM 2-mercaptoethanol (buffer I), for transport and used within 3 h after the animals
were slaughtered in order to keep cell viability and protein quality. Non-AD and AD
human brain tissues of Braak stages I, II, III, IV, V and VI, ages 72–90 (5–6 g pieces of
middle frontal gyrus as starting material) were provided by the Netherlands Brain Bank
(NBB), Amsterdam, The Netherlands. Procedures, information and consent forms of the
NBB were approved by the Medical Ethics Committee of the Vrije Universiteit Amsterdam
Medical Centre on 30 April 2009. The project identification code is “Avila (537)”. Research
involving human tissues was carried out following the rules of the Declaration of Helsinki
of 1975 (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/,
accessed on 1 August 1975), revised in 2013. Research involving animal and human post-
mortem tissues was approved by the ethics committee of the University of Extremadura
(Ref. 66/2017). PC type XI-E from egg yolk, PS and calmodulin-agarose were obtained
from Sigma. The following antibodies were used: monoclonal anti-PMCA 5F10 (Thermo
Scientific, Madrid, Spain), anti-sorcin, anti-tau (H150) and anti-GAPDH antibodies (Santa
Cruz Biotechnologies, Heidelberg, Germany), and the polyclonal Aβ1-42 that was raised in
our laboratory against the aged Aβ1-42. This antibody was obtained by immunization of a
New Zealand rabbit with a solution containing 500 µg of aged Aβ1-42 in 0.5 mL PBS and
0.5 mL Freud’s complete adjuvant. Six subsequent immunizations were performed until
highest antibody levels were obtained. After the last immunization, the animal was bled,
and the blood was allowed to clot for 4 h at room temperature. It was then centrifuged
at 2500× g for 15 min at 4 ◦C, obtaining the polyclonal serum in the supernatant. All the
material was divided into aliquots and stored at −80 ◦C until use.

4.1. Preparation of Purified Plasma Membrane Ca2+-ATPase from Pig Brain

The PMCA from pig brain was purified as described by Salvador and Mata [24].
Briefly, fresh pig brain (60–80 g) was cut into small pieces and homogenized in buffer I.
After two centrifugations at low and high speed, the resulting pellet was resuspended
in buffer I and applied to a discontinuous sucrose gradient, to isolate synatosomes. This
fraction was subjected to lysis in 10 mM HEPES/KOH, pH 7.4, 1 mM EDTA and 2 mM
2-mercaptoethanol to obtain synaptic plasma membrane vesicles that were resuspended,
at 6 mg/mL, in 20 mM HEPES/KOH, pH 7.4, 130 mM KCl, 0.5 mM MgCl2, 50 µM CaCl2,
15% (w/v) glycerol and 2 mM 2-mercaptoethanol, and solubilized in 0.6% (w/v) Triton
X-100. The solubilized proteins were loaded onto a CaM affinity column. The purified
PMCA was eluted from the column in a buffer containing 20 mM HEPES/KOH, pH 7.4,
130 mM KCl, 1 mM MgCl2, 2mM EDTA, 0.06% Triton X-100, 2 mM 2-mercaptoethanol and
15% glycerol, and frozen at −80 ◦C in small aliquots. The Bradford protein assay [70] was
used to measure total protein concentration.

4.2. Preparation of Membrane Extracts from Cells and Human Brain Tissues

Full-length hPMCA1b, hPMCA2b, rPMCA3b and hPMCA4b isoforms and trun-
cated variants hPMCA4b-L1086* (lacking the CaMBD) and hPMCA4b-R1052* (lacking the
CaMBD and the putative ethanol binding site) [71], and pSERCA2b and hSERCA3 isoforms
were expressed in fibroblast-like monkey COS-7 cells (ATCC, Rockville, MD, USA), as
described by Berrocal et al. [25,28,29]. The SERCA1, prepared from rabbit sarcoplasmic
reticulum, was kindly supplied by Fernando Henao (University of Extremadura, Badajoz,
Spain). Membrane extracts (MV) were prepared as described by Sepulveda et al. [72].
Briefly, human brain tissues (around 2 g of starting material) were excised, and cells were
scraped and pelleted. After homogenization in 10 mM HEPES/KOH, pH 7.4, 0.32 M su-
crose, 0.5 mM MgSO4, 0.1 mM phenylmethanesulfonyl fluoride, 2 mM 2-mercaptoethanol
and protease inhibitor cocktail solution (Roche Diagnostics), and centrifugation for 10 min
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at 1500× g, the supernatants (SN1) were centrifuged for 45 min at 100,000× g. The pellet
(MV) was resuspended in 10 mM HEPES/KOH, pH 7.4, 0.32 M sucrose and stored at
−80 ◦C until use in small aliquots. The protein concentration was determined by the
Bradford method [70].

4.3. Ca2+-ATPase Activity Assays

The Ca2+-ATPase activity was measured with a coupled enzyme assay, following the
absorbance decrease of NADH at 340 nm, as described by Salvador and Mata [24] and
using pig brain delipidated purified PMCA, previously reconstituted in phospholipids or
MV from cells or human brain tissues. Reconstitution of PMCA was carried out as follows:
the phospholipid was prepared in chloroform:methanol (7:3) as a 10 mg/mL stock solution
and was applied into a test tube and dried under N2 atmosphere. Then, it was dissolved
in purified delipidated PMCA (2.5 µg), containing 0.06% Triton X-100, at a lipid/protein
ratio of 5.3:1 (w/w) until clarity, incubated for 2 min at 37 ◦C without or with sorcin (at
different concentrations), and/or 30 µM Aβ or 300 nM tau in 25 µL, and then diluted up
to 1 mL with assay medium (50 mM HEPES/KOH, pH 7.4, 100 mM KCl, 2 mM MgCl2,
5 mM Na3N, 3.16 µM free Ca2+ (pCa 5.5), 0.22 mM NADH, 0.42 mM phosphoenolpyruvate,
10 IU pyruvate kinase and 28 IU lactate dehydrogenase). A final 2 min incubation was
performed before triggering the reaction with 1 mM ATP. Sorcin was incubated in the
presence of 50 µM CaCl2 or 2 mM EGTA when indicated. For the measurement of MV
activity, the medium was supplemented with 0.01% saponin to allow access of substrates
across plasma and intracellular membranes. Activities of MV (20 µg) from COS-7 cells
overexpressing PMCA and SERCA isoforms, and from SH-SY5Y cells, were assayed by
starting the reaction with 1 mM ATP, followed by addition of 3 mM EGTA (to measure
Mg2+-ATPase activity). The SERCA1 activity was measured by using the same assay as
described by Mall et al. [73], in the presence of Ca2+ ionophore calcimycin (A23187). The
PMCA activity in human brain MV was measured as described by Sepulveda et al. [74].
Briefly, the reaction was started with 1 mM ATP and activities were determined after
successive additions of 100 nM thapsigargin (to inhibit SERCA activity), 2 µM vanadate (to
selectively inhibit PMCA activity) and 3 mM EGTA (to measure Mg2+-ATPase activity).

4.4. Western Blotting

Proteins from SN1 fractions (20 µg) from human brain tissue were separated by elec-
trophoresis in 12% (w/v) SDS-polyacrylamide gels, according to the method of Laemmli [75],
and electro-transferred to PVDF membranes. After blocking in Tris-buffered saline (TBS)
containing 5% (w/v) of low-fat milk for 1 h, immunostaining reactions were performed
by incubating the membranes overnight at 4 ◦C with the anti-sorcin primary antibody
(1:200) diluted in TBS-0.05% (v/v)-Tween 20. Afterwards, membranes were incubated for
1 h at room temperature with peroxidase-conjugated secondary antibodies (1:3000) and
developed with ECL substrate. The monoclonal anti-GAPDH antibody (1:3000) was used
as a loading control protein. After extensive washing, ECL substrate was applied to the
membranes and signals were visualized with a Chemidoc™ XRS+ Imaging System and
quantified with Image Lab™ software 3.0.

4.5. Neuroblastoma Cell Cultures and Treatments

SH-SY5Y human neuroblastoma cells (Sigma-Aldrich) were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 2 mM L-glutamine, 100 mU/mL
penicillin, 0.1 mg/mL streptomycin and 10% heat-inactivated fetal bovine serum (FBS).
Cells were incubated at 37 ◦C in humidified atmospheric air containing 5% CO2. The
next day, cells were treated with 10 nM tau, 5 µM Aβ1-42 and/or 1 µM sorcin for 24 h.
Afterwards, MV were prepared from SH-SY5Y to measure the Ca2+-ATPase activity, as
detailed above.



Int. J. Mol. Sci. 2021, 22, 6055 16 of 20

4.6. Cell Viability Assay

SH-SY5Y cells were seeded overnight at a density of 10,000 cells/well in 96-well
cell culture plates. Then, 5 µM Aβ1-42, 10 nM tau and/or 10 nM and 1 µM sorcin were
added to the cells for 24 h. Cell viability was determined by the MTT assay according
to [76]. Briefly, cells were incubated with 150 µg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) in phosphate-buffered-saline (PBS) for 1 h at 37 ◦C.
Afterwards, the media was removed and 100 µL of DMSO was added to each well. MTT
was reduced to a formazan precipitate by metabolically active cells, that was solubilized
with DMSO and quantified at 490 and 650 nm (background subtraction) in a Varioskan
Flash fluorescence spectrophotometer (Thermo Scientific). Cell viability was also measured
by the trypan blue exclusion test described by Strober [77]. In brief, the media was removed,
and cells were resuspended in 50 µL of PBS. The same volume of 0.4% trypan blue dye
was added to the cell suspension and incubated for 3 min. Finally, 10 µL of mixture was
applied to a hemacytometer and unstained (viable) cells and stained (non-viable) cells were
counted. Trypan blue cell viability (%) = (total viable cells (unstained)/total cells (stained
and unstained)) × 100.

4.7. Reactive Oxygen Species Assay

The generation of intracellular reactive oxygen species (ROS) was detected by using
the fluorogenic dye 2′7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (Invitrogen,
Thermo Fisher Scientific, Madrid, Spain). SH-SY5Y cells were seeded overnight at a
density of 10,000 cells/well in 96-well cell cultured plates and then treated with 5 µM
Aβ1-42, 10 nM tau and/or 10 nM and 1 µM sorcin for 24 h. Afterwards, the medium
was removed and 40 µM H2DCFDA in PBS was added to cells and incubated for 30 min
at 37 ◦C with 5% CO2. The H2DCFDA diffuses into cell and is deacetylated by cellular
esterases resulting in a non-fluorescent compound, which is oxidized by ROS into the
fluorescent 2′7′-dichlorodihydrofluorescein (H2DCF). After washing with PBS, cell were
lysed with 25 µL NaOH 1 M and PBS was added up to 200 µL final volume. The fluorescent
intensity of cell extracts was measured in a Varioskan Flash fluorescence spectrophotometer
(λexc = 485 nm, λem = 530 nm) [78].

4.8. Quantification of Apoptotic Cells

Apoptosis detection and quantification was assessed using DAPI staining and caspase-
3 activity, in SH-SY5Y cells seeded overnight at a density of 60,000/well in 24-well plate
and then treated with 5 µM Aβ1-42, 10 nM tau and/or 1 µM sorcin for 24 h. For DAPI
staining, cells were fixed and incubated with 0.3 µM of 4′6-diamidino-2′-phenylindole
dihydrochloride (DAPI) fluorescent dye to stain cell nuclei. Non-apoptotic cells presented
a homogeneous distribution of DNA in a normal size, while apoptotic cells showed con-
densed chromatin [79,80]. The caspase-3 assay was performed as described in [81]. The
caspase-3 activity was measured from the cleavage of the caspase substrate N-Acetyl-
Asp-Glu-Val-Asp-7-amido-4-methylcoumarin in apoptotic cells, using a Varioskan Flash
fluorescence spectrophotometer (λexc = 360 nm, λem = 460 nm), and data were calculated
as fluorescence intensity/µg protein and represented as percentage relative to the control.

4.9. Overlay Binding Assay

Purified PMCA (0.5 µg) and human recombinant sorcin (1 µg) were subjected to a
10% SDS-PAGE. On the other hand, human recombinant sorcin (1 µg), tau (3 µg) and Aβ

(3 µg) were subjected to a 10–20% gradient SDS-PAGE. Gels were transferred to PVDF
membranes (Mb:PMCA–sorcin, Mb:sorcin–Aβ, Mb:sorcin–tau) and blocked with PBS-1%
Tween 20 (PBS-T), containing 5% (w/v) low-fat milk for 1 h at room temperature. The
Mb:PMCA–sorcin was incubated for 3 h at 37 ◦C with 0.5 µg PMCA in PBS-T. Membranes
Mb:sorcin–Aβ and Mb:sorcin–tau were incubated with 3 µg Aβ and 3 µg tau respectively,
and after extensive washing steps with PBS-T to remove unbound proteins, the membranes
Mb:PMCA–sorcin, Mb:sorcin–Aβ and Mb:sorcin–tau were incubated with anti-PMCA
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(5F10), anti-Aβ and anti-tau (H150) antibodies respectively, in PBS-T o/n at 4 ◦C. Im-
munoreactivity was detected with anti-mouse or rabbit peroxidase-conjugates secondary
antibodies. After washing, the membranes were developed with ECL substrate and the
signal was visualized with a ChemiDoc™ XRS+ Imaging System.

4.10. Statistical Analysis

Data were fitted to the appropriate equation using the SigmaPlot v10 software (SPSS
Inc, Chicago, IL, USA). Significant differences were determined by an unpaired Student’s
t-test. Statistical significance was accepted for p ≤ 0.001.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22116055/s1.
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Sorcin Soluble resistance-related calcium-binding protein
AD Alzheimer’s Disease
PMCA Plasma membrane Ca2+-ATPase
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Figure S1. Steady‐state emission spectra of the intrinsic fluorescence of sorcin, PMCA, Aβ, and tau. Spectra of 1 μM sorcin 

(S), 2.5 μg of PMCA (P), 30 μM of Aβ1‐42 (A) and 300 nM tau (T) in 100 μL of fluorescence buffer were recorded separately 

and after incubating S with P (S‐P) or A (S‐A) or T (S‐T). Inserts show the maximum signal of each spectrum (white bars) 

and their sum (S+P, S+A, S+T, grey bars). Data are mean ± SE from four different experiments (* p ≤ 0.001). 
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Suplementary Methods 

Determination of conformational changes by fluorescence spectroscopy 

  The intrinsic fluorescence of tyrosine residues in sorcin, PMCA, Aβ and tau was used to detect conformational 

changes due to their interactions. 1 μM sorcin, 2.5 μg PMCA, 30 μM of 2h aged Aβ and 300 nM tau were incubated 

separately or  together  in 100 μL of 150 mM PBS (pH 7.4), 100 mM KCl and 0.1 mM EDTA  (fluorescence buffer),  in 

Microfluor‐1  black  plates  (384  wells).  Fluorescence  intensities  were  monitored  in  a  Varioskan  fluorescence 

spectrophotometer with the excitation wavelength set at 280 nm, and the emission spectra recorded between 300–500 

nm. 
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